
Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

___ Volume 47

 38

Aspect-Oriented Approach to Implement Message

Handler in Multi-agent Systems

Aleksis Liekna
1
, Jānis Grundspeņķis

2
,

1-2
Riga Technical University

Abstract – This paper focuses on message handling in multi-

agent systems. The proposed approach uses aspect-oriented

programming to separate message handling from other agent

concerns, thus increasing system’s modularity and simplifying

modification and expansion. To illustrate the proposed approach

in practice, a prototype of a simple knowledge base agent model

is implemented. The prototype is built on top of JADE platform.

AspectJ is used for aspect-oriented implementation.

Keywords: AspectJ, Aspect-Oriented Programming, JADE,

Message Handling, Multi-Agent Systems.

I. INTRODUCTION

Sending and receiving messages is an important factor in

multi-agent system communication process. Agents

communicate with each other via message exchange. Some of

these agents may have message receiving and message

sending as their only available sensors and actuators. A

number of international standards (provided by FIPA [1]) try

to describe the structure of messages and to make interaction

protocols applicable, and they are doing well. FIPA’s ACL [2]

is now a standard for multi-agent system communication [3],

and development platforms (such as JADE [4], SPADE [5]

and JACK [6]) support it. With relative ease standard-

compliant messages can be composed, sent, received on the

other end and information contained in them obtained.

The trouble comes when there is a need to figure out what

to do with that information. For instance, if we receive

message A, we need to perform action X, but if we receive

message B, the action to be performed is Y and so on. This

often results in lots of if-then statements in the main message

receiving cycle, which in turn leads to the need of

implementation of multiple agent concerns in a messaging

module. This ruins the separation of concerns – a messaging

module is responsible for messaging, not for application logic.

Although it is crucial to separate different agent concerns in

order to develop and implement a modular and maintainable

multi-agent system [7]. From our point of view, this is

especially true for message handling. If messaging is not

separated from other agent concerns, but hard coded in them,

system modularity is violated and maintainability becomes a

problem. Traditional object-oriented approach alone does not

offer a solution for this problem. As it is described in this

paper, a solution can be provided combining object-oriented

and aspect-oriented approach.

The rest of this paper is organized as follows. In Section II

the current situation is described, that is, message handling

without aspect-orientation and problems to be solved are

discussed. Section III covers related work on using aspects in

multi-agent systems. In Section IV the approach for message

handler implementation is proposed. Section V is dedicated to

the implemented prototype. In Section VI conclusions and

information about future work are given.

II. CURRENT SITUATION

There are two common techniques for implementation of

message handling [8]. The first one is the functional approach

– there is one main message receiving handler per agent. It

typically has lots of if-then statements for analyzing the

message and then performing the appropriate action based on

the message contents.

The second one uses object-oriented approach. There are

multiple message receiving handlers per agent, each of them

focusing on concrete message type. This is implemented using

message filters and polymorphism. In this case each type of

message is received by the appropriate message handler.

In both cases it is necessary to determine what kind of

message is received and then the appropriate action is

executed. There are two common approaches to do this. In the

first case, message handler passes the received message to the

appropriate agent component which extracts message contents

and performs the required action (if such action exists). To do

that, it is needed to include messaging-specific data structures

and logic into all agent components to which the messages are

passed (see Fig. 1). It is assumed here that message handler (or

message handlers if there is more than one) resides in the

messaging component.

The problem is that messaging is now implemented not

only in the messaging component, but also in all related agent

components (such as learning, adaptation and so on). This

ruins the separation of agent concerns – one agent concern is

implemented in multiple component modules. Here the term

“module” stands for the implementation of the component.

Messaging

component

Component 1

Component 2

Messaging

specific data

Messaging

specific data

Fig. 1. Messaging component passes received message to other components

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

___ Volume 47

 39

This situation is described in [7] as architectural

shattering– implementation of one agent concern (messaging

in our case) is shattered among other agent concerns. This also

affects system evolution – if messaging component needs to

be changed, other components might need to be changed too.

From the architectural point of view there is no single module

where messaging is implemented and it is not possible to

reason about messaging while looking at the messaging

module alone – one needs to take into account all modules of

other agent components where messaging is implemented.

In the other case a message handler extracts message

contents, performs data translation operations (if necessary)

from message-specific to appropriate component-specific

format and passes that data to the corresponding agent

component (or components). In this case it is needed to

include data structures and (possibly) logic of all the related

components in the messaging component (see Fig. 2). The

problem is that messaging component module not only

implements messaging, but also partly implements other agent

components. Such situation is described in [7] as architectural

tangling – implementation of multiple agent concerns in a

single module. This also burdens system modification,

extension and evolution, as it is not possible to plan, design

and implement changes in the messaging component without

looking at all other components that are partly implemented in

it.

The problem is illustrated by the following example.

