

RIGA TECHNICAL UNIVERSITY

Faculty of Computer Science and Information Technology

Institute of Applied Computer Systems

Uldis DONIŅŠ
Student of the Doctoral Study Program “Computer Systems”

TOPOLOGICAL UNIFIED MODELING LANGUAGE:

DEVELOPMENT AND APPLICATION

Summary of Doctoral Thesis

 Scientific Supervisor

Dr.habil.sc.ing., Professor

J. OSIS

Riga 2012

 2

 UDK 004.414.23 (043.2)

 Do 515 t

Donins U. Topological Unified Modeling

Language: Development and Application.

Summary of Doctoral Thesis. - R.:RTU, 2012. - 36

p.

Printed in accordance with the decision No 77 of

June 26, 2012 of the board of Applied Computer

Systems, Faculty of Computer Science and

Information Technology, Riga Technical

University.

This work has been supported by the European Social Fund within the project

«Support for the implementation of doctoral studies at Riga Technical University».

 ISBN 978-9934-10-351-3

 3

DOCTORAL THESIS

SUBMITTED FOR THE DOCTORAL DEGREE OF

ENGINEERING SCIENCE AT RIGA TECHNICAL UNIVERSITY

The defence of the thesis submitted for doctoral degree of engineering science

will take place at an open session on October 15, 2012 in Meza street 1/3, auditorium

202, Riga Technical University, Faculty of Computer Science and Information

Technology.

OFFICIAL OPPONENTS:

Dr.habil.sc.ing., Prof. Janis Grundspenkis

Riga Technical University, Riga, Latvia

Dr.habil.sc.comp., Prof. Janis Barzdins

University of Latvia, Riga, Latvia

Ph.D., Prof. Leszek Maciaszek

Macquarie University, Sydney, Australia

APPROVAL

I confirm that I have developed this thesis submitted for the doctoral degree at

Riga Technical University. This thesis has not been submitted for the doctoral degree

in any other university.

Uldis Donins ……………………………. (signature)

Date: ………………………

The doctoral thesis is written in English and includes introduction, 5 chapters,

conclusions, and 14 appendices. It contains 224 pages, 71 figure, and 32 tables.

Bibliography includes 134 information sources.

 4

TABLE OF CONTENTS

Introduction .. 5

1. Unified Modeling Language – a Standard for Software Design Specification 11

1.1. Formalism of UML and UML Formalization Attempts .. 12

1.2. Benefits and Disadvantages of Applying UML .. 13

1.3. Summary ... 13

2. Software Designing with UML Modeling Driven Approaches ... 13

2.1. Benefits and Limitations of UML Modeling Driven Approaches 14

2.2. Summary ... 15

3. Improving Unified Modeling Language .. 16

3.1. Developing a Profile for UML .. 16

3.2. Topological Unified Modeling Language – an UML Improvement 17

3.3. Summary ... 19

4. TopUML Modeling – a Method for Designing Software .. 20

4.1. Transitions between TopUML Diagrams .. 20

4.2. TopUML Modeling Activities .. 23

4.3. Summary ... 24

5. Implementation and Approbation of TopUML .. 25

5.1. Business Support Application Development ... 25

5.2. Enterprise Data Synchronization System Development ... 26

5.3. Empirical Evaluation of TopUML Profile and Modeling Method 27

5.4. Summary ... 28

Results and Conclusions ... 28

Bibliography ... 30

 5

INTRODUCTION

The analysis of problem domain and design of desired solution within software

development process has a major impact of the achieved result – developed software. While

the software developer community uses a set of tools and different techniques to create

detailed specification of the solution, the proper analysis of problem domain functioning is

ignored or covered insufficiently. One of such techniques is object-oriented software analysis

and development which states that there are two fundamental aspects of systems modeling:

analysis and design. The analysis defines what the solution needs to do within the problem

domain to fit the customer’s requirements, and the design states how the solution will be

implemented. The design of object-oriented software for the last decade has been leaded by

the Unified Modeling Language (UML) [14]. UML is an approved industry standard

modeling notation for visualizing, specifying, constructing, and documenting the artifacts of a

software-intensive system [57]. While the UML has elements for designing and specifying

artifacts of a software system, it lacks the ability to document the functioning of a problem

domain by using computation independent constructs. Since the UML is a notation and not a

technique or method, its application within software analysis and design is promoted by a set

of different software development methods and approaches.

Motivation of the Research

Despite that exists a bunch of software modeling languages (including the UML

approved and promoted by Object Management Group (OMG)) and methods that consumes

such modeling languages, the way the software is built remains surprisingly primitive (by

meaning that major software applications are cancelled, overrun their budgets and schedules,

and often have hazardously bad quality levels when released) as outlined by Jones in [37].

This phenomenon can be explained by the fact that the problem domain exists separately from

the solution domain (i.e. by not paying appropriate attention to the analysis of the problem

domain functioning) [64]. Furthermore, in particular cases the software is built as the

developers see the solution and not as the problem domain functions. By reducing or even

avoiding proper analysis of the problem domain, the traces between artifacts of problem and

solution domains cannot be established. Without these traces the acceptance process of

developed software gets meaningless since the customer cannot fully verify the delivered

solution (in terms of relating functioning of the problem domain to the delivered software)

[6]. To motivate software developers to pay more attention on the analysis and understanding

of problem domain and its functioning, an appropriate models and their application method

should be provided. The research results outlined by Jones ([37]) has proved that the UML

and the existing UML modeling driven methods do not provide such appropriate model and

modeling guidelines.

 6

Research Area

The research area in the focus of this research is the topological modeling of system

functioning. The topological modeling of system functioning was started in the middle of

1960’s in Riga Technical University by Janis Osis. The first theoretical foundations of

Topological functioning model (TFM) and its application in the topological modeling of

system functioning are represented in [63]. The initial problem domain in which TFM is

applied is the diagnostic of mechanic devices (e.g. motor vehicles) based on cybernetics and

computer science. Large number of high-quality algorithms and methods related to the TFM

application in diagnostic tasks are summarized in [70]. The application of TFM within

different problem domains and areas is developed today as well. In fact, the [62] and [63]

propose a new foundation of the system theory.

Topological modeling of system functioning has been successfully applied in the field

of medical problems solving and diagnostics by Zigurds Markovics since beginning of 1970’s

[38][48]. The research work continued by Janis Grundspenkis initially was related to

investigations of cycle hierarchies for the purpose of rational diagnostic algorithm

development [29], [33]. Later the topological modeling research direction by Grundspenkis is

evolved as structural modeling [32] which is developed to support systematic causal domain

model based knowledge acquisition. The essence of structural modeling is the systematic

procedure for construction of three structural (i.e. topological) models representing the

morphology, functions and behavior of complex technical system [30]. Structural modeling

approach has been implemented in automated structural modeling system ASMOS [31].

The research direction continued by Osis is related to TFM application in the field of

object-oriented analysis and object-oriented software development. Recent research results

are published as follows: topological modeling application for business process modeling and

simulation [73], TFM application in the software development for mechatronic and embedded

systems [60], introducing more formalism in problem domain analysis ([4], [5], [16], and

[18]), formal analysis of Computation Independent Model (CIM) within Model Driven

Architecture (MDA [51]; [61], [64], [68], [85] and [86]), formally specifying Platform

Independent Model (PIM) and performing transformation CIM-to-PIM within MDA ([19] and

[21]), and analysis and design of embedded systems by applying topological function–

architecture co-design method [71]. The theoretical foundations of TFM are summarized and

published in monograph [65] where the definitions of TFM are given and the powerfulness of

TFM is demonstrated in the context of formal problem domain analysis. This research is the

continuation of topological modeling of system functioning evolution within the field of

object-oriented analysis and software development.

Purpose of the Research

The goal of the thesis is to supplement UML with theoretical foundations in order to

create grounds for converting notation into a formal modeling language and to define

 7

modeling method which allows to clearly trace cause-and-effect relationships in both problem

and solution domains.

The tasks of thesis in order to achieve the goal are defined as follows:

1. Explore the evolution of UML and its specification in order to outline the positive

and negative aspects of the current language’s version application within software

development thus identifying aspects of UML that should be improved,

2. Identify UML extension mechanisms and options in order to determine the best

suitable extension mechanism to implement the new version of UML,

3. Analyze the main characteristics of a set of UML modeling driven software

development approaches and compare their potentialities formalizing the problem

domain and creating solution domain design in accordance with the functioning

characteristics of problem domain,

4. Develop template for describing UML profile by performing analysis on a set of

currently available UML profiles,

5. Develop a new language – Topological UML (TopUML) – in accordance with the

identified aspects of UML that should be improved and in accordance with the

developed template to specify UML profiles,

6. Specify software development method that supports formal application of created

TopUML profile that allows to clearly trace cause-and-effect relationships in both

problem and solution domains,

7. Approbate the developed language and its application method in experimental

software development project involving into software design process several

groups of software development experts, and

8. Approbate the developed language and its application method in a real software

development project providing step-by-step case study exploration of developed

artifacts.

The research objects are UML and its application methods that support application of

UML within software development.

The research subject of the thesis is UML and its application methods, focusing on

the formal development of software design models and the establishment of traces between

problem domain and solution domain artifacts.

Research Methods

The following research methods are used: mathematical model and modeling language

to specify problem domain and solution domain, metamodeling method, model

transformation, as well as the following parts of mathematic – general topology, combinatory

topology, graph theory, and mathematical logic.

Scientific Innovation and Practical Value

The scientific innovation of the research is formal modeling of solution domain in

strong accordance with the functioning of problem domain by using TopUML and formal

 8

software designing and development method which is specially developed to drive the

application of TopUML diagrams within software development process. Characteristics of the

developed TopUML modeling method are compared with the set of currently existing UML

modeling driven software development methods and techniques.

