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SPC Switching Power Converter 
EMI Electromagnetic Interference 
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CCM Continuous Conduction Mode 
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Buck Buck Switching Power Converter 
Boost Boost Switching Power Converter 

MCBG 
Method of Complete Bifurcation 

Groups 
UPI Unstable Periodic Infinitium 
FP Fixed Point 
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SN Saddle-Node Bifurcations 
DIB Discontinuity Induced Bifurcation 

 
List of Main Symbols 

E Input DC voltage D Average duty ratio 
Vout Output DC voltage d Instantaneous duty ratio 
C Output capacitance ϕpm Phase margin 

L Inductance of power inductor Vpp 
SPC peak-to-peak output 

voltage ripples 
R SPC load resistance ∆iL Ripples of inductor current 
fsw SPC switching frequency Iref Reference current 
T SPC switching period Pn n-th order periodic regime 
fc Cutoff frequency nT n-th order bifurcation group 
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 GENERAL DESCRIPTION OF THE WORK 
 

Topicality of the subject matter 

The application of the new types of semiconductor devices [77, 79] and the rapid 
progress in the field of microelectronics define the wide opportunities in the development of 
switching power converters with pulse width modulation on the basis of new layout and 
design solutions that provide high speed operation, high efficiency and reliability, admitting 
small mass and dimensions. The systems of this type allow the control of energy flows, 
changing their parameters and implementing optimal control methods [55, 88, 91] with small 
energy losses.   

The main operating mode of the mentioned systems is the regime of periodic 
oscillations, that is caused by external periodic force (in converters with pulse width 
modulation), or is maintained due to the properties of the system (in converters with relay 
based control). At the same time numerical and physical experiments reveal the existence of 
much more complicated dynamical regimes, including quasiperiodic and chaotic oscillations. 
The possibility of coexistence of various operating regimes in the parameter space has also 
been ascertained. Considering the mentioned properties of the system, even small influence of 
the noise or deviations in system parameters, that is defined by conditions of operation and 
the operating regimes of the load, would lead to catastrophic phenomena [75, 76], that 
manifest themselves as rapid change in the dynamics of the system (for example the transition 
from one stable periodic regime into another or catastrophic chaotization of oscillations).  
Mentioned phenomena not only define the increment of dynamical errors and the 
deterioration of qualitative parameters, but could also lead to the abrupt failures in the 
operation of technological systems, causing some serious crashes [81, 82].  

The design process of switching power converters (SPC) is associated with the variety 
of specific problems and additional design tasks, that are summarized in the Fig. 1 
(continuous lines represent the problems examined within the thesis). The problems of 
ensuring the stable operation of SPC and the improvement of the EMC are of special 
importance, that is why these problems are discussed in details. 

The assurance of the stable operation of SPC (without subharmonic regimes and self-
excited oscillations) is a complicated task [2, 8, 13, 40, 53], the solution of which requires the 
application of complex approaches and which is based on various trade-offs. The stability 
analysis method, based on the SPC frequency responses is used in the majority of practical 
applications because of its simplicity and efficiency [23, 31, 32, 33, 53]. Frequency responses 
are based on the appropriate transfer functions, which, in turn, are derived from the small 
signal models [57, 58]. However there are following shortcoming, inherent to this method: 

• small signal models are applicable only in the presence of small state variable 
perturbations in the neighborhood of the steady-state operating point; 

• it is not possible to predict the appearance of the variety of unwanted nonlinear 
phenomena (such as subharmonic oscillations and chaotic mode of operation [56]); 

• there is an uncertainty in the choice of the SPC switching frequency (fsw) to crossover 
frequency (fc) ratio; according to different sources the value of fsw/fc is recommended 
to select within range : >5 [2], 4-10 [39], 3-10 [17], 10-15 [86]; it should be noted that 
the mentioned ranges are defined empirically and in design process specific values are 
selected by means of heuristic methods; it has been noted that the decrease of value of 
fsw/fc leads to the increase of the opportunity of appearance of undesirable dynamic 
mode [86]; however, the excessive increment of fsw/fc is not considered as the effective 
solution of the problem, as it could cause noticeable deterioration of parameters of 
control system (increased control time, static errors etc.); several authors note even the  
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Fig. 1. Problems and possible solutions in the design of SPC 

 
considering all stability criteria, defined for the transfer functions, it is possible to 
observe the appearance of unwanted dynamics within SPC [56] for small values of 
fsw/fc.  
A necessity of the innovative design methods development is verified also by the fact 

that International Institute of Electrical and Electronics Engineers (IEEE) decided in 2005 to 
form a task force on assessing the need to include the higher order terms for small-signal 
analysis [66]. 

Thus, according to the above-mentioned facts, the development of methods for the 
study of complex dynamics of SPC, within which SPC are considered as essentially nonlinear 
systems exhibiting bifurcations and chaos, is considered to be an urgent problem. 

The second considered problem is related to the high levels of electromagnetic 
interference (EMI) of SPC. EMI in SPC is caused mainly by rapidly switching power 
semiconductor devices with high current: di/dt and voltage dv/dt rate of change. With the 
introduction of the international electromagnetic compatibility directives (e.g. CISPR 22), 
there is an increasing demand for the effective methods used to solve the EMI problems of 
SPC [64]. The classical ways of mitigation of EMI (see Fig. 1) usually include the application 
of input filters, correct design of printed circuit boards, grounding and shielding, the use of 
soft switching techniques etc. [20,43,45,54,67]. However the mentioned techniques can 
substantially increase size, weight and production expenses of SPC  
 Over the last two decades another successful approach for EMI reduction known as 
spread spectrum has been developed. This method is based on modulating of the switching 
frequency of SPC in random, chaotic or periodic manner, as a result, the noise energy (which 
in the case of unmodulated control signal is concentrated in discrete harmonics) is spread over 
a wider frequency range, thus significantly reducing the amplitudes of EMI [32,65]. Over the 
last 15 years spread spectrum method has been extensively used in traditional SPC, power 
factor correctors, lighting equipment electronic ballasts. In spite of wide applications of 
spread spectrum method, this technique has several noticeable disadvantages: 

• the modulation of the control signal leads to the increase of the output voltage ripples; 
• in addition to high frequency ripples, the output voltage contains also low frequency 

ripples, caused by the process of modulation; 
• the implementation of this approach requires the use of additional modulating signal 

generator. 
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To solve the first and the second problem, researchers propose the implementation of 
definite modulating waveforms (see e.g. [24, 25]), that allow the acceptable reduction of EMI, 
and have small effect on the quality of the output voltage. Several authors suggest the 
uncustomary solution of the third problem. It has been proved that the operation of SPC in the 
chaotic regime, when all waveforms become aperiodic, leads to the spreading of the EMI 
spectrum without any modifications in the structure of the control circuitry or application 

of external signal generators [15, 16]. In order to obtain the suppression of EMI it is 
necessary to ensure the operation of SPC in the region of robust chaos, where small 
deviations of system parameters or external noise could not cause the occurrence of 
subharmonic operating regimes [4] that are not applicable to the improvement of the EMI of 
SPC. The determination of conditions to provide robust chaos and the estimation of the effect 
of system parameters on the robustness of chaotic regime is rather complicated procedure, as 
different types of rare attractors within the chaotic regions are observed [47], destroying the 
uniformity of chaos and eliminating the preferable use of the observed region. That is why in 
order to design the chaotic SPC it is suggested to apply modern approaches used in the study 
of nonlinear dynamics that allow systematical research of the division of parameter space of 
SPC and detection of regions of robust chaos. 
 In spite of essential achievements in the control and regulation theory, as well as 
development of the theory of nonlinear oscillations and chaos, the investigation of complex 
dynamics and catastrophic phenomena of systems with control based on relays or pulse-width 
modulators is still the subject of intensive study. This forces the implementation of great 
amount of experiments in order to obtain acceptable dynamic characteristics, as well as to 
improve the efficiency of operation and reliability.  
 The oscillatory properties of relay and pulse-width modulated systems have been 
studied in numerous works (see e.g. [44, 80, 90] etc.). Most authors pay attention to definition 
of conditions of existence and stability of definite periodic regimes, not taking into account 
the complex dynamics of the system. The objects of investigation in generalized theory of 
relay and nonlinear pulse systems are rather simple periodic regimes that noticeably limits the 
class of systems under test. The investigation of complex dynamics is provided in   [18, 21, 
22, 78, 85] etc., however, in general these researches are associated with the numerical 
investigation of concrete narrow classes of systems with pulse-width modulation.  

Systems with relay control or pulse-width modulation could be described by sets of 
differential equations with discontinuities on definite smooth surfaces in the right-hand sides. 
The mentioned surfaces divide the phase space of the dynamical systems to the domains 
where the dynamics of the system is described by differential equations with sufficiently 
smooth right-hand sides. These systems are known as piecewise-smooth dynamical systems.  

Three basic bifurcation scenarios are known for the transition to chaos in piecewise-
smooth systems: the infinite cascade of period-doubling bifurcations (Feigenbaum scenario), 
the transitions through variable types of intermittency; the transition via different types of 
quasiperiodic scenarios [2, 11, 37, and 38].  

It has been clarified in the several last decades that the mentioned scenarios do not 
exhaust the possible mechanisms of chaotization. There is a much broader class of bifurcation 
phenomena and transitions to chaotic motion (the classification of which could be found in 
[11, 89]), whose theoretical and numerical analysis requires the development of special 
approaches and new algorithms. 
  The phase trajectories of the mentioned systems are sewed together from various 
smooth domains and that is why one can in general distinguish between two types of 
fundamentally different types of bifurcations: 

• the first type is similar to the bifurcations we know for smooth dynamical 
systems (i.e. local bifurcations, where definite periodic orbit loses its 
stability); 
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• the second type of bifurcations (not having analogues in smooth dynamical 
systems) is connected to the situations where the phase trajectory starts to 
intersect one of the sewing borders, resulting in the change of the number of 
domains, forming the trajectory of the solution; these changes in the 
topological structure of phase space are called C-bifurcations [89] or 
discontinuity induced bifurcations [11, 41, 42]; a simple type of C-bifurcation 
consists of the continuous transition of a solution from one type into another; 
however, more complicated phenomena are also possible, including period 
doubling, tripling, the merging and disappearance of solutions of different 
types etc.  

The extreme complexity and diversity of nonlinear phenomena, observed in the 
piecewise-smooth systems, is associated with interactions of smooth and different types of 
discontinuity induced bifurcations. The mentioned conditions define the increasing interest in 
the investigation and more complete understanding of chaos and complex dynamics observed 
in piecewise-smooth systems [1, 3, 5, 11, and 12]. Theoretical research is induced by the wide 
variety if potential applications of the obtained results in different branches of science and 
engineering [2, 11]. 
 It could be considered, that the main problem is derived from the fact that at the 
present moment there is no unified methodology for the investigation of complex dynamics 
and chaos within non-smooth dynamical systems that could be also used in some practical 
applications. The existing results mainly describe the properties of the concrete class of one or 
two-dimensional piecewise-smooth maps, and are not linked together by some general 
theoretical concepts. For the class of systems under investigation the great variety of 
bifurcation scenarios and causes of the catastrophic phenomena still lack the acceptable 
interpretation. Nevertheless, the mentioned systems are widely used in modern mechanics, 
electronics and power conversions circuits.  
 It follows from the above that the development and improvement of the techniques, 
used for the investigation and prediction of chaotic and catastrophic phenomena in switching 
power converters is urgent technical and scientific problem.  

The scientific aspect of the formulated problem includes the necessity for the 
development of the theory of complex oscillations and investigation of bifurcation 
mechanisms of chaotization in piecewise-smooth dynamical.  

The practical aspect of the problem includes the development of mathematical models, 
numerical algorithms and special software tools for the analysis of the complex dynamics and 
chaos in switching systems with pulse-width modulation, allowing the definite choice of 
structure, control schemes, parameters of compensators and type of the modulation in order to 
ensure the required performance in the wide range of circuit parameters and perturbations. 

Numerical techniques, based on the transient processes, extensively used in the 
bifurcation analysis, do not allow systematic investigation of all possible important stationary 
regimes. Non-complete bifurcation analysis, providing tools for the construction of non-
complete (also called Monte Carlo) bifurcation diagrams, are widely applied to the 
investigation of dynamics of various systems [9-11]. Mentioned technique for the 
construction of stable regimes and bifurcation diagrams does not take into account the 
complex topology of solution branches as well as some special stable regimes that could be 
found only by following unstable solution branches. 

