Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

Aspect-Oriented Approach to Implement Message
Handler in Multi-agent Systems

Aleksis Liekna®, Janis Grundspenkis?, “?Riga Technical University

Abstract — This paper focuses on message handling in multi-
agent systems. The proposed approach uses aspect-oriented
programming to separate message handling from other agent
concerns, thus increasing system’s modularity and simplifying
modification and expansion. To illustrate the proposed approach
in practice, a prototype of a simple knowledge base agent model
is implemented. The prototype is built on top of JADE platform.
Aspectd is used for aspect-oriented implementation.

Keywords: Aspectd, Aspect-Oriented Programming, JADE,
Message Handling, Multi-Agent Systems.

l. INTRODUCTION

Sending and receiving messages is an important factor in
multi-agent system communication process. Agents
communicate with each other via message exchange. Some of
these agents may have message receiving and message
sending as their only available sensors and actuators. A
number of international standards (provided by FIPA [1]) try
to describe the structure of messages and to make interaction
protocols applicable, and they are doing well. FIPA’s ACL [2]
is now a standard for multi-agent system communication [3],
and development platforms (such as JADE [4], SPADE [5]
and JACK [6]) support it. With relative ease standard-
compliant messages can be composed, sent, received on the
other end and information contained in them obtained.

The trouble comes when there is a need to figure out what
to do with that information. For instance, if we receive
message A, we need to perform action X, but if we receive
message B, the action to be performed is Y and so on. This
often results in lots of if-then statements in the main message
receiving cycle, which in turn leads to the need of
implementation of multiple agent concerns in a messaging
module. This ruins the separation of concerns — a messaging
module is responsible for messaging, not for application logic.

Although it is crucial to separate different agent concerns in
order to develop and implement a modular and maintainable
multi-agent system [7]. From our point of view, this is
especially true for message handling. If messaging is not
separated from other agent concerns, but hard coded in them,
system modularity is violated and maintainability becomes a
problem. Traditional object-oriented approach alone does not
offer a solution for this problem. As it is described in this
paper, a solution can be provided combining object-oriented
and aspect-oriented approach.

The rest of this paper is organized as follows. In Section 1l
the current situation is described, that is, message handling
without aspect-orientation and problems to be solved are
discussed. Section Il covers related work on using aspects in
multi-agent systems. In Section IV the approach for message

38

handler implementation is proposed. Section V is dedicated to
the implemented prototype. In Section VI conclusions and
information about future work are given.

I1. CURRENT SITUATION

There are two common techniques for implementation of
message handling [8]. The first one is the functional approach
— there is one main message receiving handler per agent. It
typically has lots of if-then statements for analyzing the
message and then performing the appropriate action based on
the message contents.

The second one uses object-oriented approach. There are
multiple message receiving handlers per agent, each of them
focusing on concrete message type. This is implemented using
message filters and polymorphism. In this case each type of
message is received by the appropriate message handler.

In both cases it is necessary to determine what kind of
message is received and then the appropriate action is
executed. There are two common approaches to do this. In the
first case, message handler passes the received message to the
appropriate agent component which extracts message contents
and performs the required action (if such action exists). To do
that, it is needed to include messaging-specific data structures
and logic into all agent components to which the messages are
passed (see Fig. 1). It is assumed here that message handler (or
message handlers if there is more than one) resides in the
messaging component.

The problem is that messaging is now implemented not
only in the messaging component, but also in all related agent
components (such as learning, adaptation and so on). This
ruins the separation of agent concerns — one agent concern is
implemented in multiple component modules. Here the term
“module” stands for the implementation of the component.

l Component 1

Messaging
specific data

Messaging
component

Component 2

Messaging
specific data

Fig. 1. Messaging component passes received message to other components

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

This situation is described in [7] as architectural
shattering— implementation of one agent concern (messaging
in our case) is shattered among other agent concerns. This also
affects system evolution — if messaging component needs to
be changed, other components might need to be changed too.
From the architectural point of view there is no single module
where messaging is implemented and it is not possible to
reason about messaging while looking at the messaging
module alone — one needs to take into account all modules of
other agent components where messaging is implemented.

In the other case a message handler extracts message
contents, performs data translation operations (if necessary)
from message-specific to appropriate component-specific
format and passes that data to the corresponding agent
component (or components). In this case it is needed to
include data structures and (possibly) logic of all the related
components in the messaging component (see Fig. 2). The
problem is that messaging component module not only
implements messaging, but also partly implements other agent
components. Such situation is described in [7] as architectural
tangling — implementation of multiple agent concerns in a
single module. This also burdens system modification,
extension and evolution, as it is not possible to plan, design
and implement changes in the messaging component without
looking at all other components that are partly implemented in
it.

The problem is illustrated by the following example.
Suppose a knowledge base agent. This agent stores knowledge
as key-value pairs (for example — key: “football”, value:
“result 5:2”). Agent can receive knowledge and respond to
knowledge queries from other agents. Such an agent has two
components — a knowledge component and a messaging
component. The knowledge component is responsible for
knowledge storing and retrieving. The messaging component
is used for communication.

A typical implementation of such agent is depicted in Fig.
3. A simple event listening approach, derived from [9] is used
in this example. In this approach there are components that
produce events (called producers) and components that listen
to these events (called listeners). A listener must subscribe to
events it needs no listen. When an event fires all listeners
subscribed to this event are notified of it.

