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Abstract – The paper discusses application of the topological 
functioning model (TFM) of the system for its automated 
transformation to behavioural specifications such as UML 
Activity Diagram, BPMN diagrams, scenarios, etc. The paper 
addresses a lack of formal specification of causal relations 
between functional features of the TFM by using inference means 
suggested by classical logic. The result is reduced human 
participation in the transformation as well as additional check of 
analysis and specification of the system. 
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I. INTRODUCTION 

Software engineering means analysis and modelling of 
systems and corresponding software. In turn, software 
development used to limit these activities and put the main 
focus on analysis and modelling of the software. The system 
analysis is quite superficial. The result is a gap between the 
systems and implementation of its supporting software [1]. 

The ideas and implementation approaches for overcoming 
this issue, e.g. [2], [3], [4], [5], [6] and [7], are not widely used 
in industry, since they require more efforts and time resources 
at the very beginning of software development process, 
namely, before or simultaneously with requirements gathering. 
Additional disadvantage is that results of such analysis are not 
considered as contractual deliverable items to the client.  

A principle of architectural separation of concerns in 
specifications proposed in OMG’s Model Driven Architecture 
(MDA) could be a solution for wide adoption of system 
analysis and modelling in industry [8]. MDA suggests three 
viewpoints on the system, namely, a computation independent, 
a platform independent and a platform specific one. It is 
evident that the platform specific viewpoint considers the 
software.  

Historically, a border between the computation independent 
viewpoint and platform independent one is fuzzy. The 
computation independent viewpoint should consider both 
software and system, thus providing the correspondence of the 
software model to the system model [9], [10]. A topological 
functioning model (TFM) provides such correspondence by 
means of mathematical continuous mapping between graphs 
on different level of abstractions as well as similar graphs 
[11]. Thanks to holistic formal nature of the TFM, it is a 
means for verification of requirements completeness [12], 
determination of shared functionality and derivation of use 
cases [13], integration of system knowledge that usually are 
expressed as a set of interrelated fragments [14], and 
derivation of system’s structure [15]. 

Research on applications of the topological functioning 
model gave the theoretical definition of TFM functional 
feature, this will be discussed below. However, in author’s 
opinion, determination of cause-and-effect (causal) relations 
between functional features of the TFM of business is still an 
issue. There are open questions on the scope of relations, their 
necessity and sufficiency as well as temporal characteristics. 
Besides it is not clear enough how causality of the TFM of the 
system should be reflected in software models. Therefore, 
there is a need for more formal definition of semantics of 
causal relations of the TFM. 

This paper discusses theoretical foundations of cause-and-
effect relations of the TFM by considering logical and 
mathematical characteristics of causal implication. The paper 
is organized as follows. Section II describes mathematical 
foundations of the TFM and gives a short introduction to 
causal relations. Section III investigates notion of the TFM 
cause-and-effect relation and gives its formal definition. 
Section IV illustrates application of the proposed definition. 
Section V concludes the paper by discussing results and future 
research directions. 

II. TOPOLOGICAL FUNCTIONING MODEL IN BRIEF 

Mathematically, the TFM is represented in the form of a 
topological space (X, ), where X is a finite set of functional 
features (characteristics) of the system under consideration, 
and  is the topology that satisfies axioms of topological 
structures and is represented in the form of a directed graph 
[1]. Properties of topological spaces are described in details in 
[16], [17]. The process of construction of the TFM consists of 
definition of system’s functional features, cause-and-effect 
relations among them, and separation of the TFM from the 
topological space of the system. The details are described in 
[11], [12], and [15]. The stage we consider here is related to 
determination of cause-and-effect relations.  

