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GENERAL DESCRIPTION OF THE THESIS 

Research motivation 

In various cases, traditional optimisation methods (linear programming, 

integer programming, stochastic optimisation, etc.) could not be applied to 

solve hard optimisation problems. These methods may lead to ineffective 

solutions for such problems due to a high number of parameters of an 

optimised system, existence of stochastic parameters and a large solution 

search space. A number of metaheuristic optimisation techniques are applied 

for the optimisation of these tasks. To choose an appropriate technique, 

fitness landscape analysis of an optimisation problem is performed. 

Moreover, simulation of the system allows for evaluation of the system 

performance without analytical calculations. At the present time, simulation 

optimisation technology is a necessary tool in optimisation of complex 

systems, where solution evaluation can be complicated (Kleijnen, 

Merkuryev, Gosavi, Merkuryeva, Carson, Azadivar, etc.). Simulation-based 

fitness landscape analysis provides an efficient approach to analysis of 

suitability of the optimisation algorithms. 

Nowadays, fitness landscape analysis methods are used for the 

determination of the problem hardness for the metaheuristic algorithms 

(Vassilev, Stadler, Affenzeller, etc.). However, there is a lack of information 

about the application of these methods. Additionally, there is almost no 

research on the application of simulation in fitness landscape analysis within 

simulation optimisation of complex systems. Simulation-based fitness 

landscape analysis will allow better selection of algorithms for optimisation of 

a complex system, as well as allowing for construction and adjustment of the 

most appropriate algorithm. 

The goal and the tasks of the thesis 

The thesis is aimed at developing methods and algorithms for the 

simulation-based fitness landscape analysis and optimisation of complex 

systems.  

To achieve this aim, the following tasks are specified: 

1. To make a review of existing measures and methods of fitness 

landscape analysis for application in simulation-based optimisation of 

NP-hard problems. 

2. To develop a formalisation scheme for simulation-based optimisation 

enhanced by a fitness landscape analysis.  

3. To perform an analysis of benchmark fitness landscapes in order to 

define how typical landscape structures influence statistical and 

information measures of fitness landscapes. 

4. To develop a procedure for a simulation-based fitness landscape 
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analysis and optimisation for NP-hard problems. 

5. To perform approbation of the developed methods in optimisation of 

the delivery planning and scheduling problem. 

Theses to be defended 

1. Determination of the formal definitions of a fitness landscape and its 

structures, and a review of the information and statistical fitness 

landscape analysis methods allows developing a formal scheme for a 

simulation-based optimisation procedure supplemented with the 

fitness landscape analysis. 

2. By expanding fitness landscape analysis methods into simulation-

based optimisation tasks, it is possible to implement algorithms and a 

tool for application of fitness landscape analysis in the solution of hard 

optimisation tasks.  

3. The experimental analysis of benchmark fitness landscapes allows 

finding relations between fitness landscape structural properties, 

landscape measures and behaviour of optimisation algorithms. 

4. With application of the developed methods for optimisation of a 

vehicle route schedule, it is possible to improve delivery planning 

solutions at the operational level. 

The research object and subject 

The object of the research is metaheuristic optimisation of NP-hard 

optimisation problems. The subject of the research is development of 

methods and algorithms for simulation-based fitness landscape analysis and 

its application in optimisation of complex systems. 

The research methods 

The research is based on using system analysis, simulation techniques, 

simulation-based optimisation, genetic algorithms, statistical and information 

fitness landscape analysis and metaheuristic optimisation methods. 

The scientific novelty 

Following scientific novelties are expected in this research: 

1. Development of the simulation-based fitness landscape analysis 

algorithm. 

2. Review of an application of a fitness landscape analysis in applied 

research. 

3. Application of the developed methods and algorithms in the delivery 

planning and scheduling. 

Practical value 

The developed methods are applied to optimisation of a delivery 

planning and scheduling problem for a regional distribution centre. 
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Optimisation problems, which are defined in an integrated approach are 

analysed with fitness landscape analysis techniques, and conclusions on the 

problems search space are given. 

A fitness landscape analysis and customised optimisation algorithms 

are applied for optimisation of goods deliveries from a distribution centre to 

a large retail network of stores. The acknowledgment signed by the chairman 

of the Board of HAVI Logistics SIA confirms that algorithms and methods 

developed in the thesis are useful and applicable for large logistic enterprises 

in Latvia. 

Approbation of the obtained results 

The results of the thesis have been presented at 12 international 

scientific conferences: 
1. Riga Technical University 53rd International Scientific Conference Dedicated to 

the 150th Anniversary and The 1st Congress of World Engineers and RPI/ RTU 

Alumni, Riga, Latvia, October 11-12, 2012. 

2. International conference “The 24th European Modeling & Simulation Symposium” 

(EMSS-2012), Vienna, Austria, 19-21 September 2012. 

3. International conference “25th European Conference on Operational Research 

EURO-2012”, Vilnius, Lithuania, July, 8-11 2012.  

4. International conference “1st Australian Conference on the Application of Systems 

Engineering” (ACASE'12). Sydney, Australia, February 6-8, 2012. 

5. International conference “UKSim 5th European Symposium on Computer 

Modeling and Simulation” (EMS2011), Spain, Madrid, November 16-18, 2011. 

6. International conference “13th European Conference on Computer Aided System 

Theory Eurocast-2011”, Las Palmas de Gran Canaria, Spain, February 6-11, 2011. 

7. International conference “UkSIM Fourth European Modelling Symposium on 

Computer Modelling and Simulation” (EMS2010), Pisa, Italy, November 17-19, 

2010. 

8. Riga Technical University 51st International Scientific Conference, Riga, Latvia, 

October 13-15 2010. 

9. International conference “The 7th EUROSIM Congress on Modelling and 

Simulation”. Prague, Czech Republic, September 6-10, 2010. 

10. International conference “12th International Conference on Computer Modelling 

and Simulation” (UKSim2010), Cambridge, United Kingdom, March 24-26, 

2010. 

11. International conference “1st International Conference on Intelligent Systems, 

Modelling and Simulation” (ISMS2010), Liverpool, United Kingdom, January 27-

29, 2010. 

12. Riga Technical University 50th International Scientific Conference, Riga, Latvia, 

October 14-16, 2009. 

The results have been published in 13 scientific papers, including 1 

book chapter published by Springer and 1 paper in the international scientific 

journal. The paper “Simulation Optimisation and Monitoring in Tactical and 

Operational Planning of Deliveries” is awarded by “The 24
th
 European 

Modeling and Simulation Symposium Best Paper Award”. The complete list 

of publications: 
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1. Merkuryeva G., Bolshakov V. Simulation Optimisation and Monitoring in 

Tactical and Operational Planning of Deliveries // Proceedings of the European 

Modeling and Simulation Symposium, 2012, Austria, Vienna, 19.-21. September, 

2012. - pp 226-231. Indexed in: Scopus. 

2. Pitzer E., Vonolfen S., Beham A., Affenzeller M., Bolshakov V., Merkuryeva G. 

Structural Analysis of Vehicle Routing Problems using General Fitness Landscape 

Analysis and Problem Specific Measures // 1st Australian Conference on the 

Application of Systems Engineering (ACASE'12), Australia, Sydney, 6.-8. 

February, 2012. - pp 36-38. 

3. Merkuryeva G., Bolshakov V. Simulation-Based Fitness Landscape Analysis and 

Optimisation for Vehicle Scheduling Problem // EUROCAST 2011, Part I, LNCS 

6927: Springer-Verlag Berlin Heidelberg, 2012. - pp 280-286. Indexed in: 

SpringerLink, Scopus. 

4. Merkuryeva G., Bolshakov V., Kornevs M. An Integrated Approach to Product 

Delivery Planning and Scheduling // Scientific Journal of RTU. 5. series., 

Computer Science. - 49. vol. (2011), pp 97-103. Indexed in: EBSCO, 

CSA/ProQuest, VINITI. 

5. Bolshakov V., Pitzer E., Affenzeller M. Fitness Landscape Analysis of Simulation 

Optimisation Problems with HeuristicLab // Proceedings of the UKSim 5th 

European Symposium on Computer Modeling and Simulation, Spain, Madrid, 

16.-18. November, 2011. - pp 107-112. Indexed in: IEEE CS Digital Library, 

Scopus. 

6. Merkuryeva G., Bolshakovs V. Benchmark Fitness Landscape Analysis // 

International Journal of Simulation Systems, Science and Technology. - Vol.12, 

No.2. (2011) pp 38-45. Indexed in: Inspec, Scopus. 

7. Merkuryeva G., Bolshakov V. Simulation-Based Fitness Landscape Analysis and 

Optimisation for Vehicle Scheduling Problem // EUROCAST 2011 Computer 

Aided Systems Theory Extended Abstracts. IUCTC Universidad de Las Palmas de 

Gran Canaria, Spain, 2011. – pp. 254-255. 

8. Merkuryeva G., Bolshakovs V. Structural Analysis of Benchmarking Fitness 

Landscapes // Scientific Journal of RTU. 5. series., Computer Science. - 44. vol. – 

Riga: “RTU Publishing House”, 2010. - pp 81-86. Indexed in: EBSCO, 

CSA/ProQuest, VINITI. 

9. Merkuryeva G., Bolshakovs V. Comparative Analysis of Statistical and 

Information Measures for Benchmark Fitness Landscapes // Proceedings of the 

UkSIM Fourth European Modelling Symposium on Computer Modelling and 

Simulation, Italy, Pisa, 2010. - pp 96-101. Indexed in: IEEE CS Digital Library, 

Scopus. 

10. Merkuryeva G., Merkuryev Yu., Bolshakovs V. Simulation-Based Fitness 

Landscape Analysis for Vehicle Scheduling Problem // Proceedings of the 7th 

EUROSIM Congress on Modelling and Simulation. Czech Republic, Prague, 6.-

10. September, 2010. – p. 88. 

11. Merkuryeva G., Bolshakovs V. Vehicle Schedule Simulation with AnyLogic// 

Proc. of the 12th International Conference on Computer Modelling and 

Simulation UKsim-2010. Los Alamitos: “IEEE Conference Publication Service”, 

2010. – pp. 169-174. Indexed in: IEEE CS Digital Library, Scopus. 

12. Merkuryeva G., Bolshakovs V. Simulation-Based Vehicle Scheduling with Time 

Windows// Proc. of the 1st UKSim/AMSS International conference on Intelligent 

Systems, Modelling and Simulation. Los Alamitos: “IEEE Conference Publication 

Service”, 2010. – pp. 134-139. Indexed in: IEEE CS Digital Library, Scopus. 
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13. Merkuryeva G., Bolshakovs V. Simulation-based analysis of fitness landscape in 

optimisation // Scientific Journal of RTU. 5. series., Computer Science. - 44. Vol. 

– Riga: “RTU Publishing House”, 2009. – pp. 39-44 Indexed in: EBSCO, 

CSA/ProQuest, VINITI.  

The results of the thesis were used in the following research grants of 

the Latvian Council of Science: 

1. Research grant No. 09.1201 “Simulation-based optimisation using 

computational intelligence”. Project leader: Dr.habil.sc.ing., Prof. J. 

Merkurjevs (2009); 

2. Research grant No. 09.1564 “Simulation and computational 

intelligence methods for logistics and e-business optimization”. 

Project leader: Dr.habil.sc.ing., Prof. J. Merkurjevs (2010-2012). 

The results of the thesis were also applied in the RTU Fundamental and 

Applied Research Project No. FLPP-2011/6 “Simulation-based cluster 

analysis and optimisation of vehicle schedules” in cooperation with HAVI 

Logistics SIA for developing vehicle routing and delivery scheduling 

algorithms. Project leader: Dr.habil.sc.ing., Prof. G. Merkurjeva (2011). 

Approbation of the methods developed in the doctoral thesis was 

performed within 3 month research mobility within FP7 ICT project No. 

FP7-248583 “UNITE – UpgradiNg ICT excellence by strengthening 

cooperation between research Teams in an enlarged Europe” in Upper 

Austria University of Applied Sciences, Software Engineering Department, 

Hagenberg, Austria, 2011. 

