
Applied Computer Systems

2012 / 13 ___

68

Notion of Causal Relations of the Topological
Functioning Model
Erika Asnina, Riga Technical University

Abstract – The paper discusses application of the topological
functioning model (TFM) of the system for its automated
transformation to behavioural specifications such as UML
Activity Diagram, BPMN diagrams, scenarios, etc. The paper
addresses a lack of formal specification of causal relations
between functional features of the TFM by using inference means
suggested by classical logic. The result is reduced human
participation in the transformation as well as additional check of
analysis and specification of the system.

Keywords – analytical models, system analysis and design,

topological functional model

I. INTRODUCTION

Software engineering means analysis and modelling of
systems and corresponding software. In turn, software
development used to limit these activities and put the main
focus on analysis and modelling of the software. The system
analysis is quite superficial. The result is a gap between the
systems and implementation of its supporting software [1].

The ideas and implementation approaches for overcoming
this issue, e.g. [2], [3], [4], [5], [6] and [7], are not widely used
in industry, since they require more efforts and time resources
at the very beginning of software development process,
namely, before or simultaneously with requirements gathering.
Additional disadvantage is that results of such analysis are not
considered as contractual deliverable items to the client.

A principle of architectural separation of concerns in
specifications proposed in OMG’s Model Driven Architecture
(MDA) could be a solution for wide adoption of system
analysis and modelling in industry [8]. MDA suggests three
viewpoints on the system, namely, a computation independent,
a platform independent and a platform specific one. It is
evident that the platform specific viewpoint considers the
software.

Historically, a border between the computation independent
viewpoint and platform independent one is fuzzy. The
computation independent viewpoint should consider both
software and system, thus providing the correspondence of the
software model to the system model [9], [10]. A topological
functioning model (TFM) provides such correspondence by
means of mathematical continuous mapping between graphs
on different level of abstractions as well as similar graphs
[11]. Thanks to holistic formal nature of the TFM, it is a
means for verification of requirements completeness [12],
determination of shared functionality and derivation of use
cases [13], integration of system knowledge that usually are
expressed as a set of interrelated fragments [14], and
derivation of system’s structure [15].

Research on applications of the topological functioning
model gave the theoretical definition of TFM functional
feature, this will be discussed below. However, in author’s
opinion, determination of cause-and-effect (causal) relations
between functional features of the TFM of business is still an
issue. There are open questions on the scope of relations, their
necessity and sufficiency as well as temporal characteristics.
Besides it is not clear enough how causality of the TFM of the
system should be reflected in software models. Therefore,
there is a need for more formal definition of semantics of
causal relations of the TFM.

This paper discusses theoretical foundations of cause-and-
effect relations of the TFM by considering logical and
mathematical characteristics of causal implication. The paper
is organized as follows. Section II describes mathematical
foundations of the TFM and gives a short introduction to
causal relations. Section III investigates notion of the TFM
cause-and-effect relation and gives its formal definition.
Section IV illustrates application of the proposed definition.
Section V concludes the paper by discussing results and future
research directions.

II. TOPOLOGICAL FUNCTIONING MODEL IN BRIEF

Mathematically, the TFM is represented in the form of a
topological space (X, ), where X is a finite set of functional
features (characteristics) of the system under consideration,
and  is the topology that satisfies axioms of topological
structures and is represented in the form of a directed graph
[1]. Properties of topological spaces are described in details in
[16], [17]. The process of construction of the TFM consists of
definition of system’s functional features, cause-and-effect
relations among them, and separation of the TFM from the
topological space of the system. The details are described in
[11], [12], and [15]. The stage we consider here is related to
determination of cause-and-effect relations.

A metamodel of the TFM was defined in [18]. Its fragment
is illustrated in Fig. 1. The metamodel is described at the MOF
(Meta Object Facility) metalevel M2, and represents the TFM
as an instance of the metaclass TFMTopological-
FunctioningModel that includes at least two functional
features of the metaclass TFMFunctionalFeature. They can be
joined in functional feature sets, the metaclass
TFMFunctionalFeatureSet. This means that a functional
feature represented in a TFM can visualize a functional feature
set. One functional feature can contain only one set and one
functional feature can belong only to one set. Functional
features can form functioning cycles of different order, the

Applied Computer Systems

__ 2012 / 13

69

metaclass TFMCycle. For every particular system (or a
subsystem), only one cycle can be the main one.