A metamodel of the TFM was defined in [18]. Its fragment 
is illustrated in Fig. 1. The metamodel is described at the MOF 
(Meta Object Facility) metalevel M2, and represents the TFM 
as an instance of the metaclass TFMTopological-
FunctioningModel that includes at least two functional 
features of the metaclass TFMFunctionalFeature. They can be 
joined in functional feature sets, the metaclass 
TFMFunctionalFeatureSet. This means that a functional 
feature represented in a TFM can visualize a functional feature 
set. One functional feature can contain only one set and one 
functional feature can belong only to one set. Functional 
features can form functioning cycles of different order, the 
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metaclass TFMCycle. For every particular system (or a 
subsystem), only one cycle can be the main one.  
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Fig. 1. The fragment of TFM metamodel [18] 

Cause-and-effect relations connect functional features. A 
cause functional feature must have at least one effect. An 
effect functional feature must have at least one cause. The 
functional features can be associated with several goals, the 
metaclass TFMUserGoal, which are established by direct 
users of the business or software system [18]. 

A. Definition of TFM Functional Features 

The functional feature is defined in [10] as a unique tuple 
<A, R, O, PrCond, PostCond, Pr, Ex>, where:  
 A is an action linked with an object;  
 R is a result of that action (it is an optional element);  
 O is an object (objects) that get the result of the action or 

an object (objects) that is used in this action; it could be a 
role, a time period or a moment, catalogues etc.;  

 PrCond is a set PrCond = {c1, …, ci}, where ci is a 
precondition or an atomic business rule (it is an optional 
element);  

 PostCond is a set PostCond = {c1, …, ci}, where ci is a 
post-condition or an atomic business rule (it is an 
optional element);  

 Pr is a set of responsible entities (systems or subsystems) 
which provide or suggest an action with a set of certain 
objects;  

 Ex is a set of responsible entities (systems or subsystems) 
which enact a concrete action. 

B. Informal Definition of TFM Cause-and-Effect Relations 

Identification of cause-and-effect relations is intuitive work 
based on modeller’s knowledge and understanding of system’s 
operation. As stated in [10] “it is assumed in topological 
functioning modelling that a cause-and-effect relation between 
two functional features of the system exists if the appearance 
of one feature is caused by the appearance of the other feature 
without participation of any third (intermediary) feature.” 

Advice on text analysis borrowed from writing discipline 
can be used here in order to identify a certain conditional 
expression, the causal implication. What do we know about 

causal implication? The knowledge about causality can be 
summarized as follows [10]: 
 It has a time dimension, since a cause chronologically 

precedes an effect; 
 In causal connections “something is allowed to go 

wrong”, whereas logical statements allow no exceptions; 
 Causes may be sufficient or necessary (in other words, 

complete or partial) for generating an effect; 
 Cause-and-effect relations involve multiple factors. 

Sometimes there are factors in series. Sometimes there 
are factors in parallel. 

 The causality is universal. This means that there is no 
such problem domain without causes and effects. 

Indeed, identification of cause-and-effect relations is and 
probably will remain intuitive work. But results of this 
intuitive work must be specified in the form that could be used 
in automated transformations from the TFM to other, more 
detailed, models.  

C. Particularities of TFM Cause-and-Effect Relations 

By now, it is assumed that all causes are sufficient in 
application of the TFM for business modelling. Additionally, 
there are no explicit means for determination and specification 
of multiplicity of factors. Therefore, it is hard to automatically 
handle logical branching in case of transformation from the 
TFM to behavioural specifications (such as Unified Modelling 
Language (UML) activity diagrams, use case models, and 
diagrams in Business Process Modelling Notation). Research 
on transforming the TFM to such diagrams summarized in 
[19] has demonstrated the following: 
 From TFM to BPMN diagrams. Cause-and-effect 

relations are used to specify control and message flows 
between activities – control flows between activities in 
the same pool, and message flows between activities 
from different pools. Due to different interpretation of 
chronology, BPMN shows the fragment of chronology as 
a sequence of events or a message flow from the start 
event to the end event, while the TFM shows it as a 
sequence of causes and effects that repeats all the time 
while the system works. Post-conditions and 
preconditions are transformed to annotations. 