The structure of the thesis 

The doctoral thesis consists of introduction, 4 chapters, conclusions, 

bibliography and 2 appendixes. The thesis contains 135 pages, 73 figures 

and 14 tables. The bibliography contains 94 entries. The thesis is structured 

as follows: 

Introduction provides motivation of the research, formulates the goal 

and tasks of the thesis, defines the research object and subject, lists research 

methods used in the thesis, and describes the scientific novelty of the thesis, 

its practical value and approbation of the results obtained in the thesis. 

Chapter 1 “Literature Review and Problem Statement” describes 

simulation-based optimisation methods for hard optimisation problems and 

reviews the concept of a fitness landscape analysis and its purposes. This 

chapter gives formal definitions and interpretations of a fitness landscape 

and its structures. Properties of the fitness landscape that influence behaviour 

of an optimisation algorithm are reviewed. Techniques for statistical and 

information fitness landscape analysis are discussed. The problem of the 

simulation-based fitness landscape analysis is defined, and its formalised 

scheme is proposed and described. 

Chapter 2 “Benchmark Fitness Landscape Experimental Analysis” 

discusses the landscapes of the benchmark problems and shows how the 
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structures of fitness landscapes affect the statistical and information 

measures of the fitness landscape analysis. Particularly, eight benchmark 

landscapes are defined, and both statistical and information analysis of these 

landscapes is made. Additional experiments performed in the thesis figure 

out the relevance of these landscape measures with performance of 

optimisation algorithms, and a detailed review of benchmark landscape 

structures is given. 

Chapter 3 “Simulation-based Fitness Landscape Analysis and 

Optimisation” presents a procedure and algorithms of the simulation-based 

fitness landscape analysis. A case study on a vehicle scheduling problem is 

given, and a simulation model for evaluation of scheduling problem 

solutions is developed. Three scenarios of the problem solution are 

described. Simulation-based fitness landscape analysis and optimisation of 

the vehicle scheduling problem is performed by using the developed tool, as 

well as in the fitted optimisation framework. Recommendations for 

optimisation of the vehicle scheduling problem enhanced with the fitness 

landscape analysis are revealed and described.  

Chapter 4 “Application in Product Delivery Planning” describes 

application of metaheuristic optimisation methods in solving of a combined 

vehicle routing and scheduling task in goods delivery planning. The formal 

statement of the vehicle routing problem, description of applied methods and 

optimisation experiments are given in this chapter. The statement of the 

vehicle scheduling problem is converted into a route scheduling problem 

statement, which complements the solution of the routing problem. Then 

scheduling optimisation methods and experiments are described for the 

routed solutions. 

Results and conclusions of the thesis 

Bibliography 

Appendixes 
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THE SUMMARY OF THESIS CHAPTERS 

1. Literature Review and Problem Statement 

Chapter 1 gives an overview of a fitness landscape analysis in 

metaheuristic optimisation. Simulation-based optimisation methods for 

complex systems are discussed, and metaheuristic methods are identified as 

most suitable for the research topic of this thesis. A place for the fitness 

landscape analysis in such optimisation is defined. Formalisation and 

structures of a fitness landscape and specific methods for its analysis are 

given. The chapter ends with a formalised scheme proposed for a simulation-

based fitness landscape analysis. 

Simulation-based optimisation for NP-hard problems 

Modern optimisation problems in logistics and industry are 

characterized by large dimensions, uncertainty and nonlinearity. Thus they 

require more powerful methods in stochastic optimisation than traditional 

ones, such as non-linear-programming methods or classical algorithms in 

stochastic dynamic programming. In the thesis, parametric optimisation 

problems, most common in logistics, are considered. Parametric optimisation 

is performed to find values for a set of parameters which optimise some 

performance measure, e.g. minimise a cost or maximise a reward [15]. 

Mathematically, it can be defined as follows: optimise f(x1, x2, ..., xk), subject 

to some linear or non-linear constraints involving the decision variables x1, 

x2, ..., and xk, where f denotes a function of the decision variables.  

A factor that strongly influences the hardness of the optimisation 

problem is computational complexity of the problem. Different complexity 

classes characterize in which way computational time or space is dependent 

on the size of input data for a problem’s solutions. The thesis focuses on the 

NP-hard problems [42], which are at least as hard as the problems of the NP-

complete class, though NP-complete problems are the hardest problems of 

the NP (nondeterministic computer, polynomial time) class.  

Other factors that strongly influence the hardness of the optimisation 

problem can be the stochastic nature of the optimised system and the 

hardness of obtaining the analytical form of the objective function. To find 

solutions of such complex, large-scale, stochastic optimisation problems 

simulation-based optimisation is applied.  

The literature provides a number of numerical optimisation methods 

that only need the numerical value of the objective function for any solution 

candidate. These methods form a natural choice in solving applied complex 

stochastic optimisation problems, where the closed form of the objective 

function is frequently unknown, but the function itself can be evaluated 

numerically [15]. Numerical methods also include metaheuristic 
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optimisation methods, which facilitate finding good solutions to large and 

complex optimisation problems in a reasonable time with the application of 

different heuristic and stochastic methods. Although metaheuristic methods 

don’t guarantee that the optimal solution to the problem will be found, there 

is a high interest for the metaheuristic methods in the applied optimisation of 

real life problems [12]. Heuristics are methods that provide rules for search 

algorithms to explore good solutions and avoid worse solutions. A large 

number of metaheuristic optimisation techniques are implemented within a 

powerful and flexible optimisation framework HeuristicLab [49]. 

Traditional and numerical optimisation methods used in simulation-

optimisation can be divided into the following groups:  

 Gradient Based Search methods; 

 Stochastic Optimisation; 

 Response Surface Methodology; 

 Statistical methods; 

 Metaheuristic methods. 

Gradient Based Search methods are based on the response function 

gradient. The gradient is estimated to assess the shape of the objective 

function and to employ deterministic mathematical programming techniques. 

Stochastic Optimisation contains methods to find a local optimum for an 

objective function whose values are stochastic and are not known 

analytically. Statistical simulation optimisation methods use some additional 

information on the problem and structure of its simulation model. The 

Response Surface Methodology is based on approximation of the regression 

models that fit the output variable of a simulation model. Using the 

regression analysis the regression function that describes dependence of 

simulation output on input parameters is obtained, which is easier to 

optimise [5]. These methods require an ability to estimate a gradient of 

objective function, and most of them are designed for continuous 

optimisation problems and are hardly applicable for combinatorial problems. 

The group of metaheuristic methods has a wide concern within this 

thesis. These methods rely on the evaluation of solution candidates and on 

heuristic rules, without additional information about the optimised system. 

This group includes such main methods as the Genetic Algorithm (GA) [14, 

17], Evolution Strategy (ES) [41], Simulated Annealing [24] and Tabu 

Search [13]. 

Genetic algorithm and evolution strategy are population-based 

evolutionary algorithms that are based on the concept of a natural evolution. 

The GA works on a population of individuals, which represents solution 

candidates in the form of a string of genes (chromosome), where each gene 

encodes corresponding parameters of the solution. A sequence of three 

genetic operators is iteratively applied in the GA: selection, mutation and 

crossover. The selection operator removes worse individuals from the 
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population and clones good solutions. Individual quality is determined by its 

fitness, estimated with a fitness or goal function. The crossover operator 

stochastically mixes parts of chromosomes in randomly selected pairs of 

individuals to create new solution candidates. The mutation randomly 

changes the values of genes in a part of randomly selected individuals. 

Evolution strategy is similar to GA, but the selection of individuals in a 

new population is different, and the mutation operator plays a more 

important role. In the (μ, λ)-ES strategy, an initial population in each 

iteration contains μ individuals, which are used to produce the offspring 

population of λ solutions with the evolutionary operators. The offspring 

population is reduced to μ best individuals, and a new iteration is performed. 

In the (μ+λ)-ES strategy, λ individuals of the offspring population are mixed 

in one population with μ best solutions from a previous population, and then 

this population is reduced to μ best individuals. 

Simulated annealing and Tabu search are local search metaheuristic 

methods which rely on the hill-climbing search method. As hill-climbing 

may get stuck in suboptimal solutions, these metaheuristics introduce 

additional features to overcome this problem. Simulated annealing allows for 

stepping backward, but during the algorithm runtime the allowed decline of 

the fitness value is gradually reduced to zero. The Tabu search uses so called 

tabu lists, which disallow the search among already visited solution 

candidates, thus forcing the exploration of new solutions. 

In past research metaheuristic methods have shown good results in the 

solution of combinatorial analytical problems, and they are easily combined 

with simulation models; thus they are the most suitable for this thesis. The 

application of the metaheuristic and other numerical methods becomes more 

important for especially hard optimisation problems such as NP-hard 

combinatorial optimisation problems [10]. 

All the complexity factors lead to the time-consuming optimisation, and 

hard problems often cannot be solved in a reasonable time. For the new 

uncommon and possibly not investigated optimisation problems, this can 

lead to complex decision making for the selection and configuration of the 

optimisation methods. To make the selection and adjustment of an 

optimisation method more reasonable, a fitness landscape analysis offers 

methods for the investigation of the problem’s search space and can be 

applied to analyse the behaviour of metaheuristic methods in the 

optimisation of a specific problem. 

The concept of fitness landscape analysis 

The fitness landscape analysis provides methods and techniques for a 

mathematical analysis of a search space in hard combinatorial and 

continuous optimisation problems. It can be applied as a support tool to 

enhance optimisation of complex systems, and it is widely considered in 
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modern literature on artificial intelligence techniques [19, 21, 27, 44, 50]. In 

general, the fitness landscape is interpreted [20, 39, 45] as a combination of a 

fitness function of the optimisation problem and the relationships or a 

distance metric between the solutions in the search space. Hence, the fitness 

landscape defines the structures of the search space. 

The first notion of the fitness landscape is mentioned in [52], where it is 

proposed as a tool to interpret the behaviour of the biological evolution. 

Here, the evolution is considered as a walk on the landscape, where its 

heights define the fitness of the individuals in specific points of the 

landscape. The process of evolution tends to the highest peaks, where the 

individuals are most fit to the natural environment. Here, the definition of the 

fitness landscape shows that at times evolution has to move individuals from 

one peak to another, higher peak, through the valley with a low fitness, and 

these landscape structures impact the evolution process. 

This concept of the fitness landscape was transferred to the domain of 

optimisation problems. It was proposed that the structures of the problem’s 

fitness landscape affect the way, in which a search space is examined by a 

metaheuristic optimisation algorithm. It was assumed that the fitness 

landscape analysis of the problem would allow getting more information on 

the problem’s properties dependent on a specific optimisation method, which 

will guide the optimisation process [19, 39, 50]. 

One of the objectives of the fitness landscape analysis is evaluation of 

the difficulty of the optimisation problem. The features of fitness landscape 

that influence the problem difficulty are ruggedness, modality and epistasis 

of the landscape [21]. Another opinion is that fitness landscape analysis can 

be applied to obtain a better understanding of the algorithm performance for 

different instances of the same problem, to configure optimisation algorithm 

for specific instances [37]. With the fitness landscape analysis it is possible 

to get measures of the problem’s difficulty, and in turn, the recommended 

configuration of an optimisation algorithm, while gaining deeper 

understanding of behaviour of the algorithm in the corresponding problem 

class. The fitness landscape analysis provides information on internal 

characteristics of the optimisation problem. It is a powerful tool for deep 

understanding of optimisation problems in classes however can be a weak 

tool for enhanced optimisation of a stand-alone optimisation problem [37]. 

The fitness landscape analysis may be used as a tool for dividing 

instances of similar optimisation problems into several classes and 

subclasses with similar characteristics of fitness landscape measures, which 

define similar difficulties for the optimisation algorithm. Searching for better 

problem subclass specific algorithms and configurations will provide useful 

knowledge on the problem solution scenarios [37]. 