TFMUserGoal
label : String
name : String
input : TFMFunctionalFeature
output : TFMFunctional Feature
benefit : Benefit

Goal

i

on

TFMCycle
order : UnlimitedNatural
isMain : Boolean = false

1..n

+theUserGoal
1..n

0..1

+theBenefit
0..1

TFMFunctionalFeature
label : String
name : String
subordination : Subordination
/ isImplemented : Boolean
precond : String

0..n
0..n

+/theEffect

0..n

{must have at least one cause}

+/theCause
0..n

{must have at least one effect}
0..n

+theFunctionalFeature
0..n

2..*

+owner

+theNode
2..*

1..n+owner

+theAction

1..n

TFMTopologicalFunctioningModel

drawDigraph()
checkCycleStructure()
checkConnectedness()

1..n +owner

+theCycle

1..n

2..n

+owner

+theNode
2..n

TFMFunctionalFeatureSet
<<stereotype>>

0..1+owned element0..1

+owner

n

n

+/superset

n

{union, subset owner}

+/subset
n

{union, subset owned element}
nn

Fig. 1. The fragment of TFM metamodel [18]

Cause-and-effect relations connect functional features. A
cause functional feature must have at least one effect. An
effect functional feature must have at least one cause. The
functional features can be associated with several goals, the
metaclass TFMUserGoal, which are established by direct
users of the business or software system [18].

A. Definition of TFM Functional Features

The functional feature is defined in [10] as a unique tuple
<A, R, O, PrCond, PostCond, Pr, Ex>, where:
 A is an action linked with an object;
 R is a result of that action (it is an optional element);
 O is an object (objects) that get the result of the action or

an object (objects) that is used in this action; it could be a
role, a time period or a moment, catalogues etc.;

 PrCond is a set PrCond = {c1, …, ci}, where ci is a
precondition or an atomic business rule (it is an optional
element);

 PostCond is a set PostCond = {c1, …, ci}, where ci is a
post-condition or an atomic business rule (it is an
optional element);

 Pr is a set of responsible entities (systems or subsystems)
which provide or suggest an action with a set of certain
objects;

 Ex is a set of responsible entities (systems or subsystems)
which enact a concrete action.

B. Informal Definition of TFM Cause-and-Effect Relations

Identification of cause-and-effect relations is intuitive work
based on modeller’s knowledge and understanding of system’s
operation. As stated in [10] “it is assumed in topological
functioning modelling that a cause-and-effect relation between
two functional features of the system exists if the appearance
of one feature is caused by the appearance of the other feature
without participation of any third (intermediary) feature.”

Advice on text analysis borrowed from writing discipline
can be used here in order to identify a certain conditional
expression, the causal implication. What do we know about

causal implication? The knowledge about causality can be
summarized as follows [10]:
 It has a time dimension, since a cause chronologically

precedes an effect;
 In causal connections “something is allowed to go

wrong”, whereas logical statements allow no exceptions;
 Causes may be sufficient or necessary (in other words,

complete or partial) for generating an effect;
 Cause-and-effect relations involve multiple factors.

Sometimes there are factors in series. Sometimes there
are factors in parallel.

 The causality is universal. This means that there is no
such problem domain without causes and effects.

Indeed, identification of cause-and-effect relations is and
probably will remain intuitive work. But results of this
intuitive work must be specified in the form that could be used
in automated transformations from the TFM to other, more
detailed, models.

C. Particularities of TFM Cause-and-Effect Relations

By now, it is assumed that all causes are sufficient in
application of the TFM for business modelling. Additionally,
there are no explicit means for determination and specification
of multiplicity of factors. Therefore, it is hard to automatically
handle logical branching in case of transformation from the
TFM to behavioural specifications (such as Unified Modelling
Language (UML) activity diagrams, use case models, and
diagrams in Business Process Modelling Notation). Research
on transforming the TFM to such diagrams summarized in
[19] has demonstrated the following:
 From TFM to BPMN diagrams. Cause-and-effect

relations are used to specify control and message flows
between activities – control flows between activities in
the same pool, and message flows between activities
from different pools. Due to different interpretation of
chronology, BPMN shows the fragment of chronology as
a sequence of events or a message flow from the start
event to the end event, while the TFM shows it as a
sequence of causes and effects that repeats all the time
while the system works. Post-conditions and
preconditions are transformed to annotations.

