Scientific Journal of Riga Technical University
Computer Science. Boundary Field Problems and Computer Simulation

2011
Volume 50

Optimization of Algorithms for Processing Flight
Information in Flight Test Stage of Aerospace
Objects

Genady Burov, Riga Technical University

Abstract — A specific feature of aircraft and spacecraft flight
modes is related to difficulties of obtaining information about
dynamic characteristics of vehicles and their onboard equipment.
The reason is that any transients are undesirable from the flight
safety point of view and consequently they are damped by special
onboard devices. At the same time, there is a practical necessity
of obtaining such information as it is necessary for indication of
occurrence of emergency situations in flight conditions. This
information can be derived by solving systems of equations
formed from the results of signal measurement. But, because of
weak dynamism, the equation systems, as a rule, are ill-
conditioned and traditional algorithms cannot be used.
Therefore, the problem of their optimization is particularly
important in conditions of deficiency of dynamism in the flight
information. The possibility of using new information
technologies for signal processing at the aircraft flight test stage
is investigated. Since there are restrictions imposed on flight
modes, the identification of parameters of aircraft and its
equipment is carried out in the conditions of bad observability of
the dynamic characteristics. It complicates the problem of
ensuring the usability of computing algorithms for solving the
systems of equations formed from the results of measurements of
flight parameters. Therefore, the possibility of application of new
information technologies for creation of algorithms with parallel
structure is investigated. It will allow applying parallel
computers and increasing the speed of information processing.
The new information technologies are offered to be realized on
the basis of symbolical combinatory computing models.

Keywords — identification, flight test, symbolical combinatory
model

I. INTRODUCTION

Aircraft flight tests are high-risk tasks; therefore, special
attention is given to safety measures at all stages of
preparation for carrying out these tests. The necessity of
processing huge amounts of information over short time
intervals during test flights demands using high-performance
onboard computers and more advanced programs and
algorithms [19], [20].

Wider introduction of mathematical modelling at the flight
test phase will also allow increasing flight safety and gathering
much more information about the characteristics of stability
and controllability of an aircraft and also about the quality of
functioning of new onboard equipment in real modes of flight
[18], [19].

Special attention is given to the most dangerous modes of
flight. The analysis shows that it is necessary to use new
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higher performance onboard computers and more advanced
control algorithms. Such problems can be solved by
introducing information technologies constructed on novel
principles.

It is necessary to take into account the fact that signals
taken from measuring sensors have smooth-changing
character and such signals are difficult to process using
traditional computing algorithms. It is a general feature of all
objects in aerospace systems and it is dictated by restrictions
on flight modes, which are introduced to ensure the flight
safety.

Therefore, the traditional algorithms related to the central
problem of information processing: solving systems of
equations, generated from such low-dynamic signals, turn out
to be inapplicable, as they cannot preserve the needed
accuracy in conditions when matrix of the system is close to
singular. Such algorithms return false results that can lead to
making wrong decisions both during the flight and during the
inter-flight analysis. For this reason, theoretical models of
identification suggested in numerous publications could not be
used in practical applications.

The structure of these algorithms is based on principles of
consecutive execution of computing operations. Therefore,
they are not well suited for their realization in high-
performance parallel computer. From here follows that for
creation of more advanced systems of onboard measurements
used in test flights, it is necessary to introduce new
technologies, allowing realizing parallel principles of
information processing. On the basis of such technologies,
essentially new computing methods can be created that would
allow to preserve high accuracy in conditions of ill-
conditionality of equation system matrices. In this case,
development of adaptive computing models with adjustable
structure, which can be realized by software methods, is
possible.

Symbolical combinatory (SC) models were constructed not
on the basis of known classical methods of enumerative
combinatorics, but on the basis of giving computing
algorithms new properties possessed by determined
combinatory operators. The validity of using such approach
has been confirmed by solving the problem of finding the
inverses of almost singular 20th order Hilbert matrices with
100% accuracy [21]. Earlier it was believed that solving such
problem is impaossible for matrices the order of which exceeds
10.
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Il.PROBLEM STATEMENT

