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Abstract - There is a calculation method for evaluating thermal
and physical characteristics of thin materials (temperature
conductivity and thermal conductivity coefficient) by using
temperature measurements given in this article. Mathematical
reasoning of the method is also provided in the paper.
Implementation of this method is discussed by using temperature
field as input information obtained by means of the software
MATHEMATICA.
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l. INTRODUCTION

The majority of determination methods of thermal and
physical characteristics is based on the fact that temperature
measurements are made in a solid of simple shape, readings of
such measurements are compared with a mathematic model of
heat transfer, and characteristics under discussion are
calculated afterwards. If some material is thin or plate-shaped,
for example, film, paper, window glass, then temperature
measurements inside such material are impossible as
dimensions of thermocouple are comparable to the ones of
material. In such a case we offer to put the material under
examination between two plates of other material, whose
thermal and physical characteristics are known, and make
temperature measurements in those plates. Measurement
scheme is given in Fig. 1, where the material under
investigation is located in the area [0,b]. In the area [-1,0] and
[b,1+b], (I>>.b) the material is located whose temperature
conductivity and thermal conductivity coefficients are known
as a; and 4, respectively. Non-stationary thermal conductivity
process is ensured. Temperature is measured at four points: Xy,
X2, X3, and x4.
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Fig. 1 Detection scheme of the heat physical
characteristics.

The problem here is to determine temperature conductivity
coefficient a of the material under examination and thermal
conductivity coefficient A by using temperature measurements
at those points. At the measurement point of both external
thermocouples, temperature measurements may also be made
on the external boundaries if such are possible.

1. MATHEMATIC MODEL

It is obvious that the process of thermal conductivity in
plates illustrated in Figure 1 can be described with the
following equations:
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Supposing that temperature distribution is even at the
beginning t(x,O):tO, let us displace the temperature

measurements for this value so that the following would be
satisfied:

t(x,0)=0 @)

The instance will be considered when boundary conditions
of the first kind are given on the external boundaries, i.e.,

t(-1,7)= f,(z),t( +b,z) = f,(z) )

For problem (1)-(5) to be formulated unequivocally, the
following conditions should be added obviously

t(-0,7)=t(+0,7), t(b-0,r)=t(b+0,7). (6)

Problem (1)—(6) with different input information has been
solved numerically by means of the software
MATHEMATICA. Temperature values at coordinates have
been obtained from the solution to the problem complying
with the location of thermocouples, and an inverse problem is
solved with such input information.
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11. SOLUTION TO THE INVERSE PROBLEM

In accordance with [1], the solution to the thermal
conductivity equation (1) with boundary conditions of the first
kind and homogenous initial conditions at interval x €[xy, X, |

and expressed by non-dimensional variables is as follows:

(N, F)= % [ VFR N0+t FR (ND), )
n=
where Nzﬂ, Nelol, F= &r are non-
X2 =X (% —x1)

dimensional  coordinate  and  non-dimensional  time
respectively, t,(F) and t,(F) — temperature at x=x; and x=x,
respectively, P,(N,0) and P,(NJ1) are functions of
coordinate, which are pursuant to [1]:
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Under this coordinate system, the non-dimensional

. —X
coordinate N, = ——*

>1 complies with a point x=0.
X=X

Temperature field interpretation in the shape (7) for various

geometries and boundary conditions is the most widely

discussed topic in the paper [1]. It is also used in many other
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papers, for instance, [2] and [3]. The paper [1] proved that
temperature at x=0 is expressed by the formula (7) if N=Nj is
inserted therein, consequently:

t0.F)= > L"(F)p, (N,.0)+t, ™ (F )P, (Nl,l)) ®)

n=0

Solution to the equation (3) in the interval x [x3, x4] is

(.F)= 5 ("ER ML ER, N, ©
n=l
where N =2-%3 N eloi], F :L2 are  non-
X4 = X3 (X4 - X3)
dimensional  coordinate and  non-dimensional  time

respectively, t3(F), and t,(F) — temperature at x=x; and
X=X, respectively.

Under this coordinate system, non-dimensional coordinate

b—

<0 complies with a point x=b. Analogously to
the previous instance, temperature at x=b is expressed as
follows:

M3

" E RN, 0+, OER (N, 1) o

0

t(b, F)=

n

Further let us presume that equality X, —X3 =X, —X; =b;

is satisfied. By replacing non-dimensional time F by z in the
formulae (8) and (10), we obtain:

n
2

t(0,7)= io(tl(“)(r)Pn (N,.0)+t," )P, (N, 1) =
n= 1
o b2 )

t(b,7)= Zo(ts(n)(r)Pn(Nz,O)+t4(”)(r)Pn (N, ) > @
n= 1

Heat flow at x=0 is equal to

al0.7)= 4 20)

e b2 ) (13)
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Heat flow at x=b equals to
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Ratio of heat flows is a calculable value:

3 (1R, 0, ) |
(15)

aor) 4= . .
alb, 7) (tgn)(r)pn'(Nz,oﬁtﬁ”)(r)Pn'(Nz,l))[212j

It follows from (7) that the temperature field in the material
under examination when x e [0,b] may be written down as

0(0,0)P,(N.0)+ 17, )P (Nl)){bZ], (16)

where N=x/b, N €[0,1].