Taking into account the mentioned disadvantages of the existing methods used for the 
analysis of nonlinear dynamics, the innovative approach (initially applied for the analysis of 
subharmonic and chaotic dynamics in mechanical systems [68-74]) – Method of Complete 
Bifurcation Groups (MCBG) - is used within the doctoral thesis. The thesis includes the 
improvements of the existing and the development of new algorithms and approaches used 
within the MCBG for the analysis of dynamics of SPC. All developed algorithms are 
implemented within MATLAB environment.  
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Aims and tasks  

The main aims of the thesis are: 
• to study the bifurcation mechanisms of chaotization of dynamical regimes and 

the causes of appearance of catastrophic phenomena in widely used switching 
power conversion circuits, as well as to define the effect of the mentioned 
complex operating regimes on the most important parameters of SPC;   

• to improve the existing and develop new algorithms for the analysis of 
subharmonic and chaotic regimes in SPC within the method of complete 
bifurcation groups;  

• to improve the quality of the output voltage of SPC, predicting the occurrence 
of undesirable dynamical regimes during the design phase; 

• to study the applicability of different types of chaotic operating regimes for the 
improvement of electromagnetic compatibility of SPC.  

To achieve the set goals it was necessary to solve the following tasks: 
• to carry out the analysis of applicability of modern analysis methods used for the 

investigation of complex dynamics of switching power converters; 
• to develop the algorithmic base for the investigation of nonlinear dynamics of SPC, 

that includes: 
o the development of method, that allows the simplification of mathematical 

models of SPC (consisting of systems of differential equations), obtaining the 
corresponding Poincare maps; 

o methods and algorithms used for the analysis of the local stability of periodic 
regimes, including: algorithms allowing the calculation of all stable and 
unstable periodic regimes; methods allowing precise detection of switching 
moments, solving transcendental equations; methods used for the analysis of 
stability of periodic regimes by means of analytical and numerical calculations 
of monodromy matrixes;  

o the methodology and algorithms for the numerical calculation of periodic 
regimes, in cases when there exists the uncertainty about the number and type 
of stable and unstable periodic regimes, existing in certain parameter range; 

o the unified approach for the investigation of smooth and discontinuity induced 
bifurcations in piecewise linear systems;   

o numerical algorithms for the construction of complete bifurcation diagrams 
and bifurcation maps for switching systems; 

o numerical algorithms for the construction of stable and unstable manifolds of 
discrete maps without inversion; 

o algorithms, allowing the transition through bifurcation points and their 
continuation in the parameter plain, detecting bifurcation borders; 

o development of the specific programs within MATLAB/SIMULINK for the 
investigation of subharmonic and chaotic oscillations in SPC on the basis of 
MCBG;  

• to establish the properties of: bifurcation maps of dynamical regimes in parameter 
plane; interactions of smooth and non-smooth bifurcations; transitions from periodic 
to chaotic modes of operation in SPC; 

• to discover the features of division of parameter space to regions of periodic and 
chaotic regimes of operation; analyze the dependence of chaotization mechanisms 
through bifurcations on the chosen primary and secondary bifurcation parameters; 

• to ascertain the most common methods of chaotization within switching power 
converters; 
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• to analyze the properties of bifurcation maps in parameter space, constructing 
bifurcation borders for smooth and non-smooth bifurcations, defining the scenarios of 
appearance of chaotic regimes through local and discontinuity induced bifurcations; 

• to evaluate the applicability of various chaotic regimes of SPC to the mitigation of 
generated EMI and provide the recommendations for ensuring the robust chaotic 
operation; 

• to provide the verification of the obtained results by means of numerical simulations, 
computer modeling and experiments on the basis of the developed prototype of 
laboratory prototype of SPC. 

Research Results and Scientific Novelty 

• For the first time the innovative approach – MCBG – was applied for the investigation 
of dynamics of SPC, allowing: the analysis of structure and properties of maps of 
dynamical regimes in parameter space; the construction of complete bifurcation 
diagrams and defining the most typical properties of interplay of smooth and non-
smooth bifurcations; detection of multistability regions (and existence of rare 
attractors) in the wide region within the parameter space, that allows the appearance of 
catastrophic dynamics in the presence of  small parameter variations or external noise.  

• The following mechanisms of chaotization and appearance of complex dynamics in 
SPC have been established: 

o chaotic or subharmonic dynamics appear if for the fixed parameter values 
coexist several locally stable periodic or chaotic regimes (including rare 
attractors) and the amplitude of the noise in the system is capable of exceeding 
the radius of basins of attractions of these regimes; 

o chaotic oscillations could arise if there is only one periodic regime and the 
influence of external noise causes flipping of the phase point between various 
positions within the same trajectory if the basin of attraction the this regime 
has small radius;  

o discontinuity induced bifurcations may cause: the appearance of sudden abrupt 
period doublings; the formation of the set of periodic regimes with different 
characteristics; smooth transition from one periodic regime into another;  the 
development of unstable periodic infinitium region of one periodic group in a 
single point, defining the abrupt transition to chaotic regime of operation; 

o studying the dynamics of SPC, it is possible to observe small stable periodic 
regions – rare attractors, that could be found within the chaotic modes of 
operation or as coexisting attractors; some special conditions have been 
defined for the boost converters, ensuring that all rare attractors disappear or 
become unstable; 

o  for the first time it has been shown that in SPC the appearance of regions of 
unstable periodic infinitium could be caused by non-smooth bifurcations, when 
the wide parameter range of period doubling cascade and the consequent 
formation of new unstable periodic regimes shrinks to one point in the 
parameter plane; 

o new kinds of tip type rare attractor and protuberances were found, formed by 
the interactions of smooth and discontinuity induced bifurcations; 

o for the first time the appearance of specific period-doubling saddle-node 
bifurcations and their effect on the formation of robust chaotic region and the 
appearance of new types of bifurcation groups has been explored. 

• The following chaotization mechanisms have been revealed: 
o infinite period doubling cascade ending with aperiodic operating regime; 
o sudden appearance of locally stable periodic regimes with different dynamic 

characteristics, within each of the mentioned regimes the finite or infinite 
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period doubling cascade with transition to chaotic mode of operation is 
observed; 

o rapid transition from stable periodic regime to chaos; 
o finite sequence of smooth period doubling and various types of non-smooth 

bifurcations ending with chaotization of oscillations. 
• It has been proved that the nature of many widely observed but insufficiently explored 

phenomena (such as complex interactions of smooth and non-smooth bifurcations in 
hybrid systems) could be explained, using the branches of unstable periodic regimes, 
constructed within the MCBG, as well as studying the dynamics of corresponding 
multipliers as circuit parameters are varied. 

• The necessary conditions for ensuring robust chaotic operation (that could be used in 
order to improve the EMC of SPC by means of spread spectrum technique) were 
defined for the boost converter under current mode control;  the influence of the 
compensating ramp signal on the robustness of obtained chaotic operation has been 
explored. 

• The following algorithms  used in the study of nonlinear dynamics in systems with 
pulse-width modulation have been improved and developed: 

o method allowing the obtaining of mathematical models of SPC from the 
systems of differential equations with discontinuities by means of construction 
of corresponding Poincare maps, which has been demonstrated for the voltage 
mode controlled buck converter; 

o numerical method and algorithm for the calculation of periodic regimes, that 
was adopted for the investigation of dynamical properties of switching power 
converters, allowing the detection (with predefined precision) of all stable and 
unstable periodic regimes for fixed parameter values, as well as the division of 
the obtained regimes to corresponding bifurcations groups; 

o algorithm and methodology for the calculation of periodic regimes, based on 
the application of the method of Newton-Kantorovich as well as solution of 
systems of transcendental equations in correspondence to switching moments; 
both approaches allow detection of stable and unstable periodic regimes in 
systems, that are described by iterative maps or sets of differential equations 
with discontinuous right-hand side; 

o algorithm used for the analysis of local stability of periodic regimes, which is 
based on the linearization of the obtained stroboscopic map in the 
neighborhood of the fixed point and the consequent analytical or numerical 
calculation of monodromy matrix, allowing the investigation of properties of 
bifurcations and stability borders as well as the proper identification of  smooth 
and non-smooth bifurcations; 

o numerical algorithms, that could be used in order to analyze smooth and 
discontinuity induced bifurcations, construct complete bifurcation diagrams 
and bifurcation maps, calculate stable and unstable manifolds, allowing the 
investigation of complex dynamics, bifurcation scenarios and mechanisms of 
chaotization in systems with pulse-width modulation.  

Defendable theses 

The following theses are being proposed and defended: 
1. the proper design of stable and reliable SPC is not possible without the global analysis 

of their nonlinear dynamics on the basis of modern techniques utilized for the 
investigation of chaos and bifurcations; 

2. the global analysis of the qualitative nonlinear dynamics of SPC on the basis of new 
algorithms developed within the Method of Complete Bifurcation Groups (MCBG) 
allows the improvement of the voltage conversion quality and the increment of 
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reliability of SPC in the design stage, predicting and avoiding the occurrence of 
undesirable dynamic effects in the operation of SPC; 

3. the development of new algorithms for MCBG allows providing the analysis of 
fundamentally different types of bifurcations – smooth and discontinuity induced ones 
– and estimation of  their effect on the dynamics of SPC, investigating the 
development of constructed unstable branches of periodic regimes, playing an 

essential role in the process of development of bifurcation scenarios; 
4. MCBG and the improvement of it’s algorithms, utilizing the analytical calculations of 

monodromy matrixes, allows essential improvement of the efficiency of construction 
of complete bifurcation diagrams, detecting the regions of robust chaos (that could be 
used in order to improve the electromagnetic compatibility of SPC) as well as the 
estimation of the influence of different parameters of converters under study on the 
robustness of chaos. 

Methodology of investigation 

 The development of methods and algorithms used in the design of SPC, providing the 
possibilities to avoid the occurrence of undesirable dynamical regimes is not possible without 
the analysis of nonlinear dynamics of the converters. Techniques utilized in publications 
devoted to the investigation of dynamics of SPC [2, 11, 60-63] does not allow the acquisition 
of the complete understanding of the dynamics of converters, as generally these approaches 
are based on the so called brute-force or Monte Carlo methods, the application of which does 
not allow the systematic calculation, classification and investigation of interactions of all 
possible periodic regimes.  

Taking into account the disadvantages and shortcomings of the mentioned approaches, 
the innovative method of the investigation of nonlinear dynamics of complex systems– 
MCBG (developed in 1993-2012 in the Institute of Mechanics of Riga Technical University 
in the research group “Nonlinear dynamics, chaos, catastrophes and control” under the 
guidance of prof. M.V. Zarzhevsky) – was used and improved within the thesis. The theory of 
MCBG and the appropriate set of algorithms and programs allow the detection of new 
periodic and chaotic regimes, new bifurcation groups and provide the tools for the 
investigation of their interactions, within typical and widely applied nonlinear models. 

The most important results of the investigation were obtained by means of numerical 
techniques based on the MCBG. All the models of SPC used within the doctoral thesis were 
transformed to the discrete-time maps. The validity of the obtained results was verified by 
means of MATLAB and PSpice simulations, laboratory experiments as well as comparison of 
the obtained data with some results published by other authors. 

Objects of investigation 

The objects of research are the main topologies of switching power converter, 
operating in typical regimes: 

• buck converter under voltage mode control, operating in discontinuous current 
mode; 

• boost converter under voltage mode control, operating in discontinuous current 
mode; 

• boost converter under current mode control, operating ins continuous current 
mode (with/without compensating ramp);  

• buck converter under voltage mode control (with proportional compensator), 
operating in continuous current mode. 

Practical value of the work 

• It is shown within the thesis that the application of MCBG allows the 
implementation of research of nonlinear dynamics and stability of SPC, thus 
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significantly facilitating the design process of the mentioned devices. The 
numerical methods developed for the analysis of nonlinear dynamics of SPC 
allows establishing the coherence between the structure of the system, parameters 
of the converter and oscillatory properties, detect potentially dangerous operating 
regimes, predict the occurrence of catastrophic phenomena. 

• The developed set of mathematical models, numerical algorithms and programs 
together provides the necessary tools for the complete bifurcation analysis of SPC 
in parameter and phase spaces, deriving practical recommendations for the 
appropriate choice of the structure, parameter set and compensation networks of 
converters, in order to fulfill necessary quality requirements.  