The practical value of the research is specification of TopUML profile which

combines formalism of TFM mathematical topology and specification standard of OMG, and

specified software analysis and design method. The developed modeling method enables

application of TopUML diagrams in a formal software development process and consists of

formally defined designing activities thus enabling solution development in accordance with

functioning characteristics of problem domain and clearly tracing cause-and-effect

relationships in artifacts of problem and solution domains. Since the TopUML is developed as

UML profile, it can be implemented in any existing UML modeling tool that supports

definitions of custom profiles.

Approbation of the Work Results

The main results of the research are presented in the following international scientific

conferences (two were held in Latvia and five in foreign countries):

1. 7
th

 International Conference on Evaluation of Novel Approaches to Software

Engineering (ENASE 2012), Wroclaw, Poland, June 29-30, 2012,

2. 13
th

 International Conference on Enterprise Information Systems (ICEIS 2011),

Beijing, China, June 8-11, 2011,

3. 3
rd

 International Workshop on Model-Driven Architecture and Modeling Driven

Software Development (MDA & MDSD 2011) in conjunction with 6
th

International Working Conference on Evaluation of Novel Approaches to

Software Engineering (ENASE 2011), Beijing, China, June 8-11, 2011,

4. 2
nd

 International Workshop on Model-Driven Architecture and Modeling Theory-

Driven Development (MDA & MTDD 2010) in conjunction with 5
th

 International

Conference on Evaluation of Novel Approaches to Software Engineering (ENASE

2010), Athens, Greece, July 22-24, 2010,

5. 13
th

 East-European Conference on Advances in Databases and Information

Systems (ADBIS 2009), Riga, Latvia, September 7-10, 2009,

6. 4
th

 International Conference on Evaluation of Novel Approaches to Software

Engineering (ENASE 2009), Milano, Italy, May 9-10, 2009, and

7. The 49
th

 Scientific Conference of Riga Technical University, Riga, Latvia,

October 13-15, 2008.

The main results of the research are published in the following scientific papers:

1. Donins U. Semantics of Logical Relations in Topological Functioning Model//

Proceedings of the 7
th

 International Conference on Evaluation of Novel

Approaches to Software Engineering (ENASE 2012) – 2012. (To be published)

2. Donins U., Osis J., Asnina E., Jansone A. Formal Analysis of Objects State

Changes and Transitions// Proceedings of the 7
th

 International Conference on

 9

Evaluation of Novel Approaches to Software Engineering (ENASE 2012) – 2012.

(To be published)

3. Donins U., Osis J. Topological Modeling for Enterprise Data Synchronization

System: A Case Study of Topological Model-Driven Software Development//

Proceedings of the 13
th

 International Conference on Enterprise Information

Systems, Volume 3. - Beijing, China: SciTePress, 2011. - pp. 87-96 [Indexed by

Thomson Reuters, Inspec, EI, DBLP, ISTP]

4. Donins U., Osis J., Slihte A., Asnina E., Gulbis B. Towards the Refinement of

Topological Class Diagram as a Platform Independent Model// Proceedings of the

3
rd

 International Workshop on Model-Driven Architecture and Modeling-Driven

Software Development. - Beijing, China: SciTePress, 2011. - pp. 79-88 [Indexed

by Thomson Reuters, Inspec, EI, DBLP]

5. Slihte A., Osis J., Donins U., Asnina, E., Gulbis, B. Advancements of the

Topological Functioning Model for Model Driven Architecture Approach//

Proceedings of the 3
rd

 International Workshop on Model-Driven Architecture and

Modeling-Driven Software Development. - Beijing, China: SciTePress, 2011. - pp.

91-100 [Indexed by Thomson Reuters, Inspec, EI, DBLP]

6. Asnina E., Gulbis B., Osis J., Alksnis G., Donins U., Slihte A. Backward

Requirements Traceability within the Topology-based Model Driven Software

Development// Proceedings of the 3
rd

 International Workshop on Model-Driven

Architecture and Modeling-Driven Software Development. - Beijing, China:

SciTePress, 2011. - pp. 36-45 [Indexed by Thomson Reuters, Inspec, EI, DBLP]

7. Slihte A., Osis J., Donins U. Knowledge Integration for Domain Modeling//

Proceedings of the 3
rd

 International Workshop on Model-Driven Architecture and

Modeling-Driven Software Development. - Beijing, China: SciTePress, 2011. - pp.

46-56 [Indexed by Thomson Reuters, Inspec, EI, DBLP]

8. Donins U. Software Development with the Emphasis on Topology// Advances in

Databases and Information Systems (Lecture Notes in Computer Science,

Vol.5968). - Berlin, Germany: Springer-Verlag, 2010. - pp. 220-228 [Indexed by

SCOPUS, Springer, DBLP]

9. Osis J., Donins U. Platform Independent model Development by Means of

Topological Class Diagrams// Proceedings of the 2
nd

 International Workshop on

Model-Driven Architecture and Modeling Theory-Driven Development - Portugal:

SciTePress, 2010. - pp. 13-22 [Indexed by SCOPUS, Thomson Reuters, Inspec,

DBLP]

10. Osis J., Donins U. Formalization of the UML Class Diagrams// Evaluation of

Novel Approaches to Software Engineering (Communications in Computer and

Information Science (CCIS), Volume 69). - Berlin, Germany: Springer-Verlag,

2010. - pp. 180-192 [Indexed by SCOPUS, Springer]

 10

11. Osis J, Donins U. Modeling Formalization of MDA Software Development at the

Very Beginning of Life Cycle// Advances in Databases and Information Systems.

13
th

 East-European Conference, ADBIS 2009: Associated Workshops and

Doctoral Consortium, Local Proceedings. - Riga, Latvia: JUMI Publishing House

Ltd., 2009. - pp. 48-61 [ISBN 978-9984-30-163-1]

12. Osis J., Donins U. An Innovative Model Driven Formalization of the Class

Diagrams// Proceedings of the 4
th

 International Conference on Evaluation of Novel

Approaches to Software Engineering (ENASE 2009). – Portugal: INSTICC Press,

2009. - pp. 134-145 [Indexed by SCOPUS, Thomson Reuters, Inspec, DBLP]

13. Donins U., Osis J. Reconciling Software Requirements and Architectures within

MDA// Scientific Proceedings of Riga Technical University, Computer Science

(Series 5), Applied Computer Systems (Vol. 38). - Riga, Latvia: RTU Publishing

house, 2009. - pp. 84-95 [Indexed by DBLP]

In addition to the scientific papers, a monograph has been published:

1. Doniņš U. Topological Business Systems Modeling and Software Systems Design.

- Riga, Latvia: RTU Publishing house, 2011. - 65 p. (in Latvian) [ISBN: 978-

9934-10-136-6]

Thesis Outline

The thesis consists of introduction, five chapters, conclusions, twelve appendices, and

bibliography. The doctoral thesis contains 224 pages, 71 figure, 32 tables, and 14 appendices.

Bibliography includes 134 information sources.

Introduction gives motivation of the thesis, research goal, tasks defined to reach the

goal, novelty and practical value of the research together with the approbation and the main

results achieved as well.

Chapter 1 represents the research on UML, including the review of its evolution. The

research on UML shows the benefits and limitations of applying it in software development.

As a result UML improvement options are outlined.

Chapter 2 analyzes methods and approaches that support and promote the use of UML

within software development process. Result of review shows positive and negative aspects of

the analyzed UML modeling driven methods.

The UML extension mechanism – profiles – is covered in Chapter 3 as well as the

development of the TopUML profile. TopUML is a combination of UML and formalism of

TFM and is based on the principles of metamodeling; it extends the UML version 2.4.1 by

adding TFM to UML and topological functioning characteristics into UML diagrams.

Chapter 4 presents the TopUML modeling – a method intended for systematical

application of TopUML profile within software development analysis and design phase.

TopUML modeling is defined as a set of activities. Each activity defines the input and the

output artifacts. The application of these activities can vary from project to project.

Additionally Chapter 4 compares TopUML modeling with the UML modeling driven

approaches covered in Chapter 2.

 11

In Chapter 5 application and approbation of TopUML language and modeling method

in the context of experimental software development and case study is explored and

described. Case study is a step-by-step exploration of TopUML application in real software

development project.

The Conclusions summarizes the results of this research, gives conclusions and future

research directions.

Thesis contains fourteen appendices: 1) Used Abbreviations, 2) TopUML

Specification, 3) Mappings Between TopUML Diagrams, 4) Informal Description of Laundry

Functioning, 5) Functional Requirements and System Goals of the Laundry Software System,

6) Functional Features of Laundry Functioning, 7) Closuring of Laundry Functioning

Topological Space, 8) Sequence Diagrams Representing Behavior of Laundry, 9) Laundry

System Topological Class Diagram, 10) Lattelecom Technology Ltd. Acknowledgement of

Software Development by using TopUML Modeling Method, 11) Specification of Enterprise

Data Synchronization System, 12) Functional Features of Enterprise Data Synchronization

System, 13) Self-Evaluation Questionnaire, and 14) OMG-Certified UML Professional

Certificate.

1. UNIFIED MODELING LANGUAGE – A STANDARD FOR

SOFTWARE DESIGN SPECIFICATION

UML is a graphical language officially defined by OMG for visualizing, specifying,

constructing, and documenting the artifacts
1
 of a software-intensive system [57]. It offers a

standard way to write a system’s blueprints, including conceptual things such as business

processes and system functions as well as concrete things such as programming language

statements, database schemas, and reusable software components [28]. UML became widely

accepted as the standard for object-oriented analysis and design soon after it was first

introduced in year 1997 [42] and still remains so today [14]. Since the release of first UML

version a large number of practitioner and research articles and dozens of textbooks have been

devoted to articulating various aspects of the UML, including guidelines for using it. Some of

the research areas on UML are as follows:

 Formalization of UML semantics (e.g., [23], [34] (both after UML 1.1 was

released), and [89] (after UML 2.0 was released)),

 Extending the UML (e.g., [49], [69], and review of a number of UML profiles

developed by different researchers and groups [75]),

 Formalizing the way the UML diagrams are developed (e.g., [64] and [67]),

 Ontological analysis of UML modeling constructs (e.g., [92]),

 Empirical assessments (e.g., [14] and [24]),

 Analysis of the UML’s complexity (e.g., [22], [81], and [82]),

1
 An artifact in software development is an item created or collected during the development

process. Example of artifacts includes use cases, requirements, design, code, executable files.