This temperature cannot be calculated because it depends
on the unknown temperature conductivity coefficient a. Heat
flow at x=0 and x=b, i.e., ¢(0,7) and ¢(b,7), is also defined by
means of the formula (16):

at(+0,7)
OX -
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%:z, t0,7)=T,, t(b,7)=T,,

. 0,7)
By denoting qT(_ =k,
a(b.7)

and taking only two addends in the formulae (17) and (18), the
following is obtained:

_ ToPy(0,0)+T,P;(01)+(T¢P,(0,0)+T,P/(01))z
TPy (L0)+T,P)(11)+ (T4 P/(1L,0)+T,P/(L1))z

. (19)

By expressing z from the last equality and taking into
consideration previously given expressions of coordinate
functions, we obtain

6(k -1(To - T:)

Taking three addends in the formulae (17) and (18), the
following equation is obtained:

T,P(0,0)+ T,R;(0.1) + (T;R(0,0) + T/R/(0.2))z + (TyP5(0,0) + T,(0.)P;(0.2))2*

ToR(1.0)+ TR (11) + (TR (L.0) + TR (1)) + (ToR3(L0) + T3 (L))2”

k=

Taking into account previously given expressions of
coordinate functions, the last equation may be re-written as
follows:

Ty +Ty + 1T0'+1T1' 7+ T L =T/ 2% |k =
6 3 360 45
(22)
1 1 1 7
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0" [30 61) [450 3601j
It follows that
2
azl (23)
Z

Equation (22) is a quadratic equation and has two roots. We
have not proved, but practical calculations at the whole
spectrum of conditions showed that one root always is positive
whereas the second one is negative.

Thermal conductivity coefficient may be determined from
heat flow equality on borders of the material under
examination. It results from flow equality on the left border
that

lzﬂiat(—o,r)/at(w,r)’ (24)
OX OX
where 4, M is calculated by means of the formula (13).

OX
Deriving the formula (16) as per x and inserting the obtained
temperature conductivity coefficient and N=0, we obtain

ﬁ:%i( )P (00)+™ Kb,ﬁpg(o,n){%]n
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V. NUMERICAL EXAMPLE

The above-discussed scheme may be used for determination
of temperature conductivity coefficient of thin material that
complies with Fig. 1. Input information:

m2

2
1=0.02 m, b=0.002 m, a,=10* ™ a=10° M.
S S

There are the following boundary conditions (5) given:
t(~1,7)=100-100e %" t(b+1,7)=0.

By means of the software MATHEMATICA under such
conditions, problem (1)—(6) has been solved. Its solution is
showed in Fig. 2.
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1000

Fig. 2. Temperature field

Temperature change in time t(x,z) is obtained from
numerical solution at x;=-0.014, x,=-0.006, x3=0.008,
X4=0.016. Corresponding charts are given in Fig.3. Values of
this temperature are used as input information of the inverse
problem. The aim of the inverse problem is to determine the
temperature conductivity coefficient, from the data in the area
xe[0,b].
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Fig. 3. thor=t(-L,z), ti=t(xi,7), i=1,2,3,4

Temperatures calculated by means of the formulae (11),
(12) at x=0 and x=b are provided in Fig.4.
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Fig. 4. Curve 1 —t(0,1), curve 2 — t(b,7)

Difference between the solution to the problem (1)—(6) at a
point x=0 and the temperature values obtained from the
formula (11) at this point is showed in Fig. 5. Situation is
similar at a point x=b.
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Fig. 5. Difference of temperatures

Flow ratio calculated by means of the formula (15) is given
in Fig. 6.
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Fig 6. Flow ratio

Temperature conductivity coefficient has been calculated by
using the formula (21) in moments of time with even interval
=50,60,...,1000. Average value of temperature conductivity

2

coefficient is a=1.9940-10°° m—, relative error expressed as
S

percentage — 0.5996, standard deviation of temperature
conductivity ~ coefficient — 9.4416-10™°. Temperature
conductivity coefficient has been calculated by using the
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formulae (22), (23) in moments of time with even interval
=80, 90,...,1000. Average value of temperature conductivity
2
L 6 M .
coefficient is a=0.9946-10° ——, relative error expressed as
S

percentage — 0.5353, standard deviation of temperature
conductivity coefficient — 8.0439-10°,

V. CONCLUSION

Many calculations have been performed under various
boundary conditions and different geometric dimensions. The
results have showed some instability at little values of time.
Therefore these results do not include results of calculations at
little values of time. Formula (22) should have been more
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precise than the formula (21) because three addends of series
are taken in the formula (22). Moreover, instability of results
is even larger when using the formula (22) than instability of
results when using the formula (21). Thus, we would
recommend applying the formula (21).
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lImars lltins, Marija lltina. Viena metode siltumfizikalo raksturlielumu noteik$anai plévjveida materialiem

