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TOPICALITY OF THE WORK 
Nowadays the human factor plays an important role in the transport control system, 

including rail transport with electric drive and electrical signaling systems and rail crossings. 
In some cases, the existing safety systems are able to prevent accidents. Accidents on level 
crossings are taking place all over the world. In any country where there is a railway, there 
were accidents which caused death or injury to people. Therefore the improvement of railway 
safety is an actual topic for the national economy and welfare. 

The artificial immune system (AIS) is a modern method based on the fundamental 
principles of biological immune systems, designed for the internal protection of the system. 
This method is implementable by means of computer control of electrical technology — 
programmable embedded devices, and will prevent accidents in the railways by reducing the 
human factor. It is necessary to develop specific algorithms for the artificial immune system 
for vehicles to warn people timely about the dangerous situation, to offer improvement 
solutions and to automatically stop the vehicle motion in order to avoid a collision. 

THE GOAL OF THE RESEARCH 
The objective of the Ph.D. thesis is to develop control methods based on artificial 

immune algorithms for the intelligent transport safety control system with embedded 
electronic devices, which help to prevent collisions of railway vehicles with other objects. 

To achieve the goal the following tasks were formulated: 
 Classify and compare AIS and evolutionary algorithms; 
 Study abilities and working principles of AIS; 
 Define the relevant possible disruptions to the electrical railway transport’s movement; 
 Develop the structure of the intelligent rolling stock safety control system and its 

working algorithm; 
 Implement immune algorithms for running on computers and controllers; 
 Choose modules and sensors for the controllers suitable for the task; 
 Implement the data flow between controllers and control center computers, as well as 

recording this flow into the database; 
 Compare the implementation and usage costs of the offered embedded devices; 
 Conduct experiments in the laboratory and in real conditions; 
 Analyze the experiments’ results. 

SCIENTIFIC NOVELTY OF THE RESEARCH 
 A model of railway transport control using immune algorithms to avoid collisions was 

developed; 
 A structure of intelligent rolling stock safety control system and its algorithm was 

designed; 
 An immune algorithm for solving a multi-criteria railway transport safety problem was 

developed; 
 A model of railway transport system functional interaction was developed, which 

describes how different separate transport elements interact and allows modeling the 
transport system’s processes, including the intelligent control of electromechanical 
processes. 
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MAIN RESULTS 
 Methods and means were developed to avoid collisions of railway transport with other 

objects; 
 Prototypes of embedded devices for locomotives and traffic light and level crossing 

relay boxes were developed, as well as software for intelligent transport safety control, 
using data about vehicle position, speed and control relay status; 

 Operation of algorithms and devices was experimentally tested in laboratory and real 
conditions; 

 Computer and controller software, as well as connections to the railway objects was 
described. 

APPLIED IMPORTANCE OF THE RESEARCH 
The algorithms and railway transport safety control system design offered in the thesis 

can be used to enhance railway vehicles’ safety control. Using the developed algorithms it is 
possible to avoid collisions between railway vehicles and other objects, or avoid crossing the 
red traffic light. 

MEANS AND METHODS OF THE RESEARCH 
The description of the system elements uses set theory, system and process analysis, 

theory of evolutionary algorithms, artificial immune systems; to evaluate the modeling results 
statistical analysis methods are used. To develop the embedded device prototypes and 
software for them, the author used Arduino Uno and Mega controllers and object-oriented 
programming concepts. 

APPROBATION OF THE RESEARCH 
1. 50th RTU International Scientific Conference, Riga, Latvia, October 14–15, 2009. 

Report 
2. 8th International Symposium „Topical Problems in the Field of Electrical and Power 

Engineering“, Pärnu, Estonia, January 11–16, 2010. Report 
3. RTU Innovation and New Technology Conference, Riga, Latvia, September 24, 2010. 