• The introduced unified approach for the description of bifurcation scenarios of 
chaotization and appearance of catastrophic phenomena in SPC allows providing 
the analysis of specific features of the constructed complete bifurcation diagrams 
and bifurcation maps.  

• The developed methods for the analysis of stability could be used in order to 
ensure the required operating regime of SPC (i.e. not allowing subharmonic 
operation in cases it could significantly affect the quality of obtained voltage, or 
intentionally ensuring robust chaotic operating regime in order to improve some 
characteristics of switching converter). 

• The developed programs could be integrated into SPC automatic design software 
to provide the investigation of nonlinear dynamics of switching converters at 
definite design stages.  

Approbation and publicity 

The main results of the doctoral thesis have been presented at the following scientific 
conferences: 

• „The 12th International Conference of ELECTRONICS”, Kaunas, Lithuania, May 18-
20, 2008; 

• „The 13th International Conference of ELECTRONICS”, Kaunas, Lithuania, May 12-
14, 2009; 

• „The 14th International Conference of ELECTRONICS”, Kaunas, Lithuania, May 18-
20, 2010; 

• „The 15th International Conference of ELECTRONICS”, Kaunas, Lithuania, May 17-
19, 2011; 

• „The 16th International Conference of ELECTRONICS”, Palanga, Lithuania, June18-
20, 2012; 

• „The 50th RTU International Conference”, Riga, Latvia, Oct. 14-16, 2009; 
• „The 3rd Chaotic Modeling and Simulation International Conference”, Hanja, Crete, 

Greece, June 1-5, 2010; 
• „The 9th International Symposium on Electronics and Telecommunications”, 

Timisoara, Romania, Nov. 11-12, 2010; 
• International Scientific Conference „The Role and Opportunities of Youth in the 

Development in Engineering Science”, Daugavpils, Latvia, Apr. 28, 2011; 
• International Scientific Conference „The Role and Opportunities of Youth in the 

Development in Engineering Science”, Daugavpils, Latvia, Apr. 26, 2012; 
• „2nd International Symposium AR’11”, Jurmala, Latvia, May 16-20, 2011; 
• „7th International Conference-Workshop Compatibility and Power Electronics CPE” 

Tallin, Estonia, June 3, 2011;  
• International Scientific Conference „Technology. Environment. Resources.”, Rezekne, 

Latvia, June 20-22, 2011; 
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• „52nd RTU International Scientific Conference (Section – Power and Electrical 
Engineering Conference)”, Riga, Latvia, Oct. 13-14, 2011; 

•••• 52nd RTU International Scientific Conference (Section – Electronics, 
Telecommunications and eSociety), Riga, Latvia, Oct. 13-14, 2011; 

• „4th International Interdisciplinary Chaos Symposium on Chaos and Complex 
Systems”, Antalya, Turkey, Apr. 29 – May 2, 2012. 

 
The research results have been published in 16 publications: 

1. J.Jankovskis, D.Stepins, D.Pikulins, S.Tjukovs. Examination of Different Spread 
Spectrum Techniques for EMI Suppression in dc/dc Converters // Electronics and 
Electrical Engineering – Kaunas: Technologija, 2008. - No.6 (86). - pp. 60 – 64. 

2. Pikulins D., Tjukovs S. Investigation of EMI reduction and output voltage ripple 
minimization using interleaved buck converters // Scientific Proceedings of RTU. 
Series 7. Telecommunication and Electronics, 2008, Vol.8, pp. 27.-30. 

3. Pikulins D. Tools for Investigation of Dynamics of DC-DC Converters within 
Matlab/Simulink // CHAOS THEORY Modeling, Simulation and Applications 
Selected Papers from the 3rd Chaotic Modeling and Simulation International 
Conference (CHAOS2010)), World Scientific Publishing, 2011. – pp. 317-325. 

4. Jankovskis J., Stepins D., Pikulins D. Improving Effectiveness of the Use of 
Frequency Modulation in Power Converters // Proceedings of the 12th Biennial Baltic 
Electronics Conference (BEC2010), Estonia, Tallinn, Oct. 4-6 , 2010. – pp. 327-330.  

5. Jankovskis J., Pikulins D., Stepins D. Effects of Increasing Switching Frequency in 
Frequency Modulated Power Converters // Proceedings of the ”2010 9th International 
Symposium on ELECTRONICS AND TELECOMMUNICATIONS”, Romania, 
Timisoara, Nov. 11-12, 2010. – pp. 115-118.  

6. Pikulins D. Some Applications of Numerical Path-following in the Analysis of 
Dynamics of Switching Converters // Student Forum Proceedings of the 7th 
International Conference-Workshop Compatibility and Power Electronics CPE 2011, 
Estonia, Tallinn, June 3, 2011. – pp. 11-14. 

7. Zakrzhevsky M., Schukins I., Frolov V., Klokovs A., Jevstignejevs V., Smirnova R., 
Pikulins D. RARE ATTRACTORS IN DISCRETE NONLINEAR DYNAMICAL 
SYSTEMS // Proceedings of the 2nd International Symposium RA’11, Latvia, 
Jurmala, May 16-20, 2011. – pp. 21-25. 

8. Pikulins D. SMOOTH AND NONSMOOTH NONLINEAR PHENOMENA IN DC-
DC CONVERTERS // Proceedings of the 2nd International Symposium RA’11, 
Latvia, Jurmala, May 16-20, 2011. – pp. 26-30. 

9. Pikulins D. Nonlinear Dynamics of Buck Converter // Proceedings of the 8th 
International Scientific and Practical Conference “Environment. Technology. 
Resources”, Latvia, Rezekne, June 20-22, 2011. – pp. 156-162. 

10. Pikulins D. The Investigation of Complex Behavior in Buck Converters by Means of 
Matlab and Simulink // Scientific Journal of RTU. 7. ser., Telecommunications and 
Electronics. - 9. vol. (2009), pp. 24-33. 

11. Jankovskis J., Stepins D., Pikulins D. Lowering of EMI in boost type PFC by the use 
of spread spectrum. Electronics and Electrical Engineering – Kaunas: Technologija, 
2009. - No.6 (94). – pp. 15-18. 

12. Jankovskis J., Pikulins D., Stepins D. Efficiency of PFC Operating in Spread 
Spectrum Mode for EMI Reduction // Electronics and Electrical Engineering. – 
Kaunas: Technologija, -No.7 (2010), pp. 13-16.  

13. Pikulin D. Effects of Non-smooth Phenomena on the Dynamics of DC-DC Converters 
// Scientific Proceedings of RTU. 4. ser., Electronics and Electrical Engineering. – vol. 
29. (2011), pp. 119-122.  
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14. Pikulins D. The Complete Bifurcation Analysis of Boost DC-DC Converter // 
Scientific Proceedings of RTU. 7. ser., Telecommunications and Electronics. – vol.11. 
(2011), pp. 22-26.  

15. Zakrzhevsky M., Schukin I., Yevstigneev V., Klokov A., Pikulin.D. Complete 
Bifurcation Analysis of Discrete Nonlinear Dynamical Systems (book in print). 

16. Pikulins D. Subharmonic Oscillations and Chaos in DC-DC Switching Converters // 
Electronics and Electrical Engineering. – Kaunas: Technologija, -No.X (2012), pp. X-
X (accepted).  
Two papers (4 and 5) are available in the IEEEXplore Digital Library, one paper (3) is 

available in World Scientific Books digital library; articles (2, 10-14, 16) are available in 
EBSCO, ProQuest, VINITI data bases. 

 
Structure of the Thesis 

The work consists of an introduction, seven chapters, conclusions and appendixes. 
In the introduction the topicality of the carried research is substantiated, the main goals 

and methodologies of investigation are defined; the scientific novelty and several practical 
applications are pointed out; defendable theses are formulated. 

In the first chapter the main topologies of SPC as well as typical control schemes and 
their functioning principles are considered. 

The second and the third chapters are dedicated to the review of chaos and bifurcation 
theory, emphasizing the tools of chaotic identification and characterization that will be 
applied to the investigation and interpretation of complex dynamics of SPC. 

 The ideological structure of chapters 4-7, depicting author’s contribution, is 
schematically shown in the Fig. 2, indicating also the papers of the author of the thesis 
corresponding to solutions of appropriate problems.  

In the fourth chapter the concept of the MCBG is presented, including some specific 
definitions and notions as well as the existing and innovative algorithms developed for the 
investigation of nonlinear dynamics of SPC. 

 The fifth chapter is dedicated to the investigation of nonlinear dynamics of buck and 
boost converters operating in discontinuous current mode. 

 In chapters six and seven the bifurcation sequences and routes to chaos in the boost 
converter under current mode control and the buck converter under voltage mode control, 
both operating in the continuous current mode, is considered. Applying techniques introduced 
in chapters three and four, the border collision phenomena and its effect on the dynamics of 
SPC is studied in detail.  
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SUMMARY OF THE THESIS 

1. THE ANALYSIS OF OPERATION OF SWITCHING POWER 

CONVERTERS (SPC) 

 

In the first chapter of the doctoral thesis the principles of operation of the basic SPC 

topologies and their control schemes are considered; the conditions for the operation of 

converters in DCM or CCM are defined; the applicability of methods used for the 

evaluation of stability of SPC, on the basis of averaged modeling approaches, to detection 

of various types of nonlinear phenomena is verified; the main idea of the spread spectrum 

technique is outlined and the possibilities of application of the chaotic modes of operation 

for the reduction of EMI levels in SPC is specified. 
 
Power electronics and its branches, associated with the conversion of electrical energy, 

is fast growing scientific and technological area, providing results that could be applied to the 
development of other branches of electronics. The principles of energy conversion, 
component and technological base are persistently updated and every 3-4 years the generation 
changes are observed in this area. Power supplies of radioelectronic equipment form the wide 
range of transistor devices, the operation of which should fulfill some specific requirements.  

The overview of main topologies of switching power supplies 

 
DC-DC converters, studied within the doctoral thesis, convert the input DC voltage to 

the appropriate regulated output voltage. SPC have to ensure constant output voltage, varying 
load resistance and the value of input voltage. In contradistinction to linear converters, the 
values of the output voltage could be smaller (e.g. in buck converter) or greater (e.g. in boost 
and buck-boost converters) than the input voltage.  

 
Fig. 1.1. (a)-(c) Main SPC topologies: (a) buck converter; (b) boost converter; (c) buck-boost 
converter; (d) their combination in the Cuk converter 

 
 The majority of SPC are implemented on the basis of the main simple converter 
topologies shown in the Fig. 1.1. Typically, the switching element and the diode are turned 
ON and OFF in a cyclic and complementary manner. The switch is directly controlled by the 
pulse-width modulated signals which is derived from a feedback circuit, but the diode turns 
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on and off depending upon its terminal conditions. When the switch is closed, (ON position) 
the diode is reverse biased and hence open, the inductor current ramps up. When the switch is 
turned OFF, the diode is forward biased and behaves as a short circuit, the inductor current 
ramps down. The described process repeats cyclically. The system could be plainly described 
by a set of state equations, each responsible for one particular switch state. For the operation 
described above it is possible to define two state equations: 

Switch is ON, diode is off: EBxAx 11 +=& ,                      (1.1) 

Switch is OFF, diode is on: EBxAx 22 +=& ,           (1.2) 
 

  
Furthermore, as the conduction of the diode is determined by its own terminal 

condition, there is a possibility that the diode can turn itself off even when the switch is OFF. 
In the power electronics literature, this operation has been termed discontinuous conduction 

mode (DCM), as opposed to continuous conduction mode (CCM) where the switch and the 
diode operate strictly in complementary fashion. The new state equation appears for the 
situation where both switch and diode are off: 

Switch OFF, diode off: EBxAx 33 +=& .   (1.3) 

 In practice the choice between DCM and CCM is often an engineering decision. CCM 
is more suited for high power application, whereas DCM is limited to low power applications 
On the other hand, DCM gives a more straightforward control design and generally yields 
faster transient responses.  

The study of stability of SPC based on averaged models 

In order to ensure the stable operation of SPC (i.e. without subharmonic and self-
excited oscillations) the design process includes the analysis based on frequency transfer 
functions of the converters. Transfer characteristics are constructed, using the corresponding 
transfer functions, and the subsequent verification of compliance with definite stability 
criteria is provided [29]. 