It would be convenient to represent a fitness landscape graphically in a 

visual image, but naturally it is possible for problems only with one fitness 
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function and two continuous parameters (see Fig. 1). The fitness landscapes 

can always be described by a directed graph whose vertices are solutions 

labelled with fitness values, and edges are neighbour relations between 

relevant solutions [46]. 

 
Fig. 1. Three-dimensional interpretation of fitness landscape 

It should be noted that in the previous research on the landscapes, the 

behaviour of the algorithm in the problem’s search space often relies on the 

intuitive geographical understanding of a fitness landscape. However, this 

conception often is not based on a formalisation and can be misleading [37]. 

To overcome the problems in the interpretation of a fitness landscape, 

formal definitions are known in the literature. The commonality for all these 

definitions is that they define a fitness landscape as the combination of the 

fitness function and the topological structure of the search space. 

In the following formal definitions a notion of a multiset [25] is applied. 

The multiset M(S) is defined, which is an infinite set of multisets that contain 

elements of a multiset S. Moreover, Mq(S) is a set of all multisets that are 

derived from S and have cardinality equal to q [20]. 

An object space of the problem is defined as O. A search algorithm has 

to select an appropriate object from all available O objects, which can be any 

type of structure, e.g. tuple, a set of permutations, etc. A representation 

space R defines a set of representations that represent objects from the set O. 

The mapping between O and R is called representation. 

The representation between sets O and R is defined by the relation Γ. 

For elements o ∈ O and r ∈ R the notation oΓr defines that o is represented 

by r. A reverse relation Γ
-1

 between sets R and O is defined as Γ
-1

 = {(r, o) 

| (o, r) ∈ Γ}, where the notation rΓ
-1

o defines that r represents o. If Γ(o) ≠ ∅, 

then the object o is represented. If Γ
-1

 (r) = ∅, then the representation r is 

illegal.  

The definition of a problem for which the landscape metaphor can be 

applied has some function g : O → G to determine a quality of solutions. 

Here G defines such a set with a partial order >G, for which, if g(o1) >G g(o2) 

for o1, o2 ∈ O, then o1 is a better problem’s solution than o2.  
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At the time moment t algorithm operates on a finite number of R 

elements that form a multiset Ct ∈ M(R). The current multiset will be 

denoted by C. To modify the multiset C, operators are applied by an 

algorithm. The operator will be denoted by ϕ, which is defined by a function 

ϕ: M(R) × M(R) → [0, 1]. A value of ϕ(v, w) = p for v, w ∈ M(R) defines a 

probability p that v will be modified to w by application of the stochastic 

procedure defined by the ϕ operator [20]. 

The search algorithm can be shown in a general way as the sequence of 

operators that modify a multiset of the selected solutions [20]: 

  321

210

 CCC  (1) 

To define a landscape, the notation of ϕ-neighbourhood has to be 

defined for the operator ϕ. The ϕ-neighbourhood for the solution v ∈ M(R) is 

a set Nϕ(v) of M(R) elements, which are accessible from v by one iteration of 

the ϕ operator. As a result, the set of neighbours for v is defined as: 

 Nϕ(v) = {w ∈ M(R) | ϕ(v, w) > 0}. (2) 

If for a landscape point w ∈ Nϕ(v), then w is a ϕ-neighbour of w. The ϕ 

in neighbourhood notation is essential, because ϕ-neighbour solutions may 

be not neighbours for other operators. 

The neighbourhood Nϕ(P) for a set of P ⊆ M(R) is defined as a set of 

such M(R) – P elements, which are ϕ-neighbours of the elements of P: 

 Nϕ(P) = {w ∈ M(R) – P | ϕ(v, w) > 0 and v ∈ P}. (3) 

Certain goal function f : M(R) → F on some set F with a partial order 

>F defined on F has to be selected, in order to define which solution is the 

best in the current multiset of solutions, and to determine a search trend for 

the algorithm. In most cases a function f is taken relevant to the goal function 

g of the solved problem, so that f = g, F = G and >F = >G. But this is not 

mandatory; often in application of genetic algorithms the function f includes 

a goal function of the problem g and some additional functions which 

penalize illegal objects. 

The strict definition of the fitness landscape is given in the [20]. The 

landscape is defined as the 5-tuple: 

  L = (R, ϕ, f, F, >F), (4) 

where the components of the fitness landscape are as follows: a 

representation space R, an operator ϕ that forms this landscape, a fitness 

function f : M(R) → F which maps the multiset of a representation space on 

some set, called the fitness space F, and a partial order >F on F. 

The landscape here is the metaphor, which is applied to get more 

information on the behaviour of a search algorithm. The 5-tuple of the 

landscape can be represented as a directed labelled graph GL = (V, E), where 

vertices are V ⊆ M(R), and where edges are E ⊆ V × V and the edge is 

defined if (v, w) ∈ E ⇔ ϕ(v, w) > 0. In this representation, a vertex v ∈ V is 

labelled as f(v), and edge (v, w) is labelled ϕ(v, w). While the formal 



16 

 

statement of the landscape is the 5-tuple, the landscape may be interpreted as 

the graph, which is obtained from the tuple [20]. 

In an application of this definition for describing the fitness landscape, 

it is not possible to say that a GA makes a walk on the landscape. GA 

operators make small steps on crossover and mutation landscapes, and then 

with the whole population on a selection operator’s landscape. 

A simplified definition of the fitness landscape is given in the study 

[37]. Here, the fitness function is defined as f: R → ℝ. The distance d 

between neighbour solutions is defined as R × R → ℝ, which forms a metric 

instead of a neighbourhood function N: R → 2
R
. The fitness landscape L is 

defined as a set of two functions f and d that define the fitness value and the 

distances between solutions in R as: 

 L = (R, f, d). (5) 

In (5) the operator and fitness space with its order are omitted, while the 

fitness function maps on a set of real numbers ℝ. The definition of the ε-

neighbourhood for solution x in this notation is given by: 

 Nε
+
(x) = {n | n ∈ R, n ≠ x, d(x, n) ≤ ε}. (6) 

By requiring a distance measure in addition to the fitness value, the 

fitness landscape is not only dependent upon the problem, but also strongly 

linked to the choice of representation and its connectedness using certain 

operators for moving between or recombining solution candidates [37]. 

Furthermore, the definition in [33] states that it is possible to represent 

the fitness landscape of any optimisation problem as a graph GL = (V, E), 

where V is a set of vertices, which are mapping a set of solutions S, and 

}),(|),{( mindssdSSssE   is a set of edges, where d is a distance 

between two solutions, and dmin is a minimal distance between these 

solutions. This distance is defined by a number of applications of operator 

necessary to transform a selected solution to another one [33].  

Similar to structures of nature landscapes hill ridges, valleys and other 

structures can be identified in the fitness landscape. Hills or peaks on the 

landscape are defined as solutions that have its fitness better than their 

neighbourhood. The peak that has the highest fitness is called as a global 

optimum, but all other peaks are called local optimums. 

The following formal definitions of the fitness landscape structures are 

given for a case, when a landscape is defined in the form (4). These 

definitions are based on the definitions of a ϕ-neighbourhood and a ϕ-

neighbour, which are given above.  

A vertex is a ϕ-peak (or ϕ-maximum) only if its fitness is better than any 

fitness of its ϕ-neighbours [20] and is defined in the following way: 

 v ∈ V | ∀w ∈ Nϕ(v), f(v) >F f(w). (7) 

For a simplified form (5) and the ε-neighbourhood definition given in 

(6) the local optimum is defined in [37] as: 

 local optimum(x) :⇔ (∃ε > 0) (∀n ∈ Nε
+
(x)) f(x) > f(n). (8) 
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A vertex is a global-maximum when its fitness is not worse than any 

other solution fitness on the whole landscape. Such vertex v of the landscape 

graph is defined by: 

 v ∈ V | ∀w ∈ V, f(v) >F f(w). (9) 

In turn, a ϕ-local-maximum or ϕ-local-optimum is such ϕ-peak that is not the 

ϕ-global-maximum at same time.  

The region of landscape, where all solutions are with a similar fitness is 

called a ϕ-plateau and is a set of vertices that is defined by: 

 M ⊆ V, |M| > 1 : ∀ v0, vn ∈ M, ∃v1,...,vn-1 for 

 f(vi) = f(vi+1) and vi+1 ∈ Nϕ(vi)  ∀ 0 ≤ i < n. (10) 

The notion of a basin of attraction is used in the interpretation of the 

results of the fitness landscape analysis. This is a set of vertices from which 

a given vertex can be achieved by an iterative application of operator. ϕ-

basin-of-attraction for a vertex vn is formally defined as follows: 

 Bϕ(vn) = {v0 ∈ V | ∃v1, ..., vn-1 with vi+1 ∈ Nϕ(vi)   ∀ 0 ≤ i < n }. (11) 

An operator ϕ has a fixed cardinality if it is defined in form 

Mk(R) × Ml(R) → [0, 1] for certain indexes k and l. Further in the text 

notation ϕk→l will be used to refer to such an operator. Operators that are of 

ϕk→k are called walkable operators. Most of the mutation operators in genetic 

algorithms are walkable. An operator ϕ is called symmetric, if 

ϕ(v, w) = ϕ(w, v) for any vertices v, w ∈ V. The majority of known operators 

of evolutionary algorithms are symmetric [20]. 

A landscape that is formed by an operator with a fixed cardinality is 

called natural if the operator is symmetric and is of ϕ1→1 class. The name 

“natural” comes from the basic interpretation of the fitness landscape [20]. 

Literature on fitness landscape analysis defines a number of factors, 

which affect the hardness of the optimisation problem and hence will allow 

selecting an appropriate metaheuristic algorithm and its configuration. 

The major highlighted characteristics are the modality, ruggedness, 

neutrality, epistasis [39] and neutrality. The epistasis defines interaction 

between the genes in the chromosome, when the behaviour of a genotype is 

relevant on the combination of the gene interactions [4, 26, 39]. Modality 

defines a number and density of optima in a search space [39]. Ruggedness 

characterizes the impact of all structures of the landscape on the hardness of 

the search and the landscape is rugged, if there is small correlation between 

neighbourhood solutions [33, 48]. Neutrality characterizes a number of 

structures with a very similar fitness in the landscape [40, 43]. This measures 

a number and size of plateaus areas. 

The following factors which influence the structure of the problem’s 

fitness landscape, and should be analysed while selecting, constructing or 

tuning the optimisation algorithm: problem hardness, solution representation, 

search operators and a fitness function. The hardness of the problem is the 
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only factor, which cannot be changed without changing the statement of the 

optimisation problem.  

Selection of different representations affects the representation space 

and topological structure of the landscape. Different properties and 

characteristics of the landscape are obtained if different encoding methods 

are applied [26]. As it was shown above, a search operator significantly 

influences the topological structure of the landscape. So, different fitness 

landscapes may be defined for different operators. Furthermore, choice of a 

fitness function doesn’t change the topology of the landscape, while it affects 

the behaviour of a search algorithm. For example, fitness function with many 

stochastic parameters can make the landscape noisier and thus more rugged. 

Review of fitness landscape analysis techniques 

A number of different techniques have been developed for a fitness 

landscape analysis by evaluating its structural characteristics. Fitness 

landscape analysis techniques provide the possibility to analyse the structure 

of the fitness landscape by analysing only small part of the landscape. A 

number of fitness landscape analysis techniques and measures are defined in 

the literature [6, 8, 16, 18, 21, 43, 44, 46, 47, 48]. These techniques can be 

divided into two groups that provide a statistical and information analysis of 

the landscape. Statistical analysis techniques use statistical data and evaluate 

correlations between potential solutions on the fitness landscape. 

Information analysis techniques use measures from information theory to 

estimate structural features of a fitness landscape. 

Fitness landscape analysis techniques do not require information about 

all problem solution candidates, but analyze only a part of a fitness 

landscape data and apply different strategies for data collection. Techniques 

described in this thesis are based on simple moves. A sequence of such 

moves generates a trajectory through the landscape, which is then analysed. 

Most methods for a fitness landscape analysis are based on a random walk. 