Suppose a knowledge base agent. This agent stores knowledge

as key–value pairs (for example – key: “football”, value:

“result 5:2”). Agent can receive knowledge and respond to

knowledge queries from other agents. Such an agent has two

components – a knowledge component and a messaging

component. The knowledge component is responsible for

knowledge storing and retrieving. The messaging component

is used for communication.

A typical implementation of such agent is depicted in Fig.

3. A simple event listening approach, derived from [9] is used

in this example. In this approach there are components that

produce events (called producers) and components that listen

to these events (called listeners). A listener must subscribe to

events it needs no listen. When an event fires all listeners

subscribed to this event are notified of it.

Messaging

component

Component 1

Component 2

Other component

specific data

Fig. 2. Messaging component passes component-specific data to other
components

Messaging

component

Knowledge

component

Knowledge listener

interface

Messaging listener

interface

Implemented by

Calls method

Implemented by

Calls method

Knowledge

specific data Messaging

specific data

Fig. 3. A typical implementation of the knowledge base agent

There is a listener interface associated with each agent

component. This interface declares methods that are called

when specific events take place. Listener subscribes to those

events by implementing such an interface and adding itself to

that component’s event listeners list. Event listeners list is

implemented as a vector of listener interfaces. Adding an

event listener incorporates adding an agent component

instance that implements such listener interface to this vector.

When the appropriate event fires (e.g., a message is

received), an interface method of each listener from the list is

called. An example of messaging listener interface is given

below. Java programming language is used in this and further

examples.

public interface IMessagingListener {
 public void notifyMessageReceived(Object message);

}

The messaging listener interface declares a method

“notifyMessageReceived” to be implemented in potential

event listeners that need to be informed of a message arrival.

Knowledge component needs such information, as it has to

store the information received and respond to information

queries. A simplified example of knowledge component

implementation is given below. It implements the messaging

listener interface and overrides the method

“notifyMessageReceived” to get notifications about message

arrival.

public class KnowledgeComponent implements
IMessagingListener {

 @Override
 public void notifyMessageReceived(Object message){
 //process received message

 }
...

Finally, there is a main loop in the message receiving

component (message handler), where messages are received

and passed to all listeners. The example code is given below.

Note that the message is passed to listeners unmodified. So

each listener has to extract message contents and decide what

to do with that message.

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

___ Volume 47

 40

public void receiveMessages(){

 while(true){
 Object message = this.getNewMessage();
 for(IMessagingListener listener :

this.listeners){
 listener.notifyMessageReceived(message);
 }

 }
}

It means that message-specific data and message extracting

logic must be included in all listeners. Within the example it

means that knowledge component not only has to deal with

knowledge-specific, but also with messaging-specific logic

and data.

This is a typical example of both architectural shattering

and tangling described earlier in this section. From the

messaging component point of view architectural shattering

takes place, since messaging is implemented not only in the

messaging component, but also in the knowledge component.

From the knowledge component point of view, architectural

tangling occurs, since knowledge component implements both

knowledge and (partly) messaging. This situation is depicted

in Fig. 3, where grey fields in messaging and knowledge

components show the presence of tangled code.

So, what happens if messaging (i.e. ontology, message

content language, the mechanism of extracting message

contents, etc.) needs to be changed? The knowledge

component needs to be changed, too! If there is only one

component related to messaging, this is not a big problem, but

what if there are tens or even hundreds of components? Each

of them has to be changed. It is unacceptable from the

architectural point of view – changes in one component of the

system cause changes in a number of other components. This

is the problem that needs to be solved in order to develop

evolvable and maintainable multi-agent systems.

III. RELATED WORK

Generally, separation of different concerns can be achieved

in a number of ways. According to [10] this includes

frameworks, code generation, design patterns, dynamic

languages and aspect-oriented programming. From our point

of view aspect-oriented programming is the most suitable

solution for this problem because of reasons described below.

Other alternatives either provide solutions for specific

problems (such as frameworks that offer filters for dealing

with HTTP requests), solve the problem only partially (this is

the case with design patterns), or is too complex (lots of

configuration needed and low-level syntax detail

understanding required in the case of code generation) to be

useful. Aspect-orientation, on the other hand, is a general

approach and it can be combined with other candidates from

the list to solve the problem even better.

Garcia et al. [7], [11], [12], [13], [14] offer separation of

multi-agent system concerns using aspect-oriented

programming. The main idea behind this approach is the use

of aspects to separate crosscutting concerns (such as

interaction adaptation, autonomy, etc.) from the agent’s basic

functionality.