Poster report 
4. 51st RTU International Scientific Conference, Riga, Latvia, Ocober 14, 2010. 2 reports 
5. „Transport Systems Telematics 2010”, Katovice, Poland, October 19–24, 2010. 
6. „VDE Congress 2010: E-Mobility”, Leipzig, Germany, November 8–9, 2010. Poster 

report 
7. „2010 Second Global Congress on Intelligent Systems”, Wuhan, China, December 

13–19, 2010. Report and chairing a session 
8. „10th International Symposium „Topical Problems in the Field of Electrical and Power 

Engineering“”, Pärnu, Estonia, January 10–15, 2011. Report 
9. „Intelligent Technologies in Logistics and Mechatronics Systems (ITELMS) 2011”, 

Panevezys, Lithuania, May 5, 2011. g. Report 
10. 52nd RTU International Scientific Conference, Riga, Latvia, October 14, 2011. 

2 reports 
11. Transport Means 2011, Kaunas, Lithuania, October 20, 2011. 2 reports 
12. TELFOR 2011, Belgrad, Serbia, November 22–24, 2011. Report 
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13. RTU Innovation and New Technology Conference, Riga, Latvia, April 3, 2012. Poster 
report 

14. ITELMS 2012, Panevezys, Lithuania, May 4, 2012. Report 
15. International Symposium of Electrical Engineering, Ronīši, Latvia, May 25, 2012. 

Report 
16. 25th European Conference on Operational Research, Vilnius, Lithuania, July 8–11, 

2012. Report 
17. 53rd RTU RTU International Scientific Conference, Riga, Latvia, October 10, 2012. 

Report 
18. ITELMS 2013, Panevezys, Lithuania, May 23, 2013. Report 

AUTHOR’S PUBLICATIONS 
1. Mors-Jaroslavcevs A. Electric Engine Diagnostics Using Artificial Immune Systems 

// Proceedings of 50th RTU International Scientific Conference, Riga, Latvia, October 
14–15, 2009 

2. Mors-Jaroslavcevs A., Ļevčenkovs A. Modeling of Artificial Immune Systems for 
Railway Electric Transport Control // Proceedings of 8th International Symposium 
„Topical Problems in the Field of Electrical and Power Engineering“,Pärnu, Estonia, 
January 11–16, 2010 

3. Mors-Jaroslavcevs A., Ļevčenkovs A. Immune negative selection algorithm for 
railway electric vehicle fault detection system // Proceedings of 51st RTU International 
Scientific Conference, Riga, Latvia, October 14–15, 2010. 

4. Mors-Jaroslavcevs A., Ļevčenkovs A., Ribickis L. Modeling of hybrid railway electric 
vehicle safety control system using artificial immune systems // Proceedings of VDE 
Congress 2010, Leipzig, Germany, November 8–9, 2010. 

5. Mors-Jaroslavcevs A., Ļevčenkovs A., Ribickis L. Structure of automated railway 
electric vehicle safety control system // Proceedings of GCIS 2010, Wuhan, China, 
December 16.-17., 2010. 

6. A. Mor-Yaroslavtsev, A. Levchenkov. Modeling the integration of expert systems into 
railway electric transport safety control. // Proceedings of 10th International 
Symposium „Topical Problems in the Field of Electrical and Power Engineering“, 
Pärnu, Estonia, January 10-15, 2011 

7. Mors-Jaroslavcevs A., Ļevčenkovs A. Combining immune algorithms for an 
intelligent rolling stock safety system // Proceedings of 52nd RTU International 
Scientific Conference, Riga, Latvia, October 14, 2011 

8. Mors-Jaroslavcevs A., Ļevčenkovs A. Railway electric vehicle diagnostics with an 
algorithm for self-nonself discrimination in artificial immune systems // Proceedings 
of Transport Means 2011, Kaunas, Lithuania, October 20, 2011 

9. Mors-Jaroslavcevs A., Ļevčenkovs A. Intelligent Embedded Rolling Stock Safety 
Devices Using an Immune Clonal Selection Algorithm // Proceedings of Transport 
Means 2011, Kaunas, Lithuania, October 20, 2011 

10. Mor-Yaroslavtsev A., Levchenkov A. Rolling Stock Location Data Analysis Using an 
Immune Algorithm on an Intelligent Embedded Device // Proceedings of TELFOR 
2011, Belgrade, Serbia, November 22–24, 2011 