Other component
specific data

[
T

Component 1

Messaging
component

Component 2

Fig. 2. Messaging component passes component-specific data to other
components

2011
Volume 47
Knowledge listener
interface
. Calls method Knowledge
D component

Knowledge
specific data Messaging

Implemented by specific data

Implemented by

[

Messaging
component

Callls method

Messaging listener
interface

Fig. 3. A typical implementation of the knowledge base agent

There is a listener interface associated with each agent
component. This interface declares methods that are called
when specific events take place. Listener subscribes to those
events by implementing such an interface and adding itself to
that component’s event listeners list. Event listeners list is
implemented as a vector of listener interfaces. Adding an
event listener incorporates adding an agent component
instance that implements such listener interface to this vector.

When the appropriate event fires (e.g., a message is
received), an interface method of each listener from the list is
called. An example of messaging listener interface is given
below. Java programming language is used in this and further
examples.

public interface IMessagingListener ({
public void notifyMessageReceived (Object message);

}

The messaging listener interface declares a method
“notifyMessageReceived” to be implemented in potential
event listeners that need to be informed of a message arrival.

Knowledge component needs such information, as it has to
store the information received and respond to information
queries. A simplified example of knowledge component
implementation is given below. It implements the messaging
listener interface and overrides the method
“notifyMessageReceived” to get notifications about message
arrival.

public class KnowledgeComponent implements
IMessagingListener ({
@Override
public void notifyMessageReceived (Object message) {
//process received message

}

Finally, there is a main loop in the message receiving
component (message handler), where messages are received
and passed to all listeners. The example code is given below.
Note that the message is passed to listeners unmodified. So
each listener has to extract message contents and decide what
to do with that message.

39

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

public void receiveMessages () {
while (true) {
Object message = this.getNewMessage();
for (IMessagingListener listener :
this.listeners) {
listener.notifyMessageReceived (message);
}
}
}
It means that message-specific data and message extracting

logic must be included in all listeners. Within the example it
means that knowledge component not only has to deal with
knowledge-specific, but also with messaging-specific logic
and data.

This is a typical example of both architectural shattering
and tangling described earlier in this section. From the
messaging component point of view architectural shattering
takes place, since messaging is implemented not only in the
messaging component, but also in the knowledge component.
From the knowledge component point of view, architectural
tangling occurs, since knowledge component implements both
knowledge and (partly) messaging. This situation is depicted
in Fig. 3, where grey fields in messaging and knowledge
components show the presence of tangled code.

So, what happens if messaging (i.e. ontology, message
content language, the mechanism of extracting message
contents, etc.) needs to be changed? The knowledge
component needs to be changed, too! If there is only one
component related to messaging, this is not a big problem, but
what if there are tens or even hundreds of components? Each
of them has to be changed. It is unacceptable from the
architectural point of view — changes in one component of the
system cause changes in a number of other components. This
is the problem that needs to be solved in order to develop
evolvable and maintainable multi-agent systems.

I1l. RELATED WORK

Generally, separation of different concerns can be achieved
in a number of ways. According to [10] this includes
frameworks, code generation, design patterns, dynamic
languages and aspect-oriented programming. From our point
of view aspect-oriented programming is the most suitable
solution for this problem because of reasons described below.
Other alternatives either provide solutions for specific
problems (such as frameworks that offer filters for dealing
with HTTP requests), solve the problem only partially (this is
the case with design patterns), or is too complex (lots of
configuration needed and low-level syntax detail
understanding required in the case of code generation) to be
useful. Aspect-orientation, on the other hand, is a general
approach and it can be combined with other candidates from
the list to solve the problem even better.

Garcia et al. [7], [11], [12], [13], [14] offer separation of
multi-agent ~ system concerns using aspect-oriented
programming. The main idea behind this approach is the use
of aspects to separate crosscutting concerns (such as
interaction adaptation, autonomy, etc.) from the agent’s basic
functionality.

40

Crosscutting interace

Method call intercepted Knowledge

component

Knowledge
specific data

Calls method
Messaging

o Calls method
specific data

Messaging Method call intercepted

component

Crosscutting interface

Fig. 4. Implementation of knowledge base agent example using the approach
proposed by Garcia et al

Each crosscutting concern is encapsulated in an aspect and
represented by a crosscutting interface [7]. Crosscutting
interface provides services to the system and specifies the
interaction with other components of the system, as it is
described in [7] and [12]. Crosscutting interfaces
(implemented as aspects) intercept dynamic behavior (such as
method calls and object creation) in other components of the
system and perform the appropriate actions (such as calling a
method) in the component they represent.

To illustrate the approach presented by Garcia, let’s return
to the knowledge base agent example introduced in the
previous section. The implementation of this example (shown
in Fig. 3), using the Garcia’s approach is depicted in Fig. 4.
The idea is as follows.

When a message arrives, the method “receiveMessage()” in
the messaging component class (described in previous section)
returns. This behavior is intercepted by the crosscutting
interface of the knowledge component. It uses the method’s
context, such as parameters and the value returned, to obtain
the received message. Afterwards, it extracts message content,
converts the latter to knowledge-specific format and calls the
appropriate method of the knowledge component. The
messaging component is unaware of such activities, so it does
not have to include any knowledge-specific data or refer to
some listener interfaces. It simply receives messages while
crosscutting interface of knowledge component “takes what it
needs”. Message sending can be implemented in a similar
way. In this case the crosscutting interface of the messaging
component intercepts method call in the knowledge
component, converts knowledge-specific to messaging-
specific data and calls the message sending method in the
messaging component.