Messaging

component

Knowledge

component

Crosscutting interace

Crosscutting interface

Calls method

Method call intercepted

Method call intercepted

Calls methodMessaging

specific data

Knowledge

specific data

Fig. 4. Implementation of knowledge base agent example using the approach
proposed by Garcia et al

Each crosscutting concern is encapsulated in an aspect and

represented by a crosscutting interface [7]. Crosscutting

interface provides services to the system and specifies the

interaction with other components of the system, as it is

described in [7] and [12]. Crosscutting interfaces

(implemented as aspects) intercept dynamic behavior (such as

method calls and object creation) in other components of the

system and perform the appropriate actions (such as calling a

method) in the component they represent.

To illustrate the approach presented by Garcia, let’s return

to the knowledge base agent example introduced in the

previous section. The implementation of this example (shown

in Fig. 3), using the Garcia’s approach is depicted in Fig. 4.

The idea is as follows.

When a message arrives, the method “receiveMessage()” in

the messaging component class (described in previous section)

returns. This behavior is intercepted by the crosscutting

interface of the knowledge component. It uses the method’s

context, such as parameters and the value returned, to obtain

the received message. Afterwards, it extracts message content,

converts the latter to knowledge-specific format and calls the

appropriate method of the knowledge component. The

messaging component is unaware of such activities, so it does

not have to include any knowledge-specific data or refer to

some listener interfaces. It simply receives messages while

crosscutting interface of knowledge component “takes what it

needs”. Message sending can be implemented in a similar

way. In this case the crosscutting interface of the messaging

component intercepts method call in the knowledge

component, converts knowledge-specific to messaging-

specific data and calls the message sending method in the

messaging component.

This technique really works – components do not have to

include any crosscutting code (code implementing other

components), so both architectural shattering and tangling are

eliminated at the component level. Crosscutting interfaces take

care of all the crosscutting logic.

Nevertheless, from our point of view, the problem is far

from being solved – it is just moved one level higher – from

components to their crosscutting interfaces. Fig. 4 shows that

knowledge-specific data is present in the crosscutting interface

of the messaging component, as well as crosscutting interface

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

___ Volume 47

 41

of the knowledge messaging component includes some

messaging-specific data.

The drawback of this approach is that each crosscutting

interface is directly accessing the internal structure

(intercepting method calls) of other agent components.

Suppose that there is a component whose internal structure is

accessed by 100 aspects. What happens when the internal

structure of this component must be changed? All 100 aspects

must be changed, too!

Furthermore, this approach threats the basic functionality of

an agent as a special case of component – it does not have a

crosscutting interface – only the “regular” one. In this case the

problem described in the previous section is not solved at all,

because other components still have to refer directly to the

interface of the basic functionality. Hereby, the basic

functionality of an agent is shattered all over the system in the

crosscutting interfaces of other components. So, when the

basic functionality changes the crosscutting interfaces of all

other components might also need to be changed.

Another approach promoting the separation of concerns in

multi-agent systems using the aspect–oriented approach is

presented by Amor et al. [15], [16]. They introduce Maleca –

an architecture that combines both component-based and

aspect-oriented techniques. Their main idea is to assemble the

multi-agent system from commercial-of-the-shelf (COTS)

components and tie them together using the aspect-orientation.

Although this provides a way out for reusability, the whole

solution depends on specific solutions (COTS components)

already available. Yet, the most specific solutions are almost

always designed from scratch. Therefore more general

approach is needed, which is proposed in the next section.

Besides the, aspect-orientation can also be used for multi-

agent system testing [17] and observing [18] thus separating

them from other agent concerns. Discussion on these topics is

beyond the scope of this paper.

IV. PROPOSED APPROACH

The proposed approach determines that every agent

component has its own aspect interface and aspect listener.

An aspect interface represents a specific agent component and

provides services to other agent components. It has an empty

implementation – a class instance that implements this

interface and has all of the method bodies empty. It also has an

aspect tied to it. This aspect monitors the agent component

which it represents and intercepts corresponding method calls

in the execution process. Then it translates the method context

(such as method parameters, returned value and the object on

which the method is executed) from component specific to

common data structures. Afterwards it calls the appropriate

aspect interface method passing the translated context as

parameters.

Aspect listener, on the other hand, monitors aspect

interfaces of other agent components and intercepts those

method calls in which it is interested. Then it translates

common data structures to component-specific ones and calls

the appropriate method of the component.

The common data structure introduced here is a data

structure that both the aspect listener and the aspect interface

of each concerned agent component understand. It is used to

overcome both architectural shattering and tangling. Each

agent component may have its own internal structure. For

cooperation of those components, some kind of mapping is

needed. In order not to tangle agent component X into agent

component Y and vice versa a common data structure Z is

introduced. X can be converted into Z and Z can be converted

into Y. So X can be taken from one agent concern and

converted to Z. Then Z can be converted to Y and passed to

other agent concern. To make the conversion transparent for

both concerns a mediator (the converter) is needed. The aspect

interface and the aspect listener together provide such a

mediator. The aspect interface provides the conversion from X

to Z at one end, while the aspect listener converts Z to Y at the

other end. The conversion is transparent for both X and Y

because the aspect-oriented approach is used. Neither X nor Y

calls the conversion process directly – it is encapsulated in

aspects.