 
Fig. 1.2. Definitions of cutoff frequency, phase and gain margins 

where  x - state vector usually consisting of all capacitor voltages and inductor 
currents; 

 x&  -  dx/dt; 

 A1,2 , 
B1,2 

- system matrixes; 

 E - input voltage. 
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The following criteria ensuring the stable operating of SPC are formulated [7]: 
1. at the crossover frequency fc the phase delay introduced by the feedback loop should 

be smaller than 1800; at fc the  phase margin ϕpm is defined, which could be calculated 
as the difference between the phase angle of the transfer function and -1800 (see Fig. 
1.2); in order to ensure the stable operation of the converter theoretically it is sufficient 
to have ϕpm≈10, however generally the feedback loop is designed to provide ϕpm≈200-
600 , as small values of ϕpm could lead to high overshoot voltages;  

2. gain margin is defined as the difference between 0 dB and the magnitude of the 
transfer function at frequency, where the phase angle may (but not always) cross -
1800; if the phase angle reaches the value of -1800, the gain margin should be at least 
10dB in order not to allow the appearance of undesirable oscillations as circuit 
parameters are varied.  
Thereby it is supposed, that if the control-to-output transfer function of the SPC 

complies with the mentioned stability requirements, is not possible to observe subharmonic 
and self-excited oscillations within the converter.  

The application of spread spectrum method to the attenuation of EMI noise 

 
One of the main disadvantages of SPC is the high level of electromagnetic interference 

(EMI). EMI in SPC is caused mainly by rapidly switching power semiconductor devices with 
high rate of change of currents and voltages.  The generated conducted EMI could interfere 
with other electronic devices, including the control circuitry of SPC itself.  

One of the most successful approaches for EMI reduction, allowing the attenuation of 
noise levels within the source of generation, is a spread spectrum technique (SST), which is 
widely used in all kinds of electronic devices (e.g. microprocessors, D-class amplifiers, 
telecommunication systems etc. [26-28,43,54]). The method is based on the modulation of 
switching frequency in random, periodic or aperiodic manner, as a result the energy, 
concentrated in discrete harmonics, is spread over a wider frequency range (see Fig. 1.3).  

 
Fig. 1.3. Spectra of unmodulated and frequency modulated switching signals 

More detailed analysis of the EMI reduction techniques, based on the application of 
random and chaotic signals could be observed in the following publications [24, 30, 65]. 
Comparing analytically and experimentally obtained results with those of periodic 
modulation, authors show that the application of chaotic modulation causes better EMI 
reduction, having negligible effect on the magnitude of the output voltage ripples.  

All widely used SST implementation schemes suffer from one common drawback – 
the necessity of introduction into control circuitry an additional modulating signals source 
(that could be separate signal generator or integrated source). In order to avoid the use of 
additional circuitry, it has been proposed [16] to use the operation of SPC in chaotic mode, 
ensuring that voltages and currents become aperiodic and their spectra are inherently spread. 

Some recommendations for ensuring the robust chaotic operation of SPC (that could 
be efficiently applied for the reduction of EMI levels), are given within the doctoral thesis. 
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2. CHAOS AND BIFURCATIONS IN NONLINEAR DYNAMICAL 

SYSTEMS   

In the second chapter some most important aspects of the theory of chaos are 

summarized, including: the concept of dynamical system; classification of fixed points in 

the case of two-dimensional systems; classification of smooth and non-smooth bifurcations 

and the description of their main properties; description of various types of crisis and their 

influence on the global dynamics of nonlinear systems; main properties and the 

preconditions of occurrence of deterministic chaos. 

The properties of nonlinear systems, described within the chapter, are utilized in the 

thesis in the process of investigation of subharmonic and aperiodic regimes and 

explanation of main chaotization scenarios.  

The survey on nonlinear dynamical systems 

The switching power converters investigated within this doctoral thesis can be 
modeled by means of continuous-time differential or discrete-time difference equations. In 
general, any system that could be put in one of the mentioned forms is called a dynamical 

system (DS) in the sense that its behavior varies as a function of time. 
In the typical RLC circuits, for example, the capacitor voltages and inductor currents 

form a set of independent state variables. The basic constitutive laws of all elements (i.e., vR = 

iRR for resistors, L(diL/dt)=vL for inductors, C(dvC/dt)=iC for capacitors etc.), together with the 
relevant independent Kirchhoff’s law equations, define the connecting function. The study of 
dynamics of the system is essentially an investigation of how the state variables change in 
time. Mathematically this is done by relating the rate of change of these state variables to their 
current values via differential equations: 

),),((
)(

ttxf
dt

tdx
µ= ,      (2.1) 

 
 
 
 

Studying the dynamical behavior of a given system, one has to compute the trajectory 
starting from a given initial condition. However, it is generally not necessary to compute all 
possible trajectories in order to study a given system. In may be noted, that the left-hand side 
of (2.1) gives the rate of change of the state variables. The equation (2.2) thus defines a vector 
at every point of the state space. The properties of a system can be studied by studying this 
vector field.  

The analysis of the dynamics of nonlinear systems could be carried out on the basis of 
discrete-time models that are defined in the following way: 

 )(1 nn xfx =+  .      (2.2) 

At the beginning of the investigation one first finds the fixed points of the definite 
period T - *

TnTn xxx ==+ . Than it is possible to locally linearize the discrete system in the 
neighborhood of fixed point, obtaining the Jacobian matrix. The eigenvalues (multipliers) of 
the Jacobian matrix indicate the stability of the fixed point – in the case of discrete-time 
system the FP is stable if modules of all eigenvalues have magnitude of less than unity. 

Smooth and non-smooth bifurcations 

 
The dynamical system may have several equilibrium points: for the definite set of 

initial conditions and parameters the system may converge to one of them. The approached 
equilibrium point is called an attractor. If parameters of the system change the existing 

where  x - vector consisting of the state variables, 
 f - the connecting function, 
 µ - vector of system parameters. 
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equilibrium solution may become unstable and system will converge to another solution. This 
phenomenon is called bifurcation. In general the bifurcation could be considered as an abrupt 
change in system’s qualitative dynamics as one of the parameters is smoothly changed. 

In the dynamical systems with switching (including SPC) it is possible to distinguish 
two inherently different types of bifurcations: 

1. the first category includes all classical bifurcations that could be observed within 
smooth systems; these include the local bifurcations (period-doubling, saddle-node, 
pitchfork and Hoph bifurcations), where the periodic regime loses its stability as one 
of its multipliers (or a pair of multipliers) smoothly crosses the unity circle (see Fig. 
2.1), and global bifurcations (e.g. homoclinic), where a connection is established from 
an unstable solution and back to the same solution along its stable directions; 

 
Fig. 2.1. Multipliers path at smooth bifurcation point for two-dimensional system: (a) period-
doubling (b) saddle-node or pitchfork; (c) Hopf bifurcation 
 

2. the second type, referred as discontinuity induced bifurcations (DIB), is connected 
with situations where the trajectory of the system intersects one of the sewing surfaces 
– i.e. the surfaces that divide the phase space into domains of qualitatively different 
dynamics; within each such domain the system is smooth, but the equation of motion 
change abruptly at the border of domains;  this type of bifurcations, which typically 
involves abrupt jumps in multipliers of the orbit (see Fig. 2.2), cannot occur in smooth 
dynamical systems.  

 
Fig. 2.2. Multipliers path at non-smooth bifurcation point for two-dimensional system (a) DI 
period-doubling; (b) DI saddle-node or pitchfork; (c) DI Hopf; (d) period-doubling saddle-
node bifurcation 

 
A simple type of DIB consists in the continuous transformation of a solution from one 

type into another. However, more complicated phenomena are also possible, including new 
types of direct transition to chaos, merging and disappearance of solutions of different types. 

Deterministic chaos 

 
Chaos is a particular behavior of nonlinear systems, which is characterized by an 

aperiodic and apparently random trajectory. In addition, the trajectory is unpredictable in the 
long term, meaning that knowing the trajectory at one time moment gives no information 
about where exactly the trajectory will be in the far future [35].  
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The most typical features of chaos are: 
• nonlinearity: chaotic behavior cannot occur in a linear system; nonlinearity is 

necessary but not sufficient condition for the occurrence of chaos; 
• determinism: chaotic motion must follow one or more deterministic equations that do 

not contain any random factors; the system states of past, present and future are 
controlled by deterministic, rather than probabilistic, underlying rules; 

• sensitive dependence on initial conditions: a small change in the initial state of the 
system can lead to extremely different behavior in its final state;  

• aperiodicity: chaotic orbits are aperiodic, but not all aperiodic orbits are chaotic (e.g. 
quasiperiodic orbits are aperiodic, but not chaotic.  

Invariant collectors and crisis 

Outside the small neighborhood of a fixed point the description of linearized system 
behavior, presented in the previous sections, is no longer valid. For example, if the FP is a 
saddle, the eigenvectors in the small neighborhood have the property that if the initial 
condition is placed on the eigenvector, subsequent iterates remain on the eigenvector. Outside 
the small neighborhood the lines with this property no longer remain straight lines. One 
therefore identify curved lines passing through the FP with the property that any initial 
condition placed on the line forever remains on it under iteration of the discrete-time model. 
Such curves are called invariant manifolds (see Fig. 2.3).  

 
Fig. 2.3. The unstable manifold of a saddle FP attracts points in the state space while the 
stable manifold repels [2] 
 

The term “crisis” was first introduced by Grebogi, Ott and Yorke [19] in order to 
describe the abrupt qualitative changes in the chaotic dynamics of dissipative dynamical 
systems as a control parameter is varied. Crisis occurs when the chaotic attractor collides with 
an unstable periodic solution (or its manifold). There are three types of crisis, according to the 
nature of discontinuity induced in the chaotic attractor [2]: 
• in the first type, the chaotic attractor is suddenly destroyed as the control parameter a 

passes through its critical crisis value ac; this is called boundary or an exterior crisis 
(see Fig. 2.4,(a));  

• in the second type, the size of the chaotic attractor suddenly increases a is varied 
through ac – this is called an interior crisis (see Fig. 2.4,(b)); during this crisis the 
chaotic attractor collides with an unstable FP of equilibrium solution that is in the 
interior of the basin of attraction; 

• in the third type, two or more chaotic attractors of a system merge to form one chaotic 
attractor as a is varied through ac – this is called an attractor merging crisis (see Fig 
2.4,(c)); the new chaotic attractor can be larger in size than the union of the chaotic 
attractors before crisis.  
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Fig. 2.4. Different types of crisis: (a) external crisis; (b) internal crisis; (c) attractor merging 
crisis 
Stable branches of bifurcation diagram are shown as dark continuous lines, unstable – as light dashed lines, shaded areas – 
domains of chaotic operation 

3. METHODS USED FOR THE GLOBAL STUDY OF NONLINEAR 

DYNAMICS OF SWITCHING POWER CONVERTERS  

The third chapter presents a brief overview of tools suitable for the investigation of 

nonlinear phenomena in SPC. Special attention is devoted to the principles of definition of 

discrete-time models using stroboscopic mapping, as this kind of models will be utilized 

during the investigation of chaos and bifurcations in SPC by means of MCBG in the 

following chapters. 
The global analysis of the dynamical system could be provided under fixed of varying 

system parameters. The global analysis of the system under fixed parameters includes the 
investigation of all possible stable and unstable regimes and the construction of basins of their 
attraction. The global analysis under varying parameters includes the investigation of possible 
stationary and nonstationary (transient) regimes and their bifurcations, as well as 
determination of changes in the structure of basins of attraction as one or several system 
parameters are varied.  

The investigation of dynamics of the system with fixed parameters; discrete-

time models 

Studying the dynamics of the system with fixed parameter set, several properties of its 
evolution may be of interest: waveforms of selected variables, steady-state trajectories in the 
state space (attractors), frequency spectra of selected variables etc.  

 In their original forms the obtained data may not provide much insight in to the 
behavior of the system (e.g. it is not always possible to distinguish the chaotic operation from 
quasiperiodic operation from the obtained waveforms); however, if the mentioned properties 
are presented in certain formats, identification of a particular behavior can be more easily 
accomplished. Here we focus on three specific formats: 

• sampled data or stroboscopic maps; 
• phase portraits or two-dimensional projections; 
• Poincaré sections. 