Other landscape walks such as up-down (adaptive) and neutral walks extend 

the amount of information collected on the landscape and allow for getting 

additional characteristics. The above mentioned three types of landscape 

walks, which are most known in literature, are applied in this thesis. 

In the Random Walk, a solution candidate is randomly modified 

repeatedly, and a random trajectory on the landscape is created. In the 

Adaptive landscape walk, a certain number of mutations are performed to 

generate a set of neighbours, and then the best one is selected from this set 

[22]. The Up-Down Walk is similar to the adaptive walk, but when the up-

down walk reaches a local optimum, the direction of the walk is reversed 

[48]. Neutral Walks explore “flat” areas. Here, neighbours with an increasing 

distance from a certain starting point are chosen while trying to remain at the 

same fitness level as the starting point [40]. 
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The statistical analysis, which is proposed in [50], is a widely used 

approach for the fitness landscape analysis. This approach basically 

calculates the autocorrelation function in the random walk. Within the 

statistical analysis, the correlation between fitness of neighbourhood solution 

candidates is used to measure the ruggedness of the landscape. In case of a 

high correlation between two sets of fitness values of landscape points the 

fitness landscape is considered smooth or less rugged. 

In the first step of the statistical analysis a long walk is performed on 

the landscape, and the collected fitness values form time series {ft}
N

t=1. Then, 

an autocorrelation function is calculated for the collected time series. The 

autocorrelation function ρ(Γ) indicates the correlation between two sets of 

points that are separated by a distance Γ [46]: 

  
     

 t

sttstt

fV

fEfEffE  
 , (12) 

where E(ft) the expectation and V(ft) is the variance of a sequence of 

fitness values  N

ttf 1
, where N is the length of the sequence. For smooth 

landscapes the autocorrelation of a random walk is close to 1 and tends to 

zero for rugged landscapes [39].  

Another statistical measure is correlation length, which defines a 

distance beyond which two sets of fitness points becomes uncorrelated. The 

correlation length in [50] is evaluated by:  

   1ln

1


  , (13) 

where  1  is the autocorrelation of the neighbouring points. A longer 

correlation length indicates a smooth landscape, while a shorter length 

indicates a rugged landscape. More robust evaluation of the correlation 

length for the fitness landscape analysis is proposed in [18]. The model of 

autocorrelation is extended by the definition, where correlation is significant 

while it exceeds two standard-error-bounds  NN 2;2  , where N is the 

length of the time series. The correlation length τ is one less than the first 

time lag, where the autocorrelation ρ(τ+1) falls in the error bound [18]. 

The information analysis interprets a fitness landscape as an ensemble 

of various objects, which are characterized by their form, size and 

distribution. In [48] these objects consist of a point in the fitness landscape 

and the nearest neighbours of the point. The information analysis is based on 

the information theory, and four information measures are proposed in [48]. 

 All information measures are calculated with notice to a calculation 

accuracy which is defined by parameter ε. This parameter defines a threshold 

of slopes in the fitness path. All slopes that have fitness difference between 

the neighbour solutions less than ε are assumed to be flat [48]. The 

information content H(ε) is a measure of entropy in the system. In case of 
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high information content, the landscape has a large variety of structures and 

is more rugged. Partial information content M(ε) characterizes the modality 

of the obtained fitness string [46]. The information stability ε* characterizes 

a magnitude of optimums in the obtained landscape fitness path. The 

density-basin information h(ε) analyses the variety of flat and smooth 

sections in the landscape.  

To obtain the information measures of the landscape L, the landscape 

walk is performed, and fitness values of passed solutions are collected in the 

time series {ft}
N

t=0, where N is a length of the random walk. The sequence of 

fitness values is transformed into a string of ensembles S(ε), which elements 

 1,0,1is  are calculated by: 
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The parameter ε is a real number between 0 and highest difference 

between fitness values in the landscape path and defines how accurate the 

string S(ε) is calculated. 

The information content H(ε) is defined by: 

      



qp

pqpq PPH 6log , (15) 

The partial information content M(ε) is determined by: 
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where n is the length of the string S(ε), and the function Φ is calculated 

recursively by: 
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Finally, the density-basin information h(ε) is determined by: 

      
 




1,0,1

3log
p

pppp PPh  , (18) 

where the probabilities P[pp] represent frequencies of sub-blocks pp 

from the string S(ε) [48]. 

Information stability ε* is the lowest ε value, with which it is obtained 

that the fitness path has no structures at all.  

The fitness landscape of a problem that is easy for evolutionary 

algorithms has values of information measures close to 0. For hard 

optimisation problems these values are close to 1 [48]. 

The statistical and information analysis techniques can be used only for 

statistically isotropic fitness landscapes. For these landscapes a fitness value 
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sequence obtained with a random walk forms a stationary random process 

for the assumed joint distribution of the fitness values [48]. 

Problem setup of the simulation-based fitness landscape analysis and 

optimisation 

To extend the concept of the fitness landscape analysis for its 

application in simulation-based optimisation, the concepts of the simulation 

fitness landscape and simulation-based fitness landscape analysis are 

introduced. The formal definition of the simulation fitness landscape Lʹ, 

which is derived from a modification of definition (4) by substituting the 

fitness function f with a simulation model, follows: 

 Lʹ = (R, ϕ, S, Fʹ, <Fʹ), (19) 

where R is a representation space, ϕ is a search operator, S is a 

simulation model, Fʹ is a set of a simulation model outputs that has an order 

defined by <Fʹ. With an assumption that a simulation model provides real 

value output, the definition (19) of the landscape can be translated into the 

following definition: 

 Lʹ = (R, ϕ, S), (20) 

where R is a representation space, ϕ is an operator that forms the 

landscape and S is a simulation model with one output variable: 

  S = f : x

× ξ ↦ ŷ, (21) 

where x


 ∈ R is a vector of simulation model input variables, which 

represent solution candidates in the representation space, f  is an objective 

function, ξ is a random component of the simulation model and ŷ ∈ ℝ is the 

mathematical expectation of the simulation model output. 

To apply the fitness landscape analysis in the simulation optimisation, 

the following three-level formalised scheme is introduced (see Fig. 2), which 

contains the benchmarking level or level-0, and two levels of landscape 

analysis and optimisation, correspondingly. 

At the benchmarking level, information on different landscape 

structures and measures and on the performance of the optimisation 

algorithms on benchmark landscapes is collected. At the landscape analysis 

level, the landscape analysis procedure is defined. First, walks on the 

landscape are performed with different walking strategies, and the trajectory 

on the landscape defined by a simulation model and selected operator is 

generated. The time series of fitness values obtained in the walks are 

collected and landscape analysis measures are calculated by using statistical 

and information analysis techniques. The obtained collection of data with the 

information on walking strategies and landscape measures is used to select 

and adjust an appropriate optimisation algorithm. Moreover, collected data is 

also added to a dataset of benchmarking landscapes that are useful for future 

cases. At the optimisation level, the selected algorithm is used to optimise 

the investigated system by using the simulation-based metaheuristic 
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optimisation approach. Information on the performance of the optimisation 

algorithm is collected and added to a dataset of benchmarking landscapes. 
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Fig. 2. Simulation-based optimisation with fitness landscape 

analysis 

Landscape walk module LW can be interpreted as follows: 

 )ˆ,,(1 yxLWx tt 


 , (22) 

where t is a number of landscape walk iterations completed from N 

expected iterations in the walk, 1tx


 is a vector of simulation model input 

variables for a current iteration, tx


 are input variables at the previous 

iteration, ϕ is a search operator and ŷ is an output of a simulation model. For 

the landscape walk, an operator ϕ is applied with notice to the information on 

the representation space R. The output ŷ of a simulation model is used in up-

down and neutral walks in order to determine walking direction. Only 

walkable operators can be applied in this definition.  

Output of the landscape walk module is a vector of simulation model 

input variables x


 = (x1, x2,..., xk), x


 ∈ R , where R is a representation space 

and k is a number of simulation model input variables. For each input 

variable it is true that xi ∈ ℝ, ∀ 0 ≤ i < k. 

Simulation model S is used to evaluate the performance of a system to 

be optimised. It produces the simulation output from several model runs or 

replications and is defined by:  

 S = f : x

× 


 ↦ ŷ, (23) 

where  f is an objective  function, which optimal value is searched in 

the optimisation process; 



23 

 

x


 = (x1, x2,..., xk) is a vector of k input variables; 




 = (ξ1, ξ2,..., ξd) is a disturbance vector of d environmental 

variables; 

ŷ is a mathematical expectation of simulation output.  

The output of the simulation model S is estimated by ŷ = E[y], where 

y ∈ ℝ defines simulation output in each replication, and E[·] denotes the 

mathematical expectation. Here, the simulation model is interpreted as a 

black box which defines input-output relationships of the model, not 

considering the states of the simulation model. 

As a result of process integration of landscape walk LW module and 

simulation model S, a number of time series {ŷt}
N

t=1 in landscape walks is 

generated, where N is a number of evaluations in the trajectory. Lets note 

that the time series {ŷt}
N

t=1 is used as inputs for landscape analysis 

techniques, where it is denoted as {ft}
N

t=1 below. 

The module of statistical and information analysis (S&IA) performs 

analysis of sequences of fitness values {ft}
N

t=1 obtained in the landscape 

walk, and calculations of the landscape statistical and information analysis 

measures are performed in this module. A set of values ρ(Γ), τ, H(ε), M(ε), 

h(ε) are obtained for different autocorrelation distance Γ and different 

sensitivity value ε. The module S&IA can be interpreted as: 

 S&IA : ℝN × ℕ × ℝ+ → ℝ5
  

 ({ft}
N

t=1) × Γ × ε ↦ (ρ, τ, H, M, h). (24) 

The module of construction and tuning of an optimisation algorithm 

allows selecting the appropriate optimisation algorithm and adjust its 

parameters for optimisation of a complex system, which is simulated by S. 

Selection of the algorithm, its components and parameters is based on the 

data from simulation-based fitness landscape analysis and the data on 

benchmark landscapes. The main input of this module is a set of values that 

describe previously analysed fitness landscape. The module output defines 

the selected metaheuristic optimisation algorithm and its configuration. The 

last one includes the representation of the solutions which defines the 

representation search space R, and a set Φ of search operators which form 

the metaheuristic optimisation algorithm. The selection of the algorithm and 

its configuration is based on the rules and recommendations which are 

applicable for known values of the landscape measures. The alternative way 

of the algorithm selection and configuration is based on data of benchmark 

landscapes, where better optimisation algorithms are associated with 

corresponding landscape measures. 

At the optimisation level, the simulation model is defined by the (23). 

Here, the metaheuristic algorithm (MA) here uses the representation 

method (defined by R), a set Φ of suggested operators which are determined 

in the construction and tuning module. The MA module can be formalized 

here as follows: 
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   1)ˆ,,ˆ,,(:  tt
xyxMyRMA





, (25) 

where  t is a number of performed evaluations of a simulation model; 

  1tx


 is a vector of suggested simulation model input variables; 

   
t

yxM ˆ,


 denotes a memory of previous solution candidates 

obtained after the t-th evaluation; 

  ŷ is a mathematical expectation of a simulation output. 

The termination condition determines whether the suitable solution is 

found and an optimisation cycle can be stopped. When the optimisation 

cycle is terminated, the best found solution ŷopt = yx ˆ,


 is selected. The 

performance measures of the optimisation model can be added to the dataset 

of benchmark landscape measures. These measures are presented by a three-

valued tuple including the problem landscape (20); time performance 

measure tperf of the optimisation algorithm which determines time required to 

find the best known solution; and performance measure ΔQ which 

determines quality improvements for the best found solutions. 

Here, the simulation-based fitness landscape analysis is a way to 

examine the fitness landscape generated on the simulation model basis, 

providing an overview of how the optimisation module has to be configured 

and tuned. 