To illustrate this, let’s consider the knowledge base agent

example, presented in Section II once again. The

implementation of this example using the proposed approach

is shown in Fig. 5. Solid arrows denote direct method

invocation, while dashed arrows denote method call

interception using aspects. Let’s examine the data flow

between the elements. Consider that the knowledge base agent

receives a message that contains a knowledge query – a

request for knowledge (simply “request” further in the text).

Request is received in the messaging component. Using

message filters and polymorphism it is ensured that a specific

message handler instance receives this message. When this

happens, the messaging interface aspect intercepts the

appropriate method call (1 in Fig. 5), extracts the message

content and converts the latter into common data structure

(such as a request class instance). Then it calls the messaging

aspect interface method (2 in Fig. 5) which has an empty

body. This call is intercepted by the aspect listener of the

knowledge component (3 in Fig. 5). Instead of execution of

the method’s empty body, it converts common request data to

knowledge-specific request data and calls the method (e.g.

receiveRequest()) responsible for receiving a request (4 in Fig.

5). Then, the knowledge interface aspect intercepts the

completion of request (e.g. when method getKnowledge()

returns) (5 in Fig. 5). After that, it converts knowledge-

specific data (the knowledge requested) to common data and

calls the corresponding knowledge aspect interface method (6

in Fig. 5). This method call is intercepted by the aspect listener

of the messaging component (7 in Fig. 5). The latter converts

common knowledge data to messaging-specific knowledge

data (fills the reply message content with knowledge data).

Then it calls the appropriate method in the messaging

component to send the reply message containing knowledge

initially requested (8 in Fig. 5).

As one can observe, the proposed approach successfully

resolves both architectural shattering and tangling problems.

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

___ Volume 47

 42

Messaging

component

Knowledge

component

Messaging aspect

interface

1

2

Knowledge aspect

interface

3

4

5

6
7

8

Knowledge

module

Messaging

module

Common data

Knowledge

specific data

Common data

Knowledge

specific data

Messaging

specific data

Messaging

specific data

Common data

Common data

Aspect listener

Knowledge

interface aspect
Aspect listener

Messaging

interface aspect

Fig. 5. Implementation of knowledge base agent example using the proposed approach

Let us describe differences between the proposed approach,

the event-based approach and the one proposed in [7] and [12]

by Garcia et al.

First of all, the proposed approach incorporates no direct

references from one agent component to another, which makes

it possible to design and implement agent components

completely independent of one another. It is also possible to

use COTS components described in [15]. Such references,

however, exist in both event-based approach and the approach

proposed by Garcia. In the case of event-based approach the

whole technique is based on direct interface references (as

described in Section II) which makes independent component

development nearly impossible. In the approach proposed by

Garcia direct references exist from other (crosscutting)

concerns to the interface of agent basic functionality. It makes

developing of other concerns (such as messaging) impossible,

if the basic functionality component does not exist.

Second, our approach introduces the common data concept.

This allows agent components to be developed independently

of the system they are being used in. Integration within the

system is provided by the aspect listener and the aspect

interface as described earlier in this section. When the

integration takes place, one must define a common data format

that serves as a mediator between the data structures of

different agent components. Neither event-based nor Garcia’s

approach benefits from such common data concept.

In summary, the proposed approach can be viewed as

inverted event-based technique with common data concept. In

traditional event-based approach the object that initiates the

event calls the method of the event listener (through the

interfaces in Java, function pointers in C/C++, delegates in C#

etc.). In the proposed approach the listener actually “listens”

the object. It is not like: “Hey, I have a new message, now,

you get it and you get it!” but more like: “Hey, new message

arrived there (in the other component); let me take a look at

it!”

V. IMPLEMENTED PROTOTYPE

To demonstrate the proposed approach in practice we have

implemented a prototype of the knowledge base agent

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

___ Volume 47

 43

example introduced in Section II. The main purpose of this

prototype is to show that the proposed approach really works,

i.e., it can be applied not only in theory, but also in practice.

The prototype is build on top of JADE platform using AspectJ

to provide aspect-oriented programming support. Some of the

implementation details as well as working example of the

prototype are presented in this section. The implementation is

outlined first while the prototype itself is described later on.

JADE platform is used since it is compliant with FIPA

standards, is more or less a general purpose agent

development framework and fully respects the idea of

autonomous agents that are loosely coupled. Detailed

discussion on JADE is beyond the scope of this paper and the

reader is encouraged to visit JADE official home page [4] for

further reference. The basic understanding of the specifics of

JADE is recommended before continuing with this chapter.

