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Abstract – A specific feature of aircraft and spacecraft flight 

modes is related to difficulties of obtaining information about 

dynamic characteristics of vehicles and their onboard equipment. 

The reason is that any transients are undesirable from the flight 

safety point of view and consequently they are damped by special 

onboard devices. At the same time, there is a practical necessity 

of obtaining such information as it is necessary for indication of 

occurrence of emergency situations in flight conditions. This 

information can be derived by solving systems of equations 

formed from the results of signal measurement. But, because of 

weak dynamism, the equation systems, as a rule, are ill-

conditioned and traditional algorithms cannot be used. 

Therefore, the problem of their optimization is particularly 

important in conditions of deficiency of dynamism in the flight 

information. The possibility of using new information 

technologies for signal processing at the aircraft flight test stage 

is investigated. Since there are restrictions imposed on flight 

modes, the identification of parameters of aircraft and its 

equipment is carried out in the conditions of bad observability of 

the dynamic characteristics. It complicates the problem of 

ensuring the usability of computing algorithms for solving the 

systems of equations formed from the results of measurements of 

flight parameters. Therefore, the possibility of application of new 

information technologies for creation of algorithms with parallel 

structure is investigated. It will allow applying parallel 

computers and increasing the speed of information processing. 

The new information technologies are offered to be realized on 

the basis of symbolical combinatory computing models. 
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I. INTRODUCTION 

Aircraft flight tests are high-risk tasks; therefore, special 

attention is given to safety measures at all stages of 

preparation for carrying out these tests. The necessity of 

processing huge amounts of information over short time 

intervals during test flights demands using high-performance 

onboard computers and more advanced programs and 

algorithms [19], [20]. 

Wider introduction of mathematical modelling at the flight 

test phase will also allow increasing flight safety and gathering 

much more information about the characteristics of stability 

and controllability of an aircraft and also about the quality of 

functioning of new onboard equipment in real modes of flight 

[18], [19].  

Special attention is given to the most dangerous modes of 

flight. The analysis shows that it is necessary to use new 

higher performance onboard computers and more advanced 

control algorithms. Such problems can be solved by 

introducing information technologies constructed on novel 

principles.  

It is necessary to take into account the fact that signals 

taken from measuring sensors have smooth-changing 

character and such signals are difficult to process using 

traditional computing algorithms. It is a general feature of all 

objects in aerospace systems and it is dictated by restrictions 

on flight modes, which are introduced to ensure the flight 

safety.  

Therefore, the traditional algorithms related to the central 

problem of information processing: solving systems of 

equations, generated from such low-dynamic signals, turn out 

to be inapplicable, as they cannot preserve the needed 

accuracy in conditions when matrix of the system is close to 

singular. Such algorithms return false results that can lead to 

making wrong decisions both during the flight and during the 

inter-flight analysis. For this reason, theoretical models of 

identification suggested in numerous publications could not be 

used in practical applications. 

The structure of these algorithms is based on principles of 

consecutive execution of computing operations. Therefore, 

they are not well suited for their realization in high-

performance parallel computer. From here follows that for 

creation of more advanced systems of onboard measurements 

used in test flights, it is necessary to introduce new 

technologies, allowing realizing parallel principles of 

information processing. On the basis of such technologies, 

essentially new computing methods can be created that would 

allow to preserve high accuracy in conditions of ill-

conditionality of equation system matrices. In this case, 

development of adaptive computing models with adjustable 

structure, which can be realized by software methods, is 

possible. 

Symbolical combinatory (SC) models were constructed not 

on the basis of known classical methods of enumerative 

combinatorics, but on the basis of giving computing 

algorithms new properties possessed by determined 

combinatory operators. The validity of using such approach 

has been confirmed by solving the problem of finding the 

inverses of almost singular 20th order Hilbert matrices with 

100% accuracy [21]. Earlier it was believed that solving such 

problem is impossible for matrices the order of which exceeds 

10. 
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II. PROBLEM STATEMENT  

A specific feature of flight information processing is that 

transients have weak dynamism as they are damped by special 

devices because of conditions of flight safety. Therefore 

partial coefficients iC  of transients: 
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have small values and this leads to formation of ill-

conditioned matrices of systems of identification equations. 