This technique really works — components do not have to
include any crosscutting code (code implementing other
components), so both architectural shattering and tangling are
eliminated at the component level. Crosscutting interfaces take
care of all the crosscutting logic.

Nevertheless, from our point of view, the problem is far
from being solved — it is just moved one level higher — from
components to their crosscutting interfaces. Fig. 4 shows that
knowledge-specific data is present in the crosscutting interface
of the messaging component, as well as crosscutting interface

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

of the knowledge messaging component includes some
messaging-specific data.

The drawback of this approach is that each crosscutting
interface is directly accessing the internal structure
(intercepting method calls) of other agent components.
Suppose that there is a component whose internal structure is
accessed by 100 aspects. What happens when the internal
structure of this component must be changed? All 100 aspects
must be changed, too!

Furthermore, this approach threats the basic functionality of
an agent as a special case of component — it does not have a
crosscutting interface — only the “regular” one. In this case the
problem described in the previous section is not solved at all,
because other components still have to refer directly to the
interface of the basic functionality. Hereby, the basic
functionality of an agent is shattered all over the system in the
crosscutting interfaces of other components. So, when the
basic functionality changes the crosscutting interfaces of all
other components might also need to be changed.

Another approach promoting the separation of concerns in
multi-agent systems using the aspect—oriented approach is
presented by Amor et al. [15], [16]. They introduce Maleca —
an architecture that combines both component-based and
aspect-oriented techniques. Their main idea is to assemble the
multi-agent system from commercial-of-the-shelf (COTS)
components and tie them together using the aspect-orientation.
Although this provides a way out for reusability, the whole
solution depends on specific solutions (COTS components)
already available. Yet, the most specific solutions are almost
always designed from scratch. Therefore more general
approach is needed, which is proposed in the next section.

Besides the, aspect-orientation can also be used for multi-
agent system testing [17] and observing [18] thus separating
them from other agent concerns. Discussion on these topics is
beyond the scope of this paper.

IVV. PROPOSED APPROACH

The proposed approach determines that every agent
component has its own aspect interface and aspect listener.
An aspect interface represents a specific agent component and
provides services to other agent components. It has an empty
implementation — a class instance that implements this
interface and has all of the method bodies empty. It also has an
aspect tied to it. This aspect monitors the agent component
which it represents and intercepts corresponding method calls
in the execution process. Then it translates the method context
(such as method parameters, returned value and the object on
which the method is executed) from component specific to
common data structures. Afterwards it calls the appropriate
aspect interface method passing the translated context as
parameters.

Aspect listener, on the other hand, monitors aspect
interfaces of other agent components and intercepts those
method calls in which it is interested. Then it translates
common data structures to component-specific ones and calls
the appropriate method of the component.

The common data structure introduced here is a data
structure that both the aspect listener and the aspect interface
of each concerned agent component understand. It is used to
overcome both architectural shattering and tangling. Each
agent component may have its own internal structure. For
cooperation of those components, some kind of mapping is
needed. In order not to tangle agent component X into agent
component Y and vice versa a common data structure Z is
introduced. X can be converted into Z and Z can be converted
into Y. So X can be taken from one agent concern and
converted to Z. Then Z can be converted to Y and passed to
other agent concern. To make the conversion transparent for
both concerns a mediator (the converter) is needed. The aspect
interface and the aspect listener together provide such a
mediator. The aspect interface provides the conversion from X
to Z at one end, while the aspect listener converts Z to Y at the
other end. The conversion is transparent for both X and Y
because the aspect-oriented approach is used. Neither X nor Y
calls the conversion process directly — it is encapsulated in
aspects.

To illustrate this, let’s consider the knowledge base agent
example, presented in Section Il once again. The
implementation of this example using the proposed approach
is shown in Fig. 5. Solid arrows denote direct method
invocation, while dashed arrows denote method call
interception using aspects. Let’s examine the data flow
between the elements. Consider that the knowledge base agent
receives a message that contains a knowledge query — a
request for knowledge (simply “request” further in the text).
Request is received in the messaging component. Using
message filters and polymorphism it is ensured that a specific
message handler instance receives this message. When this
happens, the messaging interface aspect intercepts the
appropriate method call (1 in Fig. 5), extracts the message
content and converts the latter into common data structure
(such as a request class instance). Then it calls the messaging
aspect interface method (2 in Fig. 5) which has an empty
body. This call is intercepted by the aspect listener of the
knowledge component (3 in Fig. 5). Instead of execution of
the method’s empty body, it converts common request data to
knowledge-specific request data and calls the method (e.g.
receiveRequest()) responsible for receiving a request (4 in Fig.
5). Then, the knowledge interface aspect intercepts the
completion of request (e.g. when method getKnowledge()
returns) (5 in Fig. 5). After that, it converts knowledge-
specific data (the knowledge requested) to common data and
calls the corresponding knowledge aspect interface method (6
in Fig. 5). This method call is intercepted by the aspect listener
of the messaging component (7 in Fig. 5). The latter converts
common knowledge data to messaging-specific knowledge
data (fills the reply message content with knowledge data).
Then it calls the appropriate method in the messaging
component to send the reply message containing knowledge
initially requested (8 in Fig. 5).

As one can observe, the proposed approach successfully
resolves both architectural shattering and tangling problems.