One of the most important steps in the process of investigation of bifurcations and 
chaos in definite dynamical system is the appropriate choice of the model. The selection of 
the suitable description of the system is important for obtaining precise results that could be 
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later compared to the experimentally obtained data. The dynamics of SPC could be described 
by system of differential equations together with appropriate definition of switching 
conditions. There models describe the dynamics of the system in continuous-time domain and 
could be used in order to obtain analytical and numerical description of the physical system 
under test. However, if the main goal of the researcher is to understand the nature of nonlinear 
phenomena, exhibited by continuous-time system, the discrete-time models are widely used.  

The extensively used discrete-time maps, depending on the sampling moment could be 
divided in the following groups [10]: 

• stroboscopic maps; 
• switching maps: 

o S-switching maps; 
o A-switching maps. 

All types of maps are depicted in the Fig. 3.1 together with control signals of SPC 
under voltage mode and under current mode control.  

 
Fig. 3.1. (a) Typical ramp and error waveforms of SPC under voltage mode control; (b) 
typical inductor current and reference current waveforms for the SPC under current mode 
control with compensating ramp; (c) samples of stroboscopic map (marked as colored circles 
in the (a) and (b)); (d) samples of S-switching map; (e) samples of A-switching maps map 
(marked as colored squires in the (a) and (b)) 

 
It should be noted, that all sampling methods shown in the Fig. 3.1 are almost 

equivalent for the analysis of the periodic behavior of the circuit. Things may be different if 
the dynamics of the system becomes aperiodic. Under this situation the sampling times for the 
stroboscopic map are still periodic, but those corresponding to A-switching and S-switching 

maps will be determined by the satisfaction of the switching conditions whenever they occur. 
Studying the nonlinear dynamics of SPC within the doctoral thesis the stroboscopic maps are 
used for the following reasons: 

• SPC including the pulse-width modulator are systems with external periodic source 
and the derivation of the stroboscopic map is more obvious and simple procedure;  

• the applied MCBG is based on the use of models, defined be means of stroboscopic 
technique. 
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System dynamics under varying parameters 

Nonlinear systems can behave in many different ways depending upon the values of 
parameters. The transition from one type of the behavior to another can happen abruptly when 
some circuit parameters are smoothly varied. As it has been already mentioned this sudden 
change in the behavior of the system is called bifurcation. 

 The most commonly used tool for capturing bifurcation phenomena is the bifurcation 

diagram, which is essentially a summary chart of the different types of behavior exhibited by 
a system when some parameters are varied. The simplest case corresponds to the variation of 
only one parameter and the bifurcation diagram consist of a p – x plot, where sampled data x 
are plotted against the chosen parameter p.  

In practice in order to study the dynamics of the system under varying parameters the 
Monte Carlo bifurcation diagrams are used, which are based on the simplest transient 
processes and scanning of the phase space. The obtained diagrams give little insight in the 
dynamics of the system as parameters are varied and suffer from several noticeable 
disadvantages mentioned in the introduction of thesis. 

4. METHOD OF COMPLETE BIFURCATION GROUPS AND ITS 

MODIFICATIONS FOR THE GLOBAL STUDY OF NONLINEAR 

DYNAMICS OF SPC 

The fourth chapter includes the description of the main definitions and specific 

concepts of the MCBG, as well as main algorithms, used for the investigation of dynamics 

of nonlinear systems, and their improvements, accommodating the use of the mentioned 

approaches to the study of complex nonlinear dynamics of SPC, including the algorithms 

for the construction of bifurcation maps and invariant manifolds developed by the author 

of the thesis.  
As it has been already mentioned in the introduction, the doctoral thesis is dedicated to 

the investigation of possible applications of MCBG to the global analysis of nonlinear 
dynamics of SPC. The choice of the direction of investigation is determined by the fact, that 
many important and even dangerous operating regimes could remain unnoticed in the 
traditional analytical or numerical investigation of dynamics of SPC.  

The MCBG and the associated set of approaches are not fully developed, as the 
fundamental concepts of the method have been defined during several last years. Therefore 
this chapter includes: the description of the main concepts of MCBG, the improvements of the 
appropriate algorithms, the general recommendations for the application of the method to the 
analysis of nonlinear dynamics of SPC.  

The fundamental concepts of the MCBG 

The MCBG and the appropriate set of algorithms and programs allow the detection of 
new periodic and chaotic regimes, new bifurcation groups and provide the tools for the 
investigation of their interactions, within typical and widely applied nonlinear models. The 
MCBG has been developed for periodic systems that could be described by systems of 
differential or difference equations. The term periodic system within the MCBG is defined as 
dynamical system for which at least one periodic regime could be found in the defined range 
of parameters.  

MCBG includes the following fundamental concepts [74]: 
1. periodic skeleton of the dynamical system for a point p0 of its parameter space and 

passports of periodic and chaotic orbits; 
2.  complete bifurcation group nT with all stable and unstable branches of periodic 

points, connected in bifurcation points ; 
3. UPI subgroup  is a part of complete bifurcation group nT with unstable periodic 

infinitium (UPI) and subsequent chaotic mode of operation; the UPI subgroup consists 
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of only unstable orbits of bifurcation group under consideration and the birth of UPI in 
smooth systems is caused by the period-doubling cascade [71,72]; however, in non-
smooth systems UPI may occur after the DIB, when the full period-doubling cascade 
shrinks to one point in the parameter space;  

4. rare attractors (RA) are structurally stable attractors existing in restricted (narrow) 
domain of parameter space; rare attractors may be periodic of chaotic and form an 
important part of topological structure of all nonlinear dynamical systems.  

Four types of rare attractors are defined within the MCBG: 
1. tip type RA (see Fig.4.1); 
2. egg-like RA (see Fig.4.2,(a)); 
3. kink or hysteresis RA (see Fig.4.2,(b));  
4. isola isle RA (see e.g. [74]). 

 

 
Fig. 4.1. Tip type rare attractor: (a) long unstable branch with small stable domain – tip type 
RA; (b) the characteristic structure of tip type RA: the attractor is formed by the saddle-node 
bifurcation from one side and by period-doubling cascade and subsequent chaos from another  
Stable branches of bifurcation diagram are shown as dark continuous lines, unstable – as light dashed lines. 
 

 
Fig. 4.2. (a) The example of egg-like RA: from both sides the attractor is formed by 
subcritical or supercritical period doubling bifurcation; (b) kink type RA – at the turning point 
of long unstable branch a small stable domain is observed  
Stable branches of bifurcation diagram are shown as dark continuous lines, unstable – as light dashed lines. 

 
5. complex protuberances grown up from internal bifurcation points (where nT solutions 

change their stability) at corresponding parameter values p1 and p2 (see Fig. 4.3); 
protuberances may extend far from points p1 and p2, and their topological structures 
may be very complex even in the case of simple systems; the theory based on the 
investigation of protuberances allows prediction and explanation of some unexpected 
phenomena observed in a wide domains of parameter space and includes UPI and RA;  

 

 
Fig. 4.3. Protuberance with complicated structure 
Stable branches of bifurcation diagram are shown as dark continuous lines, unstable – as light dashed lines. Protuberance 
appears between two bifurcation points p1 and p2, where nT regime changes its stability. 
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6. typical bifurcation topological groups with all stable and unstable orbits and UPI, and 
their interaction in the same parameter space; 

7. topological structure of chaotic attractors and chaotic transients, the mechanisms of 
their birth and disappearance; the dynamical system may have several UPIs in the 
same parameter region, forming the structure of chaotic attractor.  

Algorithms used within MCBG and their improvements 

• The application of the Newton-Kantorovich method (NKM) to calculation of 

periodic regimes of dynamical systems  

The Point Mapping Approach (PMA) [87] is widely used in the process of 
investigation of dynamical systems. The detection of fixed points usually is carried out using 
the method of simple iteration, as well as methods of secondary mappings [87]. The method 
of simple iteration exhibits low convergence speed and does not allow the detection of 
definite types of saddle FP, that play an important role in the process of investigation of phase 
space. Thereby for the completeness of the analysis more complicated methods should be 
applied to the mapping operator – e.g. Newton method, the generalization of which was 
introduced by L.Kantorovich [83, 84]. 

• The analysis of stability of periodic regimes 

The investigation of the stability of periodic regimes [2, 11] is based on the theory of 
Floquet, manifesting  that the periodic solution of the system is stable only if all its multipliers 
in the complex plane are located inside the unity circle, i.e. |λi|≤1 for all i. As the multipliers 
are calculated as eigenvalues of the corresponding monodromy matrix (which is calculated for 
the periodic regime under investigation), the main objective, defining the stability, is reduced 
to the construction of monodromy matrix G. 

Let’s assume that the system under investigation is defined using the following 
discrete-time operator F: 

*)(* xFx T=  ,                                                                   (4.1) 
 

 

For the analysis of stability of the regime under investigation (i.e. the calculation of all 
multipliers λ), the following characteristic equation is estimated: 

0=− λIG .      (4.2) 

In practice the analytical estimation of the monodromy matrix G is rather complicated 
task, that is why the simple numerical approximation is widely utilized: 
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It should be noted, that the parameter of discretization should be small enough in order 

to reduce the effect of nonlinearity of operator F on the calculation of matrix Gk.   
The described approach used for the analysis of stability of periodic regimes is 

universal and could be applied to analytical equations, as well as used within numerical 

where  x=(x1,x2,…,xn)
T
 - the vector of system’s phase coordinates; 

 FT(x)=(F(x1),F(x2),…,F(xn))
T
 - the discrete-time operator. 

where      ∆ - small perturbation used for the numerical calculation of the derivative. 
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routines. Applying the NKM, the majority of calculation time is devoted to the numerical 
estimation of monodromy matrix that noticeably slows down the process of investigation. 

The improvement of the method for the detection of FP and estimation of their 

stability, based on the analytical construction of monodromy matrices and the calculation 

of corresponding multipliers, is proposed in the doctoral thesis. The obtained analytical 

equations are utilized for the verification of the numerically obtained results and 

implemented in the software, developed by the author of the thesis, noticeably accelerating 

the performance of the FP location and their stability estimation algorithms.  

• The construction of the complete bifurcation diagrams and the investigation of rare 

attractors 

One of the most important steps in the process of investigation of nonlinear dynamical 
systems is the construction of bifurcation diagrams. The obtained information allows the 
estimation of qualitative dynamics of the system as one of the systems parameters (simple or 
combined) is varied.  The bifurcation diagrams provide the information about all bifurcation 
points, the regions of parameter space with chaotic dynamics, the location of rare attractors, 
defining sudden changes in the dynamics of the system. 

 The following diagrams are constructed within the doctoral thesis: 
• the complete bifurcation diagrams, using the numerical continuation technique 

– allowing the construction of branches for stable and unstable periodic 
regimes as well as location of  new BG and RA; 

• Monte Carlo bifurcation diagrams based on the transient processes – the 
mentioned approach is utilized for the construction of aperiodic regions of 
bifurcation diagrams. 

Constructing the complete bifurcation diagrams, the main difficulties arise as the 
bifurcation branch changes its direction to the opposite one (e.g. after saddle-node 
bifurcation). In this case the widely accepted method called the “arc-length continuation” is 
applied [34]. 

The arc-length continuation has several drawbacks: 
• the process of continuation of bifurcation branches uses complex parameter linked to 

the chosen bifurcation parameter, which should be evaluated at every point of the 
diagram, requiring additional calculation resources and noticeably increasing 
calculation time; 

• the arc-length continuation rarely allows passing the points of non-smooth bifurcations 
and further construction of bifurcation diagrams [11]. 

Taking into account the mentioned reasons, the innovative approach has been 

proposed in the doctoral thesis, allowing fast and effective construction of bifurcation 

branches, slowing down the calculation only within the small neighborhood of bifurcation 

points and allowing the continuation, passing smooth as well as non-smooth bifurcation 

points, observed in the dynamics of switching converters. The new approach is based on the 

concept of periodic skeleton within the MCBG. 
Further the basic idea of the algorithm proposed for passing the critical points and 

implemented within the software SMPS CHAOS, developed by the author, is explained. Let’s 
assume that the construction of bifurcation branch of nT regime in the direction of exceeding 
the bifurcation parameter begins with the stable periodic regime (see Fig. 4.7). Arriving at 
point 1 the algorithm states that the further decrease of the parameter leads to the 
disappearance of the periodic regime. The described situation could be observed, in example, 
in the case of saddle-node bifurcation, when the stable periodic regime loses its stability and 
merges with the unstable periodic regime. In order to construct the bifurcation diagram the 
transition to the point 3 is required. The mentioned evolution is possible if the transition from 
point 1 to point 2 is carried out (i.e. the “step forward” is performed) and for parameter value 



30 

p2 (see Fig. 4.7) the periodic skeleton for the system is constructed, including only periodic nT 
regimes. The data included in the periodic skeleton is used for the selection of the 
corresponding point for further continuation. It should be noted that approaching the 
bifurcation point or the fold of bifurcation branch, the corresponding step size control 
algorithm noticeably decreases the value of calculation step, in order to detect the position of 
the turning point with high precision.  