A specific feature of flight information processing is that
transients have weak dynamism as they are damped by special
devices because of conditions of flight safety. Therefore
partial coefficients C; of transients:

yKT)=>" Cia, ; a;=exp(-aT)

i=1

have small values and this leads to formation of ill-
conditioned matrices of systems of identification equations.
This is the reason why traditional algorithms for inversion of
matrices of identification equation systems cannot be used.
The vector of system’s solution is used for diagnosis of
condition of onboard equipment and, consequently, it is
necessary to provide high accuracy of its estimate. As it is
shown in [1], methods of identification based on various
modifications of stochastic models [23], [24] are unsuitable
for this purpose [1] because of introduced methodical mistakes
and impossibility of decoding the obtained results that have
abstract content that is not related to physical condition of the
object. Traditional computing algorithms for solving ill-
conditioned equation systems, which are based on Gaussian
elimination, are inapplicable because in the recurrent
procedure the results of the previous step are divided by small
numbers that are comparable to the level of noise and that
leads to unreliable results. Therefore, development of special
algorithms intended for processing poorly dynamical flight
information is necessary. For this purpose, symbolical
combinatory models (SC models) are used. In this paper,
methods for optimization of computing algorithms based on
such models are examined.

I1l. OPTIMIZATION OF ALGORITHMS FOR IDENTIFICATION OF
CONDITION OF AIRCRAFT ONBOARD SYSTEMS

Calculation of the vector of values of dynamic parameters is
related to finding information about the coefficients of the
transfer operator of identified object:

R(P) _ P"+0UpsP" " +..4Gp+do  _ Y(p)

W = =
) Q(P) b,p™+by  p™ +..4b p+by  X(P)

M

which is analogous to its differential equation. However, as
the process of transient processing has a discrete character, it
is necessary to use parameters of the discrete operator:
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which is an approximation of (1). On its basis, a system of
difference equations is formed from the results of
measurement of input signal x(iT) and output signal y(iT):

[X]a+[Y] B=y 3)

For this purpose, various modifications of algorithms [8],
[9] can be used. In a test mode, when mathematical
description of input signal is known, it is desirable to apply a
system of smaller dimension:

¥ B=y: [V}, =yit+G+i-DTI;

[y i= vt +(n+iyT] @)

Its conditionality is better than that of the system (3). First,
the system (4) is solved and an estimation of coefficients of
characteristic polynomial of operator (2) is found. Then, an
estimation of coefficients of polynomial-numerator of operator
(2) is calculated [4]:

f=H-y; H=[]* 5)

The matrix H is formed as a form of Toeplitz matrix Y.
Finding its inverse matrix H using numerical methods can
possibly result in large errors, as Toeplitz matrices have
extremely bad conditionality. This demands application of
non-conventional methods for maintaining the numerical
stability of algorithms for inversion of such matrices. Vectors
of solutions (3) and (5) can be used as diagnostic attributes,
and the technique of their calculation for regular modes of
functioning is stated in [2], [25], [26]. They have a determined
unequivocal character and are described by operations of
direct and inverse discrete transform:

PZ(M)*W(p)=D(2); pZ (T)*D(z) =W(p) (6)

It has been proved that mathematical relation between the
poles of operators (1) and (2) does not depend on the character
of used interpolation approximation. It has the form of
significantly nonlinear relations:

{fi = eXp(—aiT)} At {ai = —ﬁ}
ﬁL=wmv&KanﬂJa} ™
j:

The expressions (7) are determined by the character of
arrangement of analog and discrete poles on the complex
plane. Mapping of analog poles into the discrete ones occurs
by the principle of mapping the infinite left complex half-
plane into the area of the unit right half-circle. Therefore,
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numerical values of distances between discrete poles, which
are used in the algorithms, can become comparable in size
with the methodical errors. Their negative influence shows in
the solution of the systems of difference equations. The
determined character of relations between the poles of
operators (1) and (2) determines the same character of
relations between the coefficients of their characteristic
polynomials:

{¢Z‘1*B(z)}©{Q(D)=H(P+ai)} (8)

i=1

The processed transient, in general, can be described by
expression:

y ®= Ciexp(a -1) o)

i=1

which can be expressed as depending on the discrete poles of
operator (2):

ykT)=>" Ciai ; a;=exp(-aT) (10)

i=1

In general, it is found from the analog transfer function of
object W(p), taking into account the operator of interpolation
filter F(p, z). This operator designates the mathematical
operation of smoothing the mistakes of discrete approximation
of input signal [25], [26]. Therefore:

D(z) = Fz(T) *W(p) - Fypr (2.T)} =

S gk
zga @)
n x(2)