 From TFM to UML activity diagrams. A cause-and-
effect relation is transformed into a control flow between
corresponding activities. However, it is impossible to
create fork and join nodes automatically, because the
TFM does not hold information of concurrency.
Functional feature’s precondition is transformed into
activity’s precondition and may indicate at the necessity
of creation of a decision node. Functional feature’s post-
condition is transformed into a post-condition of the
activity and may indicate at necessity of creation of a
decision or merge node. Thus, the TFM can be
transformed to a simple activity diagram that should be
refined by a developer if necessary.

 From TFM to Use Case Model. Cause-and-effect
relations are used to define logical flows in the use case
scenario. Optional execution of the step (IF condition),
and cyclic execution of the steps (WHILE or FOR

Applied Computer Systems

2012 / 13 ___

70

cycles) can be defined from pre- and post-conditions of
functional features. However, it is impossible to define
synchronous or asynchronous executions of these steps
without human participation.

Summarizing, the TFM does not hold information about
concurrent (synchronous and asynchronous) execution of
functional features. In behavioural diagrams of software,
cause-and-effect relations are reflected as logical sequences of
functional parts and control flows between functional parts. It
is necessary to note, that a logical sequence should be a
specialization of a control flow that complies with business
logic of the system.

III. FORMAL DEFINITION OF CAUSE-AND-EFFECT RELATIONS

As it can be concluded from Section II, automated
mappings of cause-and-effect relations to control flows of
software require human participation in case of branching,
since some knowledge of system functionality still is kept
informally in textual descriptions or implicitly in experts’
minds. Therefore, the open task is to move this implicitly or
informally expressed knowledge to formal specification in
form of TFM elements. This task has one important constraint,
namely, this formal specification should not make it harder
presenting and understanding complex graph structures.
Complex graphs have multiple arcs among multiple vertices,
and additional multiple graphical constructs on these arcs
complicates human operation on such graphs.

A. Formal Definition

One of possible formalizations is obligatory determination
and specification of all pre- and post-conditions of every TFM
functional feature. Then it would be possible “to connect” a
post-condition of one functional feature with an equal
precondition of another functional feature. Thus sequence of
functional parts would be defined. However, the question
about logical (control) relations between those sequences
within a behavioural scenario and among behavioural
scenarios cannot be solved without introducing some logical
operations in the textual or visual specifications of pre- and
post-conditions.

The other way, suggested in this paper, is giving formal
specification of cause-and-effect relations similarly to formal
definition of TFM functional feature in order to automate their
handling.

The formal specification of a cause-and-effect relation is
a unique tuple <Id, C, E, G, N, S, Refs>, where:
 Id is a unique identifier of this cause-and-effect relation;
 C (cause) is a functional feature that generates functional

feature E, this could not be empty;
 E (effect) is a functional feature that is generated by

functional feature C, this could not be empty;
 G (goal) is system user’s goal, which achievement

requires execution of functional features C and E;
 N is necessity of the functional feature C for achievement

of goal G; the values are true or false;
 S is sufficiency of the functional feature C for

achievement of goal G; the values are true or false;

 Refs (references) is a set of unique tuples <Ref_Ids,
LOp>, where Ref_Ids is a set of identifiers (ref1, … refm)
of cause-and-effect relations that participate in logical
operation LOp in order to achieve goal G together. The
set Ref_Ids must not include the identifier of the relation
Id.

Necessity and sufficiency are concepts of classical logic;
they induce substantial and consistent effects on conditional
reasoning performance. There are four classical combinations
possible [20]:
 Modus ponens. IF cause THEN effect. Cause occurs.

Thus, the effect follows.
 Modus Tollens. IF cause THEN effect. Effect does not

occur. Thus, the cause did not preceded.
 Affirmation of the Consequent. IF cause THEN effect.

Effect occurs, thus the cause preceded.
 Denial of the Antecedent. IF cause THEN effect. Cause

did not occur. Thus, the effect does not follow.
The necessity of the cause is determined when the

occurrence of the effect indicates the occurrence of the cause.
The sufficiency of the cause is determined when the
occurrence of the cause indicates the occurrence of the effect.
The necessary and sufficient cause is when the occurrence of
the effect is possible if and only if the cause occurred, and
occurrence of the effect indicates the obligatory occurrence of
the cause.

Logical operators are operators from classical logic such as
conjunction (AND) and disjunction (OR). Conjunction
indicates synchronous occurrence of referenced causes.
Disjunction indicates asynchronous occurrence of referenced
causes.