 
Fig. 4.7. The algorithm of passing critical points 

Stable branches of bifurcation diagram are shown as dark continuous lines, unstable – as light dashed lines. 

 
In contradistinction to widely used algorithms, based on the concept of arc-length 

continuation, the method provided by the author allows without any modifications the 
application to passing smooth and non-smooth bifurcation points as well as turning points of 
bifurcation branches. The mentioned algorithms require additional calculation resources only 
within the close neighborhood of turning points (when the construction of periodic skeleton is 
provided), noticeably decreasing the total calculation time.  

The construction of bifurcation maps in the parameter space 

Providing the analysis of the dynamics of nonlinear systems it is frequently required to 
study the qualitative dynamical changes as two or more system parameters are varied (e.g. 
during the operation of SPC the load resistance and input voltage could be varied). Therefore, 
one of the most important tasks in the bifurcation analysis of dynamical systems if the 
construction of bifurcation maps, dividing the two-parameter plane to regions with 
qualitatively equivalent dynamics (periodic regimes and chaotic dynamics).  

One of the most widely used methods for the construction of bifurcation maps is the 
cell-to-cell mapping approach [59], which is based on the division of the parameter space to 
equal cells and simple iterations from each of them, defining the periodicity of the regime 
under consideration. The mentioned approach has several noticeable disadvantages: 

• large computation times; 
• if several coexisting attractors are found in the system, for the detection of each of 

them it is necessary to use the set of initial conditions, that drastically increases the 
calculation time; 

• often it is not possible to detect precisely the location of bifurcation border for two 
different regimes. 

Taking into account the mentioned drawbacks the implementation of the complete 
bifurcation analysis within MCBG is based on the more efficient approach – movement along 

bifurcation borders.  Within the framework of this approach the coordinates of definite 
bifurcation points are defined and the subsequent continuation of these points in two-
parameter plane is provided. SMPS CHAOS software utilizes the modification of the 
mentioned approach, allowing the decrease of computation time and continuation of the non-
smooth bifurcation points. The detailed description of the algorithm developed by the author 
could be found in the Appendix 1 of the doctoral thesis.  
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5. THE STUDY OF NONLINEAR DYNAMICS OF BUCK AND 

BOOST CONVERTERS OPERATING IN DISCONTINUOUS 

CURRENT MODE (DCM)  

The fifth chapter is devoted to the investigation of nonlinear dynamics of buck and 

boost converters, operating in DCM. Firstly the discrete-time models, describing the 

operation of the mentioned converters are defined. Then the discrete-time models are used 

providing analytical and numerical investigation of the dynamics of SPC on the basis of 

MCBG: the bifurcation maps are constructed in different parameter planes, complete 

bifurcation diagrams are obtained, the most significant features of nonlinear dynamics of 

buck and boost converters are studied. Analytically and numerically obtained results are 

verified (for the buck converter) by means of PSpice modeling and laboratory experiments. 

In the last part of the chapter the stability analysis of the converters is provided on the basis 

of bode plots, obtained from the averaged models. The applicability of this widely used 

approach to prediction of different types of bifurcation in SPC, operating in DCM in 

verified. 

Discrete-time models of buck and boost converters 

The switching process of SPC is controlled by periodic signals, therefore the operation 
of the circuit could be described by means of stroboscopic map, in which the values of state 
variables x at time moment t=nT are expressed in terms of the values of x at t=(n-1)T. This 
discrete-time model facilitates the analysis of nonlinear dynamics of SPC and numerical 
calculations.  

 
  (a)           (b) 

Fig. 5.1. (a) Buck and (b) boost converters under voltage mode control 

C.K.Tse in his publications [61, 62] provides the discrete-time models for the 
description of dynamics of buck and boost converters with proportional feedback loop, 
operating in DCM (see Fig. 5.1). The mentioned author has also experimentally proved in 
[62] that in spite of several simplifications, including series expansion and neglecting higher 
order terms, the proposed models accurately describe the dynamics of the converters under 
study, allowing the prediction of various types of nonlinear phenomena. The models provided 
by Tse are the first order iterative mappings: 
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LC
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=β      

where D - steady state (average)  duty cycle; 

 VC - steady state (average) capacitor voltage (VC=Vref); 

 k -  small signal feedback gain; 

 
refV  - reference voltage; 

 H(.) -  function accounting for the limited range of the duty cycle [0...1]. 

 The models provided by Tse are the first order difference equations as in the DCM the 
inductor current iL is equal zero at every switching instant nT and does not act as the state 
variable  and the dynamics of the systems is governed by equation vn+1(vn) with the capacitor 
voltage as the only state variable. 

The obtained models are utilized further in this chapter, studying the nonlinear 
dynamics of buck and boost converters by means of analytical and numerical techniques.  

The analytical investigation of dynamics of buck and boost SPC operating in 

DCM 

Providing the analytical investigation of the discrete-time model of the buck converter: 
• it has been ascertained, that during the operation of the converter in DCM various 

types of smooth and non-smooth bifurcations could be observed, caused by the 
saturation of the duty cycle of control signal in pulse-width modulator (see intervals 2, 
4 in the Fig. 5.2), and the appearance of which could be predicted utilizing the borders  

 
Fig. 5.2. The signals of the PWM: a) error and sawtooth voltages (b) PWM control signal 

defined in the following equations: 
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• it has been detected, that the introduction of the proportional feedback loop and 
increment of the small signal feedback gain in the buck converter, firstly causes the 
appearance of  period doubling cascade, leading to the development of chaotic 
dynamics, and only after that the non-smooth bifurcations are observed; 

• the bifurcation sequence mentioned in the previous paragraph allowed providing the 
analytical investigation of period doubling cascades: 



33 

o it has been shown that the stability of P1 and higher periodic regimes could be 
estimated, using the following analytical equation: 
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o  the converter operates in a stable P1 regime until the module of the characteristic 
multiplier λ  is smaller than 1, i.e.: 
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that allows defining the critical value of the small signal feedback gain kkrit, 
beyond which the period-doubling bifurcations (subharmonic oscillations and 
chaos) are observed in the system [61]: 
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o the diagrams, allowing the detection of kkrit, varying the input voltage and the load 
resistance of the buck converter, have been obtained (see Fig. 5.3); it has been 
explored, that the acceptable range of the values of k, ensuring the operation of the 
converter in stable P1 regime, has to be detected at the maximal value of input 
voltage and for the minimal value of the load resistance, defined by design 
requirements. 
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Fig. 5.3. The dependence of the critical value of the small signal feedback gain on the output 
voltage for different values of the load resistance  
To the right of every line the unstable (subharmonic) region is located, to the left – stable P1 region. 

It should be noted that all conclusions could be assigned to the dynamics of boost 

converter, the analytical investigation of which is provided in the Appendix 3 of the doctoral 
thesis.  
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The study of dynamics of buck and boost converters in DCM by means of MCBG, PSpice 

modeling and laboratory experiments 

At the beginning of investigation the primary and secondary bifurcation parameters 
(input voltage E and small signal feedback gain k), defining the qualitative changes in the 
dynamics of SPC, as well as dimensions and location of regions with different types of 
periodic (or chaotic) regimes in the parameter plane, are selected. 

Providing the study of nonlinear dynamics of buck and boost converters, by means of 
MCBG, PSpice modeling and laboratory experiments, the following conclusions were 
obtained, associated with: 
A. stability and chaotization of SPC: 

• the bifurcation maps obtained during the investigation (see e.g. Fig. 5.4)  allows 
obtaining the information about the division of the parameter plane into regions with 
different periodic and chaotic operating regimes;  

E
,V

 

 
Fig. 5.4. The bifurcation map of the buck converter, operating in DCM, in the E-k parameter 

plane 

� the constructed maps could be used in the process of design of SPC, 

selecting the appropriate operating region as far from bifurcation 

boundaries as possible; 

• the constructed complete bifurcation diagrams allowed the investigation of typical 
bifurcation groups, chaotization scenarios of buck and boost converters, the 
possibilities of appearance of rare attractors, protuberances and submerged isles: 
o it has been revealed, that changing the value of the small signal feedback gain 

causes the appearance of smooth period doubling cascades (see Fig. 5.5) with the 
further chaotization at accumulation point (in which the UPI of the appropriate BG 
appears and the location of which could be detected by means of Feigenbaum 
Universality Theory); 

� the constructed BG, numerically and experimentally obtained results show 

that the increase of the period within the period doubling cascade, causes 

significant increase of the output voltage ripples; 
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Fig. 5.5. The complete bifurcation diagram of the buck converter for E=33 V depicting 1T BG 
Stable (dark lines) and unstable (light lines) periodic regimes up to P8 are depicted in the diagram. The following 
designations are used: PD – period-doubling bifurcation; UPI – unstable periodic infinitium. The dark dashed line represents 
the border, defining the saturation of the instantaneous value of duty ratio. 

o the effects of the non-smooth phenomena (such as the saturation of the duty cycle) 
on the dynamics of converters have been studied, estimating that the collision with 
the border, defined in the equation (5.3), does not cause the qualitative changes in 
the structure of BG (determining the operation of SPC); 

� the mentioned observation shows that the appearance of the skipped cycles 

in the operation of SPC (i.e. when the error signal at the input of 

comparator becomes smaller that the lowest value of the sawtooth signal 

and the switching element remains OFF for the whole period – see Fig. 

5.2) does not cause any significant qualitative changes in the dynamics of 

the converter; 
o it has been shown that the collision with the border, defined in the equation (5.4) 

(when the switching element remains ON for the whole period), causes the 
appearance of non-smooth period-doubling and saddle-node bifurcations, resulting 
in the abrupt changes in the dynamics of converters; 

� if the error signal at the input of comparator exceeds the highest value of 

the sawtooth signal and the switching element remains ON for the whole 

period, the buck and boost concreters exhibit sudden transition to 

subharmonic operating regimes with the subsequent chaotization; 
o it has been shown, that the development of global chaotic attractors of the 

converter is defined by the interaction of chaotic attractors appearing in the 
individual BG (as a result of crisis event – see Fig. 5.6), or by contact of these 
attractors with the unstable branches of the smallest periodic regime of BG under 
investigation (i.e. by expansion of attractor within the unstable manifold of the 
saddle point); 

� as the dimensions of the unstable manifold could be greater that the 

chaotic attractors of individual BG, the appearance of internal crisis may 

cause significant and abrupt increase of the output voltage ripples; 
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Fig. 5.6. The complete bifurcation diagram of the buck converter for E=33 V depicting 3T BG 
merged with the Monte Carlo bifurcation diagram  
Stable (dark lines) and unstable (light lines) periodic regimes are depicted in the diagram. The following designations are 
used: PD- period-doubling bifurcation; SN-saddle-node bifurcation; UPI- unstable periodic infinitium. 
 

o the formation of complex protuberances and submerged isles within the individual 
BG has been studied (e.g. see Fig. 5.7); 

 
Fig. 5.7. (a) The complete bifurcation diagram of the boost converter for E=11.4 V depicting 
4T BG 
Stable (dark lines) and unstable (light lines) periodic regimes up to P8 are depicted in the diagram. The following 
designations are used: PD- period-doubling bifurcation; SN-saddle-node bifurcation; DIB- discontinuity induced bifurcation.  
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�  small deviations of the input voltage and the influence of external noise 

causes the transition to subharmonic and chaotic modes of operation, as 

well as skipping to the rare attractors, coexisting within the framework of 

submerged isles, leading to extremely complex dynamics of the converter;   

• the analysis of the averaged models of buck and boost converters operating in DCM, 
allows ascertaining that these models are not capable of predicting the appearance of 
subharmonic and chaotic modes of operation; 

B. the improvement of EMC of SPC: 

• it is shown that within the chaotic region a great variety of BG (caused by the 
appearance of smooth and non-smooth saddle-node bifurcations) exist, within which 
the tip type rare attractors are observed, defining non-robustness of chaotic operation; 

� the appearance of periodic windows and other types of rare attractors does 

not allow the use of chaotic modes of operation of SPC in order to improve 

the EMC, as even small noises (always present in the real converter) cause 

unpredictable transitions from chaotic mode of operation to subharmonic 

regions; 

• the verification of results allows ascertaining that the investigation on the basis of 
MCBG provides precise data, characterizing the dynamics of SPC. 