 12

 Difficulties of learning UML (e.g., [83]) and how to avoid them (e.g., [7]),

 Transformations between UML diagrams (e.g., [46], [43], and [50]),

 Software code generation and related issues with generated code quality (e.g. [45]

and [80]), and

 Experiments that evaluate aspects of UML models effectiveness (e.g., [12]).

The large number of researches regarding UML evolving and strengthening is caused

by the basis on which UML was developed. According to Dobing and Parsons [14] the “UML

was not developed based on any theoretical principles regarding the constructs required for

an effective and usable modeling language for analysis and design; instead, it arose from

(sometimes conflicting) “best practices” (e.g. Booch [8], OMT [77], OOSE [36]) in parts of

the software engineering community”.

The review of elements that build up UML within this chapter is based on UML

version 2.4.1 specification which is divided into two volumes: Infrastructure [56] (core

metamodel); and Superstructure [57] (notation and semantics for diagrams and their model

elements). Actually, the Superstructure specification is based on Infrastructure specification.

The set of modeling concepts of UML is partitioned into horizontal layers of increasing

capability called compliance levels (the compliance level is needed to take into consideration

when developing or choosing modeling tools [28]).

1.1. Formalism of UML and UML Formalization Attempts

The UML specification is defined by using a metamodeling approach which adapts

formal specification techniques. A metamodel is used to specify the model that comprises

UML. In spite of using metamodeling approach, the UML specification method lacks some

properties of formal specification methods. The specification of UML cannot be considered as

formal specification because of natural language (English) use in it. UML specification [56]

underlines that the specification as a metamodel does not eliminate the option of specifying it

later by using formal/mathematical language (e.g., OCL [91], Z [87], PVS [74], or RAISE

[52]). The formalization of UML specification has following benefits [23]: clarity,

equivalence and consistency, extendibility, refinement, proof, and tools that make use of

semantics require that semantics to be precise. The current UML semantics are not

sufficiently formal to realize all of the above listed benefits.

Part of formalization researches is restricted to the semantics of models, while others

are concerned with issues of reasoning about models and model transformations. Currently

there exist a number of approaches for specifying and formalizing semantics of UML by

using: formal languages (e.g., using Z [23] or Object-Z [40]), category theory (captures

relationships between specification objects; e.g., [1] and [13]), stream theory (e.g., [11]), -

calculus or process algebra (e.g., [93]), and algebraic approaches (e.g., [89]). The researches

on UML semantics formalization relate to the internal consistency of the UML, not to its

relationship to problem domains [25]. To address the relation of UML elements to problem

 13

domains, researches are ongoing on formalizing the way the software is developed by using

UML diagrams ([16], [65]) and describing UML constructs by using ontology ([25], [92]).

1.2. Benefits and Disadvantages of Applying UML

While the application of UML within software development has a number of benefits,

it also has some disadvantages. The main benefits are ([2], [14], [27], [57], and [59]): UML is

independent of software development methods, techniques and platforms; it has an extension

mechanism thus allowing to solve specific modeling tasks; and the models can be transferred

between different tools from different tool vendors since UML is defined in accordance with

metadata interchange (XMI). The main disadvantages of UML application is its size,

incoherence, different interpretations, frequent subsetting, and the lack of causality ([14],

[16], [23], [39], [69], and [84]). From these disadvantages rises a set of problems like

ambiguous semantics, cognitive misdirection during the development process, inadequate

capture of properties of system under consideration, lack of appropriate supporting tools and

developer inexperience, and inability to trace cause-and-effect relationships between the

existing artifacts in problem domain and created artifacts in solution domain.

1.3. Summary

By taking a closer look at benefits and disadvantages of applying UML within

software development, it is visible that some benefits turn into disadvantages (e.g.,

independency of software development methods leads to cognitive misdirection during the

development process). To address the listed disadvantages, a bunch of researches on UML

strengthening and formalization are performed.

UML can be strengthened by using mathematical topology thus addressing the

disadvantage of lacking causality [16]. In this case UML needs to be improved by

supplementing it with the topological and functioning characteristics of TFM. To allow using

topology in UML diagrams, it should be extended thus creating a new kind of UML–

Topological Unified Modeling Language (TopUML). The core framework proposal for

TopUML profile is presented in [69]. The first research results shows that the transfer of

topological and functioning characteristics from TFM to UML is sufficient for clearly tracing

cause-and-effect relationships in both – problem and solution – domains.

Next chapter is dedicated to explore currently existing UML modeling driven software

development approaches, thus addressing the disadvantages of UML’s size, incoherence,

different interpretations, and frequent subsetting.

2. SOFTWARE DESIGNING WITH UML MODELING DRIVEN

APPROACHES

UML is a notation and as such its specification does not contain any guidelines of

software development process. Despite that UML is independent of particular methods, most

of the UML modeling driven methods uses use case driven approach [14]. This might be

 14

caused by the originators (Booch, Rumbaugh, and Jacobson) of the UML since they

recommend a use case driven process in “The Unified Modeling Language User Guide”

([10]). A majority of UML modeling driven approaches since then has endorsed this view,

and most contain at least some further prescriptions for applying the UML in modeling (e.g.,

[44], [76], and [88]). There is also difference in the use of use case narratives across various

methods due to the lack of guidance on narrative format in the UML specification. The UML

specification [57] only states that “use cases are typically specified in various idiosyncratic

formats such as natural language, tables, trees, etc. Therefore, it is not easy to capture its

structure accurately or generally by a formal model.”

A successful software development project can be measured against deliverables,

delivery schedule, and that created result is resilient to change and adaptation. For software

development project to be successful by means of given measurements, it should satisfy the

following two characteristics [9]:

1. Solution should have a strong architectural vision, and

2. A well-managed development lifecycle should be used.

Software architecture is “fundamental organization of a system embodied in its

components, their relationships to each other, and to the environment, and the principles

guiding its design and evolution” [35]. Good software architectures tend to have several

attributes in common [9]:

1. They are constructed in well-defined layers of abstraction,

2. They have a clear separation of concerns between the interface and

implementation of each layer, and

3. The architecture itself is simple – common behavior is achieved through common

abstractions and common mechanisms.

Currently exist a number of UML modeling driven software development approaches,

e.g., software development lifecycles [79], use case driven methods [76], model driven

architecture [41], pattern based development [44], component based development [88], and

conceptual modeling [53]. The review of software development methods discusses a number

of existing UML modeling driven software development approaches paying the most

emphasis and attention on the use and application of UML diagrams (i.e., which diagram

types for what purpose are used and in which sequence they should be created). The analysis

of UML diagram usage additionally shows if there are included transformation rules or

guidelines between different diagram types. Overview of the current state of the art of UML

based software development approaches includes approaches that are well known in software

development industry [14], formalizes the development process and problem domain [64],

and are used in the conjunction of software development tools [47].

2.1. Benefits and Limitations of UML Modeling Driven Approaches

By combining UML together with some modeling method, it can be used as a

powerful tool to analyze and understand both problem domain and software system and to

design planned software system. Despite the fact that UML modeling driven approaches

 15

provides a systematical use of UML diagrams, these approaches do cover different parts of a

software development lifecycles and accordingly uses only a subset of UML diagrams. Due to

this, the software developers are forced to combine together several modeling methods, thus

the application of UML gets more complicated and incomprehensible. Whole software

development lifecycle is covered only by the Unified process [3] and Microsoft Solutions

Framework (MSF) [90], other methods focuses more on analysis (e.g. Business Object

Oriented Modeling (B.O.O.M.) [76], TFM for MDA (TFMfMDA) [4], and Conceptual

modeling [59]) while others – more on design and less on analysis (e.g., Pattern based design

[44], Component based development[88]). This impacts the number of UML diagram types

that are used by each of the method. Greatest amount of applied diagram types among the

reviewed methods is within the Unified process.

While the benefit of applying Unified process is the coverage of whole software

development lifecycle, it has some limitations – the Unified process promotes use case driven

analysis of problem domain. As such the Unified process does not provide a formal way of

analyzing and formalizing the problem domain. The only formal method for problem domain

formalization among the reviewed methods is TFMfMDA. It uses TFM as a technique for

both problem and solution domain analysis and formalization. While TFMfMDA has

formalized the very beginning of software development lifecycle, its largest limitation is the

Conceptual class diagram and its development. TFM describes the functionality of the

problem domain and solution domain (including the responsibilities through the whole

system). When TFM is transformed into Conceptual class diagram this important information

of responsibilities from TFM is not transferred to Class diagram. “Deciding what operations

belong where, and how the objects should interact, is terribly important and anything but

trivial. This is a critical step - this is at the heart of what it means to develop an object-

oriented system, not drawing domain model diagrams, package diagrams, and so forth” [44].

The analysis of UML application in software development industry [14] shows that

the five most applied diagram type among UML diagrams are: Class, Use case, Sequence,

Activity, and State diagram. This fact is tightly related with the UML modeling driven

methods – the review of methods shows that the five most applied UML diagram types within

them are the same as listed in [14].