41

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

Messaging aspect

interface

Messaging
module
Common data

Messaging
interface aspect

Messaging
specific data

Messaging
component

Messaging
specific data

Common data

Knowledge
module

Common data

Knowledge
specific data

Knowledge
component

Knowledge
specific data

Knowledge
interface aspect

Common data

Knowledge aspect
interface

Fig. 5. Implementation of knowledge base agent example using the proposed approach

Let us describe differences between the proposed approach,
the event-based approach and the one proposed in [7] and [12]
by Garcia et al.

First of all, the proposed approach incorporates no direct
references from one agent component to another, which makes
it possible to design and implement agent components
completely independent of one another. It is also possible to
use COTS components described in [15]. Such references,
however, exist in both event-based approach and the approach
proposed by Garcia. In the case of event-based approach the
whole technique is based on direct interface references (as
described in Section I1) which makes independent component
development nearly impossible. In the approach proposed by
Garcia direct references exist from other (crosscutting)
concerns to the interface of agent basic functionality. It makes
developing of other concerns (such as messaging) impossible,
if the basic functionality component does not exist.

Second, our approach introduces the common data concept.
This allows agent components to be developed independently
of the system they are being used in. Integration within the

42

system is provided by the aspect listener and the aspect
interface as described earlier in this section. When the
integration takes place, one must define a common data format
that serves as a mediator between the data structures of
different agent components. Neither event-based nor Garcia’s
approach benefits from such common data concept.

In summary, the proposed approach can be viewed as
inverted event-based technique with common data concept. In
traditional event-based approach the object that initiates the
event calls the method of the event listener (through the
interfaces in Java, function pointers in C/C++, delegates in C#
etc.). In the proposed approach the listener actually “listens”
the object. It is not like: “Hey, | have a new message, now,
you get it and you get it!” but more like: “Hey, new message
arrived there (in the other component); let me take a look at
it!”

V.IMPLEMENTED PROTOTYPE

To demonstrate the proposed approach in practice we have
implemented a prototype of the knowledge base agent

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

example introduced in Section Il. The main purpose of this
prototype is to show that the proposed approach really works,
i.e., it can be applied not only in theory, but also in practice.
The prototype is build on top of JADE platform using AspectJ
to provide aspect-oriented programming support. Some of the
implementation details as well as working example of the
prototype are presented in this section. The implementation is
outlined first while the prototype itself is described later on.

JADE platform is used since it is compliant with FIPA
standards, is more or less a general purpose agent
development framework and fully respects the idea of
autonomous agents that are loosely coupled. Detailed
discussion on JADE is beyond the scope of this paper and the
reader is encouraged to visit JADE official home page [4] for
further reference. The basic understanding of the specifics of
JADE is recommended before continuing with this chapter.

The implementation is as follows. An agent should be
developed component by component. First the fixed
component itself must be implemented (it is also possible to
use a COTS component if available). Then the aspect interface
is implemented for that component. The aspect listener for that
component can be created as soon as all the aspect interfaces
of the components it needs to listen are created (the chicken
and the egg problem). To illustrate this, the main steps of
creating the knowledge base agent are outlined.

The knowledge base agent consists of two components —
the messaging component and the knowledge component.
Since this paper focuses on message handling the messaging
component is discussed in detail. The messaging component
itself is created first. Message filters and polymorphism are
used to create multiple message-receiving handlers each of
them receiving concrete type of message. Two message-
receiving handlers are created for knowledge base agent,
because it must receive both the knowledge and knowledge
requests. Fig. 6 depicts an UML class diagram of the message
handlers for the knowledge base agent.

Since the prototype is built on top of JADE platform
message handlers are implemented as agent behaviors. The
class “MessageReceiverBehaviour” is an abstract base class
used for message handling. The main message receiving cycle
is defined in the method “receiveMessages”, where the
method “getNewMessage” is periodically called in order to
receive a new message. The method “parseMessage” is called
upon the message arrival. The body of this method is left
empty since it will be the subject of later aspect interaction.
The method “getNewMessage” is implemented in such way
that it returns only the messages corresponding to specific
message filter returned by method “getMessageFilter”. The
latter is defined as abstract, so the derived message handlers
can specify the message types they are interested in by
overriding this method. As the knowledge base agent must
receive both knowledge requests and the knowledge itself, two
message handlers are defined, respectively the
“KnowledgeRequestReceiverBehaviour” and the
“KnowledgeReceiverBehaviour” as it is depicted in Fig. 6.

MessageRecelverBehaviour

fiparseMeassage() : void
+recalvelMessages]) void
-gethNewMessage() : object
fioetMessageFilter() | object

KnowledgeRequestRecelverBehaviour KnowledgeRecelverBehaviour

HaethessageFilter() - object #oethessageFilter() - object

Fig. 6. An UML class diagram of message handlers for the knowledge base
agent

Each of these handlers override the “getMessageFilter”
method defined in the base class to specify message types they
must receive and handle.

Next an aspect interface must be created for the messaging
component of the knowledge base agent. This interface is
responsible for announcing a specific message arrival and is
created as follows. First a regular interface which contains all
methods other agent components’ aspect listeners will be able
to intercept must be defined. In this case the interface will
consist of two methods for indicating the arrival of
knowledge, and knowledge request respectively. An example
of such interface is depicted in Fig. 7 (a).