IV. ILLUSTRATING EXAMPLE

For a better illustration let us consider the following small
fragment of an informal description from the project, in which
a library application is developed. The process of constructing
the TFM of this example is described in detail in [21].

“When an unregistered person arrives, the librarian
creates a new reader account and a reader card. The
librarian gives out the card to the reader. When the reader
completes the request for a book, he gives it to the librarian.
The librarian checks out the requested book from a book fund
to a reader, if the book copy is available in a book fund. When
the reader returns the book copy, the librarian takes it back
and returns the book to the book fund. He imposes the fine, if
the term of the loan is exceeded, the book is lost, or is
damaged. When the reader pays the fine, the librarian closes
the fine. If the book copy is hardly damaged, the librarian
completes the statement of utilization, and sends the book
copy to the Utilizer.”

In the fragment nouns are denoted by italic, verbs are
denoted by bold, and action pre- (or post-) conditions are
underlined.

A. Functional Features

Functional features identified from the fragment are given
in the form “identifier: feature_description, precondition,

Applied Computer Systems

__ 2012 / 13

71

responsible_entity (where, “Lib” denotes “librarian”, and “R”
denotes “reader”) and they are as follows [21]:

f1: Arriving [of] a person, {}, person;
f2: Creating a reader account, {unregistered person}, Lib;
f3: Creating a reader card, {}, Lib;
f4: Giving out the card to a reader, {}, Lib;
f5: Getting the status of a reader, {}, R;
f6: Completing a request_for_book, {}, R;
f7: Sending a request_for_book, {}, R;
f8: Taking out the book copy from a book fund, {}, Lib;
f9: Checking out a book copy, {completed request, book

copy is available}, Lib;
f10: Giving out a book copy, {}, Lib;
f11: Getting a book copy [by a registered reader], {}, R;
f12: Returning a book copy [by a registered person], {}, R;
f13: Taking back a book copy, {}, Lib;
f14: Checking the term of loan of a book copy, {}, Lib;
f15: Evaluating the condition of a book copy, {}, Lib;
f16: Imposing a fine, { loan term is exceeded, lost book, or

damaged book}, Lib;
f17: Returning the book copy to a book fund, {}, Lib;
f18: Paying a fine, {imposed fine}, R;
f19: Closing a fine, {paid fine}, Lib;
f20: Completing a statement_of_utilization, {hardly

damaged book copy}, Lib;
f21: Sending the book copy to a Utilizer, {}, Lib;
f22: Utilizing a book copy, {}, utilizer;
f23: Adding the request_for_book in a wait list,

{unavailable book}, Lib;
f24: Checking the request_for_book in a wait list, {a book

copy is returned to the book fund}, software system;
f25: Informing the reader via SMS, {a request in the wait

list can be satisfied}, software system;
f26: Avoiding a request for a book, {book copy is not

available}, software system.

B. Users and Goals

There are two responsible entities that belong to set Ex,
namely, the Librarian and the Software System. The Librarian
sets the following goals, which correspond to the following
functional features:

 BG1 “Register a reader”, {f2, f3, f4};
 BG2 “Check out a book”, {f5, f6, f7, f8, f9, f23, f26};
 BG3 “Return a book”, {f5, f12, f13, f14, f15, f16, f17,

f24, f25};
 BG4 “Pay a fine”, {f18, f19};
 BG5 “Impose a fine”, {f16};
 BG6 “Close a fine”, {f19}.

Software System sets the goal BG7 “Inform of available
book”, {f24, f25}.

C. Cause and Effect Relations

Cause-and-effect relations identified from the fragment are
represented as arcs of a digraph that are oriented from a cause
vertex to an effect vertex and they are illustrated by the means
of the TFM in Fig. 2. However, in order to demonstrate the
presented formalism, each cause-and-effect relation is

extended with the tuple <Id, C, E, G, N, S, Refs>. The
descriptions are the following:

Fig. 2. The TFM of library functionality [21]

 r1-2: C= f1, E= f2, G= BG1, N=true, S=true, Refs = empty
set;

 r2-3: C= f2, E= f3, G= BG1, N=true, S=true, Refs = empty
set;

 r3-4: C= f3, E= f4, G= BG1, N=true, S=true, Refs = empty
set;

 r5-6: C= f5, E= f6, G= BG2, N=true, S=true, Refs = empty
set;

 r6-7: C= f6, E= f7, G= BG2, N=true, S=true, Refs = empty
set;

 r17-8: C= f17, E= f8, G= BG2, N=true, S=true, Refs =
empty set;

 r8-9: C= f8, E= f9, G= BG2, N=true, S=true, Refs = empty
set;

 r9-10: C= f9, E= f10, G= None, N=true, S=true, Refs =
empty set;

 r10-11: C = f10, E= f11, G= None, N=true, S=true, Refs =
empty set;

 r5-12: C= f5, E = f12, G= BG3, N=true, S=true, Refs =
empty set;

 r12-13: C= f12, E= f13, G= BG3, N=true, S=true, Refs =
empty set;

 r13-14: C= f13, E= f14, G= BG3, N=true, S=true, Refs =
empty set;

 r14-15: C= f14, E= f15, G= BG3, N=true, S=true, Refs =
empty set;

 r17-24-I: C= f17, E= f24, G= BG3, N=true, S=true, Refs =
empty set;

 r17-24-II: C= f17, E= f24, G= BG7, N=true, S=true, Refs =
empty set;

 r17-26: C= f17, E= f26, G= BG2, N=true, S=true, Refs =
empty set;

 r24-25-I: C= f24, E= f25, G= BG3, N=true, S=true, Refs =
empty set;

 r24-25-II: C= f24, E= f25, G= BG7, N=true, S=true, Refs =
empty set;

 r15-20: C= f15, E= f20, G= None, N=true, S=true, Refs =
empty set;

 r20-21: C= f20, E= f21, G= None, N=true, S=true, Refs =
empty set;

Applied Computer Systems

2012 / 13 ___

72

 r21-22: C= f21, E= f22, G= None, N=true, S=true, Refs =
empty set;

 r4-5: C= f4, E= f5, G=BG2, N=true, S=false, Refs = {r11-
5, OR};

 r11-5: C= f11, E= f5, G=BG2, N=true, S=false, Refs = {r4-
5, OR};

 r14-16-I: C= f14, E= f16, G= BG3, N= false, S=true, Refs
= {r15-16-I; OR}

 r14-16-II: C= f14,E= f16, G= BG5, N= false, S= true, Refs
= {r15-16-II; OR};

 r15-16-I: C= f15, E= f16, G=BG3, N= false, S= true, Refs
= {r14-16-I; OR};

 r15-16-II: C= f15, E= f16, G=BG5, N=false, S= true, Refs
={r14-16-II; OR};

 r7-17: C= f7, E= f17, G=BG3, N= false, S= false, Refs =
empty set;

 r15-17: C= f15, E= f17, G=BG3, N= true, S= false, Refs =
empty set;

 r23-17: C= f23, E= f17, G= BG3, N=false, S=false, Refs
=empty set;

 r16-19-I: C= f16, E= f19, G=BG4, N= true, S=false, Refs =
{r18-19-I, AND};

 r16-19-II: C= f16, E= f19, G=BG6, N=true, S= false, Refs
={r18-19-II, AND};

 r18-19-I: C= f18, E= f19, G=BG4, N=true, S= false, Refs
={r16-19-I, AND};

 r18-19-II: C= f18, E= f19, G=BG6, N=true, S= false, Refs
= {r16-19-II, AND}.

Let us consider cause-and-effect relations r4-5 and r11-5.

They both are necessary and not sufficient. This means that
the occurrence of functional feature f5 “Getting the status of a
reader” was preceded by either functional feature f4 “Giving
out the card to a reader” or functional feature f11 “Getting a
book copy [by a registered reader]”.

Cause-and-effect relations r15-16-I and r14-16-I as well as
r15-16-II and r14-16-II both are sufficient but not necessary.
This means that the occurrence of functional feature f16
“Imposing a fine” can be caused either by functional feature
f14 “Checking the term of loan of a book copy” or by
functional feature f15 “Evaluating the condition of a book
copy” or both.

The description of cause-and-effect relations r7-17, r15-17
and r23-17 indicates a mistake in understanding the causality
of the system made before. Both r7-17 and r23-17 are not
necessary and not sufficient. This means that the occurrence of
functional feature f17 does not depend on functional features
f7 and f23. Therefore these cause-and-effect relations are set
incorrectly and the TFM must be corrected in accordance with
the business logic.