6. THE INVESTIGATION OF NONLINEAR DYNAMICS OF CURRENT 

MODE CONTROLLED BOOST CONVERTER OPERATING IN 

CONTINUOUS CURRENT MODE 

Chapter six is devoted to the study of nonlinear dynamics of the current mode 

controlled boost converter by means of discrete-time modeling, analytical investigation 

techniques, numerical calculations on the basis of the algorithms developed by the author 

of the thesis as well as modeling in SIMULINK software. The main attention is paid to the 

dynamics of the inner current loop that can become unstable under certain conditions, 

causing the variety of nonlinear phenomena. 

The implementation of the discrete-time model of the boost converter 

In almost all practically used boost SPC the control of the output voltage is 
implemented, using two feedback loops – the inner current loop and the external voltage loop. 
Note that as the main focus is on the dynamics of the inner current loop, it suffices to consider 
the system without the voltage feedback loop (see Fig. 6.1, (a)). This assumption is acceptable 
as the operation of the outer feedback loop is usually much slower and its purpose is to adjust 
the values of reference current in accordance to changing load resistance. Therefore, the 
exclusion of the dynamics of the voltage feedback loop does not affect the high frequency 
dynamics of internal current loop.  

Nevertheless the operation of the boost converter could be described by systems of 
differential equations, providing the analytical and numerical analysis requires the use of 
discrete-time models. It is possible to obtain the discrete-time model of the current mode 
controlled boost converter in the closed form without any simplifications [6, 14, 52] (that 
were used, defining the corresponding models of the buck and boost converters operating in 
DCM). 

Taking into account the observation that there exist three possible switching 
combinations between two consequent clock pulses (see Fig. 6.1, (b)), the corresponding 
discrete-time model describing the operation of the dynamics of SPC is defined for every 
situation, eventually merging the obtained difference equations and defining the following 
switching condition: 
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(a) 

 

(b)   

Fig. 6.1. (a) The current mode controlled boost converter; (b) the waveforms of the inductor 
current, capacitor voltage and the control signal 
 

If the inductor current at the beginning of the observed interval is in<Iborder, then the 
next sample should be obtained using the following equations: 
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however, if in≥Iborder, equations (6.3) and (6.4) should be used: 
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n −= −2
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ELiIt nrefon /)( −= ; onoff tTt −= ; 22 mp −=µ ; RCm 2/1=  and LCp /1= . 

Utilizing the obtained model it is possible to study the nonlinear dynamics of the boost 
converter by means of MCBG, avoiding the solution of systems of differential equations and 
additional construction of Poincare maps (the obtained model in point of fact is the 
stroboscopic map). 
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The study of dynamics of current mode controlled boost converter using the 

MCBG and SIMULINK modeling 

Providing the analysis of nonlinear dynamics of boost converter, on the basis of 
MCBG and SIMULINK modeling, the following conclusions in the chapter six were 
obtained, associated with: 
A. stability and chaotization of SPC: 

• if the condition 1/ >>RCT  is satisfied, the manifestations of smooth bifurcations are 
observed, when the loss of stability of periodic regimes and the appearance of new 
regimes is defined by period-doubling and saddle-node bifurcations (see Fig. 6.2); 

 
Fig. 6.2. The complete bifurcation diagram of the boost converter for 1/ >>RCT , depicting 
1T BG merged with the Monte Carlo bifurcation diagram 
Stable (dark lines) and unstable (light lines) periodic regimes up to P8 are depicted in the diagram. The following 
designations are used: PD- period-doubling bifurcation; SN-saddle-node bifurcation; UPI- unstable periodic infinitium. The 
border defined in (6.1) is depicted as the dark dashed line. 
 

• the formation of global chaotic attractor is defined by attractor merging, internal and 
external crisis, causing the increase of voltage and current ripples of SPC; 

• the construction of branches of bifurcation diagrams, corresponding to unstable 
periodic regimes, is extremely important in identifying and explaining the causes of 
different nonlinear phenomena in SPC: 
o the investigation of dynamics of unstable periodic regimes, varying circuit 

parameters, allows the prediction of appearance of different types of crisis (see 
Fig. 6.2); 

o the structure of unstable manifold of saddle type fixed point defines the parameters 
and location of new subharmonic and chaotic attractors in state space (as well as 
corresponding values un inductor current and capacitor voltage); 

o the branches of complete bifurcation diagrams, corresponding to unstable periodic 
regimes, allows the study of fundamentally different types of bifurcations (smooth 
and DIB) within one diagram, providing also the precise classification of new 
regimes;  

• the new kind of tip type rare attractor, defined by the period tripling and appearance 
of the whole set of unstable periodic regimes at the point of DIB, could be observed in 
the boost converters; 

• if the condition 1/ <<RCT  is satisfied for the boost converter under investigation, the 
dynamics of the system is defined by effects of different types of DIB, causing the 
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appearance of non-smooth period-doubling and saddle-node bifurcation, leading to 
abrupt qualitative changes in the dynamics of SPC (see Fig. 6.3); 

 
Fig. 6.3. (a) The complete bifurcation diagram of boost converter for 1/ <<RCT  depicting 1T 

and 6T BG; (b) the fragment of the diagram, showing the appearance of non-smooth period- 
doubling and saddle-node bifurcations 
Stable (dark lines) and unstable (light lines) periodic regimes up to P8 are depicted in the diagram. The following 
designations are used: PD- period-doubling bifurcation; SN-saddle-node bifurcation; DIB- discontinuity induced bifurcation. 
The border defined in (6.1) is depicted as the dark dashed line. 
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Fig. 6.4. The bode plots obtained from the Ridley model 
The diagram 1 corresponds to the stable period-1 regime (phase margin is 760 and the gain margin is 7dB ); diagram 2 
corresponds to the chaotic regime of operation of SPC (the magnitude plot crosses 0dB at f=5850 Hz without any phase 
margin, there is also no gain margin at  f=4700 Hz, that indicates the possibility of occurrence of  undesirable subharmonic 
oscillations and overall instability of the system), the diagram 3 corresponds to the stable P1 regime, utilizing compensating  
ramp (phase margin is 670  and gain margin is 7.5dB ). 
 

• the averaged model of the boost SPC, proposed by Ridley [55], allows predicting the 
appearance of not only subharmonic, but also chaotic modes of operation in the 
current mode controlled converter, as well as estimating the effect of compensating 
ramp on the stability of P1 regime  (see Fig. 6.4); 

 
B. the improvement of EMC of SPC: 

• in order to improve the EMC of SPC it is possible to use the regions of robust chaos, 
exhibited by converter without compensating ramp if 1/ <<RCT ;  

• the occurrence of robust chaos is defined by: 
o for the first time observed creation of the regions of unstable periodic infinitiums 

after the DIB when the whole period doubling cascade develops in the one point of 
the parameter space (see Fig. 6.5); 
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Fig. 6.5. The complete bifurcation diagram of the boost converter for 1/ <<RCT , depicting 1T, 
5T and 6T BG 
Stable (dark lines) and unstable (light lines) periodic regimes up to P6 are depicted in the diagram. The following 
designations are used: PD- period-doubling bifurcation; SN-saddle-node bifurcation; DIB- discontinuity induced bifurcation. 
.  

o atypical period-doubling saddle-node bifurcation, resulting in the developing of 
only unstable periodic regimes, excluding the appearance of periodic windows (see 
6T1 and 5T1 BG in Fig. 6.5); 

 
Fig. 6.17. The dependence of multipliers of the P5 BG on Iref 
Dashed horizontal lines represent critical values of multipliers (-1 and +1), at which the bifurcations occur. The following 
designations are used: PD – period-doubling bifurcation; SN – saddle-node bifurcation. 

 
• the introduction of compensating ramp signal significantly increases the region of 

existence of stable P1 operation, as well as changes the whole division of the 
parameter space into the regions of stability of subharmonic and chaotic regimes, 
excluding the possibility of existence of the region with robust chaotic operation; 
therefore is not permitted to use the compensating ramp in the feedback of the 
converter if the improvement of the EMC of the converter by means of spread 
spectrum technique is under consideration. 
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7. THE INVESTIGATION OF NONLINEAR DYNAMICS OF THE 

VOLTAGE MODE CONTROLLED BUCK CONVERTER OPERATING 

IN CONTINUOUS CURRENT MODE 

 
The seventh chapter is devoted to the study of nonlinear dynamics of voltage mode 

controlled buck converter on the basis of stroboscopic mapping, analytical and numerical 

approaches, as well as laboratory experiments. In contradistinction to the SPC described in 

the previous chapters, the dynamics of the buck converter in CCM with the voltage 

feedback loop could not be described by closed form discrete-time model. Therefore for the 

construction of Poincare section, author proposes specific technique, based on the 

reduction of the problem to the solution of transcendental equations, calculating the 

switching instants. 

The implementation of the discrete-time model of the buck converter 

The dynamics of the buck converter operating in continuous current mode (with 
voltage feedback applied) is under consideration in the following chapter. The development of 
the discrete-time model along with the detailed analysis of the dynamics of the converters is 
provided.  

 
Fig. 7.1. Voltage mode controlled buck converter: (a) simplified schematic; (b) the structure 
of error amplifier (c) the acquisition of the output signal of pulse-width modulator 

In the circuit with the voltage feedback loop, the value of the reference voltage is 
subtracted from the output voltage and amplified, in order to obtain the control voltage: 

)()( refCcon VvAtV −= ,      (7.1) 

that is compared to the sawtooth signal, defined by the following equation: 


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VVVtV ZAZramp ,    (7.2) 
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The pulse-width modulated signal is obtained in the output of the comparator and 
further applied to the switching element. The switch is ON, if rampcon VtV ≤)( and OFF, if 

rampcon VtV >)(  (see Fig. 7.1,(c)).  

The operation of the system could be described by the following systems of 
differential equations:  
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Solving the equations (7.3) and (7.4), the values of Cv&  and Cv are obtained, the value 
of the inductor current could be calculated expressing it from the first equation of the systems 
of differential equations (7.3) and (7.4): 

RvCvi CCL /+= & .      (7.5) 
For the sake of simplicity the following designations are introduced: 

RCm 2/1= ; LCp /1= ; 22 mp −=µ .     (7.6) 

 
Therefore the solutions of equations (7.3) and (7.4) are the following: 
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It could be seen that the equations (7.7) and (7.8) include four constants (K1-K4) that 
could be obtained, substituting the corresponding initial values. 

It should be noted, that using the equations (7.7) and (7.8), the algorithm, allowing the 
modeling of the dynamics of buck converter operating in CCM with definite constant step 
could be developed. The critical point in the operation of the algorithm is the detection of 
switching moments and the recalculation of the corresponding constants for the next 
configuration of the circuit. Even choosing very small calculation step, there still remains the 
possibility, that the algorithm will skip the switching point (see Fig. 7.1), the detection of 
which is crucial for the calculation of constants for equations (7.7) and (7.8), defining the 
further development of the system and leading to possible accumulation of computation 
errors. For the solution of the mentioned problem it is possible to decrease the calculation 
step, a number of times increasing the calculation time and requiring greater amount of data to 
be stored. For the most efficient utilization of computation resources and reduction of 
calculation time, the specific precise method of calculation of switching instances is proposed.  

In the beginning of modeling the admissible calculation step ∆t is chosen, verifying at 
every moment if the sign of definite switching function ),( tvCδ  has changed (defining the 
transition to the next configuration). The switching function for the voltage mode controlled 

where  A - the proportional feedback gain; 
 VZ - the lowest value of the sawtooth voltage; 
 VA - the highest value of the sawtooth voltage; 
 mod1 - the remainder after division. 
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buck converter with proportional compensator could be defined using the equation relating the 
sawtooth signal (7.2) and the amplified error signal (7.1): 

))((1mod)(),( refCZAZconrampC VtvA
T

t
VVVVVtv −−








−+=−=δ . (7.9) 

Using the introduced function it is possible to redefine the application conditions of 
equations (7.7) and (7.8). Therefore, if ),( tvCδ <0 the dynamics of the systems is governed by 
(7.7), however, if ),( tvCδ ≥0, equation (7.8) should be used.  