Lielaka dala no cieta kermena siltumfizikalo raksturlielumu (temperattirvadiSanas koeficients, siltumvadiSanas koeficients) noteikSanas metodém balstas uz
temperatiiras m&rjjumiem vienkarSas formas kermena ieksiené nestacionara siltumvadisanas procesa laika. Ja materials ir plans (ta izméri butiski neparsniedz
termopara izmerus), tad $adi mérijumi nav iespgjami. Raksta tiek piedavats pétamo materialu ievietot starp diviem plaksnes veida materialiem ar zinamiem
siltumfizikalajiem raksturlielumiem un temperatiiras mérfjumus veikt $ajos materialos Cetras vietas. Izmantojot §os mérfjumus, vispirms tiek noteikta temperatiira
un siltuma plisma uz p&tama materiala robezas. Tas apstaklis, ka temperatiiras lauka noteikSanai pétamaja materiala, pietiek tikai ar vienu no $iem lielumiem,
dod iesp&ju formulét inverso uzdevumu attieciba uz pétama materiala temperatirvadisanas koeficientu. Lai parbauditu piedavatas metodes pielietojamibu,
temperatiiras lauks trijas blakus novietotas plaksnés ar atskirigiem siltumfizikalajiem raksturlielumiem tiek ieglits ar datorprogrammas MATHEMATICA
palidzibu. Uzdevums tiek risinats, par ieejas datiem izmantojot temperatiiras vertibas Cetros punktos. Ka temperatiiras lauka matematiskais modelis tiek
izmantots ta izvirzijums rinda pa pirma veida robeZnosacijumu atvasinajumiem. Sads matematiskais modelis noved pie vienkar$am temperatiirvadisanas un
siltumvadisanas koeficientu aprékina formulam.

Hamape Untunbm, Mapus Untunsa. Oaun U3 METO10B onpe/eaeHns TeNmIo(pu3n4ecKuX XapaKTePHCTHK IIEHOYHbBIX MaTepHaloB

BoNBIIMHCTBO  METOZIOB  ONpENENeHUs TeIUNIO(QU3NIECKHX XapaKTePUCTHK TBEpAOro Tenma (KO3(p(HIMEHT TEIUIONPOBOXHOCTH U KO3 pUIHEHT
TEMIepPaTypONPOBOJHOCTH) OCHOBAHbI HA W3MEPEHHM NPH HECTAIlMOHAPHOM MPOLECCE TEMIONPOBOAHOCTH TEeMIEpaTyphl BHYTPH Teja, NMEIONIEro MPOCTyIo
tdopmy. Ecmu maTepman ToHKHMI (pa3Mep HE 3HAYMTENHHO MPEBBINIAET Pa3Mephl TEPMONapHI), TO TaKWEe M3MEPeHHs HEBO3MOXHEL B craThe mpesioxeHo
TIOMECTUTH MCCIIETYyeMBIH MaTepHal MeXIy ABYMs IIACTHHAMHU C U3BECTHBIMH TEIUIOPHU3MIECKUMH XapaKTepHCTHKaMH. V3MepeHns TeMepaTypsl MPOBOJIATCS
B IJIaCTHHAX B YeThIpeXx MecTaX. C MOMOMIBIO STUX U3MEPEHHUH CHaJaa onpesenseTcs TeMIepaTypa U TeIUIOBOH MOTOK Ha FPaHHMIIE MCCIIETyeMOro MaTepHana.
Tort akT, 4TO 1T ONpeJIENeH s TEMITEPaTyPHOTO TIOJIS HCCIIEAYEeMOT0 MaTepraa JJOCTaATOYHO TOJBKO OJHOTO M3 3THX IapaMeTpoB, IPUBOJIHUT K BO3MOKHOCTH
copmynupoBath 0OpaTHYIO 3ajady OTHOCHTENLHO KOO((HUIMEHTa TeMIepaTypoIpOBOAHOCTH MaTepuana. [l MpoBepkH NPUMEHMMOCTH MPEIaraeMoro
MeTO/Ia, TeMIIEpaTypHOe MONie B TpPeX, PAJOM MOMEMIEHHBIX, TJIACTHHAX C Pa3THYHBIMH TEMIO(QH3MYECKUMH XapaKTEPUCTHKAMH, TONYYEHO C TOMOIIBIO
komnbioTepHOi nporpammel MATHEMATICA. 3afada pemena ¢ HCIOIb30BaHUEM 3HAYEHHMH TeMIlEpaTypsl B 4ETBIPEX TOUKaX. B kauecTBe MaTeMaTHYeCKOH
MOJIENM TEMIIEPATYPHOI'O MOJIS UCHOJIB3YETCsl €r0 PasjioKeHUe B PsiJ| 110 MPOU3BOIHEIM OT TPAaHMYHBIX YCJIOBHH NepBoro pojaa. Takas MaTeMaTH4ecKas MOJEb
TPHBOIHT K MPOCTBIM (HOpMynaMm I BEIYHCIECHNS KO3((QHIMEHTOB TEMIOMPOBOTHOCTH M TEMIIEPATyPONPOBOTHOCTH.
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