Cause-and-effect relations r16-19-I and r18-19-I as well as
r16-19-II and r18-19-II are necessary but not sufficient. The
logical operator AND between functional features f16
“Imposing a fine” and f18 “Paying a fine” indicates that the

occurrence of the functional feature f19 “Closing a fine” is
possible only after occurrence of both functional features f16
and f18. This means that only an imposed and paid fine can be
closed. If the fine was imposed and not paid or a fine that was
not imposed was paid then the closing of the fine is not
possible because of a lack of payment or because of its
absence in the reality. Additionally, the textual description and
precondition of functional feature 19 does not take into
account the latter possibility.

All the other cause-and-effect relations are both necessary
and sufficient. This means that occurrence of the effect
functional feature E is possible if and only if the cause
functional feature C occurred.

D. Mapping to UML Activity Diagram

Fig. 3 shows how a part of the use case model borrowed
from [21] can be described in an UML Activity Diagram using
information from the TFM, where functional features are
transformed into activities, but cause-and-effect relations into
control flows in conformity with their formal specifications.
The logic of control flows is kept in accordance with the TFM
and sufficiency of functional features f14 and f15 as well as
their logical relationships are taken explicitly from the TFM
specification and this does not require any human
participation.

Fig. 3. Use cases “Return book” and “Impose fine” in modified UML activity
diagram

V. CONCLUSION

The aim of this paper was to demonstrate that formalization
of knowledge about the system in form of mathematical model
is a step towards better understanding of the system’s
functionality and automated model-to-model transformation
starting from the very beginning of the software development
process.

The suggested formal specification answers the question
about necessity and sufficiency of causal relations in the TFM.
It allows discovering misunderstandings or mistakes in the
already constructed TFM when necessity and sufficiency of
causes are analyzed.

Applied Computer Systems

__ 2012 / 13

73

Besides that, this specification allows inferring chronology
of occurrences of causes and effects. The proposed
specification of the fact that logical relations among causes are
necessary and/or sufficient for generating an effect allows
automatic definition of synchronous and asynchronous
occurrences of the causes in order to achieve a particular
system (or business) goal.

Assigning causal relations to the goals of the system helps
in understanding meaning of each relation in a particular case
of system’s operation, thus the scope of relations is defined.

However, the question of how causality of the TFM of the
system should be reflected in software models still is not
addressed completely, because a control flow in the software
models can be expressed in different ways.

The future research directions are related to model
checking. Model checking is a field where results of analysis
and modelling of system and software behaviour are formally
and automatically verified.

REFERENCES
[1] J. Osis, “Formal Computation Independent Model within the MDA Life

Cycle”, International Transactions on Systems Science and
Applications, V. 1, Nr. 2, Xiaglow Institute Ltd, Glasgow (UK), 2006,
pp. 159 – 166.

[2] A. van Lamsweerde, “Goal-Oriented Requirements Engineering: A
Guided Tour”, Proceedings RE’01, 5th IEEE International Symposium
on Requirements Engineering, Toronto, 2001, pp. 249-263.

[3] A. Dardenne, A. van Lamsweerde, S. Fickas, “Goal-Directed
Requirements Acquisition”, The Science of Computer Programming,
20(November), 1993, pp. 3-50.

[4] E.S.K. Yu, “Towards Modeling And Reasoning Support For Early-
Phase Requirements Engineering”, Proceedings of International
Symposium on Requirements Engineering, Annapolis, Maryland, USA,
1997, pp. 226-235.

[5] T. Gorschek, C. Wohlin, “Requirements Abstraction Model”,
Requirements Engineering, vol. 11, 2006, pp. 79-101.

[6] H. Kaindl, “A Design Process Based on a Model Combining Scenarios
with Goals and Functions”, IEEE Trans. on Systems, Man and
Cybernetics, Vol. 30, No.5, 2000, pp.537-551.

[7] M. Jackson, “Problem Frames and Software Engineering”,
Information and Software Technology, 47(November), 2005, pp.
903-912.

[8] The Object Management Group. (2003). MDA guide version 1.0.1. (J.
Miller, & J. Mukerji, Eds.). [Online]. Available: http://www.omg.org/.
[Accessed: Nov 20, 2010]

[9] J. Osis, E. Asnina: A Business Model to Make Software Development
Less Intuitive. In: Proceedings of 2008 International Conference on
Innovation in Sofware Engineering (ISE 2008). December 10-12, 2008,
Vienna, Austria. IEEE Computer Society Publishing, 2008, pp. 1240-
1245.