2.2. Summary

The application of modeling methods within software development process reduces

and even solves several disadvantages of UML identified in previous chapter. They are as

follows:

 Size – systematic and consistent software analysis and design activities solves

issue related with the large amount of UML diagrams and their elements,

 Incoherence – through the predefined actions the modeling method tries to

develop diagram by diagram thus showing the seams and transitions between

them,

 16

 Different interpretations – UML semantics together with methodical application of

UML diagrams creates shared understanding among stakeholders, and

 Frequent subsetting – providing UML extension (e.g. profile) together with a

proper modeling method it is clearly visible how it is related to UML elements and

diagrams and how software development process can benefit from the developed

extension.

Unfortunately, the partial coverage of the software development lifecycle and the

fragmentary application of UML diagrams within reviewed modeling methods do not

eliminate above listed disadvantages at a sufficient level that is required for an effective and

usable software analysis and design method. An effective and usable method has the

following characteristics: it allows achieving the desired result (formalization of problem

domain and designing of solution in accordance to identified functioning characteristics of

problem domain), and it offers adequate means for clearly identifying cause-and-effect

relationships within problem domain artifacts, as well as in solution domain artifacts.

3. IMPROVING UNIFIED MODELING LANGUAGE

Extension of UML can be done in two ways – by using “lightweight” extension and by

using “heavyweight” extension [56]. The lightweight extension is done by using profiles thus

defining a new dialect of UML. The heavyweight extension is done by using metamodeling

based on Meta Object Facility [54] (MOF). The MOF based extension of UML is intended to

redefine existing metamodels and define new ones in accordance with the metamodeling

principles. It is needed to remark, that by using MOF based extension all the benefits of

creating profile are lost and it can be a difficult task to put the new language into practice. If

there is need to extend the UML, at first it is needed to draw the scope of UML extension:

 If the new language will use most of the UML, then profiles are suitable choose

for that solution, and

 If the new language uses only small part of UML or there is need to use more

complex features of UML such as redefinition, then creating a complete new

language by using MOF metamodeling should be considered.

In fact, the most common and suitable way for improving UML is to use its

extensibility mechanisms – the profiles. By improving UML with the profile mechanism, it is

possible to adapt and use ordinary UML compliant modeling tools [78]. Thus, by creating a

profile of UML the costs of adaption in industry for such new language is lowered and it can

be adapted faster.

3.1. Developing a Profile for UML

Developing a profile for UML should be done in consistent way by using some unified

profiling approach or template. Since UML specification contains only the definition of

elements that are building up a profile and does not provide guidelines or process on how to

apply these elements, before creating a profile for UML it is needed to define guidelines of

 17

profile development. Guidelines for profile definition are based on the review of four different

profiles (Executable UML [49] (xUML), TFMfMDA [4], Object Modeling Group System

Modeling Language [58] (OMG SysML), and Service Oriented Architecture Modeling

Language [55] (SoaML)). The review of UML profiles shows that there is no unified profile

definition template or approach – each author defines profile on its own ([75]). Only two of

four reviewed profiles – OMG SysML and SoaML – have huge similarities in the profile

specification (the specification structure is about 85% the same). The specification of these

two profiles follows the overall specification structure of UML; thus if the reader is familiar

with the UML specification understanding of these profiles is relieved. Summarizing up

issues related to UML profile specification techniques and templates, guidelines for profile

development are provided. These guidelines are applied for profile specified in next

subsection.

3.2. Topological Unified Modeling Language – an UML Improvement

The main aim of improving UML is by refining its elements with formalism and

mathematics of TFM, thus eliminating the lack of cause-and-effect relationships within the

current UML specification. Topological Unified Modeling Language (TopUML) is a

combination of UML and formalism of TFM and is based on the MOF metamodeling

principles. Idea of Topological UML is adapted from [60] where it is shown that “there is a

lack of mathematical formalism by drawing UML diagrams”.

TopUML is developed as a profile of UML and its specification takes advantage of the

package merge feature of UML to merge extensions into UML. TopUML development is

based on following steps:

1. Extend UML by using its extension mechanism, thus developing a TopUML

profile, and

2. Define guidelines for using TopUML in practice (thus formalizing the way the

TopUML is used).

According to the TopUML base idea to combine formalism of TFM with UML and to

create TopUML in accordance with UML extension mechanisms, the new language includes

all diagram types from UML and a new diagram type – Topological functioning model (thus

making a family of fifteen diagrams). The analysis of topology in UML diagrams shows that

there are two diagrams which should be extended in order to include topological relationship:

Class diagram and Use case diagram. Thus, the extended version of UML allows achieving

goal of the thesis: clearly tracing cause-and-effect relationships in both problem and solution

domains. The extended versions of these two diagrams are called “Topological class

diagram” and “Topological use Case diagram”. The profile diagram specifying TopUML

language consists of four packages, eight stereotypes, two enumerations and three

metamodels (one for TFM and each extended diagram). The top-level profile diagram of

TopUML is given in Figure 3.1 which shows the related metamodel and relationships

between packages in the profile. The TopUML profile diagram is developed according to

UML specification and by using elements of UML.

 18

«metamodel»
UML

«profile»

TopUML

«reference» TopologicalRelationships TopologicalStructure

TopologicalBehavior TopologicalModels

«import» «import»

«import»

Figure 3.1. TopUML profile top level package

The packages are used to group together elements basing on their intent and semantics

and to ease the evolution of TopUML (i.e. creation of new TopUML versions). The packages

that build up TopUML profile are as follows:

 TopologicalRelationships – contains constructs related to relationships:

o TopologicalRelationship – topological relationship is a binary relation that shows a

cause-and-effect relation between two elements – source and target element,

o LogicalRelationsip – represents logical relation between two or more topological

relationships; shows conjunction, disjunction, and exclusive disjunction,

 TopologicalBehavior – contains constructs related to behavior modeling:

o FunctionalFeature – functional feature is a description of an atomic business

action; each functional feature is a unique tuple (stereotype FunctionalFeature is

an abstraction of this tuple),

o Condition – shows pre- and post- conditions within system; to enter the execution

of behavior (e.g., functional feature) all preconditions of it should be true and to

exit the execution of this behavior all postconditions should be evaluated to true,

o ActionResult – specifies a result of object’s action together with affected objects,

 TopologicalStructure – contains constructs related to structure representation:

o TopologicalCycle –represents directed functional cycle of system,

o TopologicalOperation – a behavioral feature of classifier that specifies the name,

type, parameters, and constraints for invoking an associated behavior, and related

functional features and topological relationships for specifying cause-and-effect

relations within system,

 TopologicalModels – contains diagram types added to UML by TopUML profile:

o TopologicalFunctioningModel – represents TFM by using UML metamodeling

constructs. TFM is a mathematical model that shows functioning of a system in the

form of directed graph consisting of functional features and topology between

them. Functional features embed information of systems functioning and its

structural description while topology defines cause-and-effect relations between

them.

 19

TopUML profile packages are designed to provide the necessary constructs to create

Topological functioning model, Topological class diagram, and Topological use case

diagram. Stereotypes included into each package are used across multiple diagram types thus

making TopUML profile more compact and without needless constructs.

Elimination of the UML disadvantage of lacking causality by supplementing it with

mathematical topology and thus creating TopUML profile emerges another UML

disadvantages – size and frequent subsetting. To address these issues, a TopUML modeling

method needs to be provided together with the new profile. The TopUML modeling method

should include following aspects:

1. Proper analysis of problem and solution domains (all software artifacts needs to be

an abstraction of a well analyzed and understood problem domain unit),

2. Cover most of the UML diagrams and software development lifecycle to eliminate

the need to combine together several modeling methods,

3. The developed artifacts are with high cohesion, and

4. Components of developed system need to have low coupling with the rest of the

system and a well-defined interface.

3.3. Summary

Development of UML profiles is a challenging activity as well as construction of other

UML diagrams while the UML specification defines only the modeling language together

with all its elements. Since the UML specification is a specification of a notation, it does not

include any guidelines for profile definition and specification. Thus, before a new UML

profile development it is necessary to determine the method for specifying the profile and

structure of this specification. Both the analysis of UML profiles within thesis and systematic

review of UML profiles in [75] outline the lack of profile definition guidelines and structure

which leads to the current situation when UML profiles are developed in inconsistent ways.

This makes it hard to read and understand profiles proposed and created by different authors.

A template for specifying an UML profile is proposed according to the UML profile analysis

results. The template suggests that the most convenient way for specifying an UML profile is

by using the same specification structure as used to specify UML itself (if the reader is

familiar with UML specification it is easier to read and understand the specification of

profile). TopUML profile is specified in accordance with the proposed specification template.

When a decision is made on developing a new modeling language based on UML, at

first it is needed to draw the scope of desired language and to determine the extent of reusable

parts of existing language. If the new modeling language will use most of the UML, then

profile development is a suitable choice, while the MOF based solution is more suitable in

situations when the new language uses only small part of UML or there is need to use more

complex features of UML. An additional benefit of using UML profiles is ability to

implement it in any existing UML modeling tool that supports definitions of custom profiles.

The proposed TopUML profile supplements UML with topological and functioning

characteristics of TFM, thus eliminating the lack of causality relationships within the UML

 20

specification. The developed TopUML profile ensures elements that allow clearly tracing

causal relations in both problem and solution domains. In addition TopUML profile is

supplemented with mappings between its diagrams and diagram elements thus showing

transformation patterns between different diagram types. To use TopUML profile elements

for sufficient definition of causal relationships it is needed to use appropriate modeling

method. The next chapter defines such modeling method for applying TopUML profile in

practice.

4. TOPUML MODELING – A METHOD FOR DESIGNING SOFTWARE

TopUML modeling for problem domain modeling and software systems designing is a

model-driven approach. It combines TFM and its formalism with elements and diagrams of

TopUML profile. This modeling method has been developed to eliminate the disadvantages

identified in UML and its application within software development process, e.g., ignorance of

cause-and-effect relationships, incoherence between diagrams, and different interpretations of

the same language element. The TFM considers problem domain information separate from

the solution domain information and holistically represents a complete functionality of the

system from the computation independent viewpoint while TopUML profile has elements of

representing system design at the platform independent viewpoint and platform specific

viewpoint in the context of MDA.