11. Levchenkov A., Gorobetz M., Mor-Yaroslavtsev A. Evolutionary Algorithms in 
Embedded Intelligent Devices Using Satellite Navigation for Railway 
Transport// Infrastructure Design, Signalling and Security in Railway, Xavier Perpinya 
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12. Mor-Yaroslavtsev A., Levchenkov A. Self-learning algorithms for an embedded 
device using location data on a rolling stock// Proceedings of ITELMS 2012, 
Panevėžys, Lithuania, May 4, 2012 

13. Potapovs A., Mor-Yaroslavtsev A., Levchenkov A., Gorobetz M. Smooth Braking of 
Train Using Adaptive Control Algorithms on Embedded Devices // Proceedings of 
53rd RTU International Scientific Conference, Riga, Latvia, October 10, 2012 

STRUCTURE OF THE THESIS 
The thesis consists of introduction, five chapters, conclusions, list of literature sources 

and annexes. 
The first chapter of the thesis the goal and tasks are formulated, an existing electrified 

railway is analyzed, and a mathematical model of the existing and proposed system is created 
that defines the possible disturbances in movement. 

The second chapter of the thesis deals with the literature analysis of known 
evolutionary algorithms, including genetic algorithms, immune algorithms and neural 
networks. The chapter also describes some positioning devices, on-board equipment, and has 
an analysis of evolutionary algorithms. 

The third chapter of the thesis contains the developed algorithms for rail and road 
collision avoidance, defined multiple criteria optimization objective function, as well as 
possibilities of immune algorithm implementation in the embedded devices. 

In the fourth chapter there are the computer experiments with statistical hypothesis 
testing for evolutionary algorithms, a comparison of three artificial intelligence techniques for 
collision avoidance problem and proof of effectiveness of the immune algorithm. 

The fifth chapter of the thesis describes experiments with the developed embedded 
device prototypes, analyzes and evaluates the results. 

1. STATEMENT OF THE PROBLEM 
During journey the rolling stock driver may experience many undesirable situations 

and have to make decisions on how solve them. The situations may include such examples as: 
 the last car from the flow is still on the level crossing 25 seconds before the train 

arrival, while the safety regulations require the crossing to be cleared at least 35 
seconds before train arrival; 

 a daredevil is running across the tracks somewhere in the urban zone; 
 there is a red signal on the railway traffic light; 
 there is a wide but harmless rod lying between the tracks, etc. 

 
Each of these situations requires different actions or no action at all. The driver may 

have to apply brakes, speed up, continue the steady movement and in any case communicate 
the information to the control center and other drivers. 

The desired result conforms to at least two require-ments: 
 there are no casualties; 
 the train is on schedule. 
 
A common situation is illustrated on Fig. 1.1, where L is a locomotive and I is an 

invading object on tracks. 
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Fig.	1.1.	A	common	unwanted	situation	on	the	railway	tracks.	

The author offers the intelligent rolling stock safety system functional design which is 
presented on Fig. 1.2. 

 

 
Fig.	1.2.	The	intelligent	rolling	stock	safety	system	functional	design	

The vehicles TL and the level crossing PB host embedded devices IES, each of these 
contains a wireless modem M, positioning module G which receives data from positioning 
satellites ST, data processing module AIS, immune detector database DBD and control cell 
database DBC [author’s publication 10]. 

The invading object I is picked up by sensors S and the data is transmitted to the 
nearest cell tower CT, which relays it to the control center CC and nearest locomotives 
wireless modems M. Through the same modem the locomotive receives data about closest 
neighbors’ rolling stock position and status, railway segment profile and maximum allowed 
speed. 

Depending on the results of control cell maturation the AIS module in the vehicle 
makes a decision and executes it by sending a control signal or displaying an alert to the 
driver. The information is also communicated to the device on a level crossing LC through a 
similar modem M. 

The considered system is limited by two vehicles and an infrastructure object such as a 
traffic light or a level crossing [author’s publication 12]. 