Zfi'zfn
=

Let’s consider a mode of test identification when a system
of smaller dimension (5) is solved:

(11)

EM_pH.yO oy (12)
1 Y1
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Computing difficulties arise at finding of the inverse matrix
Y_1(12). Let’s denote in the form of attached matrix H the
elements of which are expressed by values of minors of matrix
Y of the transient (5):
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A=detH (16)

The elements of H can be found by division of elements of
attached matrix H (14) by the determinant Y:

~ 1

H=H.~ 17)
Hji

H]; :T] (18)

So, the vector of solution of system (12) can be represented by
expression:

E=H- (19)

>+

Let’s notice that algebraic complements of elements of rows
are located in H in corresponding columns, that is, the
operation of transposing is done.

Here A =detH is the determinant of initial matrix Y. Like
the minors in (18), it is found using the formula:

detH =" (<17 - (A, 824, 8ng, ) (20)
P

Here, the sum is distributed over all possible permutations P
= (o4, Oy, ..., a,) Of elements Y: 1, 2, ..., n, not containing
repetitions of elements. Hence, equation (20) contains n!
addends, while y =0 for even permutations and y =1 for
odd permutations. _

Elements of vector & can also be determined using
Cramer’s rule:

_Al. _AZ. _An.
N R et e

A (21)

Operation of calculation of minors is used here as well, and
unfolding of matrix is done based on elements of free
members of system (5):

hyp oo Ui Y hgiyg o gy

h,, ... hy; h,. ... h
B_| 2t 2i1 Y2 Min 2n 22)

hn1 hn,i—l yn hn,i+l hnn
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where:

Ai:Z;Hji'yj' (23)
=

IV. ADDRESS SC MODEL OF IDENTIFICATION ALGORITHM

An advantage of this algorithm is that elements of H (18)
are calculated without application of recurrent procedure,
therefore, equation (20) is used, which ensures that
optimization of algorithm is achieved.

However, use of full set of permutations in (20) increases
the amount of calculations, which requires special methods for
their calculation that are developed in [6] on the basis of SC
models. They allow creating parallel algorithms, which
increases the performance of identification algorithms.

Such SC models have a form of a branching graph [4]:

#5r *(0,1) = [KC(vy) * () ol C vy ) * @) 13y Jxo

xolpKC(vy)* @) 8y, | xolgKCO) *@n) By 4

k

\_/T =[V1V2...Vk]; ZVi =N

i=1

(24)

Sections of graph (24) are formed according to difference-
residual principles: combinative operators @KC(v;) act on
components of difference sets a,;, ,, which are left after
formation of previous sections. Relation between sections is

denoted by operation of lexicographic product. Graph (24) is a
symbolical image of the index matrix grid made from numbers
of rows and columns ims(r xoL) of submatrix from Y (4) for
which the minor is found, and consists of its addresses.

Thus, expressions of elements of the initial matrix Y (10)
can be replaced with numbers of coordinates of the index
matrix grid ims(r xoL), an associative submatrix which are
substituted in (24). From them, permutations are formed in
branches (24) and realization of the base formula (20) is
provided. We shall denote the algorithm for formation of
graph (24) with the operator ¢Graf(n,v) . Here, the
dimension of associative submatrix in (15) and the vector v,
the elements of which specify the width of graph sections, are
given in brackets. Assembly of the algorithm is carried out by
calculation of products of elements in graph branches and their
summation which are designated by the operator ¢Dpv acting
on the graph. The architecture of computing algorithm is
determined by the argument of operator (24). Since the graph
has the form of a branching tree, it is suitable for optimization
of algorithms providing a parallel mode of processing.

Operations with graph fragments that are realized in
arithmetic space can be used for optimization of algorithms
because part of arithmetic operations can be done in space of
symbolical descriptions with the help of operator ¢Dvp(arg),

which realizes the operation of multiplication of expressions
located in graph vertices and their summation. It allows to
minimize and simplify the SC model (24). The result of
optimization can be written down as ¢Dvp(arg) * ¢Graf (n,v).
For this optimization, local SC model of product of transient
(10) values is used:
D(n,m) = (L.n) xo(@.n)xo...xo(Ll.N ) (25)
We use the principle of synchronization of multiplier
positions in (25) with positions of elements in components of
formed numerical sequences. Components in (25) we shall
form on the basis of operation of lexicographic multiplication
of intervals of numerical series. Factors of (25) designate the
sums (10) and have dimension n of the sums of partial
components of the transient. Product (25) can be represented
in the form of numerical series Ich(n,m), which is formed on
the basis of recurrent procedure in which a rectangular matrix
formed in the previous step is unfolded in a transposed vector:
- 7T - T TN 0T
am-1 Um = am-1 XO(]..I"I), Um_1 = am-1 (26)
As an ordering of multipliers in (3) is imposed and

multipliers themselves are ordered, the components of
Ich(n,m) will possess the property of partial order:

Uanlimlupumh upezupa @)
D(n, m) = (L.n) xo (L.N) xo...xo (LN )=
:ﬁ(ﬁ)i = Ich(n, m) (28)
i=1

In [5, 6], it has been shown that (28) can be transformed
into strictly ordered sequence NumSec(n,m) formed by
combinative operator:

|KC(r) * ()| = Numsec(n, v) (29)

We use operation digit-by-digit subtraction of fixed
components |O.(m —1ﬁfrom components (28) and have:
leh(n, m) —[0.(m—1)|= NumSec(n, m) (30)
Using (7), in [3, 5] it has been proved that sequence (28)
can be represented as canonical decomposition in the basis of
vectors formed by operators @KC(v); v e1.m. Repetitions of
elements in components (28) are formed by the operator of
partitioning the number m into v digits ¢Part(v)*m . The
proof uses the principle of equivalent representation realized
by the operator of permutation (pPerm*[goPart(v)*m] acting
on components of partitions. The obtained result is placed in
the components of base vectors @KC(v); v €1l.m. Therefore,
we can write:
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H(l'n)i DZLDKC(v)*q(n) ®oC (n) ]* ( J) l( ) JX l( ) JJ ( )
i=1 v=l

C |

* pArang (gPerm * [gPart(v) *m| (32) 1 Q1I

[ r r r ] . C, d,

. . . . a 0 d, |yDiag :

Here the notation of direct lexicographic product of set of

discrete poles with a set of the same dimension of coefficients C, q,

of decomposition of transient is used. The set of powers is o S "
placed by the operator gArang over discrete poles g™ . The re (l.rl)U irl +2in|; le (1.I1)U ill +2ln| 37)

set C™ does not depend on powers and, consequently, can be
taken out of brackets of local SC model as additional
multiplier, so we get:

ﬁ(ﬁ)i = i[@KC(v)*ﬁ(”) ®oé(”)]*
i=1 v=l

* gpArang (gPerm *[gPart () *m}) =

m

=3 ke *E® |@eforec =g ]

v=1l

(33)

V.RESTORATION OF COMPUTING ALGORITHM FROM ITS
ADDRESS SC MODEL

Partitioning of graph (24) into separate sections corresponds
to partitioning of matrix into separate poles from the set of
columns, each of which has its own set of powers of discrete
poles. To set of minors used in (18), there corresponds a set
ims(ri xoLi) of associative submatrices from Y. The indices
of elements of submatrices in rows and columns can be
expressed in the form of the ordered intervals (1 n) forming a
product &@™™ = (L.n)xo(L.n). Elements of submatrices are
formed according to expression:

Y], = [a(“) *q)Arang(r)} T Diag€")-

| *ghrang() | (34)
From here we get:
Cy Q1I
C [
[Y]r,l 3[Q1r d," - g, [xo¢Diag 2 |l Y2
C” qnI
(r,)ea™ (35)

Index matrix grid of associative matrix related to the
element [Y] i,j s determined from difference sets:

44

Coordinates ims in the form difference sets define the
breaks in the regularity of following of power indices, which
can be represented by a set of two poles from row and column
indices:

— () i q™ *pArang(Li) |
(e i

¢,

<o) Diag| 2 G parang (L) (38)
[ 1§ * parang[(j + 2)n]
Cn

Here, SC model for the first multiplier can be expressed in
the form of graph (24), consisting of two sections. The
numerical series for the first section is formed as:

=) |

In the second section, there will be the residual difference
set, which will have the form of complementary index vector:

- k)

To partitioning of the matrix into two poles there
corresponds partitioning the graph into two sections:

(i) oL, o [+ 2] oL,

In the branches of (24), there will be permutations from
components of set of rows:

L = (ke =iy *[C (39)

(40)

(41)

Graf = ﬂ(pPerm*(ﬁ)JxoI:}Xo{[(pPerm*(m)JXoE} (42)