2. Benchmark Fitness Landscape Experimental Analysis 

This section presents implementation of fitness landscape analysis 

techniques to estimate measures of fitness landscapes for several benchmark 

functions with known structures defined by analytical expressions. Also, the 

section provides an experimental analysis on how random noise in the fitness 

function can affect measures of fitness landscapes. Detailed analysis of 

benchmark fitness landscape structures is given in order to find the relevance 

between landscape measures, landscape factual structures and behaviour of 

optimisation algorithms. 

Benchmark fitness landscapes 

The following four fitness functions are widely used for benchmarking 

of genetic algorithms and were selected for estimating and analysing 

statistical and information measures of benchmark fitness landscapes. They 

are Sphere function [9], Rastrigin function [53], Rosenbrock function [9] and 

Ackley function [1]. These functions can be defined in the same search 

domain with an equal number of variables and can easily be graphically 

interpreted for two variables.  

The Sphere function is a continuous, convex, quadratic and unimodal, 

and for the vector X = ‹x1,...,xn› of n variables it is defined by:  
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The Rastrigin function has more rugged landscape and is defined by:  

     .2cos1010,...,
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The Rosenbrock function is a continuous, non-convex, quartic and 

unimodal function of n variables and is calculated by:  
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Finally, the Ackley function is highly multimodal and rugged. Like the 

Rastrigin function, it has the local optima, but the slope to the optima is 

exponential. The Ackley function is defined by: 
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 Sphere, Rastrigin and Rosenbrock functions have the global optimum 

in the point xi = 0, i=1...n, but for the Rosenbrock function it is in the point xi 

= 1, i = 1...n, located inside a parabolic shaped flat valley. Visualisations of 

all four functions for 2-dimensional problems are shown in Fig. 3. 

 Fig. 3. Visualisation of landscapes of benchmark functions 

For all four functions, a number of variables is taken equal to n = 2, and 

a search domain is defined by –5 ≤ xi ≤ 5, i = 1, 2. Two types of solution 

representations are used: real-value encoding and binary representation. In 

the first, variables x1 and x2 are coded as real numbers with a resolution 

factor of 0.01, e.g. –3.49 and 0.84. Binary coded chromosomes have length 

of 20 bits, where first 10 bits code x1, but others code x2.  

Different mutation operators are applied for different encodings. For 

real-value encoding, a mutation operator changes each variable in a 

chromosome by +0.01 or –0.01 with the probability equal to 1/3. If all 

variables xi stays unchanged, the mutation operator is re-applied until at least 

one variable in this chromosome changes its value. For binary 

representation, a bitflip operator is used, which changes the value of a 

randomly selected bit to the opposite value. 

Therefore eight different fitness landscapes received for four different 

benchmark functions and two types of a search space for each function are 

analysed.  

f

 

Sphere function 
f

 

Rastrigin Function 
f

 

Rosenbrock function 

 

Ackley function 
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Experimental analysis of benchmark landscapes 

For the Sphere, Rastrigin and Rosenbrock fitness landscapes, an express 

analysis was performed to show and describe main steps of the landscape 

analysis. For a detailed analysis of benchmark fitness landscapes, a software 

prototype in Java was developed and applied. To estimate structural 

measures of these landscapes, multiple experiments were performed with 

multiple randomly generated paths and a starting point uniformly distributed 

in the representation space.  

Autocorrelation functions calculated for different benchmark functions 

and lags demonstrate similar results. For longer trajectories on the landscape 

the values of the autocorrelation function are closer to 1. While correlation 

measures show dependence on the length of the path generated by a random 

walk, the behaviour of information content measures does not demonstrate 

this effect.  

In the second series of experiments, the autocorrelation for different 

benchmark landscapes and lags was defined for two types of solution 

representation. Correlograms obtained for real-value and binary coded 

benchmark landscapes show the higher autocorrelation for real-value coded 

fitness landscapes that make search processes easier in practice. However, 

the difference between correlogramms for different landscapes with the same 

representation type is minor.  

In the third series of experiments, different information measures for all 

benchmark landscapes and different ε values were estimated. The results 

show the higher information content for smaller values of parameter ε; with 

an explicit peak around ε = 0.03 for the real-value coded Sphere function. At 

ε = 0 information measures become identical and essentially do not provide a 

new information about structures of specific fitness landscapes. In this case, 

the information content tends to 0.388, the partial information content to 0.5 

and the density-basin information to 0.63. At the same time, smaller values 

of the information content for the Rosenbrock function compared to the 

Sphere indicate the higher degree of flatness with respect to rugged areas of 

the landscape. 

Due to different ranges of fitness value, it is difficult to compare 

information measures when ε > 0. To overcome this, value ε1 that defines a 

similar and comparable part of the interval of all fitness values of the given 

landscape was specified. For Sphere, Rastrigin and Ackley functions it was 

taken as ε1 = 0.04, while for Rosenbrock function ε1 = 50, as this function 

has higher changes between the fitness of neighbour solutions.  

Multiple experiments were performed for three small areas on the 

Sphere benchmark landscape near the global minimum, close to the local 

maximum and between them. A starting point in a random walk in each local 

search was defined by <0.05;–0.01>, <4.49; 4.82> and <–3.71; 1.23>, 
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correspondingly. Results show that the autocorrelation is not significantly 

sensitive to a starting point. The magnitude of fitness change during the walk 

between neighbouring points has a big impact on the information content 

measures. Therefore, the information content shows a high sensitivity to a 

parameter ε so that ε values need to be carefully defined for different local 

areas of the landscape.  

Noise and measures of landscapes 

Additional experiments were performed to define the effects of random 

noise in a fitness function on statistical and information measures. In this 

case, the fitness function f* is described as follows: 

 f* = f + ξ, (30) 

where f is the benchmark fitness function and ξ is a term that represents 

noise effects and is treated as a normally distributed statistical error with a 

mean of zero and variance σ
2
. 

The results of experiments show that both statistical and information 

measures are quite sensitive to a noise factor. With increase of variance, the 

autocorrelation gets lower for shorter lags and higher for longer lags. 

Random noise increases the values of the information content 

correspondingly to an increase of the entropy of the landscape structures.  

GA optimisation experiments with benchmark fitness functions 

To find the correlation between the results of fitness landscape analysis 

and hardness of a real problem for an evolutionary algorithm, a series of 

optimisation experiments were performed with benchmark fitness functions. 

GA with one point crossover and above described mutation operator was 

used to estimate a cumulative probability of success (CPS) [23] for different 

benchmark landscapes. The results of optimisation experiments show that for 

binary coded Sphere, Rastrigin and Ackley functions, the global optimum is 

found in about 50-60% runs of more than 20 generations. The CPS doesn’t 

become higher for a larger number of generations. In the case of the 

Rosenbrock function, the global optimum is found in 10-20% runs.  

In most cases, except for the Rosenbrock function, GA found solutions 

on real-value coded benchmark landscapes are better than on the binary ones 

that was predicted within the statistical analysis. As the autocorrelation 

between neighbourhood fitness points is high, it is easier for the genetic 

algorithm to move to a point with better fitness. Nevertheless, optimisation 

experiments show that for applied GA the Rosenbrock function is harder 

than the three other benchmark functions. This could be explained that 

existing fitness landscape analysis techniques are not able to identify 

structures that make search with GA difficult. To find out the reasons for the 

GA performance, dynamics of populations in different generations were 

analysed.  
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Distribution of found solutions in populations in different generations in 

the search space is compared for real-valued representation. For Rosenbrock 

function an experimental analysis shows that the population tends to a centre 

of the valley (Fig. 3), but not to the global optimum. This tendency was not 

observed for the GA with binary encoding, where the population converges 

toward the global optimum. For the other three functions, GA converges 

toward the global optimum much better for both types of encoding.  

Cluster analysis for comprehensive fitness landscape analysis 

In [38], the application of the fitness landscape analysis is performed in 

order to determine in what way problem instances of the same class (e.g. 

vehicle routing problems) are similar, or different. To define this, all values 

of the landscape measures which are obtained by different operators, are 

joined in one vector of problem instances characteristics. With application of 

this vector it is possible to make a cluster analysis of the problem instances 

and to define groups of similar instances. 

Detailed analysis of the benchmarking landscapes 

For the better interpretation of behaviour of the search algorithm on the 

benchmarking landscapes, their graphs of fitness landscapes were created 

and analysed. One solution candidate for Sphere function optimisation was 

randomly selected. Afterwards, the neighbourhood of the selected solution 

was constructed for different operators. The analysis of the real-valued 

mutation operator shows that solution candidates are highly connected with 

each other in this landscape, and the operator does not provide large changes 

for a fitness value. To represent a graph of a crossover operator, each vertex 

of the graph represents a pair of solution candidates [20]. The landscape 

graph of a crossover operator for real-valued representation is not connected. 

It is highly ineffective, as for each pair of solutions there is only one another 

pair which can be obtained with this crossover. Moreover, without the 

mutation operator this crossover would be non-productive as it does not 

generate a high number of new solutions from existing population. 

The binary mutation operator, which landscape is a hypercube allows 

moving from one solution to a large number of other solutions. It is possible 

to move from the selected solution to another one with much better fitness 

only in two iterations of this mutation operator, but the probability of this 

move is very small. The binary crossover landscape is non-connected, but its 

each component consists of more vertices, and each solution has more 

neighbours. As the landscape of the binary crossover is walkable, three 

operator-local-optima are allocated in the corresponding component of the 

landscape graph. Thus, the fitness landscape of the binary crossover operator 

may be highly multimodal. 
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3. Simulation-based Fitness Landscape Analysis 

Prototyping of fitness landscape analysis tool 

Fitness evaluation of the potential solution is made through simulation. 

The procedure for the simulation-based fitness landscape analysis contains 

the following stages (Fig. 4): 

1. Fitness landscape’s path generation; 

2. Fitness evaluation of solutions in the path; 

3. Analysis of the path’s fitness sequence. 

To generate trajectories on the landscape and analyse the obtained 

fitness sequences, Java applications are developed. For fitness evaluation, a 

simulation model is developed in AnyLogic 6 simulation software. A 

standalone application performs a random walk on the problem fitness 

landscape. As a result, a sequence of parameters   1t

Ntx


 of landscape path 

candidate solutions is obtained.  

The simulation model is evaluated in AnyLogic parameter variation 

experiment with different input parameters, which are defined in the 

obtained trajectory. As a result, the model generates an array   1
ˆ

t

Nty  of fitness 

values. 

 
Fig. 4. Main stages of fitness landscape analysis 

Finally, calculation of statistical and information fitness landscape 

measures is performed on a sequence of obtained fitness values. In statistical 

analysis, correlation length and autocorrelation function for different lags are 

calculated. In the information analysis three steps are performed: 

1. Determination of information stability ε*. 

2. Iterative calculation of information content H(ε), partial 

information content M(ε) and density-basin information h(ε) for 

different values of ε. 

3. Output of values of information measures. 

To define ε*, an interval of possible ε values is divided by 2 in each 

iteration. A half-interval that contains the possible value ε* is selected for 

further analysis in the next iteration. Measures H(ε), M(ε) and h(ε) are 

calculated iteratively in the interval [0, ε*) with a step 0.05·ε*. 

Experimental data from several random walks is collected during 

analysis. As all random walks are started at different random positions, 

fitness landscape measures are obtained for a large part of the landscape. 

Generation of 

fitness landscape 

path solutions 

Simulation 
Statistical and 

informational analysis of 

fitness sequence 

AnyLogic 

  1t
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   1
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Case study 

A case study based on the vehicle scheduling problem with time 

windows has been developed for validation of the fitness landscape analysis 

tool. Vehicles with various parameters deliver different types of goods from 

one distribution centre to many shops (customers). Distribution routes for 

vehicles are known. For each trip a sequence of shops in a route, average 

time intervals for vehicle moving between route points, as well as loading 

and unloading average times, and types of goods that can be carried in this 

trip are defined. Goods have to be delivered in shops only in the predefined 

time windows. An average demand of goods of each type is defined for each 

shop. Vehicle capacities are limited and known. The problem is aimed at 

assigning vehicles to trips in order to minimise the total idle time of all 

vehicles, which is defined as a sum of time periods when a vehicle is waiting 

for the next trip while in the depot. 