4.1. Transitions between TopUML Diagrams

The proposed transitions between TopUML diagrams are given in Figure 4.1 where

the diagrams are shown as object nodes and the edges between them as object flow within

Activity diagram.

TFM

Topological use case

diagram

Communication

diagram

Sequence
diagram

Activity

diagram

Interaction overview

diagram

Topological class

diagram

Package

diagram

State

diagram

Object

diagram

Component

diagram

Deployment

diagram

Figure 4.1. Transitions between TopUML diagrams

 21

Most of the transitions can be automated while the validation and checking of the

acquired diagrams are needed by the domain experts. The development of the root model –

TFM – can be partly automated as shown in [72] where business use cases are transformed

into functional features and topological relationships between them; while the other diagrams

are obtained by transforming and applying developed TFM (the later development activities

uses also other types of diagrams as a transformation source model).

The TopUML diagrams that are used within TopUML modeling are listed in Table

4.1, where a development order (column “D.o.”) of the diagram is given as well as the

diagrams to which it can be transformed or has information for development. The

development order is given for the top-down development.

Table 4.1

TopUML diagrams used within TopUML modeling

No TopUML

diagram

D.o. Development

information for

Description

1. Topological

Functioning

Model

1 Topological use

case, Sequence,

Activity,

Communication,

and State

diagrams

Initial TFM is developed by analyzing

functional characteristics of the problem

domain. The refinement of TFM includes

adjusting TFM to the functional requirements

of the desired software system since the

requirements can introduce new functionality

to the problem domain. By refining TFM the

functional requirements are validated, i.e. the

TFM shows missing requirements.

2. Topological

Use Case

diagram

2 Sequence,

Activity, and

Package diagrams

The scope of Use Cases is set either by

functional requirements or by system goals.

The functionality represented by each Use

Case is obtained from the TFM according to

the mappings between functional features and

functional requirements.

3. Sequence

diagram

3 Interaction

overview diagram

Sequence diagram shows the messaging

between actors and objects. Usually a set of

Sequence diagrams is created – one for each

Use Case. Use Case is used to set the scope of

Sequence diagram while TFM is used to set the

messages and their order.

4. Activity

diagram

3 Interaction

overview diagram

Activity diagram shows the workflow of a Use

Case. Usually a set of Activity diagrams is

created – one for each Use Case. Use Case is

used to set the scope of Activity diagram while

 22

No TopUML

diagram

D.o. Development

information for

Description

TFM is used to set the action nodes and edges.

5. Interaction

overview

diagram

4 - Defines interactions through a variant of

Activity diagram in a way that promotes

overview of the control flow. Interaction

overview diagram focus on the overview of the

flow of control.

6. Communica

-tion

diagram

2 Topological class

diagram

Communication diagram is used as an

intermediate model between TFM and

Topological class diagram. It is developed by

transforming TFM – the functional features

representing the same object type are merged

and the cause-and-effect relations become links

between lifelines.

7. Topological

class

diagram

3 Package, State,

and Object

diagrams

Topological class diagram is used to represent

a domain model and a system design model.

The key idea behind domain model is a visual

dictionary of abstractions. The topological

relations between classes show the causal

relations between entities in the problem

domain.

8. Object

diagram

4 - Object diagram can be developed during the

refinement process of Topological class

diagram when the associations are analyzed. It

is useful in situation when object of one type

plays more than one role at a time. Object

diagram also can be used to provide examples

of system at a specific time

9. State

diagram

5 - State diagrams are used to show the state

transitions of objects; one State diagram is

created for each object type.

10. Package

diagram

6 Component

diagram

Package diagram is used to organize and group

classes into logical structure – packages. Each

package represents a subsystem and groups a

set of cohesive responsibilities of classes.

11. Component

diagram

7 Deployment

diagram

Component diagram represents modular,

deployable, and replaceable parts of a system;

one component is created for each package.

12. Deployment 8 - Component diagram shows how instances of

 23

No TopUML

diagram

D.o. Development

information for

Description

diagram components are deployed on instances of

nodes. The content of Deployment diagram is

denoted by components and nonfunctional

requirements.

4.2. TopUML Modeling Activities

The process of TopUML modeling method is given in Figure 4.2 as Activity diagram,

where each action shows one modeling activity and links between them – sequence of

activities for the top-down development.

Problem domain functioning analysis

Behavior analysis and design

Structure analysis and design

State change and transition analysis

Structuring logical layout of design

Components and deployment design

Figure 4.2. TopUML modeling activities

Problem domain analysis and software system design with TopUML modeling method

consists of following six activities (for each activity an input (i.e., required artifacts) and an

output (i.e., produced artifacts) is defined together with involved modeling actions):

1. Problem domain functioning analysis – during this activity a TFM representing

functioning of problem domain [16], TFM representing functionality of desired

software system [15], and mappings between functional features and functional

requirements are developed [18].

2. Behavior analysis and design – using TFM as an information source Topological use

case, Sequence, Activity, and Interaction overview diagrams are constructed.

Topological use case diagram reflects information about subsystems according to

results of performing TFM closuring operation. [15][19]

3. Structure analysis and design – by transforming TFM that specifies solution domain a

Communication diagram is obtained, after that it is transformed to Topological class

diagram which contains classes and topological relationships between them. In fact,

the transformation of TFM ensures that responsibilities are assigned to classes

 24

precisely and formally in accordance to functioning characteristics of the solution

domain. By refining initial Topological class diagram it gets supplemented with

relationships of other type (e.g., associations, generalizations) and Object diagrams are

developed. [17][67]

4. State change and transition analysis – object state change and transition analysis is

based on the State diagram and consists of TFM transformation into it. State diagram

is obtained and analyzed for each object participating in the main functioning cycle of

the system (these objects are most important within the system). [20]

5. Structuring logical layout of design – the logical layout is depicted by using Package

diagram where each package initially represents one subsystem. The contents of

packages are added from the Topological class diagram accordingly to the Use Cases

in each system and the mappings between functional features and use cases. [19]

6. Components and deployment design – the input of this activity is packages from

Package diagram and nonfunctional requirements, and as the output a Component and

Deployment diagrams is created. [19]

4.3. Summary

The problem domain analysis and software design within TopUML modeling method

consists of six activities that cover analysis and design of behavior, structure, layout, and

deployment. By following the TopUML modeling activities one by one, the system gets

designed in top-down way starting with formalization of problem domain and ending with

deployment planning of designed components, thus it is ensured that all developed artifacts

are defined in accordance with characteristics of problem domain functioning and that causal

trace links exist between artifacts of both problem and solution domains. The benefit of such

formalized modeling method application within software development process is that the

solution is prepared according to the properties of problem domain and its functioning and

that changes in the functioning of problem domain can be formally evaluated in solution

domain (and vice versa).

The comparison of TopUML modeling with other UML modeling driven methods

shows evaluation of a set of criterions which are divided into following four groups: analysis

and design models, problem domain analysis and design, requirements management, and

usage. Since TopUML modeling and TFMfMDA both are based on TFM, several

characteristics of them are equal or similar. The TopUML modeling solves one of the weakest

points of the TFMfMDA approach – assignment of responsibilities to appropriate classes.

TFMfMDA uses a powerful tool to analyze functioning of the problem domain – the TFM,

but the TFMfMDA lacks the ability to transfer responsibilities of objects from TFM to the

classes. TopUML modeling solves this issue by transferring system’s functioning information

from TFM to other diagrams.

In summary, proposed TopUML profile and modeling method together solves

identified disadvantages of UML and its application within software development.

 25

5. IMPLEMENTATION AND APPROBATION OF TOPUML

The implementation and approbation of TopUML language and modeling is shown

and discussed in the context of two software designing projects:

1. Business support application development – shows a practical experiment in which the

software is designed for a laundry problem domain, and

2. Enterprise data synchronization system development – covers a case study of software

development project in which software is developed to perform enterprise data

synchronization taking data from multiple data sources and placing into centralized data

storage.

A case study is considered as an observational study in which data is collected for a

specific purpose throughout the study, and an experiment is a formal and controlled

investigation [26]. Each of the discussed projects consumes slightly different parts of

TopUML modeling, e.g., the experiment uses system goals to set scopes of Sequence

diagrams while the case study uses Use cases.

Additionally this chapter includes empirical evaluation of TopUML profile and

modeling method provided by two expert groups participating in the experiment of business

support application development [17]. The modeling and development knowledge of experts

before the experiment is determined by using self-evaluation questionnaire thus showing

preliminary knowledge of each participant.

5.1. Business Support Application Development

Business support application development is demonstrated on the basis of practical

experiment in which a software design for laundry functioning at the platform independent

viewpoint is developed. The laundry business system is an experimental system created to

demonstrate the capabilities of TopUML profile and modeling method. TopUML modeling

Experimental software designing includes creation of artifacts according to the TopUML

modeling method:

1. Initial and refined TFM – developed in accordance with informal system

description and defined functional requirements,

2. Sequence diagrams and Interaction overview diagram – prepared by transforming

TFM, scope of each Sequence diagram is denoted by system goals,

3. Communication diagram – TFM transformation provides actors, objects, and links

between them, as well as messages sent from object to object and their order, and

4. Topological class diagram – obtained by performing transformations on TFM and

Communication diagram, thus defining classes, their responsibilities, and

topological relationships between them.

All the artifacts are created in accordance with the functioning properties of problem

domain. The application of TFM to formalize functioning of problem domain and the transfer

of TFM characteristics to other TopUML diagrams ensures that it is possible to clearly trace

 26

developed artifacts in both problem and solution domains. The used theory within experiment

and obtained results are published in [21] and [69], as well as in guidance manual [17].