 From TFM to UML activity diagrams. A cause-and-
effect relation is transformed into a control flow between 
corresponding activities. However, it is impossible to 
create fork and join nodes automatically, because the 
TFM does not hold information of concurrency. 
Functional feature’s precondition is transformed into 
activity’s precondition and may indicate at the necessity 
of creation of a decision node. Functional feature’s post-
condition is transformed into a post-condition of the 
activity and may indicate at necessity of creation of a 
decision or merge node. Thus, the TFM can be 
transformed to a simple activity diagram that should be 
refined by a developer if necessary. 

 From TFM to Use Case Model. Cause-and-effect 
relations are used to define logical flows in the use case 
scenario. Optional execution of the step (IF condition), 
and cyclic execution of the steps (WHILE or FOR 
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cycles) can be defined from pre- and post-conditions of 
functional features. However, it is impossible to define 
synchronous or asynchronous executions of these steps 
without human participation. 

Summarizing, the TFM does not hold information about 
concurrent (synchronous and asynchronous) execution of 
functional features. In behavioural diagrams of software, 
cause-and-effect relations are reflected as logical sequences of 
functional parts and control flows between functional parts. It 
is necessary to note, that a logical sequence should be a 
specialization of a control flow that complies with business 
logic of the system. 

III. FORMAL DEFINITION OF CAUSE-AND-EFFECT RELATIONS 

As it can be concluded from Section II, automated 
mappings of cause-and-effect relations to control flows of 
software require human participation in case of branching, 
since some knowledge of system functionality still is kept 
informally in textual descriptions or implicitly in experts’ 
minds. Therefore, the open task is to move this implicitly or 
informally expressed knowledge to formal specification in 
form of TFM elements. This task has one important constraint, 
namely, this formal specification should not make it harder 
presenting and understanding complex graph structures. 
Complex graphs have multiple arcs among multiple vertices, 
and additional multiple graphical constructs on these arcs 
complicates human operation on such graphs. 

A. Formal Definition 

One of possible formalizations is obligatory determination 
and specification of all pre- and post-conditions of every TFM 
functional feature. Then it would be possible “to connect” a 
post-condition of one functional feature with an equal 
precondition of another functional feature. Thus sequence of 
functional parts would be defined. However, the question 
about logical (control) relations between those sequences 
within a behavioural scenario and among behavioural 
scenarios cannot be solved without introducing some logical 
operations in the textual or visual specifications of pre- and 
post-conditions.  

The other way, suggested in this paper, is giving formal 
specification of cause-and-effect relations similarly to formal 
definition of TFM functional feature in order to automate their 
handling.  

The formal specification of a cause-and-effect relation is 
a unique tuple <Id, C, E, G, N, S, Refs>, where: 
 Id is a unique identifier of this cause-and-effect relation; 
 C (cause) is a functional feature that generates functional 

feature E, this could not be empty; 
 E (effect) is a functional feature that is generated by 

functional feature C, this could not be empty; 
 G (goal) is system user’s goal, which achievement 

requires execution of functional features C and E; 
 N is necessity of the functional feature C for achievement 

of goal G; the values are true or false; 
 S is sufficiency of the functional feature C for 

achievement of goal G; the values are true or false; 

 Refs (references) is a set of unique tuples <Ref_Ids, 
LOp>, where Ref_Ids is a set of identifiers (ref1, … refm) 
of cause-and-effect relations that participate in logical 
operation LOp in order to achieve goal G together. The 
set Ref_Ids must not include the identifier of the relation 
Id. 

Necessity and sufficiency are concepts of classical logic; 
they induce substantial and consistent effects on conditional 
reasoning performance. There are four classical combinations 
possible [20]: 
 Modus ponens. IF cause THEN effect. Cause occurs. 

Thus, the effect follows. 
 Modus Tollens. IF cause THEN effect. Effect does not 

occur. Thus, the cause did not preceded. 
 Affirmation of the Consequent. IF cause THEN effect. 

Effect occurs, thus the cause preceded. 
 Denial of the Antecedent. IF cause THEN effect. Cause 

did not occur. Thus, the effect does not follow. 
The necessity of the cause is determined when the 

occurrence of the effect indicates the occurrence of the cause. 
The sufficiency of the cause is determined when the 
occurrence of the cause indicates the occurrence of the effect. 
The necessary and sufficient cause is when the occurrence of 
the effect is possible if and only if the cause occurred, and 
occurrence of the effect indicates the obligatory occurrence of 
the cause. 