Vehicle scheduling problem (VSP) is frequently reviewed in the studies 

[11, 35]. However, it is often modified with additional constraints. A number 

of methods to solve the VSP are proposed such as integer programming, 

heuristics, etc. However, all available solutions are not usable in many real 

life problems [11]. In practice, VSP can also be complicated by stochastic 

processes, and this is a reason to apply simulation optimisation to solve such 

problems.  

The following two sets of decision variables are introduced for the 

vehicle scheduling problem in the thesis: vi and ti, where i is a trip number, 

vi is number of vehicle assigned to trip i and ti is start time of trip i.   

The problem constraints are divided into two groups such as vehicle 

capacity constraints and delivery time constraints. 

The objective function f is aimed to minimise the total idle time for all 

vehicles.  Experimental analysis shows that the problem has many solutions 

which are not feasible. To improve the efficiency of optimisation, the 

objective function was modified, taking into account an amount of 

constraints that were not satisfied by a solution candidate:  

 min,540321

1

* 


otolmc

N

i

i

idle NkNkTkTkTkTf  (31) 

where f* is the modified objective function; i

idleT  is the total idle time for 

vehicle i; N is a number of vehicles; Tc defines the total duration of 

overlapping trips for one vehicle; Tm defines the total time of window 

mismatches; To and Nol determine the total time and a number of vehicles 

that have overdone 24 working hours; and Not is a number of vehicles that 

are overloaded. In (31), all indexes for unsatisfied constraints are multiplied 

with coefficients 5,...,1,1  iki  that artificially increase a value of objective 

function and make the fitness of infeasible solutions worse. 
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Development of simulation model and sensitivity analysis 

To determine the fitness of potential vehicle schedule solutions, discrete 

event simulation model in AnyLogic is developed, in which distribution 

centre specific processes are simulated. During a simulation process, 

constraint violations, such as time window mismatch in delivery and 

shortage of vehicles, are determined. AnyLogic simulation software is 

powerful tool for simulation model development and combines three 

simulation methodologies: system dynamics, discrete event and agent-based 

modelling. 

The main task of the simulation model is to evaluate the efficiency of a 

potential vehicle schedule by estimating the average total idle time of all 

vehicles, taking into account stochastic conditions. As control variables, the 

parameters of the vehicle schedule are introduced. The simulation model is 

defined by two active objects (submodels): main object and vehicle object. 

The main object includes decision variables, functions for model’s input data 

initialisation, variable collections of data of trips and shops, variables for 

total idle and total usage times of vehicles. The active object vehicle 

simulates vehicle processes using a state chart that defines vehicle’s possible 

states and transitions between them. The vehicle object contains the job list 

of the corresponding vehicle in form of variable collection, variable for 

accumulation of idle time and variables which count a number of constraint 

unsatisfactory cases. Assignment of the vehicles to the trips in the simulation 

model is transformed to the assignment of jobs to a vehicle, where job is a 

combination of the trip and start time. Initialisation function of the 

simulation model transforms values of control variables to a scheduled list of 

jobs for each vehicle. 

In a visualisation of vehicle processes, statistics of vehicle’s utilisation 

is shown in a timeline chart, where different states of vehicles are shown 

with different colours. In a model animation the timeline charts of all 

vehicles are joined together in a Gantt chart of the vehicle schedule. The 

Gantt chart is combined with a chart of the actual usage of distribution centre 

gates during the daytime.  

To validate the simulation model the existing vehicle schedule of a case 

study was simulated. The obtained schedule and its parameters correspond to 

the Gantt chart, received from a real-life vehicle schedule.  

An analysis of how model’s stochastic factors affect its output variables 

was performed. In this analysis, the vehicle moving time between two route 

points was defined as a random variable with normal distribution which 

mean value is equal to the mean moving time and the variance is 

proportional to the mean moving time, with different multiplication 

coefficient in different experiment series.  

In experiments it was determined that stochastic nature of the vehicle 
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moving time has an impact on the vehicle idle time which grows with the 

growth of variance. At same time, a sum of all moving intervals for a vehicle 

is not affected by variance of moving times. 

Optimisation scenarios 

To solve the vehicle scheduling problem with time windows, three 

optimisation scenarios are defined: 

1. Optimisation in commercial OptQuest optimisation tool. 

2. Simulation-based fitness landscape analysis and optimisation of 

the problem in the developed prototype. 

3. Fitness landscape analysis and optimisation of the problem in the 

HeuristicLab framework. 

As the simulation model of the vehicle schedule is developed in the 

AnyLogic software, optimisation tool OptQuest embedded in AnyLogic was 

applied in the optimisation. This tool uses scatter search, tabu search and 

additional heuristics, but embedded methods are poorly described in the 

literature. In experiments with OptQuest, it was not possible to obtain good 

solutions of the vehicle scheduling problem. Obtained solutions don’t satisfy 

all defined constraints, even for the task with a reduced number of trips. 

However, application of this tool provided improvement of the current 

solution, which suggests that future improvement of the schedule is possible. 

Problem research with developed simulation-based tools 

In Scenario 2, the vehicle scheduling problem was sequentially 

analysed by the developed simulation-based fitness landscape analysis tool 

and optimised in simulation-based optimisation by tuned genetic algorithm. 

Here, solution of the VSP is encoded as an integer vector chromosome, 

which length is twice the number of trips. Genes with even numbers 

represent start times of corresponding trips in minutes from midnight, and 

odd genes define the assigned vehicle for this trip. 

To perform the random walk on the fitness landscape, a mutation 

operator is introduced that changes one randomly selected trip in the solution 

candidate. The probability of each trip to be changed is equal for all trips. 

For the selected trip a new randomly chosen vehicle is assigned, and start 

time is shifted by certain constant value.  

The fitness landscapes of the VSP with stochastic and deterministic 

input data were analysed experimentally. In each series, 5 experiments with 

landscape’s 100 solutions’ long path were made. Information measures and 

statistical measures of the VSPTW fitness landscape received from the 

simulation experiments are given in Table 1. The sensitivity value ε for the 

calculation of landscape information measures was taken as 1/10 of the 

difference between the highest and lowest fitness values in the analysed path.  
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Table 1 

Information and statistical measures  

 

Information measures demonstrate that the landscape of problem with 

stochastic data has higher entropy and should have higher modality. The 

information content is relatively high, and fitness landscape of the 

optimisation problem is relatively rugged. The partial information content is 

low, and as a result, the modality of fitness landscape is low. The density-

basin information indicates that peaks have high density, and their density is 

higher for a stochastic problem. 

According to the landscape measures, problem with stochastic data 

should be more complex for the optimisation algorithm as values of its 

autocorrelation function between neighbour solutions ρ(1) are lower, but 

correlation length τ is less than 8 solutions.  

The results of the fitness landscape analysis in Scenario 2 lead to a 

conclusion that the application problem is not hard for evolutionary 

algorithms. Results of additional fitness landscape analysis experiments of 

benchmark fitness functions show that landscape statistical measures of the 

vehicle scheduling problem with time windows (VSPTW) are close to the 

corresponding measures of the Ackley function [1] in real-valued search 

space. Comparative analysis shows that landscape of VSPTW is less rugged 

than landscapes of benchmark fitness functions [31] whose solutions are 

coded in binary chromosomes. Thus the analysed problem could be solved 

with the GA no worse, than mentioned benchmark problems. 

In simulation optimisation, the genetic algorithm is applied to search for 

the best combination of the schedule’s parameters. The optimisation 

algorithm is based on the classical GA. The optimisation tool is implemented 

as a Java class, which interacts with the simulation model via ‘Parameter 

variation’ experiment in AnyLogic.  

The considered simulation model has large dimensions, and the number 

of trips, vehicles and shops are equal to 37, 17 and 36, respectively. The total 

number of potential solutions is equal to N = (17·134)
37

 ≈ 1,69·10
124

. To 

simplify the optimisation problem, a schedule for 7 trips is optimised, and 

other trips are fixed. The correspondent number of decision variables is 14. 

Fitness function (31) is used in evaluation of potential solutions. Loading, 

moving and unloading times are defined by their mean values. 

As simulation optimisation experiments are time consuming, caching of 

fitness values was applied in optimisation of the problem with deterministic 

data. Fitness values with the corresponding vector of decision variables after 

each simulation run are added to a special array. Before a new simulation run 

Model input data H(0.1) M(0.1) h(0.1) ε* ρ(1) ρ(10) τ 

Stochastic 0.66 0.20 0.49 0.40 0.84 0.21 7.24 

Deterministic 0.62 0.17 0.37 0.35 0.89 0.32 8.75 
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individuals are compared with members of this array, and if the next solution 

was already evaluated its fitness value can be returned without simulation. 

Chromosomes are implemented as strings of integer numbers that 

encode parameters of the vehicle schedule. Each population contains 200 

chromosomes. All genetic operators are customized for operating with the 

proposed structure of the chromosome. In particular, one point crossover 

operator for data encoded in real numbers is applied. In the mutation, a new 

random vehicle and a new start time are assigned to one randomly selected 

trip. Crossover and mutation rates are defined as 70% and 1%, respectively, 

and termination condition is defined by 150 generations. The best found 

solution allowed decreasing the total idle time comparing with the original 

schedule. 

In first series of optimisation experiments, simulation model with 

deterministic data is used. A series of optimisation experiments with 

population sizes of 200, 500, 1000 and 2000 are performed. Termination 

condition is set to occur when a large number of generations are generated 

without improvement of the best solution in the population. Optimisation 

results show that a solution which satisfies all constraints can be found. 

Acceptable results are obtained with the population size equal to 1000 

chromosomes. Larger sizes of the population notably increase the search 

time of optimisation algorithm. 

The caching of solutions gives a growth of optimisation algorithm’s 

speed mostly after the time moment, when algorithm starts to converge 

toward an optimal solution, and the diversity of solutions becomes smaller, 

but the mutation becomes the main solution improvement operator. 

In the second series of optimisation experiments, the optimisation of a 

model with stochastic moving times is performed. The found solutions are 

approximately the same in quality as solutions for the problem with 

deterministic data. The optimisation algorithm needs improvements, as many 

found solutions still do not satisfy part of soft constraints. 

The proposed design of the genetic algorithm for the VSPTW has 

shown better results than general purpose optimisation tool OptQuest, which 

has stuck in the local optima and could not find any solutions that satisfied 

all constraints of the problem. 

Fitness landscape analysis and optimisation in HeuristicLab 

To perform a faster and more comprehensive analysis, the simulation 

model described in [32] was reimplemented as a plug-in of HeuristicLab 

[49] maintaining all logic of the described simulation model. 

To enhance the quality of optimisation results, permutation encoding 

for the VSP solutions is introduced. The encoding is based on the Alba 

encoding [3] for the vehicle routing problem. A chromosome contains m + n 

genes, where n is a number of vehicles and m is a number of trips. The genes 
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that have values less or equal to m encode the trip number and values greater 

than m encode delimiters or vehicle designators, and define, that the next 

sequence of trips should be performed by the corresponding vehicle. If no 

time window constraints are defined for the first trip, it starts at midnight; 

otherwise it starts at the appropriate time to match the first customer’s 

window. The next trip starts immediately after previous, unless its start time 

should be delayed to satisfy time windows of customers in the route of this 

trip. No times are encoded, and hence, the potential solution has no 

immediately encoded idle time and trips cannot overlap. 

Currently there are no reference values to compare fitness landscape 

measures. Thus a grid of the landscape analysis experiments is created to 

compare values between different landscapes. The problem considered in 

[32] is called VSP_37 and its extension to 133 trips is called VSP_133. 

Additionally these two problems are analysed with different numbers of 

available vehicles. Three additional instances of the problems with unusual 

data VSP_s* and three instances with artificial data VSP_a* are created. 