5.2. Enterprise Data Synchronization System Development

The main idea of this section is to explore a case study of applying TopUML

modeling in a real software project in which a service application is developed for

synchronizing enterprise data. Synchronization is done by taking data from multiple data

sources and placing in one data storage. The case study covers full software development life

cycle (the software now is at maintenance phase, the case study covers design and

implementation phase). The software is developed at Lattelecom Technology Ltd. Software

Development Department. TopUML modeling case study includes development of the

following TopUML diagrams:

1. Initial and refined TFM – developed in accordance with informal system

description and defined functional requirements,

2. Topological use case diagram – defined in accordance with developed TFM and

mappings between functional features of TFM and determined functional

requirements,

3. Sequence diagrams and Activity diagrams – prepared by transforming TFM, scope

of each diagram is denoted by use cases (an example of TFM transformation to

Activity diagram is given in Figure 5.1),

4. Communication diagram – obtained by performing transformations on TFM which

provides actors, objects, links between them, and messages together with their

order,

5. Initial and refined Topological class diagram – the initial diagram is defined by

transforming TFM and Communication diagram, while the refined diagrams is

obtained by performing additional problem domain analysis in accordance with

refinement steps given in TopUML modeling method (the refinement result is

addition of associations, generalizations, and dependencies between classes,

definition of required and provided interfaces according to inputs and outputs of

TFM), and

6. State diagram – within the case study a State diagram is prepared for the main

object of data synchronization system by applying transformations on TFM. The

main object is determined by its membership to the main functioning cycle.

Due to the TopUML modeling method application within enterprise data

synchronization system development all created artifacts are traceable in both problem and

solution domains. Thus, changes in the functioning of problem domain can be formally and

precisely evaluated in solution domain (and vice versa). The main results of case study

exploration are published in [19], as well as the new theoretical insights in [15] and [20].

 27

Importing every row from internal

table into target data base

Creating log file in log files folder for import

file processing

Checking if data from a particular row

already exists in target data base

Insert new data in

target data base

Updating existing data

in target data base
ref

Logging import status

[data from the particular

row does not exist] [data from the particular row exists]

[data synchronized] [else]

8

19

20

22

24

25
26

27 28

29

XOR

XOR AND

AND

XOR

XOR

XOR

XOR

Figure 5.1. Part of TFM representing functioning of enterprise data synchronization system

and activity diagram representing workflow of Use Case “Importing data in target data base”

5.3. Empirical Evaluation of TopUML Profile and Modeling Method

The empirical evaluation of TopUML profile and modeling method is based on

practical experiment with two expert groups in which a business support application for the

laundry problem domain is designed. The work with expert groups includes following

aspects:

1. Goal and process of empirical experiment – the goal is development of software

design by using TopUML modeling method in order to verify possibilities of

learning it and its usability. The design process is divided into eight workshops.

Expected results are defined for each workshop.

2. Participants – total count of participants in both groups is 32 (15 participants are

holding bachelor degree in computer science and 17 – master degree). Each

participant has background of previous experience in software development by

performing different roles (analyst, programmer, tester, and project manager).

3. Result of experiment – a number of system designs are prepared thus allowing to

evaluate the benefits and advantages of applying formal modeling method and

models – the differences between constructed models are minimal. In addition, an

empirical evaluation of proposed profile and modeling method is performed.

4. Positive and negative aspects of TopUML modeling – one of the experiment

results is evaluation by its participants of advantages (theoretical foundations,

formal modeling activities, transformations between models, reduced risk of

 28

rewriting software code) and disadvantages (lack of supporting tool) of the

proposed TopUML modeling method application.

The main result of practical experiments is preparation and publication of guidance

manual “Topological business systems modeling and software systems design” [17]. The

guidance manual includes both – the TopUML modeling theory and a practical example of

applying it within software designing for laundry problem domain.

5.4. Summary

The approbation of proposed TopUML profile and modeling method includes

elaboration of two different projects: experimental software design creation for laundry

problem domain and a case study exploration for a real software development project in

which software for enterprise data synchronization has been developed. During approbation it

is demonstrated how analysis and design artifacts are developed in a strong accordance with

the functioning properties of problem domain by applying defined modeling activities and

using TopUML profile. In the same time the causal relationships are retained in both problem

and solution domain artifacts, as well as between them. The result of applying proposed

profile and modeling method is software that complies with the functioning of the problem

domain and its characteristics, and causal relationships that facilitate further maintenance and

development of developed software. Due to the identified traceability links it is possible to

formally and precisely evaluate problem domain functioning changes in solution domain (and

vice versa).

The proposed modeling method deals with the Computation independent viewpoint

and the Platform independent viewpoint within MDA. The TopUML modeling is concerned

with the “what” and not “how”. The “what” means what is what and what should do what (i.e.

identification of classes and their responsibilities) while the “how” means how the

responsibility will be implemented in a specific platform or technology (e.g. how the data will

be saved in data base).

RESULTS AND CONCLUSIONS

The goal of the doctoral thesis was to supplement UML with theoretical foundations

in order to create grounds for converting notation into a formal modeling language and to

define modeling method which allows to clearly trace cause-and-effect relationships in both

problem and solution domains. The main result of the work is TFM supplementation with

logical relations, specification of TopUML profile and definition of modeling method which

is used to put into practice the created profile. All of the specified tasks for achieving the goal

of thesis are completed and the following results and conclusions are obtained:

1. Results of analyzing UML, its specification and application in software development are

as follows:

a. Despite of the benefits gained by using UML within software development

process, analysis of its specification and application shows a number of

disadvantages and limitations,

 29

b. Although that language extension mechanisms are provided starting with the UML

version 2.0, the development of profiles is a difficult task while the UML

specification is a specification of a notation and thus it defines only elements of

language, their notation and semantics,

c. By analyzing a number of existing UML profiles an opinion is established that the

most suitable way for specifying an UML profile is by using the same

specification structure as used in UML specification,

d. Modeling methods determine the application of UML within software

development process and not the UML itself (review of UML application in

industry and UML modeling methods review shows that the top five most applied

UML diagrams are the same), thus a part of UML disadvantages and limitation can

be solved by using an appropriate modeling method, and

e. The fragmental application of UML diagrams and partial software development

lifecycle coverage within analyzed methods do not eliminate disadvantages of

UML at a sufficient level.

2. Above mentioned results of performed analysis lead to the conclusions that the following

should be completed to achieve the goal of thesis:

a. Supplement UML with the theoretical foundation, thus developing specification of

TopUML profile, and

b. Define effective and usable modeling method for TopUML profile application

within software development.

3. TFM supplementation with logical relations gives adequate base for transformation of

TFM into other diagrams with complex structure.

4. By adding formalism of TFM mathematical topology to the UML, a modeling language

specification is obtained which creates grounds for converting notation into a formal

modeling language and which contains sufficient language elements to clearly identify,

specify and trace cause-and-effect relationships.

5. The proposed modeling method includes the following aspects: proper analysis of

problem and solution domains, application of most of the TopUML diagrams, it covers

most of software development lifecycle; thus the identified UML disadvantages (size,

complexity, incoherence and different interpretations) are reduced and even eliminated.

6. Application of TFM as a root model to synthesize other diagrams ensures that in a formal

way are achieved following results:

a. All artifacts created for solution domain are in conformance with the functioning

characteristics of problem domain,

b. It is possible to clearly trace cause-and-effect relationships within and between

developed artifacts at the same and different abstraction levels,

c. The developed artifacts are with high cohesion, and

d. Components of developed system have low coupling with the rest of the system

and a well-defined interface.

7. Developed TopUML profile and its modeling method have been successfully applied in

an experimental software analysis and design project, as well as in a real software

development project.

 30

8. Approbation of proposed profile and modeling method shows that TopUML modeling

deals with the Computation independent viewpoint and the Platform independent

viewpoint within MDA.

9. Performed approbation of TopUML profile and modeling method together with two

independent expert groups in a practical software design experiment gives an empirical

evaluation for the proposed modeling language and method. The following advantaged are

outlined: theoretical foundations, formal modeling activities, transformations between

models. Previously mentioned advantages together reduce the risk of rewriting software

code.

The future research directions are as follows:

 Development of a tool supporting the TopUML profile. Since the TopUML is

developed as a profile of UML version 2.4.1, it can be introduced to any tool that

supports its extensions with UML profiles thus eliminating the need of a

completely new tool creation.

 Research on the application of TopUML for platform independent viewpoint

transformation into platform specific viewpoint and generating software code.

BIBLIOGRAPHY

[1] Alksnis G. Formal Specification Languages and Category Theory Within the

Framework of MDA// Computer Science, Applied Computer Systems, Vol.26, Nr.5,

Scientific Proceedings of Riga Technical University, Riga, Latvia: RTU Publishing,

2006. - pp. 33-41

[2] Ambler S. Elements of UML 2.0 Style. - New York, USA: Cambridge University Press,

2005. - 200 p.

[3] Arlow J., Neustadt I. UML 2 and the Unified Process: Practical Object-Oriented

Analysis and Design. - Upper Saddle River, NJ, USA: Addison-Wesley, 2
nd

 ed., 2005. -

624 p.

[4] Asnina E. Formalization of Problem Domain Modeling within Model Driven

Architecture. Doctoral thesis. - Riga, Latvia: RTU Publishing house, 2006. - 195 p.