As it can be seen from (4), powers of discrete poles in SC
model are defined by parameters ims(r xoL) of associative
matrices. The values of row and column indices are arguments
of the operator gDvp(r" xL") that forms the graph (24).
The index matrix grid ims(Fxo[) determines the algorithm
for sampling the measurements of transients from recorded
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flight information and the powers of poles placed by the gDvp(Ims)*q™ =
operator gArang over discrete poles:
~(n) % =(n) (M :|
- _ = Aran [ r - xL 48
Avp(Ims)*G® :>a(n)*Arang[(pDVp(r(n) XL(m)} 43) q g| ¢Dvp( ) (48)
. o o ] . Then we shall have:
Then the minor of associative matrix is determined using
operator according to formula: - — -
P #Dpv J (pDvp{(¢Perm ™y L(n)}*q ™=
¢Dpv*Graf = prV*{[goKC(i)*E]x o(ﬁ)@
o ~(n) % w2 (M)
® gDpv* [ pKC(n—i —1)* L |xoi + 2.0} (44) =q® Afang[((ﬂDVP r j@'— } (49)

In the first multiplier, local associative matrices formed
from row indices of the first column are determined and the
following local SC models are used:

ims; = (Li) x o|pKC(i) * L | (45)
Influence of operator ¢Dpv on the set of submatrices
having a regular character of succession of powers of discrete
poles generates vector of values of minors which are
calculated using the operator:
g *ims; 3[((11_qZ)'((h_q3)""(Q1_Qm)]---

~[@n1~am)] (46)

Algorithm of its formation has the following form:

12

~ 13 ~
PKC(v=2)*q ™ = @m=

4: -0,
d: —q
= l___S = H<Qi—q]') (47)
i jed.n)i=j
qm_qm—l

Vector of minors for submatrix in the second columns also
can be determined using the operator Fg (13). For this
purpose, from the submatrix it is necessary to extract a
diagonal matrix from elements of column’s first row and
transformed it into a regular form. The result of optimization
(33) shows that the computing algorithm will contain
fragments formed by operator (Fg*).

Components of Ims containing the coordinates of elements
of allocated submatrix are used as arguments of operator
¢Dpv . Therefore, all operations connected to inversion of
matrix Y, first of all, the re-addressing operation, can be
executed in index symbolical space:

On the basis of Ims= [(W—l)xa(m) in the SC model

the difference operators ¢Fg (*) can be introduced:

oFg*q™ = [Ja-q

ij(i=])

Then we have:

(pDvp{(goPerm (™ ) " }*G(”) =

<fene e 1)
{1 x(gPerm L") [ =
= [(ng C™y=g® } g = arang(r )]
soDvp{(querm *F‘")>x<¢Perrn—*E‘”’)}*a<”> -

=| o)A x| oFa @) |

i ™

allocated:
(pDvp{(pPerm * l(m)@ ml"! J}* g =
- [q-(n) * Arang(m[”])J- [(p,:g *ﬁ(”)J

The conjugate property of decomposition is observed:

@Dvp (pPerm *r® ) *[a (™ Arang(F(n) oL" )} =

(50)

(51)

(52)

(53)

=m.m+(n-1) then the common multiplier is

(54)
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= [G(”) *Arang(goDvp ™ ﬂ -[a(”) * Arang([(n) H (55)
e ONAPTae —() _—(m)
@Dvp(pPerm*L" ")*| q Arang(r "®L )=

= [G () Arang(goDvp «L ™ ﬂ : [a () Arang[F(n) ﬂ (56)

The SC model possesses recursive properties that allow to
apply the methods of reduction of algorithm complexity. For
this purpose, we shall represent the product in graph branches
in the form of ordered numerical sequence [4, 6]:

R(m,n) = i pPerm* {[(DKC(V) *1._n]* pArng(Z, )}
v=l

Z, = gPerm*[gPart(v)*m] (57)

We use local SC models expressions of products in
branches of graph (24) as numerical series G(m,n) (30).
Using the above described properties, we have:

gaDvp((/Perm*F(n))*G(m, n)=

— @Dpv(gPerm*r ™ )* [(pKC(m) *(1_n)] (58)

(pDvp{(goPerm*F(n))x[(n) }*G(m, n) =
— § ™= Arang ¢Dpv(gPerm*r ") (59)
loc(m*{in]