After creating an interface, it must be implemented. Method
bodies are left empty in the implementation, an example of
which is shown in Fig. 7 (b). It is ensured that exactly one
interface implementation instance per agent will exist at
runtime. This is achieved by passing the agent instance to the
constructor of the interface implementation. When both the
regular interface and its implementation are ready, the
interface aspect can be created. The interface aspect defines
pointcuts (dynamic points in the component execution that
must be intercepted) and the advice (the code that needs to be
executed when specific pointcut is reached). The advice code
converts component-specific data to common data structures
and calls the appropriate interface implementation method
passing these structures to the method as parameters. An
example of pointcut, which intercepts knowledge message
arrival, is shown in Fig. 7 (c). The corresponding advice is
shown in Fig. 7 (d).

The creation of the aspect listener is a bit simpler. All that
needs to be done is to create pointcuts that specify aspect
interface methods of other agent components that must be
intercepted, and define advices for them. The aspect listener of
the messaging component is responsible for sending messages
when specific pointcuts are reached in the aspect interfaces of
other agent components (the specific methods of these
interfaces are called). In this case the advice converts common
data to messaging-specific data, as well as prepares and sends
the message by invoking the message sending method of the
messaging component. An example pointcut intercepting the
call of “knowledgeRequestDone” in the core aspect interface
is depicted in Fig. 7 (e).

43

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

@

public interface IMessageReceivinglnterface |
public void knowledgeRecquestBReceived (EnowledgeRegquest knowledgeRecgquest))
public void knowledgeReceived | Fnowledge knowledge) !

ACverride

(b) '

ACverride

b

public class MessageReceivingInterface implements IMessageReceivingInterface |

public void knowledgeReceived (Enowledge knowledge) §

public wvoid knowledgeReguestReceived (EnowledgeReguest knowledgeReguest) |

£& target (behaviour) &£& args (message) !

pointout knowledgeReceived (EnowledgeReceiverBehaviour behawviour, ACLMessage message)
(C) execution (* MessageReceiverBehaviour+. parseMessage (ACLMessage))

after (KnowledgeReceiverBehawviour behaviour,
knowledgeReceived (behaviour, message)] |
Enowledge knowledge;

(d)

ACLMessage message)

ffinitialize the knowledge from wessage content

behaviour.getEnowledgeEaselgent () .getHessgeReceivingInterface () .knowledgeReceived (knowledge) ;

L& target (corelInterface)

pointcut knowledgeRequestDone (CorelInterface corelInterface, Knowledge knowledge)
(e) execution(* Corelnterface.knowledgeRequestDone (Enowledge)
£& args (knowledge) ;

®

after (Corelnterface corelnterface, Knowledge knowledge):
knowledgeRequestDone (corelnterface, knowledge)] o

fftranslate knowledge to message—-specific data, put it into message and send the message

Fig. 7. Code samples for aspect interface ((a), (b), (c) and (d)) and aspect listener ((e) and (f)) of the messaging component

This method is called by the core interface aspect, when a
knowledge request is done. The appropriate advice is shown in
Fig. 7 (f). It converts common data to messaging-specific data,
puts that data into the message and sends the message. And
that’s it — a working message handler has been implemented!

If following the instructions above, one can implement the
proposed approach and use it in practice to create a modular,
maintainable and expandable message handler, which is
separated from other agent components. The rest of this
section describes the implemented prototype.

The prototype consists of two agents — a knowledge base
agent and a knowledge base client agent. The knowledge base
agent receives knowledge as key-value pairs and responds to
knowledge requests (is asked for knowledge by key). The
client agent sends these knowledge requests and the
knowledge itself to the knowledge base agent. To simulate
request processing workload a delay is introduced. So it takes
a second to process the request. The knowledge base agent is
implemented in a way that only one request can be served at a

44

time. If a request arrives while another one is in progress it is
rejected, otherwise it is accepted, processed and answered
later on. The example screen of our implemented prototype is
shown in Fig. 8. This is the knowledge base client agent GUI
window. Two units of knowledge have been sent to the
knowledge base agent: key: “football”, value: “5:2” and key:
“football”, value: “rainy”. Then the knowledge base agent is
asked for knowledge about football and the response is “5:2;
rainy”. Of course, one can object that there is no “real”
knowledge, but for the sake of simplicity a very basic structure
is represented here. The discussion about “real” knowledge
structures (such as rules, frames and scripts) is beyond the
scope of this paper.

VI. CONCLUSIONS AND FUTURE WORK

The implemented prototype clearly shows that aspect-
oriented approach can be successfully applied to multi agent
systems in order to implement a modular, maintainable and
expandable message handler.

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47
EKnowledge base client agent GUI M[=1E3
Send Knowledge Ask Knowledge
Key Value Key
| | I
Knowledge sent: Knowledge Received
|m] Key Value |n] | Status | Key | Walue
1 foathall 5.2 27 |Dane [faothall |5:2; rainy
14 foothall rainy
Fig. 8. An example of the knowledge base client agent GUI window
The proposed approach allows the design and the system structure clear. If the component under

implementation of agent components independently of the
message handler used. This allows more flexibility in the
component design as messaging-specific code is no longer
tangled with other agent components and shattered across the
system.

The separation of message handler from other components
of the agent provides more distinct view of the system as one
can observe message sending and message receiving in the
aspect interface and the aspect listener of the messaging
component. There is no need to look for a message sending
code in the knowledge or in the learning component.