If during the operation of the algorithm at the time moment tx the change of the sign of 
),( tvCδ  is detected (i.e. the transition to the new configuration appears), then for the precise 

detection of the switching moment the following transcendental equation should be solved: 
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in the time interval [tx–∆t; tx]. After obtaining tx – the solution of equation (7.10) it is 
necessary to recalculate the last point )( xC tv , )( xC tv&  obtained for the previous configuration, 
utilizing results for the calculation of constants K1, K2 and K3, K4. The described approach 
allows the detection of switching moments with the required accuracy that is defined by the 
algorithm of solution of transcendental equation.  

Applying the models of the buck converter defined within this chapter, as well as 
taking into account the specific properties of switching instances, the corresponding discrete-
time model is defined in the form of stroboscopic map, obtaining the samples of inductor 
current and the capacitor voltage at the end of every period of the sawtooth signal. 

The analytical approach of stability estimation of periodic regimes 

SPC are designed to operate with the constant switching frequency equal to that of the 
external control clock. The stability of the existing periodic mode may, however, be lost due 
to the variation of system parameters such as the input voltage (E) or the load resistance (R), 
resulting in subharmonic oscillations. In order to avoid the occurrence of subharmonic and 
chaotic oscillations in practical converters, it is normal practice to specify the range of 
parameters (such as E and R) within which the converter will operate reliably in the steady 
state. Therefore, it is necessary to estimate the high-frequency instability margins in 
parameter space, ensuring periodic operation of SPC without the onset of subharmonic or 
aperiodic oscillations. 

 To address the mentioned problem, several specific methods of analysis of nonlinear 
dynamics on the basis of construction of Poincare section (described in the 3rd chapter) are 
proposed. The obtained discrete-time models allow reducing the problem of stability of the 
trajectory in the state space to that of the stability of the fixed point. For the estimation of 
stability of the calculated fixed points the Floquet theory [36] (originally developed to study 
the stability of periodic orbits) and its extensions, developed by Aizerman, Gantmakher and 
Filippov to analyze different types of impacting motions and stick-slip oscillations in 
mechanical switching systems are utilized. It is shown that the developed theoretical structure 
allows fast and reliable stability estimation of periodic regimes of SPC which belong to the 
same class of switching dynamical systems as the mechanical systems for which the theory 
was originally developed. 

The outline of the Fillipov method 

Studying the nonlinear dynamics of SPC one is interested in the stability of a periodic 
orbit that starts at a specific state at the beginning of switching cycle and returns to the same 
state after n switching periods. The stability of such a periodic orbit could be studied in terms 
of the evolution of perturbation. If the initial condition is perturbed and the solution converges 
back to the orbit, then the operating regime is stable. The stability margin can be assessed 
from the rate of convergence. 



45 

Suppose a given system has an initial condition )( 0tx  at time t0 and we perturb it to 

)( 0tx  such that the size of perturbation is )()()( 000 txtxtx −=∆ . If the original trajectory and 

the perturbed trajectory evolve in time, the perturbation at the end of the period can be related 
to the initial perturbation by the following equation:  

)()( 0txtx Φ∆=∆ ,     (7.11) 

where Φ  is the state transition matrix, which is a function of the initial state, the initial and 
the final time. In linear time-invariant systems, the state transition matrix is given by the 
matrix exponential:  

)( 0ttA
e

−=Φ ,      (7.12) 
where А is the state matrix that appears in the state equation BuAxx +=& . 
 For any SPC, the state evolves through subsystems that are linear and time-invariant, 
therefore, for the evolution of perturbation through each subsystem, the state transition matrix 
can be obtained by means of equation (7.12) (if the initial time, the final time and the initial 
conditions are known).  
 Suppose the state of the systems evolves from the instant tA to the instant tB and the 
state transition matrix for the observed period of time is 1Φ . Then the state evolves from the 
instant tB to tC, and the state transition matrix in that interval is. If the evolution from tA to tC is 
smooth (differentiable at every point), then the state transition matrix from tA to tC is simply 
the product of the two mentioned matrices 12ΦΦ . However, if a switching occurs at point B – 
the evolution at this point becomes non-smooth as the governing equations before and after 
the switching event are different. Aizerman and Gantmakher, as well as Filippov [36] showed 
that in such a situation one has to additionally consider the evolution of the perturbation 
across the switching event and construct the state transition matrix that relates the perturbation 
just after the switching event to that just before: 

)()( −+ ∆=∆ BB txStx ,     (7.13) 
where matrix S is called “jump matrix” [36] or „updating matrix”. 
 Studying the stability of periodic orbits, it is necessary to calculate the transition 
matrix over a whole switching cycle. This matrix is called the monodromy matrix. Rejoining 
the previous example and assuming that the switching in the system occurs at the time 
moment tB, the monodromy matrix is expressed as:  

1122 Φ××Φ=Φ Smon .      (7.14) 
If the modules of all eigenvalues (Floquet multipliers) of the monodromy matrix are 

less than unity (i.e. lie inside the unit circle), perturbations will die down and the periodic 
regimes will be stable.  

Applying the methodology described in [36], the expression for the calculation of 
jump matrix for the voltage mode controlled buck converter operating in CCM could be 
obtained in the following form: 
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The obtained jump matrix together with the corresponding state transition matrixes, 
defined for the ON and OFF intervals using the equation (7.12), allows the construction of 
monodromy matrix for the buck converter in order to estimate the stability of certain periodic 
regime. 

The described methodology was used in order to estimate the stability of periodic 
regimes of the buck SPC analytically, and integrated into the software developed by the 
author, allowing the decrease of calculation time and increase of calculation accuracy.  
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The investigation of the dynamics of voltage mode controlled buck SPC 

operating in CCM by means of MCBG and laboratory experiments 

The analysis of nonlinear dynamics of the voltage mode controlled buck converter, 
provided in chapter 7 of the thesis, on the basis of analytical approaches, MCBG and 
experimental measurements, allows the definition of the following conclusions, associated 
with: 
A. stability and chaotization of SPC: 

• as pointed out within the chapter, it is not possible to obtain the iterative mapping in 
the closed form for the SPC under investigation, however the appropriate 
methodology for the construction of Poincare map, based on the precise differential 
equations and numerical solutions of transcendental equations, is shown; 

• the application of Fillipov method to the analysis of the stability of periodic regimes in 
SPC allows the noticeable improvement of the efficiency of constructing the complete 
one parameter bifurcation diagrams, providing the possibility of obtaining the 
analytical monodromy matrices for the estimation of stability of certain regimes; 

• the main nonlinear phenomena in voltage mode controlled buck converter, operating 
in CCM, could be characterized by the appearance of the cascade of smooth period 
doubling bifurcations with the subsequent chaotization of oscillations in accordance 
with the classical Feigenbaum scenario (see Fig. 7.2); 

 
Fig. 7.2. The complete bifurcation diagram for the buck converter depicting 1T BG combined 
with the Monte Carlo bifurcation diagram 
Stable (dark lines) and unstable (light lines) periodic regimes up to P8 are depicted in the diagram. The following 
designations are used: PD- period-doubling bifurcation; UPI- unstable periodic infinitium. The diagram shows the classical 
period doubling route to chaos after the point of accumulation of unstable periodic orbits. 

 
• the appearance of rare attractors in the dynamics of buck SPC could cause the essential 

increase of the output voltage and inductor current ripples; e.g., the dimensions of the 
phase portraits depicted in the Fig. 7.3 allows demonstrating that as the system 
exhibits the transition (caused by external noise or parameter fluctuations) from the P1 
regime to the P3 rare attractor, the noticeable increase in the inductor current and 
capacitor voltage ripples is observed, as: 
o for the P1 regime Vp-p≈ 40 mV and ∆iL≈30 mA; 
o for the P3 regime Vp-p≈ 300 mV and ∆iL≈90 mA. 
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Fig. 7.3. Phase portraits depicting the coexistence of P1 regime and P3 rare attractor 

 
• specific period-doubling saddle-node bifurcations appear in the buck converter as a 

result of  border collision phenomena observed in the dynamics of the system, causing 
the appearance of the bifurcation groups of new type, containing only unstable 
periodic regimes (see 5T BG in the Fig. 7.4);  

 
Fig. 7.4. The complete bifurcation diagram for the buck converter depicting 1T and 5T BG  
Stable (dark lines) and unstable (light lines) periodic regimes are depicted in the diagram. The following designations are 
used: PD- period-doubling bifurcation.  

• the new bifurcation groups could not be observed experimentally, however they have a 
crucial role in the process ob global chaotization of dynamics of the converter: if the 
chaotic attractor of 1T BG makes contact with the unstable manifold of the saddle 
point of new BG the sudden expansion of the chaotic attractor is observed (the 
increase of Vp-p and ∆iL in this case is defined by the dimensions of the unstable 
manifold– see Fig. 7.4 and 7.5). 
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Fig. 7.5 The chaotic attractor CH1 at E=32.5 V and the unstable manifold of the P5 saddle 
type fixed point at E=33 V 

B. the improvement of EMC of SPC: 

• the coexistence of rare periodic and chaotic attractors is observed in the wide 
parameter space of voltage mode controlled buck converter, (e.g. see 6T BG in the 
Fig. 7.6), that indicates that the robust chaotic regime could not be observed within the 
system, not allowing the use of the obtained chaotic operation for the improvement of 
EMC of switching power converter by means of spread spectrum approach. 

 
Fig. 7.6 The complete bifurcation diagram for the buck converter depicting 1T and 6T BG  
Stable (dark lines) and unstable (light lines) periodic regimes are depicted in the diagram. The following designations are 
used: PD- period-doubling bifurcation; UPI- unstable periodic infinitium. The coexistence of rare attractor and P2 regime is 
shown.  
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CONCLUSIONS 

 
In the process of design of switching power converters along with the other problems, 

ensuring the stability and improving the EMC of SPC is considered. Within the doctoral 
thesis it is suggested to use the modern approaches of the analysis of nonlinear dynamics in 
order to cope with the mentioned problems.  

The results obtained in the doctoral thesis prove that the design of stable switching 
power converters is possible effectively applying the Method of Complete Bifurcation 
Groups, that allows the prediction and avoiding the occurrence of undesirable regimes in the 
operation of converters. It is shown that the application of widely used averaged modeling 
approach is limited – this method does not allow the prediction of subharmonic and chaotic 
modes of operation (see chapter 5.5) or distinct between periodic and chaotic regimes (see 
chapter 6.4). The mentioned disadvantages of the models promoted the utilization of 
innovative approach – MCBG, the main algorithms of which, applicable to the investigation 
of nonlinear dynamics of SPC, where developed and implemented by the author of the 
doctoral thesis in MATLAB environment.  

One of the most significant features of the MCBG, in comparison to other methods 
used for the investigation of nonlinear dynamics, is the construction of the branches of 
bifurcation diagrams corresponding to unstable periodic regimes. Nevertheless the mentioned 
regimes could not be observed experimentally (as the smallest deviations in circuit parameters 
or the external noise cause the disappearance of these regimes), it has been shown within the 
thesis that they have a crucial role in the development of dynamics of SPC, as: 

• the branches of bifurcation diagrams, corresponding to unstable periodic regimes 
allows the detection of rare attractors and verification of the appearance of different 
types of crisis (causing significant increase of voltage and current ripples in SPC), as 
well as the study of interactions of two fundamentally different types of bifurcations 
(smooth and DIB) within one bifurcation diagram and precisely classify the new 
operating regimes; 

• the structure of the unstable manifolds of saddle points, constructed within the MCBG, 
defines the parameters and location of subharmonic and chaotic attractors 
(consequently, the corresponding values of inductor current and capacitor voltages). 
For the improvement of the electromagnetic compatibility of SPC applying the spread 

spectrum technique (see chapter 1.3) it is proposed in the thesis to utilize the chaotic modes of 
operation of power converters. The possibilities of ensuring robust chaotic operation in 
different types of SPC, conditions for the existence of corresponding chaotic regions, as well 
as the influence of the parameters on their implementation is studied.  

The programs implementing the algorithms developed within the thesis could be 
integrated into the commonly used SPC design software, allowing prediction of nonlinear 
dynamics of SPC during the design phase, ensuring the required regime of operation (i.e. 
avoiding subharmonic and chaotic modes of operation, as it could cause unreliable operation 
of the system, or intentionally ensuring chaotic operation in order to improve some 
characteristics of the converter). 
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