Using the property of decomposition of the operator ¢Dpv ,
we shall find:
va * lQ (nxm) p (mxn) J:a T, H (60)

laJI: POV *Q; (nxn) lEJI: ¢DVp *P; (nxn) (61)

The coordinates of submatrices are used as arguments of the
operator ¢Dpr. As such, we use the vectors made from the
components of ordered numerical sequences

G(n,m) = (0.n) ®R(n,m) (30):

[u]i= gow[frnxon,m) Qi [h],=

= gDvp(G(n, m) xLnP (62)

46

Then the expression (33) can be written down in the
following form:

(ﬂDVp*lQ (vem) p <mxn)J:>
= gsum* {gDvp (arg ,)*QJ® ® |pDwp(arg )P (63)
ag 1= [Lnj<<Gnm) T arg ;= G(n,mxe[tn| (64)
Let’s find the argument set for ¢Dpv , acting on the product
IQ (em), g () gy (mm) rWith the help of the vector

ims ; = G(n,m) {xeG(n,m) , we shall allocate a submatrix
s (mm); ¢ M (mme. Using (4), we find:

arg [pDpv*(S; W )= [G(n, m) ;xoG(n,m) J v ®
®o[G(n m)x< L), (65)
Arg (@Dpv*M ™™ )= (66)

The result of the influence of the operator ¢Dpv we shall
write down as:

(/Dpv*lQ(nxm) ‘M (mxm) W (mxn) J:> a T_Z \TV

:{G(n,m)xo G(n,m)T} M (67)

d’'= ¢Dpv{l(1._n)x oG(n,m) J}*Q

w=> (prv{[(lT\)x oG(n,m) J}*W

[Z]i = (/JDpV{G(n,m) (X0 G(n,m)Tj}* M (mxm) (68)

Using the result (33) and the expression (18) [1], we find
the SC model for the inverse matrix of the dynamic process:

Y = (prv{(G(n, m) x o G(n, m)}*Y =

= |pDpv W G (nm)) |

Jpop@nm <G m e m 0 |

ooy w G (n,m)) (69)

Thus, from symbolical description of SC model (24), we
have derived the description of computing algorithm in the
matrix form. First and last multipliers can be realized in the
form of diagonal matrices. They are related among themselves
by an average weight matrix.
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VI. CONCLUSIONS

For processing poorly dynamical transients measured in
flight modes, it is offered to use new computing algorithms for
processing of flight information that does not require inversion
of ill-conditioned matrices of systems of identification
equations. They were developed on the basis of their
symbolical images in the form of address symbolical
combinatory models (SC models) that allow effective
optimization of algorithms. For this purpose, the method of
filtration of SC model’s components has been developed and
the form of algorithm for inversion of ill-conditioned matrices
with minimized complexity has been obtained. It has allowed
to derive for the first time a symbolical description of the
analytical expression for the solution of identification
equations systems. The developed method of transformation
of symbolical descriptions of computing algorithms in their
real forms can be effectively used for creation of software for
onboard computers that process the flight information in real
time of test flight. Such method allows deriving analytical
expressions for vectors of solutions of identification equations
that can be used for imitation modelling of processes of
information processing for various flight modes. In particular,
on their basis, key parameters for parallel calculation
organization in problems of identification, control and
diagnosis can be chosen. The developed method for mapping
the symbolical descriptions of computing algorithms allows
creating effective software for onboard computers which are
carrying out tasks of control and diagnosis of aircraft onboard
equipment, which can be used not only at the test stage, but
also at the stage of their normal operation.
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Genadijs Burovs. Lidojumu informacijas apstrades algoritmu optimizacija aerokosmisko objektu izméginajumu lidojumu etapam