Aspects should be used with care as it is very easy to “over-
aspectize” the system. Aspect-oriented programming provides
constructs that allow placing virtually all of the system code in
one module leaving only class declarations as the core
concern. One must distinguish between the things really
needed to be aspectized and the ones that are better left out.
The introduction of an agent component should be
encapsulated in an aspect in order to achieve modularity.
Nevertheless, the component itself should not be contained in
the aspect — it must be a separate entity. An aspect serves only
as a mediator between the component and the rest of the
system; it should not implement any other functionality.

Inter-aspect dependencies should also be addressed with
care. If one makes an aspect that is based on aspect, which is
based on other aspect and so on, one can come down to a
situation when changing a line of code won’t allow the system
to compile anymore. It will take a long time before realizing
where the real problem is.

Components should be designed with aspects in mind.
Although it is possible to apply aspects to any component, our
experience shows that it is much easier if the component is
designed for it. This eases the creation of pointcuts and keeps

consideration is poorly structured the application of aspect is
not an easy task. It is difficult to identify the pointcuts such as
a message arrival if there is only one message handler instance
that has only one method. In such case a very specific pointcut
definition is required. It is hard to implement such a pointcut
and the implementation is not very stable. If the inner structure
of the component slightly changes the pointcut will have to be
completely re-implemented. If the component is well
structured, but is not designed with aspects in mind, the
creation of pointcut still depends on the specificity of the inner
structure of the component. The implementation of such
pointcut is much easier comparing with the case of poorly
structured component and is more stable, but not stable
enough, because of the dependency on the inner structure of
the component. When designing a component with aspects in
mind, one can create special methods (possibly with empty
bodies) later to be intercepted by aspects. This leads to
creation of well structured components in which specific
pointcuts are easily identifiable. Even if such component is not
used in the context of aspects it is still more structured and, as
a consequence, more modular and understandable than a
regular one. Changing the inner structure leads to little or no
changes in the pointcut implementation as long as there are no
major changes in the component. Of course, no technique will
help if changes are crucial, but when component is designed
with aspects in mind, it is possible to implement minor
changes without breaking pointcuts. To achieve this, changes
must be implemented in a way they do not affect the special
methods created earlier.

This paper focuses on message handling. Nevertheless, the
proposed approach can be used for implementing the whole
multi-agent system and this is our primary goal — to create a
better architecture for multi-agent systems. To successfully

45

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011
Volume 47

achieve this goal, the development of a tool that facilitates the
developer’s work is planned. The developer should be
focusing on development of the inner structure of agent
components, not on implementation of the pattern we present.
So a tool that generates component interaction code, given
components themselves and the scheme of the interaction is
needed. This is the topic of future research.

Another goal of future research is to test the approach in
different agent frameworks. Currently it has been tested only
with JADE, but further testing with other platforms is needed
to discover potential advantages and pitfalls.

REFERENCES

[1] FIPA. (2010, Sept. 10). FIPA Home Page
http://www.fipa.org/

[2] FIPA. (2010, Sept. 10). Agent Comunication Language Specifications
[Online]. Available: http://www.fipa.org/repository/aclspecs.html

[3] F. Bellifemine, et al., "Developing multi-agent systems with JADE,"
Intelligent Agents VII Agent Theories Architectures and Languages, pp.
42-47,2001.

[4] JADE. (2010, Sept. 5). Jade - Java Agent DEvelopment Framework
[Online]. Available: http://jade.tilab.com/

[5] SPADE. (2010, Sept. 5). The SPADE Agent Platform
Auvailable: http://spade.gti-ia.dsic.upv.es/

[6] JACK. (2010, Sept. 5). JACK home page
http://www.agent-software.com.au/products/jack/

[7] A. Garcia and C. Lucena, "Taming Heterogeneous Agent Architectures,"
Communications of the ACM, vol. 51, pp. 75-81, 2008.

[8] F. Bellifemine, et al., Developing Multi-Agent Systems with JADE.
Chichester: John Wiley & Sons Ltd, 2004.

[9] JavaWorld. (2010, Sept. 9). Events and listeners [Online]. Available:
http://www.javaworld.com/javaworld/javaga/2000-08/01-ga-0804-
events.html

[10] L. Raminvas, "Aspect] in Action Second Edition," p. 519, 2010.

[11] A. Garcia, et al., "The Interaction Aspect Pattern," in Tenth European
Conference on Pattern Languages of Programs, Germany, Irsee, 2005,
pp. 587-606.

[12] A. Garcia, et al., "Aspectizing Multi-agent Systems: From Architecture

[Online]. Available:

[Online].

[Online]. Available:

to Implementation,” in Software Engineering for Multi-Agent Systems I11.

vol. 3390, R. Choren, et al., Eds., ed Heidelberg: Springer, 2005, pp.
121-143.

[13] A. Garcia, et al., "Aspects in Agent-Oriented Software Engineering:
Lessons Learned,” in Agent-Oriented Software Engineering VI. vol.
3950, J. Miiller and F. Zambonelli, Eds., ed Heidelberg: Springer, 2006,
pp. 231-247.

[14] A. Garcia, et al., “"The Mobility Aspect Pattern," in Proceedings of the
4th Latin American Conference on Pattern Languages of Programming
(SugarLoafPLoP '04), 2004.

[15] M. Amor and L. Fuentes, "Malaca: A component and aspect-oriented
agent architecture," Information & Software Technology, vol. 51, pp.
1052-1065, 2009.