This is the reason why traditional algorithms for inversion of 

matrices of identification equation systems cannot be used. 

The vector of system’s solution is used for diagnosis of 

condition of onboard equipment and, consequently, it is 

necessary to provide high accuracy of its estimate. As it is 

shown in [1], methods of identification based on various 

modifications of stochastic models [23], [24] are unsuitable 

for this purpose [1] because of introduced methodical mistakes 

and impossibility of decoding the obtained results that have 

abstract content that is not related to physical condition of the 

object. Traditional computing algorithms for solving ill-

conditioned equation systems, which are based on Gaussian 

elimination, are inapplicable because in the recurrent 

procedure the results of the previous step are divided by small 

numbers that are comparable to the level of noise and that 

leads to unreliable results. Therefore, development of special 

algorithms intended for processing poorly dynamical flight 

information is necessary. For this purpose, symbolical 

combinatory models (SC models) are used. In this paper, 

methods for optimization of computing algorithms based on 

such models are examined. 

III. OPTIMIZATION OF ALGORITHMS FOR IDENTIFICATION OF 

CONDITION OF AIRCRAFT ONBOARD SYSTEMS 

Calculation of the vector of values of dynamic parameters is 

related to finding information about the coefficients of the 

transfer operator of identified object: 
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which is analogous to its differential equation. However, as 

the process of transient processing has a discrete character, it 

is necessary to use parameters of the discrete operator: 
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which is an approximation of (1). On its basis, a system of 

difference equations is formed from the results of 

measurement of input signal x(iT) and output signal y(iT): 

      yYX    (3) 

For this purpose, various modifications of algorithms [8], 

[9] can be used. In a test mode, when mathematical 

description of input signal is known, it is desirable to apply a 

system of smaller dimension: 

      ;])1([;ˆ TjityYyY ji   

   ])([ Tintyy i   (4) 

Its conditionality is better than that of the system (3). First, 

the system (4) is solved and an estimation of coefficients of 

characteristic polynomial of operator (2) is found. Then, an 

estimation of coefficients of polynomial-numerator of operator 

(2) is calculated [4]: 

   1;ˆ  YHyH  (5) 

The matrix H is formed as a form of Toeplitz matrix Y. 

Finding its inverse matrix Н using numerical methods can 

possibly result in large errors, as Toeplitz matrices have 

extremely bad conditionality. This demands application of 

non-conventional methods for maintaining the numerical 

stability of algorithms for inversion of such matrices. Vectors 

of solutions (3) and (5) can be used as diagnostic attributes, 

and the technique of their calculation for regular modes of 

functioning is stated in [2], [25], [26]. They have a determined 

unequivocal character and are described by operations of 

direct and inverse discrete transform: 

 )()(*)( zDpWTZ  ; )()(*)(1 pWzDTZ   (6) 

It has been proved that mathematical relation between the 

poles of operators (1) and (2) does not depend on the character 

of used interpolation approximation. It has the form of 

significantly nonlinear relations: 
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The expressions (7) are determined by the character of 

arrangement of analog and discrete poles on the complex 

plane. Mapping of analog poles into the discrete ones occurs 

by the principle of mapping the infinite left complex half-

plane into the area of the unit right half-circle. Therefore, 
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numerical values of distances between discrete poles, which 

are used in the algorithms, can become comparable in size 

with the methodical errors. Their negative influence shows in 

the solution of the systems of difference equations. The 

determined character of relations between the poles of 

operators (1) and (2) determines the same character of 

relations between the coefficients of their characteristic 

polynomials: 
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The processed transient, in general, can be described by 

expression: 
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which can be expressed as depending on the discrete poles of 

operator (2): 
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In general, it is found from the analog transfer function of 

object W(p), taking into account the operator of interpolation 

filter F(p, z). This operator designates the mathematical 

operation of smoothing the mistakes of discrete approximation 

of input signal [25], [26]. Therefore: 
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Let’s consider a mode of test identification when a system 

of smaller dimension (5) is solved: 