The implementation is as follows. An agent should be

developed component by component. First the fixed

component itself must be implemented (it is also possible to

use a COTS component if available). Then the aspect interface

is implemented for that component. The aspect listener for that

component can be created as soon as all the aspect interfaces

of the components it needs to listen are created (the chicken

and the egg problem). To illustrate this, the main steps of

creating the knowledge base agent are outlined.

The knowledge base agent consists of two components –

the messaging component and the knowledge component.

Since this paper focuses on message handling the messaging

component is discussed in detail. The messaging component

itself is created first. Message filters and polymorphism are

used to create multiple message-receiving handlers each of

them receiving concrete type of message. Two message-

receiving handlers are created for knowledge base agent,

because it must receive both the knowledge and knowledge

requests. Fig. 6 depicts an UML class diagram of the message

handlers for the knowledge base agent.

Since the prototype is built on top of JADE platform

message handlers are implemented as agent behaviors. The

class “MessageReceiverBehaviour” is an abstract base class

used for message handling. The main message receiving cycle

is defined in the method “receiveMessages”, where the

method “getNewMessage” is periodically called in order to

receive a new message. The method “parseMessage” is called

upon the message arrival. The body of this method is left

empty since it will be the subject of later aspect interaction.

The method “getNewMessage” is implemented in such way

that it returns only the messages corresponding to specific

message filter returned by method “getMessageFilter”. The

latter is defined as abstract, so the derived message handlers

can specify the message types they are interested in by

overriding this method. As the knowledge base agent must

receive both knowledge requests and the knowledge itself, two

message handlers are defined, respectively the

“KnowledgeRequestReceiverBehaviour” and the

“KnowledgeReceiverBehaviour” as it is depicted in Fig. 6.

Fig. 6. An UML class diagram of message handlers for the knowledge base

agent

Each of these handlers override the “getMessageFilter”

method defined in the base class to specify message types they

must receive and handle.

Next an aspect interface must be created for the messaging

component of the knowledge base agent. This interface is

responsible for announcing a specific message arrival and is

created as follows. First a regular interface which contains all

methods other agent components’ aspect listeners will be able

to intercept must be defined. In this case the interface will

consist of two methods for indicating the arrival of

knowledge, and knowledge request respectively. An example

of such interface is depicted in Fig. 7 (a).

After creating an interface, it must be implemented. Method

bodies are left empty in the implementation, an example of

which is shown in Fig. 7 (b). It is ensured that exactly one

interface implementation instance per agent will exist at

runtime. This is achieved by passing the agent instance to the

constructor of the interface implementation. When both the

regular interface and its implementation are ready, the

interface aspect can be created. The interface aspect defines

pointcuts (dynamic points in the component execution that

must be intercepted) and the advice (the code that needs to be

executed when specific pointcut is reached). The advice code

converts component-specific data to common data structures

and calls the appropriate interface implementation method

passing these structures to the method as parameters. An

example of pointcut, which intercepts knowledge message

arrival, is shown in Fig. 7 (c). The corresponding advice is

shown in Fig. 7 (d).

The creation of the aspect listener is a bit simpler. All that

needs to be done is to create pointcuts that specify aspect

interface methods of other agent components that must be

intercepted, and define advices for them. The aspect listener of

the messaging component is responsible for sending messages

when specific pointcuts are reached in the aspect interfaces of

other agent components (the specific methods of these

interfaces are called). In this case the advice converts common

data to messaging-specific data, as well as prepares and sends

the message by invoking the message sending method of the

messaging component. An example pointcut intercepting the

call of “knowledgeRequestDone” in the core aspect interface

is depicted in Fig. 7 (e).

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

___ Volume 47

 44

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 7. Code samples for aspect interface ((a), (b), (c) and (d)) and aspect listener ((e) and (f)) of the messaging component

This method is called by the core interface aspect, when a

knowledge request is done. The appropriate advice is shown in

Fig. 7 (f). It converts common data to messaging-specific data,

puts that data into the message and sends the message. And

that’s it – a working message handler has been implemented!

If following the instructions above, one can implement the

proposed approach and use it in practice to create a modular,

maintainable and expandable message handler, which is

separated from other agent components. The rest of this

section describes the implemented prototype.

The prototype consists of two agents – a knowledge base

agent and a knowledge base client agent. The knowledge base

agent receives knowledge as key-value pairs and responds to

knowledge requests (is asked for knowledge by key). The

client agent sends these knowledge requests and the

knowledge itself to the knowledge base agent. To simulate

request processing workload a delay is introduced. So it takes

a second to process the request. The knowledge base agent is

implemented in a way that only one request can be served at a

time. If a request arrives while another one is in progress it is

rejected, otherwise it is accepted, processed and answered

later on. The example screen of our implemented prototype is

shown in Fig. 8. This is the knowledge base client agent GUI

window. Two units of knowledge have been sent to the

knowledge base agent: key: “football”, value: “5:2” and key:

“football”, value: “rainy”. Then the knowledge base agent is

asked for knowledge about football and the response is “5:2;

rainy”. Of course, one can object that there is no “real”

knowledge, but for the sake of simplicity a very basic structure

is represented here. The discussion about “real” knowledge

structures (such as rules, frames and scripts) is beyond the

scope of this paper.