Let U  be the problem space which includes all the possible sets of parameter 
values or “situations”, 

P — set of known safe situations, 
S(t) — current situation which changes with time t, 
D = {D1, D2, …, Dn} — set of detectors which is the result of primary learning 

process, 

Vehicle 
TL1 
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Wireless 
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IES
1
 

Control 
center 

C 

 
 
 
Level crossing PB 
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 I 

 
 
 
Vehicle 
TL2 

IES
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C = {CD1(1), CD1(2), …, CD1(p), CD2(1), …, CDn(p)} — set of control cells affiliated to 
detectors,  

E = {E1, E2, …, Em} — set of encountered situations, 
W = {WE1D1, WE1D2, …,WE1Dn, WE2D1, …, WEmDn} — set of detector weights in different 

situations; 
Distance between two points on a greater sphere: 
 

(1.1) 
 
Embedded devicecs: IES = {ies1, ies2, …, iesn} ies1, …, ies2  ∈ PB 
Conditions introduced by using embedded devices: 
 Operation in real time: T = {t1, t2, …, tn} 
 Size of the device: V = {v1, v2, …, vn}; vi = xi × yi × zi; V* — min V 
 Time to test the prototypes: Ttest1 < Ttest2 
 Energy consumption: E = {e1, e2, …, en}; E* — min E 
 Installation and usage costs: IZ = {iz1, iz2, …, izn}; IZ* — min IZ 
 Limited available computing speed and memory: P = {p1, p2, …, pn}; 

P* — min P; AT = {at1, at2, …, atn}; AT* — min AT 
 

 An — a particular algorithm; 
 TAn → min — completion time for the algorithm; 
 PrAn → min — share of avoided collisions as a result of using the algorithm; 
 EAn → min — energy consumption while running the algorithm; 
 VB = (xB × yB × zB) → min — embedded device dimensions; 
 STB → min — interruptions in the device or algorithm operation; 
 IPB → min — device installation and usage costs. 

 
 The hypothesis: the immune algorithm will be the fastest to complete while 

avoiding at least as much or more collisions than other algorithms and using as 
much or less energy. 

 
The fitness function: F(TAn, PrAn, EAn, VB, STB, IPB) → min 
 
The intelligent rolling stock safety system general algorithm offered by the author: 
1. Fill in the initial values D for DBD by running the negative selection training 

routine. 
2. Run in real time the detection routine using the negative selection algorithm. 
3. Determine the possible situation identifiers (detectors which matched above a 

given threshold). 
4. Assign weights to the detectors based on their «distance» to the situation. 
5. Retrieve a population of control cells C from DBC which are related to the 

activated detectors [author’s publication 9]. 
6. Run the control cell maturation routine using the clonal selection algorithm 

[author’s publication 9]. 
7. Execute the found optimal solution. 
8. Communicate the information to the control centre CC. 
9. Continue from step 2. 
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The most feasible way to implement such a safety system would be, like in case of 
hybrid IDS, through the two phases of anomaly detection and determination of their type to 
draw a conclusion. In this case the incoming data from the sensors is the set of antigens. The 
data includes but is not limited to speed, acceleration, voltage, rotation and operational 
temperature. 

2. LITERATURE REVIEW 
Artificial immune systems (AIS) use evolutionary data processing paradigm based on 

biological immune systems. It differs from computational immunology which models 
biological immune systems [author’s publication 2]. 

Immune algorithms are mainly used to solve anomaly recognition, data collection and 
analysis tasks. From the computational point of view immune systems’ most interesting 
features are self-learning, diversity mainte-nance and memory. 

The problem is represented as an antigen and solution candidates as antibodies which 
are randomly generated from the library of available solutions or genes. The evaluation of 
affinity or degree of binding between the antigen and the antibody is similar to 
complementarity level in biological IS and it defines the fate of each indi-vidual antibody as 
well as termination of the whole algo-rithm. 

Individual antibodies are replaced, cloned and hypermutated until satisfactory level of 
affinity is reached. Partial replacement of the solutions’ population with fresh randomly 
generated candidates maintains diversity which allows solving a wider set of problems. The 
probability of cloning or hypermutating a candidate depends on its affinity. 