Logical operators are operators from classical logic such as 
conjunction (AND) and disjunction (OR). Conjunction 
indicates synchronous occurrence of referenced causes. 
Disjunction indicates asynchronous occurrence of referenced 
causes. 

IV. ILLUSTRATING EXAMPLE 

For a better illustration let us consider the following small 
fragment of an informal description from the project, in which 
a library application is developed. The process of constructing 
the TFM of this example is described in detail in [21]. 

“When an unregistered person arrives, the librarian 
creates a new reader account and a reader card. The 
librarian gives out the card to the reader. When the reader 
completes the request for a book, he gives it to the librarian. 
The librarian checks out the requested book from a book fund 
to a reader, if the book copy is available in a book fund. When 
the reader returns the book copy, the librarian takes it back 
and returns the book to the book fund. He imposes the fine, if 
the term of the loan is exceeded, the book is lost, or is 
damaged. When the reader pays the fine, the librarian closes 
the fine. If the book copy is hardly damaged, the librarian 
completes the statement of utilization, and sends the book 
copy to the Utilizer.” 

In the fragment nouns are denoted by italic, verbs are 
denoted by bold, and action pre- (or post-) conditions are 
underlined. 

A. Functional Features 

Functional features identified from the fragment are given 
in the form “identifier: feature_description, precondition, 
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responsible_entity (where, “Lib” denotes “librarian”, and “R” 
denotes “reader”) and they are as follows [21]:  

f1: Arriving [of] a person, {}, person;  
f2: Creating a reader account, {unregistered person}, Lib;  
f3: Creating a reader card, {}, Lib;  
f4: Giving out the card to a reader, {}, Lib;  
f5: Getting the status of a reader, {}, R;  
f6: Completing a request_for_book, {}, R;  
f7: Sending a request_for_book, {}, R;  
f8: Taking out the book copy from a book fund, {}, Lib; 
f9: Checking out a book copy, {completed request, book 

copy is available}, Lib;  
f10: Giving out a book copy, {}, Lib;  
f11: Getting a book copy [by a registered reader], {}, R;  
f12: Returning a book copy [by a registered person], {}, R;  
f13: Taking back a book copy, {}, Lib;  
f14: Checking the term of loan of a book copy, {}, Lib;  
f15: Evaluating the condition of a book copy, {}, Lib;  
f16: Imposing a fine, { loan term is exceeded, lost book, or 

damaged book}, Lib;  
f17: Returning the book copy to a book fund, {}, Lib;  
f18: Paying a fine, {imposed fine}, R;  
f19: Closing a fine, {paid fine}, Lib;  
f20: Completing a statement_of_utilization, {hardly 

damaged book copy}, Lib;  
f21: Sending the book copy to a Utilizer, {}, Lib;  
f22: Utilizing a book copy, {}, utilizer; 
f23: Adding the request_for_book in a wait list, 

{unavailable book}, Lib;  
f24: Checking the request_for_book in a wait list, {a book 

copy is returned to the book fund}, software system;  
f25: Informing the reader via SMS, {a request in the wait 

list can be satisfied}, software system;  
f26: Avoiding a request for a book, {book copy is not 

available}, software system. 

B. Users and Goals 

There are two responsible entities that belong to set Ex, 
namely, the Librarian and the Software System. The Librarian 
sets the following goals, which correspond to the following 
functional features: 

 BG1 “Register a reader”, {f2, f3, f4}; 
 BG2 “Check out a book”, {f5, f6, f7, f8, f9, f23, f26}; 
 BG3 “Return a book”, {f5, f12, f13, f14, f15, f16, f17, 

f24, f25}; 
 BG4 “Pay a fine”, {f18, f19}; 
 BG5 “Impose a fine”, {f16}; 
 BG6 “Close a fine”, {f19}. 