[10] Asnina, E., Osis, J. (2010). Computation independent models: bridging
problem and solution domains. In J. Osis, & O. Nikiforova (Ed.),
Proceedings of the 2nd International Workshop on Model-Driven
Architecture and Modeling Theory-Driven Development MDA &
MTDD 2010, In conjunction with ENASE 2010, Athens, Greece, July
2010 (pp. 23-32). Portugal: SciTePress.

[11] J. Osis, E. Asnina. Chapter 2: Topological Modeling for Model-Driven
Domain Analysis and Software Development. In J. Osis, E. Asnina,
Model-Driven Domain Analysis and Software Development:
Architectures and Functions, 2011 (pp. 15-39). Hershey, New York,
USA: IGI Global.

[12] J. Osis, E. Asnina, A. Grave. Formal Problem Domain Modeling within
MDA. Communications in Computer and Information Science (CCIS),
Springer Verlag Berlin Heidelberg, Volume 22, Part III, 2008, pp. 387-
398.

[13] J. Osis, E. Asnina. Chapter 4: Derivation of Use Cases from the
Topological Computation Independent Business Model. In J. Osis, E.
Asnina, Model-Driven Domain Analysis and Software Development:
Architectures and Functions, 2011 (pp. 65-89). Hershey, New York,
USA: IGI Global.

[14] A. Slihte, J. Osis, U. Donins. Knowledge Integration for Domain
Modeling. In: J. Osis, O. Nikiforova (Eds.). Model-Driven Architecture
and Modeling-Driven Software Development: ENASE 2011, 3rd Whs.
MDA&MDSD, SciTePress, Portugal, 2011, pp. 46 - 56.

[15] U. Donins, J. Osis, A. Slihte, E. Asnina, B. Gulbis. Towards the
Refinement of Topological Class Diagram as a Platform Independent
Model. In: J. Osis, O. Nikiforova (Eds.). Model-Driven Architecture
and Modeling-Driven Software Development: ENASE 2011, 3rd Whs.
MDA&MDSD, SciTePress, Portugal, 2011. pp. 79 - 88.

[16] Osis, J.: Software Development with Topological Model in the
Framework of MDA. In: Proceedings of the 9th CaiSE/IFIP8.1/EUNO
International Workshop on Evaluation of Modeling Methods in Systems
Analysis and Design (EMMSAD’2004) in connection with the
CaiSE’2004, Vol.1, pp. 211--220. RTU, Riga, Latvia (2004)

[17] 7. Basener, W.F.: Topology and Its Applications. John Wiley and Sons,
Inc., New Jersey, USA (2006)

[18] E.Asnina, “Formalization of Problem Domain Modeling within Model
Driven Architecture”, Ph.D. thesis, Riga Technical University, RTU
Publishing House, Riga, Latvia, 2006.

[19] E. Asnina. A Formal Holistic Outline for Domain Modeling. In: Local
Proceedings of Advances in Databases and Information Systems, 13th
East-European Conference, ADBIS 2009, Associated Workshops and
Doctoral Consortium, Riga, Latvia, September 7-10, 2009.- Riga
Technical University, 2009.- pp. 400-407.

[20] Cummins, D. D. Naïve theories and causal deduction. Memory and
Cognition, 23, 1995, pp. 646-658.

[21] Osis J., Asnina E., Grave A. “Computation Independent Modeling
within the MDA” // Proceedings of IEEE International Conference on
Software, Science, Technology & Engineering (SwSTE07), 30-31
October 2007, Herzlia, Israel. – IEEE Computer Society, Conference
Publishing Services (CPS), 2007. – 22-34 p.

Erika Asnina received M.Sc. in computer systems with specialization in

applied computer science in 2003 and Doctoral degree in engineering science
(Dr.sc.ing.) in information technology with specialization in system analysis,
modelling and design in 2006 from Riga Technical University.

She is Assistant Professor at Department of Applied Computer Science at
Riga Technical University, Latvia. She also worked 5 years as a Software
Developer. She is an author of 25 published conference papers, 4 book
chapters and 1 monograph. Her research interests include software quality
assurance, business modelling, model-driven software development, model
transformation languages and software engineering.

She was awarded as one of the best paper authors in the conferences
ISIM’05 and ISIM’06, and a scholarship laureate of the target program “For
Education, Science and Culture” of Latvian Education Fund in 2004 and 2005.

Contact address is 1/3 Meža Str., Room 504, Riga Technical University,
Riga, LV 1048, Latvia; e-mail: erika.asnina@rtu.lv.