 1)()(  YHyH nn   (12) 
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Computing difficulties arise at finding of the inverse matrix 
1Y (12). Let’s denote in the form of attached matrix H

~
 the 

elements of which are expressed by values of minors of matrix 

Y of the transient (5): 
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The elements of H can be found by division of elements of 

attached matrix H
~

 (14) by the determinant Y: 
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So, the vector of solution of system (12) can be represented by 

expression: 
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Let’s notice that algebraic complements of elements of rows 

are located in H
~

 in corresponding columns, that is, the 

operation of transposing is done. 

Here Hdet  is the determinant of initial matrix Y. Like 

the minors in (18), it is found using the formula: 
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Here, the sum is distributed over all possible permutations P 

= (α1, α2, …, αn) of elements Y: 1, 2, …, n, not containing 

repetitions of elements. Hence, equation (20) contains n! 

addends, while 0  for even permutations and 1  for 

odd permutations. 

Elements of vector   can also be determined using 

Cramer’s rule: 
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Operation of calculation of minors is used here as well, and 

unfolding of matrix is done based on elements of free 

members of system (5): 
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where: 
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IV. ADDRESS SC MODEL OF IDENTIFICATION ALGORITHM 

An advantage of this algorithm is that elements of H (18) 

are calculated without application of recurrent procedure, 

therefore, equation (20) is used, which ensures that 

optimization of algorithm is achieved. 

However, use of full set of permutations in (20) increases 

the amount of calculations, which requires special methods for 

their calculation that are developed in [6] on the basis of SC 

models. They allow creating parallel algorithms, which 

increases the performance of identification algorithms.  

Such SC models have a form of a branching graph [4]: 
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Sections of graph (24) are formed according to difference-

residual principles: combinative operators )( iKC   act on 

components of difference sets 1.....12
~

na  which are left after 

formation of previous sections. Relation between sections is 

denoted by operation of lexicographic product. Graph (24) is a 

symbolical image of the index matrix grid made from numbers 

of rows and columns )( Lrims   of submatrix from Y (4) for 

which the minor is found, and consists of its addresses. 

Thus, expressions of elements of the initial matrix Y (10) 

can be replaced with numbers of coordinates of the index 

matrix grid )( Lrims  , an associative submatrix which are 

substituted in (24). From them, permutations are formed in 

branches (24) and realization of the base formula (20) is 

provided. We shall denote the algorithm for formation of 

graph (24) with the operator ),(  nGraf . Here, the 

dimension of associative submatrix in (15) and the vector  , 

the elements of which specify the width of graph sections, are 

given in brackets. Assembly of the algorithm is carried out by 

calculation of products of elements in graph branches and their 

summation which are designated by the operator Dpv  acting 

on the graph. The architecture of computing algorithm is 

determined by the argument of operator (24). Since the graph 

has the form of a branching tree, it is suitable for optimization 

of algorithms providing a parallel mode of processing. 

Operations with graph fragments that are realized in 

arithmetic space can be used for optimization of algorithms 

because part of arithmetic operations can be done in space of 

symbolical descriptions with the help of operator )arg(Dvp , 

which realizes the operation of multiplication of expressions 

located in graph vertices and their summation. It allows to 

minimize and simplify the SC model (24). The result of 

optimization can be written down as ),(*)arg(  nGrafDvp . 