[5] Asnina E. The Formal Approach to Problem Domain Modelling Within Model Driven

Architecture// Proceedings of the 9
th

 International Conference “Information Systems

Implementation and Modelling” (ISIM’06), Přerov, Czech Republic: Jan Štefan

MARQ, 2006. - pp. 97-104

[6] Asnina E., Gulbis B., Osis J., Alksnis G., Donins U., Slihte A. Backward Requirements

Traceability within the Topology-based Model Driven Software Development//

Proceedings of the 3
rd

 International Workshop on Model-Driven Architecture and

Modeling-Driven Software Development. - Beijing, China: SciTePress, 2011. - pp. 36-

45

[7] Batra D., Satzinger J. Contemporary Approaches and Techniques for the Systems

Analyst// Journal of Information Systems Education. - 2006. - 17(3) - pp. 257–265

 31

[8] Booch G. Object Oriented Analysis and Design with Applications. - Upper Saddle

River, NJ, USA: Addison-Wesley, 2
nd

 ed., 1993. - 608 p.

[9] Booch G., Maksimchuk R., Engel M., Young B., Conallen J., Houston K. Object-

oriented analysis and design with applications. - Upper Saddle River, NJ, USA:

Addison-Wesley, 3
rd

 ed., 2007. - 720 p.

[10] Booch G., Rumbaugh J., Jacobson I. The Unified Modeling Language User Guide. -

Upper Saddle River, NJ, USA: Addison-Wesley, 2
nd

 ed., 2005. - 475 p.

[11] Breu R., Hinkel U., Hofmann C., Klein C., Paech B., Rumpe B., Thurner V. Towards a

Formalization of the Unified Modeling Language // ECOOP'97 – Object-Oriented

Programming, 11
th

 European Conference (Lecture Notes in Computer Science, Vol.

1241). – Berlin, Germany: Springer, 1997. - pp. 344-366

[12] Burton-Jones A., Meso P. Conceptualizing Systems for Understanding: An Empirical

Test of Decomposition Principles in Object-Oriented Analysis// Information Systems

Research. - 2006. - 17(1) - pp. 38-60

[13] DeLoach S., Hartrum T. A Theory-Based Representation for Object-Oriented Domain

Models// IEEE Transactions on Software Engineering. - 2000. - Volume 26, Issue 6. -

pp. 500-517

[14] Dobing B., Parsons J. Dimensions of UML Diagram Use: Practitioner Survey and

Research Agenda// Principle Advancements in Database Management Technologies:

New Applications and Frameworks. – Hershey, New York, USA: Information Science

Reference, 2010. - pp. 271-290

[15] Donins U. Semantics of Logical Relations in Topological Functioning Model//

Proceedings of the 7
th

 International Conference on Evaluation of Novel Approaches to

Software Engineering (ENASE 2012) – 2012. (To be published)

[16] Donins U. Software Development with the Emphasis on Topology// Advances in

Databases and Information Systems (Lecture Notes in Computer Science, Vol.5968). -

Berlin, Germany: Springer-Verlag, 2010. - pp. 220-228

[17] Doniņš U. Topological business systems modeling and software systems design. - Riga,

Latvia: RTU Publishing house, 2011. - 65 p. (in Latvian)

[18] Donins U., Osis J. Reconciling Software Requirements and Architectures within MDA//

Scientific Proceedings of Riga Technical University, Computer Science (Series 5),

Applied Computer Systems (Vol. 38). - Riga, Latvia: RTU Publishing house, 2009. -

pp. 84-95

[19] Donins U., Osis J. Topological Modeling for Enterprise Data Synchronization System:

A Case Study of Topological Model-Driven Software Development// Proceedings of the

13
th

 International Conference on Enterprise Information Systems, Volume 3. - Beijing,

China: SciTePress, 2011. - pp. 87-96

[20] Donins U., Osis J., Asnina E., Jansone A. Formal Analysis of Objects State Changes

and Transitions// Proceedings of the 7
th

 International Conference on Evaluation of

Novel Approaches to Software Engineering (ENASE 2012) – 2012. (To be published)

 32

[21] Donins U., Osis J., Slihte A., Asnina E., Gulbis B. Towards the Refinement of

Topological Class Diagram as a Platform Independent Model// Proceedings of the 3
rd

International Workshop on Model-Driven Architecture and Modeling-Driven Software

Development. - Beijing, China: SciTePress, 2011. - pp. 79-88

[22] Erickson J., Siau K. Theoretical and Practical Complexity of Modeling Methods//

Communications of the ACM. - 2007. - 50(8) - pp. 46-51

[23] Evans A., Kent S. Core Meta-Modelling Semantics of UML: The pUML Approach//

«UML»’99: The Unified Modeling Language. Beyond the Standard (Lecture Notes in

Computer Science, Vol. 1723). - Berlin, Germany: Springer, 1999. - pp. 140-155

[24] Evermann J., Wand Y. Ontological Modeling Rules For UML: An Empirical

Assessment// Journal of Computer Information Systems. - 2006. - 46(5) - pp. 14-29

[25] Evermann J., Wand Y. Towards Ontologically-Based Semantics for UML Constructs//

Conceptual Modeling – ER 2001, 20th International Conference on Conceptual

Modeling (Lecture Notes in Computer Science, Vol. 2224). - Berlin, Germany:

Springer, 2001. - pp. 341-354

[26] Fenton N., Pfleeger S. Software Metrics: A Rigorous and Practical Approach. -

Scottsdale, Arizona, USA: Coriolis Group, 2
nd

 ed., 1996. – 649 p.

[27] Fowler M. Why use the UML?// Software Development. - 1998. - Volume 6, Issue 3

[28] Fowler M. UML Distilled: A Brief Guide to the Standard Object Modeling Language. -

Upper Saddle River, NJ, USA: Addison-Wesley, 3
rd

 ed., 2003. - 208 p.

[29] Grundspenkis J. Fault Localisation Based on Topological Feature Analysis of Complex

System Model// Diagnostics and Identification. - Riga: Zinatne, 1974. - pp. 38-48 (in

Russian)

[30] Grundspenkis J. Structural Modelling of Complex Technical Systems in Conditions of

Incomplete Information: A Review// Modern Aspects of Management Science. - Riga,

Latvia: RTU Publishing house, 1997. - pp. 111-136

[31] Grundspenkis J. Structural Modelling with ASMOS in the Early Stages of Design//

Software for Manufacturing. – Amsterdam, Holland: North-Holland Publishing

Company, 1989. - pp. 229-239

[32] Grundspenkis J. The Synthesis and Analysis of Structure in Computer Aided Design//

Computer Applications in Production and Engineering: Proceedings of the First

International Conference. – Amsterdam, Holland: North-Holland Publishing Company,

1983. - pp. 301-316

[33] Grundspenkis J., Blumbergs A. Investigation of Complex System Topological Model

Structure for Analysis of Failures// Issues of Technical Diagnosis. - Rostov-on-Don,

Russia: Rostov Institute of Building Engineering, 1981. - pp. 41-48 (in Russian)

[34] He X. Formalizing UML Semantics// 25
th

 Annual International Computer Software and

Applications Conference (COMPSAC'01). - Chicago, Illinois, USA: IEEE Computer

Society, 2001. - pp. 277

[35] International Organization for Standardization (ISO): ISO/IEC/IEEE 42010:2011

"Systems and software engineering -- Architecture description", 2011. - 37 p.

 33

[36] Jacobson I., Christerson M., Jonsson P., Overgaard G. Object-Oriented Software

Engineering: A Use Case Driven Approach. - Upper Saddle River, NJ, USA: Addison-

Wesley, 1992. - 552 p.

[37] Jones C. Positive and Negative Innovations in Software Engineering// International

Journal of Software Science and Computational Intelligence. - 2009. - Volume 1, Issue

2. - pp. 20-30

[38] Karpics I., Markovics Z. Development and Evaluation of Normal Performance

Recovery Method of a Functional System // Proceedings of 9th IEEE International

Symposium on Applied Machine Intelligence and Informatics (SAMI), 2011, Slovakia,

Smolenice, 2011. - pp. 171-175

[39] Kent S. The Unified Modeling Language// Formal Methods for Distributed Processing:

A Survey of Object-Oriented Approaches. - Cambridge, England: Cambridge

University Press, 2001. - pp. 126-151

[40] Kim S., Carrington D. Formalizing the UML Class Diagram Using Object-Z//

«UML»’99: The Unified Modeling Language. Beyond the Standard (Lecture Notes in

Computer Science, Vol. 1723). - Berlin, Germany: Springer, 1999. - pp. 83-98

[41] Kleppe A., Warmer J., Bust W. MDA Explained. The Model Driven Architecture:

Practice and Promise. - Upper Saddle River, NJ, USA: Addison-Wesley, 2003. - 192 p.

[42] Kobryn C. UML 2001: A Standardization Odyssey// Communications of the ACM. -

1999. - Volume 42, Issue 10. - pp. 29-37

[43] Lano K., Kolahdouz-Rahimi S. Model-Driven Development of Model

Transformations// Theory and Practice of Model Transformations (Lecture Notes in

Computer Science, Volume 6707). - Berlin, Germany: Springer-Verlag, 2011. - pp. 47-

61

[44] Larman C. Applying UML and Patterns: An Introduction to Object-Oriented Analysis

and Design and Iterative Development. - Upper Saddle River, NJ, USA: Prentice Hall,

3
rd

 ed., 2005. - 736 p.

[45] Lazar I., Motogna S., Parv B., Lazar C. Realizing Use Cases for Full Code Generation

in the Context of fUML// Proceedings of the 2
nd

 International Workshop on Model-

Driven Architecture and Modeling Theory-Driven Development - Portugal: SciTePress,

2010. - pp. 80-89

[46] Li D., Li X., Stolz V. QVT-Based Model Transformation using XSLT// ACM

SIGSOFT Software Engineering Notes. - 2011. - Volume 36, Issue 1. - pp. 1-8

[47] Loton T. UML Software Design with Visual Studio 2010. – Breinigsville, PA, USA:

LOTONtech Limited, 2010. - 136 p.