VI. CONCLUSIONS AND FUTURE WORK

The implemented prototype clearly shows that aspect-

oriented approach can be successfully applied to multi agent

systems in order to implement a modular, maintainable and

expandable message handler.

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

___ Volume 47

 45

Fig. 8. An example of the knowledge base client agent GUI window

The proposed approach allows the design and

implementation of agent components independently of the

message handler used. This allows more flexibility in the

component design as messaging-specific code is no longer

tangled with other agent components and shattered across the

system.

The separation of message handler from other components

of the agent provides more distinct view of the system as one

can observe message sending and message receiving in the

aspect interface and the aspect listener of the messaging

component. There is no need to look for a message sending

code in the knowledge or in the learning component.

Aspects should be used with care as it is very easy to “over-

aspectize” the system. Aspect-oriented programming provides

constructs that allow placing virtually all of the system code in

one module leaving only class declarations as the core

concern. One must distinguish between the things really

needed to be aspectized and the ones that are better left out.

The introduction of an agent component should be

encapsulated in an aspect in order to achieve modularity.

Nevertheless, the component itself should not be contained in

the aspect – it must be a separate entity. An aspect serves only

as a mediator between the component and the rest of the

system; it should not implement any other functionality.

Inter-aspect dependencies should also be addressed with

care. If one makes an aspect that is based on aspect, which is

based on other aspect and so on, one can come down to a

situation when changing a line of code won’t allow the system

to compile anymore. It will take a long time before realizing

where the real problem is.

Components should be designed with aspects in mind.

Although it is possible to apply aspects to any component, our

experience shows that it is much easier if the component is

designed for it. This eases the creation of pointcuts and keeps

the system structure clear. If the component under

consideration is poorly structured the application of aspect is

not an easy task. It is difficult to identify the pointcuts such as

a message arrival if there is only one message handler instance

that has only one method. In such case a very specific pointcut

definition is required. It is hard to implement such a pointcut

and the implementation is not very stable. If the inner structure

of the component slightly changes the pointcut will have to be

completely re-implemented. If the component is well

structured, but is not designed with aspects in mind, the

creation of pointcut still depends on the specificity of the inner

structure of the component. The implementation of such

pointcut is much easier comparing with the case of poorly

structured component and is more stable, but not stable

enough, because of the dependency on the inner structure of

the component. When designing a component with aspects in

mind, one can create special methods (possibly with empty

bodies) later to be intercepted by aspects. This leads to

creation of well structured components in which specific

pointcuts are easily identifiable. Even if such component is not

used in the context of aspects it is still more structured and, as

a consequence, more modular and understandable than a

regular one. Changing the inner structure leads to little or no

changes in the pointcut implementation as long as there are no

major changes in the component. Of course, no technique will

help if changes are crucial, but when component is designed

with aspects in mind, it is possible to implement minor

changes without breaking pointcuts. To achieve this, changes

must be implemented in a way they do not affect the special

methods created earlier.

This paper focuses on message handling. Nevertheless, the

proposed approach can be used for implementing the whole

multi-agent system and this is our primary goal – to create a

better architecture for multi-agent systems. To successfully

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

___ Volume 47

 46

achieve this goal, the development of a tool that facilitates the

developer’s work is planned. The developer should be

focusing on development of the inner structure of agent

components, not on implementation of the pattern we present.

So a tool that generates component interaction code, given

components themselves and the scheme of the interaction is

needed. This is the topic of future research.

Another goal of future research is to test the approach in

different agent frameworks. Currently it has been tested only

with JADE, but further testing with other platforms is needed

to discover potential advantages and pitfalls.

REFERENCES

[1] FIPA. (2010, Sept. 10). FIPA Home Page [Online]. Available:

http://www.fipa.org/

[2] FIPA. (2010, Sept. 10). Agent Comunication Language Specifications
[Online]. Available: http://www.fipa.org/repository/aclspecs.html

[3] F. Bellifemine, et al., "Developing multi-agent systems with JADE,"
Intelligent Agents VII Agent Theories Architectures and Languages, pp.

42-47, 2001.

[4] JADE. (2010, Sept. 5). Jade - Java Agent DEvelopment Framework
[Online]. Available: http://jade.tilab.com/

[5] SPADE. (2010, Sept. 5). The SPADE Agent Platform [Online].
Available: http://spade.gti-ia.dsic.upv.es/

 [6] JACK. (2010, Sept. 5). JACK home page [Online]. Available:

http://www.agent-software.com.au/products/jack/
 [7] A. Garcia and C. Lucena, "Taming Heterogeneous Agent Architectures,"

Communications of the ACM, vol. 51, pp. 75-81, 2008.
[8] F. Bellifemine, et al., Developing Multi-Agent Systems with JADE.