Software System sets the goal BG7 “Inform of available 
book”, {f24, f25}. 

C. Cause and Effect Relations 

Cause-and-effect relations identified from the fragment are 
represented as arcs of a digraph that are oriented from a cause 
vertex to an effect vertex and they are illustrated by the means 
of the TFM in Fig. 2. However, in order to demonstrate the 
presented formalism, each cause-and-effect relation is 

extended with the tuple <Id, C, E, G, N, S, Refs>. The 
descriptions are the following: 

 

 

Fig. 2. The TFM of library functionality [21] 

 r1-2: C= f1, E= f2, G= BG1, N=true, S=true, Refs = empty 
set; 

 r2-3: C= f2, E= f3, G= BG1, N=true, S=true, Refs = empty 
set; 

 r3-4: C= f3, E= f4, G= BG1, N=true, S=true, Refs = empty 
set; 

 r5-6: C= f5, E= f6, G= BG2, N=true, S=true, Refs = empty 
set; 

 r6-7: C= f6, E= f7, G= BG2, N=true, S=true, Refs = empty 
set; 

 r17-8: C= f17, E= f8, G= BG2, N=true, S=true, Refs = 
empty set; 

 r8-9: C= f8, E= f9, G= BG2, N=true, S=true, Refs = empty 
set; 

 r9-10: C= f9, E= f10, G= None, N=true, S=true, Refs = 
empty set; 

 r10-11: C = f10, E= f11, G= None, N=true, S=true, Refs = 
empty set;  

 r5-12: C= f5, E = f12, G= BG3, N=true, S=true, Refs = 
empty set; 

 r12-13: C= f12, E= f13, G= BG3, N=true, S=true, Refs = 
empty set; 

 r13-14: C= f13, E= f14, G= BG3, N=true, S=true, Refs = 
empty set; 

 r14-15: C= f14, E= f15, G= BG3, N=true, S=true, Refs = 
empty set; 

 r17-24-I: C= f17, E= f24, G= BG3, N=true, S=true, Refs = 
empty set; 

 r17-24-II: C= f17, E= f24, G= BG7, N=true, S=true, Refs = 
empty set; 

 r17-26: C= f17, E= f26, G= BG2, N=true, S=true, Refs = 
empty set; 

 r24-25-I: C= f24, E= f25, G= BG3, N=true, S=true, Refs = 
empty set; 

 r24-25-II: C= f24, E= f25, G= BG7, N=true, S=true, Refs = 
empty set; 

 r15-20: C= f15, E= f20, G= None, N=true, S=true, Refs = 
empty set; 

 r20-21: C= f20, E= f21, G= None, N=true, S=true, Refs = 
empty set; 
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 r21-22: C= f21, E= f22, G= None, N=true, S=true, Refs = 
empty set; 

 r4-5: C= f4, E= f5, G=BG2, N=true, S=false, Refs = {r11-
5, OR}; 

 r11-5: C= f11, E= f5, G=BG2, N=true, S=false, Refs = {r4-
5, OR}; 
 

 r14-16-I: C= f14, E= f16, G= BG3, N= false, S=true, Refs 
= {r15-16-I; OR} 

 r14-16-II: C= f14,E= f16, G= BG5, N= false, S= true, Refs 
= {r15-16-II; OR}; 

 r15-16-I: C= f15, E= f16, G=BG3, N= false, S= true, Refs 
= {r14-16-I; OR}; 

 r15-16-II: C= f15, E= f16, G=BG5, N=false, S= true, Refs 
={r14-16-II; OR}; 
 

 r7-17: C= f7, E= f17, G=BG3, N= false, S= false, Refs = 
empty set; 

 r15-17: C= f15, E= f17, G=BG3, N= true, S= false, Refs = 
empty set; 

 r23-17: C= f23, E= f17, G= BG3, N=false, S=false, Refs 
=empty set; 
 

 r16-19-I: C= f16, E= f19, G=BG4, N= true, S=false, Refs = 
{r18-19-I, AND}; 

 r16-19-II: C= f16, E= f19, G=BG6, N=true, S= false, Refs 
={r18-19-II, AND}; 

 r18-19-I: C= f18, E= f19, G=BG4, N=true, S= false, Refs 
={r16-19-I, AND}; 

 r18-19-II: C= f18, E= f19, G=BG6, N=true, S= false, Refs 
= {r16-19-II, AND}. 
 