The most relevant features of immune algorithms are: 
 diversity maintenance, 
 memory about the past decisions, 
 detection of previously unknown but related el-ements, 
 scalability, 
 noise rejection, 
 classifying ability. 

 
As mentioned before, AIS can be used to solve different data analysis tasks. In the 

traveling salesman problem each city to be visited could be labeled as an antigen and the set 
iteratively combined with the antibody network, simulating antigen intrusion in the organism 
and driving through cities in the random order. 

Network intrusion detection is related to unauthorized access to computer systems 
connected to the network and the problem is solved using anomaly or misuse patterns 
detection. Anomaly detection systems build a model of normal system activity and then 
regard deviations from this as potential intrusions, while misuse detection systems look for 
known attack patterns by signature matching. The key advantage of anomaly detection 
systems is their ability to detect novel attack patterns for which no signature exists, while their 
most notable disadvantage is a larger false positive rate. Already being close to the immune 
approach, by introducing its memory feature such systems could also provide further 
information about the consequences of the attack and possible future actions instead of simply 
reporting the actions. 

AIS are modeled after biological IS and carry the terms of antigens and antibodies. 
They can be modeled using the shape-space concept (see Fig. 2.1). The shape-space S allows 
defining antigens, receptors and their interactions in a quantitative way [author’s 
publication 1]. 



12 
 

 
Fig.	2.1.	A	shape‐space	model	of	an	antigen	and	an	antibody	

Like chromosomes in the evolutionary algorithms, the element’s shape is defined by a 
string m which contains its coordinates: 

L
L Smmmm  },...,,{ 21        (2.1), 

where S usually is defined on a set of real numbers – . Depending on a problem 

being solved it also could be a set of integers or binary numbers –  or . 

The affinity of an antigen–antibody pair is related to their distance in the shape-space 
S and can be estimated using any distance measure between the two attribute strings. The 
distance between an antigen, Ag, and an antibody, Ab, can be defined, for example, using a 
general class of Minkowski distance measures: 

p
L

i

p

iiM AbAgAbAgD 



1

),(       (2.2). 

By varying the value of the parameter p a suitable measure of distance can be 
obtained. 

 
Negative selection is the paradigm describing the evolution of the T-lymphocytes 

where they are randomly generated and learn to recognize all except the self structures, 
specific to the host. Negative selection algorithms need training samples only from one class 
(self, normal), thus, they are especially suited for the tasks such as novelty, anomaly or 
change detection including those in engines and other devices. 

The key advantage of anomaly detection systems is their ability to detect novel attack 
patterns for which no signature exists, while their most notable disadvantage is a larger false 
positive rate. 

The algorithm: 
1. Define a set S which needs to be monitored and the set P of known self 

elements in a feature space U. The set U corresponds to all the possible system 
states, P – normal states and S – the current state which changes in time. 

2. Generate a set of candidate detectors Ca = {ca1, ca2,  …, can }. 
3. Compare each candidate cai to the set of known good elements P. 
4. If a match occurs, discard the individual cai, otherwise store it in the mature 

detector set D. Or, to maximize the nonself space coverage with minimum 
number of detectors, move the matched candidate away from the closest 
element pj, then store it in D. 

5. Monitor S for changes by continually matching it against the detectors in D. If 
any detector matches, the change which has occurred most likely is dangerous, 
as D is designed not to match any normal system state. 

This algorithm produces a set of detectors capable to recognize non-self patterns. The 
action following the recognition varies according to the problem under consideration. In the 
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case of transport safety control system it could be an alarm or issue of an immediate stop 
signal depending on the detected situation. 

The detectors and the caught dangerous conditions are stored in immune memory for 
further processing and to provide further information about the consequences of the attack and 
possible future actions instead of simply reporting the incidents. 