In this subsection, the fitness landscape experiments are divided into 

three large groups:  

1. Comparison of different operators for the existing encoding; 

2. Impact measurements of stochastic variables during simulation; 

3. Comparison between existing and proposed encodings. 

For the integer vector representation, fitness landscapes of two 

operators are analysed. Both operators uniformly select the gene at a random 

position and change the assigned vehicle for this trip. The single position 

replacement manipulator (VSPManipulator) changes the start time of the trip 

to a new uniformly distributed random number, but the single position shift 

manipulator (VSPShiftManipulator) shifts the start time with a uniformly 

distributed random number. Experiments are performed with 10 repetitions 

of 20 000 step long walk trajectories. 

In random walk, values of autocorrelation function are slightly lower 

for the VSPManipulator than for other manipulators, because this operator 

allows big changes of the solutions. In up-down walk the situation is the 

opposite: replacement mutation has higher correlation than shift mutation, 

but the three artificial problems are different to the others (Fig. 5).  

Neutral walks on the landscape reveal one instance (VSP_s2) with 

different information content, which means that this instance has higher 

neutrality, which was not observed in the correlation analysis due to the high 

autocorrelation for small lags. 

The problems with equivalent input data, but with a different number of 

vehicles, have similar landscape measures in the experimental analysis. It 

can be concluded that for VSPs the local landscape structures are relatively 

irrelevant to the number of vehicles, while the main impact on them has a 

number and variety of trips. 
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Fig. 5. Autocorrelation obtained in up-down walks (black dots – 

Replacement Mutator; green – Shift Mutator) 

The developed plug-in was supplemented with additional logic to 

estimate the affect of simulation model’s stochastic variables on the 

landscape measures. In this logic, all vehicle movement times are shifted by 

a random number that has symmetric triangle distribution in the interval [-

20; +20] minutes. Ten experiments for each type of evaluator are performed 

with three different types of walks, each with 20 000 steps and with 

application of MultiVSPManipulator mutation operator, which randomly 

applies VSPManipulator or VSPShiftManipulator. 

The autocorrelation value ρ(1) is lower for landscapes of noisy 

problems with the exceptions of the real-life instances in random walks, 

where the difference between autocorrelation values is negligible. At the 

same time this difference is higher for problems with artificial data, where 

the sequence of trips could be very compact. The addition of similar noise 

has different impact on different problems, which can be measured by H(0) 

in random walks. Similar results are obtained for the partial information 

content M(0) which values are higher for landscapes with noise and vice 

versa, density-basin information h(0) is higher for problems with 

deterministic moving times, as the landscapes of such problems have larger 

basins of attraction due to a lower modality.  

To find in what way the number of simulation model replications 

affects the landscape analysis measures, additional experiments were 

performed: one series with the deterministic problem VSP_37, and three 

stochastic series with 1, 5 and 10 replications of the stochastic model of 

VSP_37. In each series, 20 random walks with 10 000 steps were performed. 

No significant difference of correlation length and autocorrelation values 

between different numbers of replications was found. The information 

content value is higher for the problem with additional noise, especially 

when only one replication is used. The partial information content and 

density basin information show identical behaviour. The information 

measures are sensitive to the noise in the fitness function, and higher number 

of replication reduces the impact of the noise.  

By comparing the problems with different number of trips, the 
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following results were found: in all types of landscape walks, autocorrelation 

ρ(1) for deterministic problem is higher than for stochastic, and this 

difference is higher for problems with the higher number of trips, and not so 

obvious for smaller problems.  

To compare the fitness landscape analysis measures between different 

VSP representations, ten experiments for each encoding are performed with 

three different types of walks, each with 20 000 steps. The value of the 

autocorrelation function in random and up-down walks is lower for the 

permutation encoding for all problem instances. This means that landscapes 

of this encoding should be more rugged. There is an exception in neutral 

walk, where VSP_s* problems have higher autocorrelation for landscapes of 

permutation representation, which means that these problems have large 

neutrality in this encoding. The information content values obtained in 

random walk are similar between all problems in any encoding, except for 

the VSP_s1 and VSP_s2 problems in permutation representation, where it is 

very low. In up-down walks, values of the information content for all 

instances are higher for the permutation encoding. In the neutral walk, the 

information content is small for all problems in the permutation encoding.  

Evolution Strategy (ES), Simulated Annealing (SA) and Genetic 

Algorithm were applied in the comparison of VSP optimisation results. For 

integer encoding, both ES and SA algorithms are fast and highly successful, 

and it is possible to find solutions with better quality with ES. GA finds even 

better solutions, but requires a higher number of evaluations. Optimisation 

algorithms find good solutions faster with application of the permutation 

encoding, thus it is more effective in optimisation of the VSP. Even though 

the search space for the permutation encoding is more complex and rugged, 

nevertheless, due to its smaller size it is more effective in the search of the 

global optimum. In both encodings ES is more effective than GA. 

Optimisation experiments with similar instances and parameters show 

that there are important relations between the values of the fitness landscape 

analysis and optimisation performance. To obtain these relations, GA with 

population size of 100 individuals and 500 generations was applied in one 

series of optimisation experiments, and (20+100)-ES with a crossover and 

1 000 generations in the second. By comparing optimisation results for 

different mutation operators, it can be seen that the statistical analysis can 

predict the performance of the mutation operators. For the GA, the shift 

operator is better for problems VSP_s1 and VSP_s2. These instances also 

have higher autocorrelation for the shift mutation operator (Fig. 5, 6). The 

same dependency was also found for the ES algorithm.  

In ES optimisation experiments the highest difference between 

stochastic and deterministic instances is for the problems with higher 

information content, but for the GA this dependency is not so significant. 
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Fig. 6. Quality of best found solutions with ES (black dots – 

Replacement Mutator; green – Shift Mutator) 

In the experiments with different encodings, the most interesting results 

were obtained for the GA. Here, for a large part of small instances, 

performance of permutation encoding is higher, and for the largest problem 

(VSP_133) it is significantly lower (Fig. 7). A possible explanation of this 

behaviour is that gain of the permutation encoding is due to its reduced 

search space. As it was noted in the ruggedness analysis, the landscapes in 

the permutation encoding should be harder to search in. Due to the large 

search space of the VSP_133 problem, the factor of landscape ruggedness 

dominates the reduction of the size of search space. At the same time in ES 

optimisation, permutation encoding has shown very high performance, and 

the global optimum was found in almost all instances.  

 
Fig. 7. Fitness of best found solutions with GA for different 

encodings (green dots – permutation, black - integer) 

The recommendations for metaheuristic optimisation of the VSP are 

defined in the conclusions of this chapter. Optimisation using the ES is the 

best choice for the solution of the vehicle scheduling problem with time 

windows. If the GA is selected as the optimisation algorithm, permutation 

encoding has to be chosen unless the problem contains more than 100 trips. 

In the integer vector encoding, selection of the appropriate optimisation 

operator is based on the landscape analysis measures: an operator, which has 

the highest autocorrelation value in the up-down walk, should be selected. 
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4. Application in Product Delivery Planning 

Two combined optimisation tasks of the integrated delivery planning 

are solved in this section. These are the tasks that are solved on the last step 

of the delivery planning integrated methodology proposed in [29, 30]. The 

list of shops and the amount of goods that should be delivered in each shop 

are the input data of these two tasks. 

Completed task of this level is the determination of the best routes and 

schedule for the vehicles to deliver goods from distribution centre (DC) to 

the shops. Optimal distribution of routes and vehicles should minimise a 

number of used vehicles and total delivery distances, with minimisation of 

vehicle idle times. The route and schedule plan must fulfil the constraints, 

such as capacities of vehicles, time windows and warehouse capabilities. 

Two similar, but not identical problem statements and existing tools are used 

in the solution of the combined vehicle routing and scheduling task with time 

windows. 

For the solution of this combined task, two optimisation problems are 

solved sequentially by application of the adjusted optimisation tools. First 

task is solved as a classical vehicle routing problem with time windows 

(VRPTW), which aims optimisation of vehicle routes. For the second task a 

route scheduling problem statement is defined that aims optimisation of a 

schedule of predefined routes. 

Vehicle routing problem statement 

The VRP is a multiple travelling salesman problem, where a demand is 

associated with each city and the salesmen are interpreted as vehicles each 

having the same capacity. The sum of demands on a route cannot exceed the 

capacity of the vehicle assigned to this route. It is required to minimise the 

sum of distances of the routes. In the capacitated VRP the demand may be 

constraining routes. If a time slot, in which customers have to be visited, is 

added to each customer, then the VRP with time windows (VRPTW) is 

obtained. In addition to the capacity constraint, a vehicle has to visit a 

customer within a certain time interval given by a ready time and a due time. 

It is allowed for a vehicle to arrive before the ready time, but it is forbidden 

to arrive after the due time. Often the number of customers combined with 

the complexity of real-life data does not permit solving a problem exactly. In 

these situations it is commendable to apply approximation algorithms, 

heuristics or metaheuristics [2]. 

The mathematical formulation of the general VRPTW is based on the 

model defined in [7]. VRPTW is given by a fleet of homogeneous vehicles 

V, a set of customers C and a directed graph G. The graph consists of |C|+2 

vertices, whereby the customers are denoted as 1, 2,..., n and the depot is 

represented by the vertices 0 and n+1. The set of vertices is denoted as N; the 

set of arcs A represents connections between customers and between the 
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depot and customers, where no arc terminates in vertex 0 and no arc starts 

from vertex n+1. With each arc (i, j), where i ≠ j, a cost cij and a time tij are 

associated, which may include service time at the customer i. Each vehicle j 

has a capacity qj and each customer i has a demand di. Each customer i has a 

time window [ai, bi]; a vehicle can arrive before ai, but it must arrive before 

bi. In the general description, the depot also has a time window, which is the 

scheduling horizon of the problem: vehicles may not leave the depot before 

a0 and must return back before or at time bn+1. It is postulated that q, ai, bi, di 

and cij are non-negative integers, while the tij values are assumed to be 

positive integers. This model contains two sets of decision variables, namely 

x and s. For each arc (i, j), where i ≠ j, i ≠ n+1, j ≠ 0, and each vehicle k: 

xijk = 0 if vehicle k does not drive from a vertex i to a vertex j, and xijk = 1 if 

vehicle k drives from the vertex i to the vertex j. The decision variable sik is 

defined for each vertex i and each vehicle k denoting the time, when the 

vehicle k starts a service at the customer i. It is assumed, that a0 = 0 and 

therefore s0k = 0 for all k. 

The goal is to design a set of routes with minimal cost, one for each 

vehicle, such that: each customer is serviced exactly once; every route 

originates at vertex 0 and ends at vertex n+1; the time windows and capacity 

constraints are complied with. 

The goal function of the VRPTW is stated as follows: 

  
  


Vk Ni Nj

ijkij xc min  (32) 

A number of constraints are described in [7]. Constraints state that each 

customer is visited exactly once and that no vehicle is overloaded; ensure 

that each vehicle sequentially visits all points in the route; that a vehicle k 

cannot arrive at j before sik + tij if it is travelling from i to j; and ensure that 

the time windows are adhered [2]. 

Vehicle routing experiments 

To perform the optimisation experiments of the VRPTW, its input data 

based on the data of the case study was prepared. In the case study the 

product delivery plan of one day is specified for the groups of goods that are 

delivered jointly in the same vehicle. For each group of goods individual 

series of optimisation experiments were performed, based on the union of the 

goods in the deliveries. For each of these groups separate “virtual” shops 

with same coordinates, but different demand are defined for the chosen day. 

All experiments were performed with application of the Island 

Offspring Selection Genetic Algorithm (IOSGA) [2], which is a special type 

of genetic algorithm that combines features of coarse-grained parallel 

(island) GA and GA with offspring selection. Choice of algorithm is based 

on the high optimisation pressure and adjustment abilities of the IOSGA. 

Experiments were performed with HeuristicLab optimisation framework 
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[49], with application of its IOSGA and VRP plug-ins. In all experiments of 

this section following parameters of the optimisation algorithm are defined: 

proportional selection operator and MultiVRPMutator mutation operator 

from HeuristicLab operators with 5% probability; population size 200 with 1 

elite solution; population divided in 5 islands and migration of best solutions 

between islands is performed with the periodicity of 20 generations. 