Chichester: John Wiley & Sons Ltd, 2004.

[9] JavaWorld. (2010, Sept. 9). Events and listeners [Online]. Available:
http://www.javaworld.com/javaworld/javaqa/2000-08/01-qa-0804-

events.html
[10] L. Raminvas, "AspectJ in Action Second Edition," p. 519, 2010.

[11] A. Garcia, et al., "The Interaction Aspect Pattern," in Tenth European

Conference on Pattern Languages of Programs, Germany, Irsee, 2005,
pp. 587-606.

[12] A. Garcia, et al., "Aspectizing Multi-agent Systems: From Architecture
to Implementation," in Software Engineering for Multi-Agent Systems III.

vol. 3390, R. Choren, et al., Eds., ed Heidelberg: Springer, 2005, pp.

121-143.
[13] A. Garcia, et al., "Aspects in Agent-Oriented Software Engineering:

Lessons Learned," in Agent-Oriented Software Engineering VI. vol.
3950, J. Müller and F. Zambonelli, Eds., ed Heidelberg: Springer, 2006,

pp. 231-247.

[14] A. Garcia, et al., "The Mobility Aspect Pattern," in Proceedings of the
4th Latin American Conference on Pattern Languages of Programming

(SugarLoafPLoP '04), 2004.

[15] M. Amor and L. Fuentes, "Malaca: A component and aspect-oriented

agent architecture," Information & Software Technology, vol. 51, pp.

1052-1065, 2009.
[16] M. Amor, et al., "Separating Learning as an Aspect in Malaca Agents,"

in Agent and Multi-Agent Systems: Technologies and Applications. vol.
4953, N. Nguyen, et al., Eds., ed Heidelberg: Springer, 2008, pp. 505-

515.

[17] R. Coelho, et al., "Unit testing in multi-agent systems using mock agents
and aspects," presented at the Proceedings of the 2006 international

workshop on Software engineering for large-scale multi-agent systems,
Shanghai, China, 2006.

[18] T. Mehmood, et al., "Framework for Modeling Performance in Multi

Agent Systems (MAS) using Aspect Oriented Programming (AOP)," in
The Sixth Australasian Workshop on Software and System Architectures

(AWSA 2005), Brisbane, 2005, pp. 40-45.

Aleksis Liekna received his Bc.sc.ing degree

in 2008 and his Mg.sc.ing. degree in 2010 from

Riga Technical University. At the moment he

is a PhD student at Riga Technical University.
His major field of study is computer science.

He is working as a Programmer for SIA

ZetCOM and also as a Research Assistant at
Riga Technical University. His research

interests include artificial intelligence and
multi-agent systems.

 He is awarded by the Latvian Foundation

for Education for his bachelor thesis

“Development and Implementation of Reinforcement Learning Model”.

Janis Grundspenkis graduated from Riga
Politecnical Institute (now Riga Technical

University) in 1965. His major was electrical

engineer of automation and telemechanics. He
received his Dr.sc.ing. degree from Riga

Polytechnic Institute in 1972 and his
Dr.habil.sc.ing. degree in 1993 from Riga

Technical University.

 He is a professor of systems theory at Riga
Technical University. He is also a Dean of the

Faculty of Computer Science and Information
Technology, the Director of the Institute of

Applied Computer Systems, and the head of the Department of System
Theory and Design. His research interests are agent technologies, knowledge

engineering and management, structural modeling for diagnostics of complex
systems and development of intelligent tutoring systems.

 He is a member of Institute of Electrical and Electronics Engineers (IEEE),

Association of Computer Machinery (ACM) and International Association for
Development of the Information Society (IADIS). He is a full member of

Latvian Academy of Science.

Aleksis Liekna, Jānis Grundspeņķis. Daudzaģentu sistēmu ziņojumu apmaiņas mehānisma realizācija, pielietojot aspektorientētu pieeju

Rakstā ir piedāvāts veids, kā realizēt daudzaģentu sistēmas ziņojumu apmaiņas mehānismu, pielietojot aspektorientētu pieeju. Lai izstrādātu uzturamu un labi

strukturētu daudzaģentu sistēmu, ir svarīgi savstarpēji nodalīt dažādas daudzaģentu sistēmas komponentes (tādas kā ziņojumu apmaiņa, apmācība, kustība,
u.tml.). Tā kā aģentu komunikācija daudzaģentu sistēmās notiek ar ziņojumu apmaiņu, tad tai ir jāpievērš īpaša uzmanība. Programmatūras aģentiem ziņojumu

apmaiņa var kalpot par vienīgo sensoru un izpildmehānismu. Ziņojumu apmaiņa ir jānodala no pārējām aģentu komponentēm, lai palielinātu to savstarpējo