 
The clonal selection algorithm [author’s publication 6]: 

1. Generate a population P of candidate solutions. 
2. Determine the n most stimulated individuals. 
3. Clone the selected cells. The number of clones is an increasing function of the 

stimulation level. 
4. Submit the clones to a hypermutation scheme. 
5. Reselect the improved clones to the population P. 
6. Perform the suppression (remove from P the less stimulated elements). 
7. Add a number of newly generated candidates (diversity introduction). 
8. Repeat from step 2 until the terminating condition is satisfied. 

 
While usually cloning is proportional and hypermutation is inversely proportional to 

each candidate’s affinity, there’s also a version of this algorithm which is a bit closer to a 
genetic algorithm [21] and where hypermutation happens on an independently random rate. 

Several doctoral theses in the relevant fields were reviewed. They state that: 
 Both Latvian and Russian railways suffer from having outdated fleet which is in 

operation since 1960–70s and was designed to be cheap in production but with 
higher maintenance costs; 

 The new vibration and other sensors can be installed instead of the standard 
temperature sensors; 

 Opetion of a diesel locomotive is severely impacted by its gas-air duct’s status; 
 To calculate a diesel locomotive’soperation process parameter values, one can use 

Grinevecki-Mazing, Vibe methods and the small movement method; 
 There are such diagnostics systems on the market as DIANA (Germany), 

TORNAD (France), ACES and BHP Iron ORE OCCT (Australia); 
 There are expert systems which are used in technical diagnostics, e.g., DELTA 

(General Electric locomotives) and SOPHIE (diagnostics of circuits and training). 
 To diagnose an electrical train’s most limiting elements, one can use such signs 

as: 
o Failure rate; 
o Amount of work to repair or change; 
o Importance weight coefficient. 

 Starting time of an electrical drive is a d iagnostical parameter too, and it can help 
uncover such defects as rotor imbalance. 

 
Diagnostical objects’ (DO) status types: 
 Not damaged—the system complies to all requirements stated in the normative 

documents and all its parameters are in the defined boundaries. 
 Damaged—one or more of the system’s parameters are outside the boundaries. 

The system still can be operable. 
 Operable—the system’s base parameters fit in the norm and it correctly solves its 

tasks. The system can be damaged. 
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 Non-operable—one or more of the system’s base parameters are outside the 
normal boundaries. The loss of operable status is called a failure. 

 
The full set of DO possible statuses: 
W = A ∪ B∪ C  (2.3) 
where A is a set of not damaged system statuses; B—damaged but operable; C—

non-operable. 
Operable and damaged system status sets (Fig. 2.2.): 
W1 = A ∪ B, W2 = B ∪ C (2.4). 

 
Fig.	2.2.	DO	status	diagram 

In the railway automatics, telemechanics and communications systems the basic 
parameters are voltage, current, frequence, circuit resistance, power etc. The most important 
task of designing these systems is creating controllable systems with an increased safety level. 
That means introducing a lot of statuses Si∈ B, while doing it in such way that in all the 
cases of the most possible element failures the system as a whole would not transfer from A 
to C but would stay in B. Then the system continues to fulfill its function and allows to fix the 
damage. 

3. EMBEDDED SYSTEMS AND DEVELOPMENT 
OF ALGORITHMS 

To stop the locomotive one must connect to its electro-pneumatic valve (EPV) through 
a relay in the device. Disconnecting the circuit would cause the EPV to start its emergency 
stopping sequence—a loud signal for the first seven seconds and then the brakes are engaged. 
The device is powered from locomotive’s internal 12V source (batteries). The connection 
schemes are available in appendices 3.4.2. and 3.4.3. 

Reading signals from the level crossing and traffic light happens by connecting to the 
relevant relays in the relay box and checking the voltage read on the input pins.The device is 
powered from the 220V AC source available in the relay box through the power adapter. The 
connection schemes are available in appendices 1.3. and 3.4.4. 

Both devices require 5–12V / 2A DC power. 
To prevent collisions with road vehicles, embedded devices must be installed on them 

too, or as a more universal approach, the tracks and crossings should be augmented with 
additional sensors. 

The delay of the locomotive embedded device since detecting the dangerous situation 
is 0 s, but the first seven seconds before the actual braking occurs are spent on the loud signal 
from the EPV. 