[48] Markovica I., Markovics Z. Mathematical Model of Pathogenesis of Hard Differentiable

Diseases// Cybernetics and Diagnostics, Volume 4. - Riga: Zinatne, 1970. - pp. 21-28

(in Russian)

[49] Mellor S., Balcer M. Executable UML: A Foundation for Model-Driven Architecture. -

Upper Saddle River, NJ, USA: Addison-Wesley, 2002. - 416 p.

 34

[50] Mens T., Van Gorp P. A Taxonomy of Model Transformation// Electronic Notes in

Theoretical Computer Science. - 2006. - Volume 152. - pp. 125-142

[51] Miller J., Mukerji J. (editors): MDA Guide Version 1.0.1 / Internet. -

http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

[52] Nielsen M., Havelund K., Wagner K., George C. The RAISE Language, Method and

Tools// Formal Aspects of Computing. - 1989. - Volume 1 Issue 1. - pp 85-114

[53] Ņikiforova O. System Modeling in UML with Two-Hemisphere Model Driven

Approach// Scientific Proceedings of Riga Technical University, Computer Science

(Series 5), Applied Computer Systems (Volume 43). - Riga, Latvia: RTU Publishing

house, 2010. - pp. 37-44

[54] OMG: Meta Object Facility (MOF) Core Specification Version 2.0 / Internet. -

http://www.omg.org/spec/MOF/2.0/PDF/

[55] OMG: Service Oriented Architecture Modeling Language (SoaML) / Internet. -

http://www.omg.org/spec/SoaML/1.0/Beta2/PDF

[56] OMG: Unified Modeling Language Infrastructure Version 2.4.1 / Internet. -

http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/

[57] OMG: Unified Modeling Language Superstructure Version 2.4.1 / Internet. -

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/

[58] OMG: OMG Systems Modeling Language (OMG SysML) / Internet. -

http://www.omg.org/spec/SysML/1.2/PDF

[59] Olive A. Conceptual Modeling of Information Systems. - Berlin, Germany: Springer,

2007. - 455 p.

[60] Osis J. Extension of Software Development Process for Mechatronic and Embedded

Systems// Proceeding of the 32
nd

 International Conference on Computer and Industrial

Engineering. - Limerick, Ireland: University of Limerick, 2003. - pp. 305-310

[61] Osis J. Formal Computation Independent Model within the MDA Life Cycle//

International Transactions on Systems Science and Applications. - 2006. - Volume 1,

Number 2. - pp. 159-166

[62] Osis J. Mathematical Description of Complex System Functioning// Cybernetic and

Diagnosis, Volume 4. - Riga: Zinatne, 1970. - pp. 7-14 (in Russian)

[63] Osis J. The Topological Model of System Functioning// Automatics and Computer

Science, Volume 6. - Riga, Latvia, 1969. - pp. 44-50 (in Russian)

[64] Osis J., Asnina E. Enterprise Modeling for Information System Development within

MDA// Proceedings of the 41
st
 Annual Hawaii International Conference on System

Sciences (HICSS 2008). - Chicago, Illinois, USA: IEEE Computer Society, 2008. - pp.

491

[65] Osis J., Asnina E. Model-Driven Domain Analysis and Software Development:

Architectures and Functions. – Hershey, New York, USA: IGI Global, 2011. - 487 p.

[66] Osis J., Donins U. An Innovative Model Driven Formalization of the Class Diagrams//

Proceedings of the 4
th

 International Conference on Evaluation of Novel Approaches to

Software Engineering (ENASE 2009). – Portugal: INSTICC Press, 2009. - pp. 134-145

 35

[67] Osis J., Donins U. Formalization of the UML Class Diagrams// Evaluation of Novel

Approaches to Software Engineering (Communications in Computer and Information

Science (CCIS), Volume 69). - Berlin, Germany: Springer-Verlag, 2010. - pp. 180-192

[68] Osis J, Donins U. Modeling Formalization of MDA Software Development at the Very

Beginning of Life Cycle// Advances in Databases and Information Systems. 13
th

 East-

European Conference, ADBIS 2009: Associated Workshops and Doctoral Consortium,

Local Proceedings. - Riga, Latvia: JUMI Publishing House Ltd., 2009. - pp. 48-61

[69] Osis J., Donins U. Platform Independent model Development by Means of Topological

Class Diagrams// Proceedings of the 2
nd

 International Workshop on Model-Driven

Architecture and Modeling Theory-Driven Development - Portugal: SciTePress, 2010. -

pp. 13-22

[70] Osis J., Gefandbein J., Markovitch Z., Novozhilova N. Diagnosis based on graph

models. (By the Examples of Aircraft and Automobile Mechanisms). - Moscow, Russia:

Transport, 1991. - 244 p. (in Russian)

[71] Osis J., Silins J. Topological Function-Architecture Co-Design of Embedded Systems//

Advances in Databases and Information Systems. 13
th

 East-European Conference,

ADBIS 2009: Associated Workshops and Doctoral Consortium, Local Proceedings. -

Riga, Latvia: JUMI Publishing House Ltd., 2009. - pp. 424-431

[72] Osis J., Šlihte A. Transforming Textual Use Cases to a Computation Independent

Model// Proceedings of the 2
nd

 International Workshop on Model-Driven Architecture

and Modeling Theory-Driven Development - Portugal: SciTePress, 2010. - pp. 33-42

[73] Osis J., Sukovskis U., Teilans A. Business Process Modeling and Simulation Based on

Topological Approach// Proceedings of the 9th European Simulation Symposium and

Exhibition. - Passau, Germany, 1997. - pp. 496-501

[74] Owre S., Rushby J., Shankar N. PVS: A Prototype Verification System// 11
th

International Conference on Automated Deduction (Lecture Notes in Artificial

Intelligence, Volume 607). -Berlin, Germany: Springer, 1992. - pp. 748-752

[75] Pardillo J. A Systematic Review on the Definition of UML Profiles// Model Driven

Engineering Languages and Systems (Lecture Notes in Computer Science, Volume

6394). - Berlin, Germany: Springer-Verlag, 2010, - pp. 407-422

[76] Podeswa H. UML for the IT Business Analyst. - Boston, MA, USA: Course Technology

PTR, 2
nd

 ed., 2009. - 372 p.

[77] Rumbaugh J., Blaha M., Premerlani W., Eddy F. Lorensen W. Object-Oriented

Modeling and Design. - Englewood Cliffs, NJ: Prentice Hall, 1991. - 528 p.

[78] Rumbaugh J., Jacobson I., Booch G. The Unified Modeling Language Reference

Manual. - Upper Saddle River, NJ, USA: Addison-Wesley, 2
nd

 ed., 2004. - 721 p.

[79] Scott K. The Unified Process Explained. - Upper Saddle River, NJ, USA: Addison-

Wesley, 2001. - 208 p.

[80] Sejans, J., Nikiforova, N. Practical Experiments with Code Generation from the UML

Class Diagram// Proceedings of the 3
rd

 International Workshop on Model-Driven

 36

Architecture and Modeling-Driven Software Development. - Beijing, China:

SciTePress, 2011. - pp. 57-67

[81] Siau K., Cao Q. Unified Modeling Language (UML) - a Complexity Analysis// Journal

of Database Management. - 2001. - Volume 12, Issue 1. - pp. 26-34

[82] Siau K., Cao, Q. How Complex Is the Unified Modeling Language?// Advanced Topics

in Database Research. - 2002. - Volume 1. - pp. 294-306

[83] Siau K., Loo P. Identifying Difficulties in Learning UML// Information Systems

Management. - 2006. -Volume 23, Issue 3. - pp. 43-51

[84] Simons A., Graham I. 37 Things that Don't Work in Object-Oriented Modeling with

UML// Proceedings of ECOOP 98 Workshop on Precise Behavioral Semantics. -

Universitat Muchen, 1998. - pp. 209-232

[85] Slihte A., Osis J., Donins U. Knowledge Integration for Domain Modeling//

Proceedings of the 3
rd

 International Workshop on Model-Driven Architecture and

Modeling-Driven Software Development. - Beijing, China: SciTePress, 2011. - pp. 46-

56

[86] Slihte A., Osis J., Donins U., Asnina, E., Gulbis, B. Advancements of the Topological

Functioning Model for Model Driven Architecture Approach// Proceedings of the 3
rd

International Workshop on Model-Driven Architecture and Modeling-Driven Software

Development. - Beijing, China: SciTePress, 2011. - pp. 91-100

[87] Spivey J. The Z Notation: A Reference Manual. - Prentice Hall, 2
nd

 ed., 1992. - 150 p.

[88] Stevens P., Pooley R. Using UML: Software Engineering with Objects and

Components. - Harlow, England: Addison-Wesley, 2
nd

 ed., 2005. - 250 p.

[89] Szlenk M. UML Static Models in Formal Approach// Balancing Agility and Formalism

in Software Engineering (Lecture Notes in Computer Science, Volume 5082). - Berlin,

Germany: Springer-Verlag, 2008. - pp. 129-142

[90] Turner M. Microsoft Solutions Framework Essentials: Building Successful Technology

Solutions. - Redmond, Washington, USA: Microsoft Press, 2006. - 300 p.

[91] Warmer J., Kleppe A. The Object Constraint Language: Getting Your Models Ready for

MDA. - Upper Saddle River, NJ, USA: Addison-Wesley, 2
nd

 ed., 2003. - 240 p.

[92] Xueming L., Parsons J. Ontological Semantics for the Use of UML in Conceptual

Modeling// ER (Tutorials, Posters, Panels & Industrial Contributions). - 2007. - pp. 179-

184

[93] Zhao Y., Zong-Yuan Y., Xie J. Pi-Calculus Based Assembly Mechanism of UML State

Diagram and Validation of Model Refinement// Proceedings of International

Conference on Electronic Computer Technology 2009 (ICECT 2009). - Macau, China,

2009. - pp 604-609