For this optimization, local SC model of product of transient 

(10) values is used: 
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We use the principle of synchronization of multiplier 

positions in (25) with positions of elements in components of 

formed numerical sequences. Components in (25) we shall 

form on the basis of operation of lexicographic multiplication 

of intervals of numerical series. Factors of (25) designate the 

sums (10) and have dimension n of the sums of partial 

components of the transient. Product (25) can be represented 

in the form of numerical series ),( mnIch , which is formed on 

the basis of recurrent procedure in which a rectangular matrix 

formed in the previous step is unfolded in a transposed vector: 
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As an ordering of multipliers in (3) is imposed and 

multipliers themselves are ordered, the components of 

),( mnIch  will possess the property of partial order: 
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In [5, 6], it has been shown that (28) can be transformed 

into strictly ordered sequence ),( mnNumSec formed by 

combinative operator: 

   ),().1(*)(  nNumSecnKC    (29) 

We use operation of digit-by-digit subtraction of fixed 

components  )1.(0 m  from components (28) and have: 

   ),()1.(0),( mnNumSecmmnIch    (30) 

Using (7), in [3, 5] it has been proved that sequence (28) 

can be represented as canonical decomposition in the basis of 

vectors formed by operators mKC .1;)(  . Repetitions of 

elements in components (28) are formed by the operator of 

partitioning the number m into ν digits mPart *)( . The 

proof uses the principle of equivalent representation realized 

by the operator of permutation  mPartPerm *)(*   acting 

on components of partitions. The obtained result is placed in 

the components of base vectors mKC .1;)(  . Therefore, 

we can write: 
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Here the notation of direct lexicographic product of set of 

discrete poles with a set of the same dimension of coefficients 

of decomposition of transient is used. The set of powers is 

placed by the operator Arang  over discrete poles )(~ nq . The 

set )(~ nC does not depend on powers and, consequently, can be 

taken out of brackets of local SC model as additional 

multiplier, so we get: 
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V. RESTORATION OF COMPUTING ALGORITHM FROM ITS 

ADDRESS SC MODEL 

Partitioning of graph (24) into separate sections corresponds 

to partitioning of matrix into separate poles from the set of 

columns, each of which has its own set of powers of discrete 

poles. To set of minors used in (18), there corresponds a set 

)( ii Lrims   of associative submatrices from Y. The indices 

of elements of submatrices in rows and columns can be 

expressed in the form of the ordered intervals ).1( n  forming a 

product ).1().1(~ )( nnnn  . Elements of submatrices are 

formed according to expression: 
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From here we get: 
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Index matrix grid of associative matrix related to the 

element   jiY ,  is determined from difference sets: 
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Coordinates ims  in the form difference sets define the 

breaks in the regularity of following of power indices, which 

can be represented by a set of two poles from row and column 

indices: 
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Here, SC model for the first multiplier can be expressed in 

the form of graph (24), consisting of two sections. The 

numerical series for the first section is formed as: 

   jnLiKCL /.1
~

*)((
~

1  
  (39) 

In the second section, there will be the residual difference 

set, which will have the form of complementary index vector: 

   12

~
/.1

~
LnL 

  (40) 

To partitioning of the matrix into two poles there 

corresponds partitioning the graph into two sections: 

       22

~
.2

~
.1 LniLi  

  (41) 

In the branches of (24), there will be permutations from 

components of set of rows: 

       LniPermLiPermGraf
~

..2*
~

.1*   
 (42) 

As it can be seen from (4), powers of discrete poles in SC 

model are defined by parameters )( Lrims   of associative 

matrices. The values of row and column indices are arguments 

of the operator )(
)()( nn

LrDvp   that forms the graph (24). 

The index matrix grid )( Lrims   determines the algorithm 

for sampling the measurements of transients from recorded 
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flight information and the powers of poles placed by the 

operator Arang  over discrete poles: 






  )(*~~*)(Im
)()()()( nnnn LrDvpArangqqsDvp   (43) 

Then the minor of associative matrix is determined using 

operator Dpv  according to formula: 

      iLiKCDpvGrafDpv .1
~

*)(**    

    niLinKCDpv ..2
~

*)1(*     (44) 

In the first multiplier, local associative matrices formed 

from row indices of the first column are determined and the 

following local SC models are used: 

  LiKCiimsi

~
*)().1(    (45) 