[16] M. Amor, et al., "Separating Learning as an Aspect in Malaca Agents,"
in Agent and Multi-Agent Systems: Technologies and Applications. vol.
4953, N. Nguyen, et al., Eds., ed Heidelberg: Springer, 2008, pp. 505-
515.

[17] R. Coelho, et al., "Unit testing in multi-agent systems using mock agents
and aspects," presented at the Proceedings of the 2006 international
workshop on Software engineering for large-scale multi-agent systems,
Shanghai, China, 2006.

[18] T. Mehmood, et al., "Framework for Modeling Performance in Multi
Agent Systems (MAS) using Aspect Oriented Programming (AOP)," in
The Sixth Australasian Workshop on Software and System Architectures
(AWSA 2005), Brisbane, 2005, pp. 40-45.

Aleksis Liekna received his Bc.sc.ing degree
in 2008 and his Mg.sc.ing. degree in 2010 from
Riga Technical University. At the moment he
is a PhD student at Riga Technical University.
His major field of study is computer science.
He is working as a Programmer for SIA
ZetCOM and also as a Research Assistant at
Riga Technical University. His research
interests include artificial intelligence and
multi-agent systems.

He is awarded by the Latvian Foundation
for Education for his bachelor thesis

“Development and Implementation of Reinforcement Learning Model”.

B Janis Grundspenkis graduated from Riga

s Politecnical Institute (now Riga Technical
University) in 1965. His major was electrical
engineer of automation and telemechanics. He
received his Dr.sc.ing. degree from Riga
Polytechnic Institute in 1972 and his
Dr.habil.sc.ing. degree in 1993 from Riga
Technical University.

He is a professor of systems theory at Riga
Technical University. He is also a Dean of the
Faculty of Computer Science and Information
Technology, the Director of the Institute of

Applied Computer Systems, and the head of the Department of System
Theory and Design. His research interests are agent technologies, knowledge
engineering and management, structural modeling for diagnostics of complex
systems and development of intelligent tutoring systems.

He is a member of Institute of Electrical and Electronics Engineers (IEEE),
Association of Computer Machinery (ACM) and International Association for
Development of the Information Society (IADIS). He is a full member of
Latvian Academy of Science.

Aleksis Liekna, Janis Grundspenkis. Daudzagentu sistému zinojumu apmainas mehanisma realizacija, pielietojot aspektorientétu pieeju

Raksta ir piedavats veids, ka realizét daudzagentu sistémas zinojumu apmainas mehanismu, pielietojot aspektorientétu pieeju. Lai izstradatu uzturamu un labi
strukturétu daudzagentu sistému, ir svarigi savstarp&ji nodalit dazadas daudzagentu sistémas komponentes (tadas ka zinojumu apmaina, apmaciba, kustiba,
u.tml.). Ta ka agentu komunikacija daudzagentu sistémas notiek ar zinojumu apmainu, tad tai ir japieveérs ipasa uzmaniba. Programmatiras agentiem zinojumu
apmaina var kalpot par vienigo sensoru un izpildmehanismu. Zinojumu apmaina ir janodala no pargjam agentu komponentém, lai palielinatu to savstarp&jo
neatkaribu, tadgjadi uzlabojot sistémas kop&jo struktiiru un palielinot tas attistibas potencialu (vieglak ir attistit un modificét strukturétu un modularu nevis
monolitu sisttmu). Daudzagentu sisteému izstrade plasi tiek pielietotas objektorientétas tehnologijas, tadu ar to ir par maz, lai viennozimigi atdalitu savstarpgji
sadarbojosas komponentes. Pieméram, ja zinojumu apmainu izmanto agenta kustibas un apmacibas komponentes, tad tajas ir jaieklauj interfeisa realizacija ar
zinojumu apmainu. Lidz ar to rodas probléma — kustiba un apmaciba kliist atkarigas no zinojumu apmainas, un, veicot izmainas zinojumu apmaina, pastav
iespgja, ka izmainas biis javeic ari kustibas un apmacibas komponensu realizacija. So problému var risinat, pielietojot aspektorientétu pieeju. Lai gan pétijumi
$aja virziena jau ir veikti, péc raksta autoru domam tie nesniedz pietiekosi labu risindgjumu. Saja raksta ir piedavata pieeja, kura risina komponensu savstarpgjas
neatkaribas problému, pielietojot aspektu interfeisus, aspektu notikumu uztvergjus un vienotu datu strukttru. Lai ilustrétu piedavatds pieejas praktisku
pielietojumu, ir izstradats un raksta aprakstits daudzagentu sisteémas prototips, kas balstas uz JADE platformu. Aspektorientacijas realizacijai ir izmantots AspectJ.
Piedavata pieeja sekmigi risina agenta komponensu savstarpgjas atdaliSanas problému zigojumu apmainas gadijuma, tacu to var pielietot arT visu par&jo
komponentu savstarpgjai atdaliSanai, kas ir viens no turpmako pétijjumu mérkiem. V&l viens turpmako pétjjumu meérkis ir rika izstradasana, kas atvieglotu
piedavatas pieejas pielietosanu.