Selection of the crossover operator is described below. Maximal offspring 

selection pressure of 200 was defined as termination condition. 

Following input data of the routing problem was prepared for the VRP 

plug-in: capacity of the vehicles in roll-containers; coordinates of each shop 

and distribution centre; the daily demand of shops; the due and ready times 

of the shops in minutes since midnight; service time of each shop in minutes; 

a number of available vehicles. Coordinates of shops were defined so that 

Euclidean distance between two points was approximately equal to the 

driving time between these points in minutes. 

A set of optimisation experiments was performed to find the crossover 

operator which provides most qualitative solutions. The GVR [36], edge 

recombination (ERX) [51] and maximal preservative (MPX) [34] crossovers 

for solutions encoded in Alba encoding [3] were compared in these 

experiments. Application of the ERX crossover provided the best results in 

terms of the total distance, but application of GVR crossover allowed better 

satisfaction of the capacity constraints. A GVR crossover was selected as 

best for the VRPTWs of the case study, as it works with an unlimited 

number of vehicles, but provides best results in terms of keeping routes not 

overloaded. To minimise a number of required vehicles later, the vehicle 

route scheduling problem is introduced above. 

The visualisation of the best found solution in one of the optimisation 

experiments for the deliveries of “Dry” goods of one day is shown in Fig. 8. 

A blue circle here defines the distribution centre, black points define 

locations of the shops that were served within the time windows and yellow 

points are the shops, which will be the first to be served in a route. The 

capacity of all vehicles was set to 30 roll-containers. In best found solutions 

all customers outside of central city have to be served with long routes 

including 3 to 4 shops. Corresponding delivery routes that include shops 

located in the city are shown in the inset of Fig. 8. These routes are only 1 to 

3 shops long. The number of shops that are served exclusively is higher, 

because of the higher demand of the city stores. GA experiments have 

stopped on the 30-50 generation, when the selection pressure has achieved 

its limit. The best found solution of the considered instance requires 34 

vehicles to serve all shops with each vehicle having only one route.  

In similar way optimisation experiments for the “POD Cooler” and 

“F&V” good types were performed. First runs were performed with vehicle 

capacity equal to 30 containers, but experimental results show that vehicles 
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with this capacity are too small for the specified demand of shops. Second 

series of experiments were performed with larger vehicle capacity, defined 

as 60 containers. 

 

 
      Fig. 8. Routes for Dry goods, for vehicles with capacity 30 

Number of shops in the optimal routes is limited due to the small 

capacity of the vehicles, and not because of short time windows, which can 

be seen in the central part of the visualisation (Fig. 8). 

Vehicle route scheduling problem statement 

It is assumed in the definition of the classical VRPTW, that any vehicle 

may perform only one route in the planning horizon. In the investigated 

business case, all routes are shortened by the capacity of vehicles, which 

leads to the ineffective solutions of the vehicle routing problem. To 

overcome these obstacles, the route scheduling problem is introduced. It can 

be formulated on a basis of the Vehicle Scheduling Problem with Time 

Windows (VSPTW) and solved with methods and tools developed in the 

Section 3. In the formulated problem, the routes correspond to the trips in the 

VSPTW task. Vehicles may perform any fair number of routes during the 

day. As far as the final solution of the VRPTW task should be feasible for 

the capacity and time window constraints, it can be optimised by combining 

and compacting routes to increase a vehicle utilisation. Application of the 

vehicle scheduling for the solution of vehicle routing problem allows 

reducing a number of required vehicles.  

The problem statement described in Section 3 and [28] has been 

modified. For each group of goods routing is performed separately. Time 

windows and service times are introduced for all customers. Input data of the 

vehicle routing problem partly is used as input data of the scheduling 

problem. The sequence of shops in trips in the proposed statement is defined 

as a route, and the moving times in a trip are interpreted as transportation 

times. A vehicle capacity is not involved in the statement. 



43 

 

A formal statement of the route scheduling problem includes a set of 

customers (shops) N and a list of routes R, which are obtained from the 

VRPTW solution. Each route defines a sequence of visited customers. 

Statement includes a set of transportation times, which define vehicle 

moving times tij between the route’s sequential points i and j; a set of 

vehicles V and an estimated number of vehicles |V|. For each shop i, its time 

window is defined as ready time ai and due time bi. Also for the customer i a 

service time zi in minutes is defined. 

Decision variables are ones introduced in the routing model, i.e., sets x 

and s, except that xijk = 1 states that for vehicle k route j will be the next after 

route i. Two types of soft constraints are introduced in the problem: 1) time 

window constraint; 2) overtime constraint. Time window constraint in the 

problem is monitored by a number of times Nad, when a vehicle leaves a 

customer after the due time. The problem statement allows vehicles to arrive 

to a customer before the ready time, but the time, while the vehicle will wait 

for the ready time is counted as the idle time. Overtime constraint in the 

solution candidate is defined as a number of vehicles Not with required total 

delivery time more than 24 hours. Additional constraints are introduced in 

the problem statement to assure the integrity of the model and the provision 

of schedule simulations. 

A fitness function f of the route scheduling problem summarizes all idle 

times, which occur due to fitting deliveries into the time windows, and a 

number of constraint violations multiplied by penalty values: 

 min,


ototadad

Vk

k NpNplf  (33) 

where lk is the total idle time of a vehicle k; V is a set of available 

vehicles; Nad is a number of vehicles, which leave customer after due time; 

Not is a number of vehicles, which are scheduled to work with overtime; pad 

and pot are the penalty values for late deliveries and vehicle overtimes, 

correspondingly, and are assumed to be significantly greater than 1. 

As the route scheduling problem is derived from the above described 

VSPTW, an application of the evolution strategy algorithm is proposed for 

its optimisation, because this method has demonstrated in experimental 

analysis (see Section 3) the best results in optimisation of the VSPTW. 

Vehicle scheduling optimisation experiments 

Two types of the vehicle scheduling experiments with the input data of 

the investigated case study are performed in the thesis. The first are based on 

the VSPTW problem statement described in Section 3. The second series are 

based on the route scheduling problem statement defined in Section 4. 

VSPTW experiments are performed using the HeuristicLab framework 

and the developed plug-in of vehicle schedule problem. Optimisation is 

performed with the (20+100)-ES. Termination condition is defined as 1000 
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generations, and mutation operators are selected accordingly to the 

representation. The VSPTW optimisation experiments were performed both 

with integer and permutation encodings. 

The Gantt chart of the best found solution, which is visualised in the 

main window of the developed VSP plug-in, for an optimisation run with 

permutation encoding is shown in Figure 9. For the integer encoded 

solutions idle times are big, although all constraints in solutions are satisfied. 

Results for the permutation encoding are better in terms of quality of best 

found solutions. All trips in this encoding are combined in a compact 

manner, thus no idle times are left at all. A number of vehicles in the 

demonstrated solution (Fig. 9) can be reduced. 

 

 
Fig. 9. VSPTW solution with permutation encoding 

To resolve the vehicle route scheduling problem, a plug-in in 

HeuristicLab optimisation framework is developed. In the plug-in, fitness 

function (33) evaluator simulates a schedule of a solution candidate and 

identifies time windows mismatches, evaluates idle times and the total usage 

time for each vehicle. A permutation encoding of the VSPTW is applied for 

the route scheduling, but the trips here are represented by the routes. Input 

data of the route scheduling plug-in are vectors of the ready, due and service 

times of shops, lists of routes and moving times between route points and a 

number of available vehicles. All times are given in minutes. Ready and due 

times of time windows are given in minutes since midnight.  

Several series of optimisation experiments were performed to determine 

a suitable algorithm for the route scheduling. Following algorithms were 

examined: Evolution Strategy, Genetic Algorithm, Island Genetic Algorithm 

with 5 islands (IGA) and Offspring Selection Genetic Algorithm (OSGA) 

[2]. Maximal preservative crossover [34] and insertion manipulator were 

defined as genetic operators for all algorithms. For genetic algorithms the 

proportional selection was applied. To determine a suitable algorithm, 

numbers of solution evaluations performed to obtain candidate solutions of 
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the equal fitness were compared on instances, with a low number of vehicles. 

The results of comparisons show potentially small effectiveness of the 

crossover operator against a mutation operator. The ES was chosen as most 

suitable, for its ability to provide globally optimal results of the vehicle route 

scheduling with fewer evaluations. As the route scheduling problem is 

derived from the VSPTW, the optimisation algorithms show the same 

difference in the performance. 

A sample experiment based on one day plan and specific demand data 

for 53 shops is described. The best found solution obtained by the IOSGA 

for the VRPTW defines 34 routes (see Figure 10). Most of the vehicles in the 

solution have very short routes due to a small vehicle capacity. Herewith, it 

is possible to combine these routes due to the long time windows. The ES 

(20+100) algorithm was applied for the route scheduling problem which 

input data is based on the considered VRPTW solution. As a result, the 

globally optimal scheduling solutions were found with all constraints 

satisfied if at least 6 vehicles are available. The correspondent Gantt chart is 

shown in Figure 10. Green lines in the timelines correspond to the loading 

process in the DC, blue ones to the transportation, and yellow lines 

correspond to the vehicle unloading at the stores.  
 

       

Fig. 10. VRPTW and scheduling solution of case instance 

The proposed vehicle scheduling method that complements vehicle 

routing ensures effective route and schedule solutions for a short-term 

delivery planning. This method can be applied in the vehicle routing and 

scheduling tasks, where routes are very short in comparison with a planning 

horizon. 

 

RESULTS AND CONCLUSIONS OF THE THESIS 

The aim of the doctoral thesis was to develop the methods and 

algorithms for the simulation-based fitness landscape analysis and 

optimisation of complex systems. 

The results and conclusions of the thesis are as follows: 

1. State-of-the-art analysis in the simulation-based optimisation for 

NP-hard problems allowed for selection of metaheuristic 

algorithms as the most efficient for the optimisation of NP-hard 
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problems. Review of the numerical simulation-based 

optimisation methods, review of formal definitions of fitness 

landscape and definitions of its structures, with the review of 

information and statistical methods and measures of fitness 

landscape analysis allowed development of the formal scheme 

for the simulation-based optimisation, enhanced with the fitness 

landscape analysis.  

2. The developed formal scheme of the simulation-based 

optimisation with fitness landscape analysis allowed extension of 

the fitness landscape analysis methods on simulation-based 

optimisation tasks and identifying requirements for methods, 

algorithms and software tool prototype for simulation-based 

fitness landscape analysis and optimisation. 

3. Experimental fitness landscape analysis of benchmark landscapes 

with different operators and representations allowed finding the 

relations and dependencies between structural features of 

benchmark fitness landscapes, their information and statistical 

measures and behaviour of optimisation algorithm on these 

landscapes. Experimental analysis of noisy fitness functions 

allowed for determination of additional requirements for 

simulation-based fitness landscape analysis. 

4. The developed algorithms for the simulation-based fitness 

landscape analysis procedure allowed implementation of a 

software tool prototype for fitness landscape analysis. 

Application of the developed tool provided analysis of the 

vehicle scheduling problem with time windows in simulation-

based optimisation. 

5. The comprehensive experimental fitness landscape analysis of 

the vehicle scheduling problem with time windows in the 

optimisation framework allowed determination of problem 

specific properties and internal characteristics of problem fitness 

landscape. This analysis allowed determination of impact of 

problem specific properties on the structure of a fitness landscape 

and performance of optimisation algorithm. This, in turn, 

provided development of recommendations for best optimisation 

scenarios for the vehicle scheduling problem with time windows. 

6. The developed methods and algorithms were applied in the 

solution of delivery planning operational level optimisation tasks, 

which allowed improving the overall solutions of vehicle routing 

and scheduling problem with time windows. Application of the 

adjusted metaheuristic algorithms for optimisation of defined 

routing and scheduling tasks allowed decrease of a number of 

required vehicles and provided more effective vehicle utilisation. 
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