Let us consider cause-and-effect relations r4-5 and r11-5. 

They both are necessary and not sufficient. This means that 
the occurrence of functional feature f5 “Getting the status of a 
reader” was preceded by either functional feature f4 “Giving 
out the card to a reader” or functional feature f11 “Getting a 
book copy [by a registered reader]”.  

Cause-and-effect relations r15-16-I and r14-16-I as well as 
r15-16-II and r14-16-II both are sufficient but not necessary. 
This means that the occurrence of functional feature f16 
“Imposing a fine” can be caused either by functional feature 
f14 “Checking the term of loan of a book copy” or by 
functional feature f15 “Evaluating the condition of a book 
copy” or both.  

The description of cause-and-effect relations r7-17, r15-17 
and r23-17 indicates a mistake in understanding the causality 
of the system made before. Both r7-17 and r23-17 are not 
necessary and not sufficient. This means that the occurrence of 
functional feature f17 does not depend on functional features 
f7 and f23. Therefore these cause-and-effect relations are set 
incorrectly and the TFM must be corrected in accordance with 
the business logic. 

Cause-and-effect relations r16-19-I and r18-19-I as well as 
r16-19-II and r18-19-II are necessary but not sufficient. The 
logical operator AND between functional features f16 
“Imposing a fine” and f18 “Paying a fine” indicates that the 

occurrence of the functional feature f19 “Closing a fine” is 
possible only after occurrence of both functional features f16 
and f18. This means that only an imposed and paid fine can be 
closed. If the fine was imposed and not paid or a fine that was 
not imposed was paid then the closing of the fine is not 
possible because of a lack of payment or because of its 
absence in the reality. Additionally, the textual description and 
precondition of functional feature 19 does not take into 
account the latter possibility. 

All the other cause-and-effect relations are both necessary 
and sufficient. This means that occurrence of the effect 
functional feature E is possible if and only if the cause 
functional feature C occurred. 

D. Mapping to UML Activity Diagram 

Fig. 3 shows how a part of the use case model borrowed 
from [21] can be described in an UML Activity Diagram using 
information from the TFM, where functional features are 
transformed into activities, but cause-and-effect relations into 
control flows in conformity with their formal specifications. 
The logic of control flows is kept in accordance with the TFM 
and sufficiency of functional features f14 and f15 as well as 
their logical relationships are taken explicitly from the TFM 
specification and this does not require any human 
participation. 

 

Fig. 3. Use cases “Return book” and “Impose fine” in modified UML activity 
diagram 

V. CONCLUSION  

The aim of this paper was to demonstrate that formalization 
of knowledge about the system in form of mathematical model 
is a step towards better understanding of the system’s 
functionality and automated model-to-model transformation 
starting from the very beginning of the software development 
process. 

The suggested formal specification answers the question 
about necessity and sufficiency of causal relations in the TFM. 
It allows discovering misunderstandings or mistakes in the 
already constructed TFM when necessity and sufficiency of 
causes are analyzed. 
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Besides that, this specification allows inferring chronology 
of occurrences of causes and effects. The proposed 
specification of the fact that logical relations among causes are 
necessary and/or sufficient for generating an effect allows 
automatic definition of synchronous and asynchronous 
occurrences of the causes in order to achieve a particular 
system (or business) goal. 

Assigning causal relations to the goals of the system helps 
in understanding meaning of each relation in a particular case 
of system’s operation, thus the scope of relations is defined. 

However, the question of how causality of the TFM of the 
system should be reflected in software models still is not 
addressed completely, because a control flow in the software 
models can be expressed in different ways. 

The future research directions are related to model 
checking. Model checking is a field where results of analysis 
and modelling of system and software behaviour are formally 
and automatically verified. 
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