AJlekcuc .J'luemla, SAuuc prnucneﬂlﬂmc. Peanu3zanusi MexaHusMa 00MeHA COOOIIEHUSIMA MHOTOATEHTHOI CHCTEMbI C MCNOJIb30BAHHEM ACIEKTHO-
OPHEHTHPOBAHHOI'0 MOAX0/1a

B nmanHOW cratbe NIPEUIOKECH croco0 peamusanu MEXaHu3Ma obMeHa COOOILICHUSMH B MHOTOAreHTHOH CHCTEME C HCIIOJIb30BAHUEM AaCIEKTHO-
OPUEHTUPOBAHHOTO ITOAXOAA. I[JI?I TOTO, 4TOOBI pa3pa60TaTL TIOAACPKUBAEMYIO U XOPOIIO CTPYKTYPUPOBAHHYIO MHOTOAar€HTHYIO CUCTEMY, Ba)XXHO Pa3ACiIUuTh

46

http://www.fipa.org/
http://www.fipa.org/repository/aclspecs.html
http://jade.tilab.com/
http://spade.gti-ia.dsic.upv.es/
http://www.agent-software.com.au/products/jack/
http://www.javaworld.com/javaworld/javaqa/2000-08/01-qa-0804-events.html
http://www.javaworld.com/javaworld/javaqa/2000-08/01-qa-0804-events.html

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems
2011
Volume 47

pa3HbIe KOMIIOHEHTHI (TaKue Kak 0OMEH COOOIEHUAMH, 00ydYeHHE, IBIKEHUE U Ipyrue). Tak Kak KOMMYHHUKAIIMS ar€HTOB MMPOMCXOUT C IIOMOLIBIO COOOLICHHIA,
OT/IeNIbHOE BHUMAHHE HAJI0 YACTIATh UMEHHO nepeaade cooduienuii. [IporpaMMHBIM areHTam nepeaada COOOLICHUH MOXKET CIIY)KUTh €ANHCTBEHHBIM CEHCOPOM H
MEXaHW3MOM BhINONHEHHs. [lepenady cooOuieHui clienyeT OTACIUTh OT JPYTHX YacTel U KOMIOHEHT, YTOOBI IIOBBICHTh HE3aBUCUMOCTD YacTel JAPYT OT Apyra,
TakuM 00pa3oM yiydias OOLIyH CTPYKTypYy CHUCTEMBI M TOBBIIIAs MOTEHIMAT €€ pa3BUTHs (IPOIIE pa3BUBATh U MOAM(DHLIUPOBATH CTPYKTYPUPOBAHHYIO H
MOAYJSIPHYIO cHcTeMy). B pa3paboTke MHOTOAreHTHO#H CHCTEMBI IIMPOKO HCIOIB3YIOTCS 00bEKTHO-OPHEHTHPOBAHHBIC TEXHOJIOTHH, HO 3TOr0 HEAOCTATOYHO,
4TOOBI OZIHO3HAYHO OTAECIHTH BMECTE Pa0OTAIOLINEe KOMIIOHEHTHI. JIOMyCcTHM, €Clii Ui Hepefadyd COOOIICHUH HCIOIb3YIOTCS KOMIIOHEHTHI EePeIBUKECHUS U
0o0y4eHus, TO B HUX HaJ0 BKJIIOYHTH pealu3aluio uHTepdelica mepenadn cooOuieHuit. Takum o0pa3oM, HOsBIisieTcs MpodieMa - IBIKEHHE W O0ydeHHe
CTAaHOBATCS 3aBHCHMBIMH OT I€peladd COOOLICHMS M, NPH H3MEHEHHAX B Iepenade COOOLICHHI, BO3MOXKHO, Hago OydeT TakkKe BHOCHUTh W3MEHEHHS B
peanu3auio KOMIIOHEHTOB JBIKEHUs M OOyYeHHs. DTy MpobiieMy MOXKHO PELIMTh C IMOMOLIbI0 NPHUMEHEHHsI aCleKTHO-OPUEHTHPOBAHHOIO Moaxoaa. XoTs
HCCIICIOBAaHUS B 3TOM HAIPABJICHUH YK€ BEAYTCS, aBTOPBI CTAThM CUUTAIOT, YTO 3TO HE JAET JOCTATOYHO XOPOIIEro peuieHus. B cTaThe mpeiokeH NOAXO,
KOTOpBIN pemaer npodieMy HE3aBUCHMOCTH KOMIIOHEHTOB JPYr OT Jpyra, MUCIOJNb3ys MHTEP(EHCHl acHeKTOB, NPHUEMHUKH COOBITHH acIeKTOB U EAWHYIO
CTPYKTYpy JaHHBIX. JIf MIUTIOCTpallMM IIPEIIOKEHHOIro I0AXoja pa3paboTaH M ONHCAH MHOTOAreHTHBIH IPOTOTHI CHCTEMbI, KOTOphIH Oa3upyercs Ha
mwiatpopme JADE. Peanu3zanus acnekTHO-OpUEHTHPOBAHHBIX YacTeil BhIONHEHa Ha Aspect]. [IpeyioxkeHHOE pelieHre YCIEIIHO PetaeT mpodiieMy OTACeTICHHUS
pa3IMYHBIX YaCTeH areHTa B clydae Iepefadyd COOOLICHUI, OJJHAKO €ro MOKHO HCIIOJB30BaTh TAKIKE M VIS OTIEJICHHUS BCEX OCTAIBHBIX KOMIIOHEHTOB, YTO
SIBJISICTCSI OJHOI U3 IieNeld najdbHeHIunX ucciaenoBanus. Emeé onHa uenb OyaylmiuXx HCCIefoBaHUi — pa3paboTKa MPOrpaMMHOro oOecredeHus A 00IeryeH s
BHEJIPEHHS JAHHOTO MOXO0/IA.

47