Informaciju par lidaparatu un to aprikojuma dinamiskajiem raksturojumiem ir griti ieglist méramo parejas procesu 1éno izmainu dél, kas tiek slapétas ar specialas
iekartam lidojumu dros§ibas nodrosinasanai. Tomér $adas informacijas iegi$ana lauj korigét izméginajumu lidojumu programmu, samazinat tas ilgumu un
izmaksas. Sadi novértgjumi ir jaiegist arf lidaparata ekspluatacijas laika, lai varétu diagnosticét aprikojuma stavokli un savlaicigi bridinat par arkartas situdciju
rasanos ta funkcion&$ana. Tradicionalie algoritmi nav pieméroti darbam $ados apstaklos, jo tajos rodas degenerétas situacijas, ka rezultata iegitie rezultati nav
drosi. Nemot véra lidaparatiem raksturigo parejas procesu dinamisma deficitu to slapéSanas dgl, ir piedavats izmantot jaunus algoritmus lidojuma informacijas
apstrades, kas var tikt izmantoti realaja lidojuma laika. Tika izstradata metode skaitloSanas algoritmu aprakstiSanai simbolisko kombinatorisko modelu veida. Tie
var tikt izmantoti algoritmu optimizacijai un formaliz&tu matematisko metozu radisanai lidaparatu datoru programmatiiras izstradei, kas lauj realizét paral€lus
signalu mérijumu rezultatu apstrades rezZimus dinamisma deficita apstaklos.

I'ennaamii Bypos. OnTuMH3aLus aJITOPUTMOB 00pPaGOTKM M0J1eTHOH HHGOPMALMH HA dTale JIETHBIX HCIIBITAHUI A3POKOCMUYECKHX 00bEKTOB
Wudopmarys 0 AMHAMUYECKUX XapaKTEPHCTHKAX JieTaTelNbHBIX ammapaToB (JIA) m mx GopToBOro 00OpYyHOBaHMS TPYAHONOCTYIHA MO HpPHYHMHE CIA00H
HN3MEHYHBOCTH H3MEPSAEMBIX IIEPEXOJHBIX MPOIECCOB, KOTOPBIE NeMI(HUPYIOTCS CHEHAIBHBIMU YCTPOHCTBAMU B LEIIX oOecriedeHHs: O€30I1acHOCTH I10JIETOB
JIA. Opnako mnosyuyeHue Takod HMH(pOPMALUMM TO3BOJAET CKOPPEKTUPOBATH IPOrPaMMy JIETHBIX HCIBITAaHUH, COKPaTUTh HMX IPOJODKHTENBHOCTh H
MaTepHallbHbIe 3aTpaThl. Takue OLEHKU TpeOyeTcs IOdy4aTh TaKkkKe B IEPHOA SKCIuTyatalud JIA ¢ Lenpi0 AMAarHOCTUPOBAHUS COCTOSIHHS OOPTOBOrO
000pyZOBaHUS M CBOCBPEMEHHOH MHIMKAINK BOSHUKHOBEHHS HEIUTATHBIX CUTYalnil ero (yHKIMOHUPOBaHMA. TpaJHIIOHHbIE alTOPUTMBI HE IIPHCIIOCOOICHBI
JUIsL paboThl B TAKUX YCJIOBHSX, ITOCKOJIBKY B HHUX BOSHHMKAIOT BBIPOXKACHHBIC CHTYAllMM, HAPYLIAIOIUIHE MX PaOOTOCIOCOOHOCTh M  BEIyILIME K IMOJIyYCHHIO
HEJOCTOBEPHBIX Pe3yNbTaToB. YunThiBas cretuduky JIA, cBsi3aHHYyO ¢ AeQHIMTOM AMHAMHUYHOCTH MEPEXOAHBIX MPOLECCOB U3-3a UX JAeMI(HPOBaHUs, ObLIO
MIPEIUIOKEHO HCIIOIB30BaTh HOBBIE aTOPUTMBI UIsI 0OpaOOTKH MOIETHOH HH(pOpPMaLHH, CIIOCOOHBIe paboTaTh B pealbHOM BPEMEHH ITOJIETHBIX PEeKUMOB. bbin
pa3paboTaH METOJ OIHMCAHVS BEIYHCIUTEIBHBIX JITOPUTMOB B BHJE CHMBOJIBHBIX KoMOMHaTOpHBIX Mozenei (CK - moneneit). OHH MOTYT OBITH HCHOIB30BAHbI
JUISL ONITUMU3ALMH aITOPUTMOB U pa3paboTKu (GOpMaIM30BaHHBIX MATEMaTHYECKHX METO/IOB CO3/[aHHs IPOrPAMMHOI0 00ECICYeHHs UIsl CAMOJICTHBIX OOPTOBBIX
KOMITBIOTEPOB, O3BOJISIOIIETO PeasI30BaTh MapauielbHble PeXKUMBI 00pabOTKH pe3yIbTaTOB H3MEPEHUH CUTHAJIOB B YCIOBHSX Je(HIUTA NX JUHAMUYIHOCTH.
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