Influence of operator Dpv  on the set of submatrices 

having a regular character of succession of powers of discrete 

poles generates vector of values of minors which are 

calculated using the operator: 

   )()()(* 13121 mi qqqqqqimsFg   

  )( 1 mm qq   (46) 

Algorithm of its formation has the following form: 
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Vector of minors for submatrix in the second columns also 

can be determined using the operator Fg (13). For this 

purpose, from the submatrix it is necessary to extract a 

diagonal matrix from elements of column’s first row and 

transformed it into a regular form. The result of optimization 

(33) shows that the computing algorithm will contain 

fragments formed by operator (Fg*). 

Components of Ims containing the coordinates of elements 

of allocated submatrix are used as arguments of operator 

Dpv . Therefore, all operations connected to inversion of 

matrix Y, first of all, the re-addressing operation, can be 

executed in index symbolical space:  

 )(~*)(Im nqsDvp  

 




  )(*~ )()()( nnn LrDvpArangq   (48) 

Then we shall have:  
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
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On the basis of     1.01.0Im  nns   in the SC model 

the difference operators Fg  (*) can be introduced:  

 
)(,

)(~*

jiji

ji
n qqqFg



   (50) 

Then we have: 
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 If )1(.
)(

 nmmr
n

 then the common multiplier is 

allocated: 

      )(][ ~*1.0* nn qmnPermDvp   

    )(][)( ~*)(*~ nnn qFgmArangq   (54) 

The conjugate property of decomposition is observed:  
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The SC model possesses recursive properties that allow to 

apply the methods of reduction of algorithm complexity. For 

this purpose, we shall represent the product in graph branches 

in the form of ordered numerical sequence [4, 6]: 
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We use local SC models expressions of products in 

branches of graph (24) as numerical series ),( nmG (30). 

Using the above described properties, we have: 
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Using the property of decomposition of the operator Dpv , 

we shall find:  

   huPQDvp Tnmmn   )()(*  (60) 

   )(* nn
ii QDvpu    )(* nn

ii PDvph   (61) 

The coordinates of submatrices are used as arguments of the 

operator φDpr. As such, we use the vectors made from the 

components of ordered numerical sequences 

),().0(),( mnRnmnG   (30): 

         iii hQmnGnDvpu ;*),(.1   

   PnmnGDvp i *.1),(   (62) 

Then the expression (33) can be written down in the 

following form:  

    )()(* nmmn PQDvp  

    QDvpSum *)arg(* 1  PDvp *)arg( 2  (63) 
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Let’s find the argument set for Dpv , acting on the product 

 )()()( nmmmmn WMQ   With the help of the vector 

),(),( mnGmnGims ii  , we shall allocate a submatrix 
  )( mm

i
mn MS   . Using (4), we find: 
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The result of the influence of the operator Dpv we shall 

write down as: 
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Using the result (33) and the expression (18) [1], we find 

the SC model for the inverse matrix of the dynamic process: 

    YmnGmnGDpvY *),(),((1   

   )),((* mnGWDpv  

     )(*),(),(( kkMmnGmnGDpv   

  )),((* mnGWDpv  (69) 

Thus, from symbolical description of SC model (24), we 

have derived the description of computing algorithm in the 

matrix form. First and last multipliers can be realized in the 

form of diagonal matrices. They are related among themselves 

by an average weight matrix.  
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VI. CONCLUSIONS  