neatkarību, tādējādi uzlabojot sistēmas kopējo struktūru un palielinot tās attīstības potenciālu (vieglāk ir attīstīt un modificēt strukturētu un modulāru nevis
monolītu sistēmu). Daudzaģentu sistēmu izstrādē plaši tiek pielietotas objektorientētas tehnoloģijas, taču ar to ir par maz, lai viennozīmīgi atdalītu savstarpēji

sadarbojošās komponentes. Piemēram, ja ziņojumu apmaiņu izmanto aģenta kustības un apmācības komponentēs, tad tajās ir jāiekļauj interfeisa realizācija ar
ziņojumu apmaiņu. Līdz ar to rodas problēma – kustība un apmācība kļūst atkarīgas no ziņojumu apmaiņas, un, veicot izmaiņas ziņojumu apmaiņā, pastāv

iespēja, ka izmaiņas būs jāveic arī kustības un apmācības komponenšu realizācijā. Šo problēmu var risināt, pielietojot aspektorientētu pieeju. Lai gan pētījumi

šajā virzienā jau ir veikti, pēc raksta autoru domām tie nesniedz pietiekoši labu risinājumu. Šajā rakstā ir piedāvāta pieeja, kura risina komponenšu savstarpējās
neatkarības problēmu, pielietojot aspektu interfeisus, aspektu notikumu uztvērējus un vienotu datu struktūru. Lai ilustrētu piedāvātās pieejas praktisku

pielietojumu, ir izstrādāts un rakstā aprakstīts daudzaģentu sistēmas prototips, kas balstās uz JADE platformu. Aspektorientācijas realizācijai ir izmantots AspectJ.
Piedāvātā pieeja sekmīgi risina aģenta komponenšu savstarpējās atdalīšanas problēmu ziņojumu apmaiņas gadījumā, taču to var pielietot arī visu pārējo

komponentu savstarpējai atdalīšanai, kas ir viens no turpmāko pētījumu mērķiem. Vēl viens turpmāko pētījumu mērķis ir rīka izstrādāšana, kas atvieglotu

piedāvātās pieejas pielietošanu.

Алексис Лиекна, Янис Грундспенькис. Реализация механизмa обмена сообщениями многоагентной системы с использованием аспектно-

ориентированного подхода

В данной статье предложен способ реализации механизма обмена сообщениями в многоагентной системе с использованием аспектно-

ориентированного подхода. Для того, чтобы разработать поддерживаемую и хорошо структурированную многоагентную систему, важно разделить

http://www.fipa.org/
http://www.fipa.org/repository/aclspecs.html
http://jade.tilab.com/
http://spade.gti-ia.dsic.upv.es/
http://www.agent-software.com.au/products/jack/
http://www.javaworld.com/javaworld/javaqa/2000-08/01-qa-0804-events.html
http://www.javaworld.com/javaworld/javaqa/2000-08/01-qa-0804-events.html

Scientific Journal of Riga Technical University
Computer Science. Applied Computer Systems

2011

___ Volume 47

 47

разные компоненты (такие как обмен сообщениями, обучение, движение и другие). Так как коммуникация агентов происходит с помощью сообщений,

отдельное внимание надо уделять именно передаче сообщений. Программным агентам передача сообщений может служить единственным сенсором и

механизмом выполнения. Передачу сообщений следует отделить от других частей и компонент, чтобы повысить независимость частей друг от друга,
таким образом улучшая общую структуру системы и повышая потенциал её развития (проще развивать и модифицировать структурированную и

модулярную систему). В разработке многоагентной системы широко используются объектно-ориентированные технологии, но этого недостаточно,
чтобы однозначно отделить вместе работающие компоненты. Допустим, если для передачи сообщений используются компоненты передвижения и

обучения, то в них надо включить реализацию интерфейса передачи сообщений. Таким образом, появляется проблема - движение и обучение

становятся зависимыми от передачи сообщения и, при изменениях в передаче сообщений, возможно, надо будет также вносить изменения в
реализацию компонентов движения и обучения. Эту проблему можно решить с помощью применения аспектно-ориентированного подхода. Хотя

исследования в этом направлении уже ведутся, авторы статьи считают, что это не дает достаточно хорошего решения. В статье предложен подход,
который решает проблему независимости компонентов друг от друга, используя интерфейсы аспектов, приемники событий аспектов и единую

структуру данных. Для иллюстрации предложенного подхода разработан и описан многоагентный прототип системы, который базируется на

платформе JADE. Реализация аспектно-ориентированных частей выполнена на AspectJ. Предложенное решение успешно решает проблему отделения
различных частей агента в случае передачи сообщений, однако его можно использовать также и для отделения всех остальных компонентов, что

является одной из целей дальнейших исследования. Ещё одна цель будущих исследований – разработка программного обеспечения для облегчения
внедрения данного подхода.