For processing poorly dynamical transients measured in 

flight modes, it is offered to use new computing algorithms for 

processing of flight information that does not require inversion 

of ill-conditioned matrices of systems of identification 

equations. They were developed on the basis of their 

symbolical images in the form of address symbolical 

combinatory models (SC models) that allow effective 

optimization of algorithms. For this purpose, the method of 

filtration of SC model’s components has been developed and 

the form of algorithm for inversion of ill-conditioned matrices 

with minimized complexity has been obtained. It has allowed 

to derive for the first time a symbolical description of the 

analytical expression for the solution of identification 

equations systems. The developed method of transformation 

of symbolical descriptions of computing algorithms in their 

real forms can be effectively used for creation of software for 

onboard computers that process the flight information in real 

time of test flight. Such method allows deriving analytical 

expressions for vectors of solutions of identification equations 

that can be used for imitation modelling of processes of 

information processing for various flight modes. In particular, 

on their basis, key parameters for parallel calculation 

organization in problems of identification, control and 

diagnosis can be chosen. The developed method for mapping 

the symbolical descriptions of computing algorithms allows 

creating effective software for onboard computers which are 

carrying out tasks of control and diagnosis of aircraft onboard 

equipment, which can be used not only at the test stage, but 

also at the stage of their normal operation. 
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Genādijs Burovs. Lidojumu informācijas apstrādes algoritmu optimizācija aerokosmisko objektu izmēģinājumu lidojumu etapam 

Informāciju par lidaparātu un to aprīkojuma dinamiskajiem raksturojumiem ir grūti iegūst mērāmo pārejas procesu lēno izmaiņu dēļ, kas tiek slāpētas ar speciālās 
iekārtām lidojumu drošības nodrošināšanai. Tomēr šādas informācijas iegūšana ļauj koriģēt izmēģinājumu lidojumu programmu, samazināt tās ilgumu un 

izmaksas. Šādi novērtējumi ir jāiegūst arī lidaparāta ekspluatācijas laikā, lai varētu diagnosticēt aprīkojuma stāvokli un savlaicīgi brīdināt par ārkārtas situāciju 
rašanos tā funkcionēšanā. Tradicionālie algoritmi nav piemēroti darbam šādos apstākļos, jo tajos rodas deģenerētas situācijas, kā rezultātā iegūtie rezultāti nav 

droši. Ņemot vērā lidaparātiem raksturīgo pārejas procesu dinamisma deficītu to slāpēšanas dēļ, ir piedāvāts izmantot jaunus algoritmus lidojuma informācijas 

apstrādes, kas var tikt izmantoti reālajā lidojuma laikā. Tika izstrādāta metode skaitļošanas algoritmu aprakstīšanai simbolisko kombinatorisko modeļu veidā. Tie 
var tikt izmantoti algoritmu optimizācijai un formalizētu matemātisko metožu radīšanai lidaparātu datoru programmatūras izstrādei, kas ļauj realizēt paralēlus 

signālu mērījumu rezultātu apstrādes režīmus dinamisma deficīta apstākļos. 

 

Геннадий Буров. Оптимизация алгоритмов обработки полетной информации на этапе летных испытаний аэрокосмических объектов 

Информация о динамических характеристиках летательных аппаратов (ЛА) и их бортового оборудования труднодоступна по причине слабой 

изменчивости измеряемых переходных процессов, которые демпфируются специальными устройствами в целях обеспечения безопасности полетов 

ЛА. Однако получение такой информации позволяет скорректировать программу летных испытаний, сократить их продолжительность и 
материальные затраты. Такие оценки требуется получать также в период эксплуатации ЛА с целью диагностирования состояния бортового 

оборудования и своевременной индикации возникновения нештатных ситуаций его функционирования. Традиционные алгоритмы не приспособлены 

для работы в таких условиях, поскольку в них возникают вырожденные ситуации, нарушающие их работоспособность и  ведущие к получению 
недостоверных результатов. Учитывая специфику ЛА, связанную с дефицитом динамичности переходных процессов из-за их демпфирования, было 

предложено использовать новые алгоритмы для обработки полетной информации, способные работать в реальном времени полетных режимов. Был 
разработан метод описания вычислительных алгоритмов в виде символьных комбинаторных моделей (СК - моделей). Они могут быть использованы 

для оптимизации алгоритмов и разработки формализованных математических методов создания программного обеспечения для самолетных бортовых 

компьютеров, позволяющего реализовать параллельные режимы обработки результатов измерений сигналов в условиях дефицита их динамичности. 
 