The installation costs consist of production and installation labor. The usage costs 
consist of energy and data costs. 

 

 A B C 

W1 

W2 
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A satellite global positioning system (GPS) data processing algorithm for embedded 
devices was developed. The algorithm consists of the following steps: 

Initializing. Include NewSoftwareSerial library. Include TinyGPS library. Define the 
GPS serial port and contacts. Run the serial data exchange with the GPS module. Run the 
serial data exchange with a computer through a USB port. 

Step 1. Wait for 2 seconds and output string „Data”; 
Step 2. If there’s new usable data from the GPS, switch to step 3, otherwise go 

to the step 4; 
Step 3. Output string „OK”; 
Step 4. Run GPSdump subroutine to decode the GPS data and move on 

to the first step. 
In the thesis there are described two additional subroutines—GPSdump for data 

decoding and feedGPS for getting new GPS data. 
When connecting the controller to the computer it is possible to maintain a database 

and run the appropriate algorithm for data recording. This requires the MySQL database 
server and the PHP language interpreter. According to the data definition the string from the 
controller must have 7 information fields each separated by a comma, and a marker of data 
reliability—„OK” or „Bad”. The data is recorded to the database only if it is reliable and 
contains all the required pieces of information. 

A simpler variation of an immune algorithm was tested ona controller which reacted to 
changes in its environment. The prototype reacts to light and temperature changes. 

 
Fig.	3.1.	Flowchart	of	two	functions	of	the	immune	algorithm	

There is aso a proposed algorithm for a neural network [20] which can be used as one 
of the tools for the immune system to improve the situation on a level crossing. 

As in this case, it is not known if an estimated output of the network is correct, 
the trained neural networks cannot use backpropagation algorithm [32]. 

A random sequential delta rule self-learning algorithm with the objective function is 
developed for the neural network  

Optimization is defined as a function with two criteria: the train and bus collision 
probability P and the minimization objective of the train speed to ΣΔvi—the minimization 
objective. 

The first criterion relates to security. Situation is considered to be dangerous if the bus 
will be crossing at the same time when there is a train. If there are multiple trains and buses, 
the maximum value is selected from each of the i-th train and each j-th bus collision 
probability matrix. The second criterion relates to the specific organization of train schedules. 
Punctuality impacts the operation of the railway positively and train delays cause obstructions 
to other trains. Consequently, the objective is to minimize the train speed change. 
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Drawing from these criteria a fall-back optimization objective function F is such: 
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where 
Δv — vehicle speed changes, ie solution 
P — the maximum collision probability 
PIJ — each i-train collision probability of the j-train, 
Δvi — i-train speed changes. 
The developed algorithm consists of the following steps: 
Initialization: 

 learning set in the index e = 1, 
 selected neuron correction sn = 1, 
 selected weight correction sw = 1 
 retrain = false 

Step 1. Select element e = {d1
e v1

e, d2
e, v2

e} from the training set 
Step 2. Read xmin and xmax parameters that limit the output network 
Step 4. Direct distribution to calculate the output unit totalizer values: 
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Step 4. Generate the output layer neuron output value of the positives and negatives of 
saturated linear activation functions: 
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Step 5. Save the value, if Piep or ΣΔvi
iep have those. 

Step 6. Rate the found solution with the objective function 3.1. [P, ΣΔvi] = F (Δv). 
Step 7. If P> Plim or ΣΔvi> ΣΔvi 

lim, then move on to the step 8. 
Step 8. If the last element of the learning set e ≠ e emax is not reached, 

then e = e +1 and go to the step 1. 
else if the neural network is not to be retrained, then END, 
else e = 1 and go to the first step. 

Step 9. Sequentially adjust weights. 
If (sn ≠ 1 and sw ≠ 1) or (Piep <P and ΣΔvi

iep <ΣΔvi), i.e. if this is not the first 
element and the situation got worse than before, then return to the previous weights 
wsw, sn = wsw, sn – k, and choose a different weight; 

if sw > 2n, then sn = sn + 1, otherwise sw = sw + 1, if sn > n, then sn = 1, sw = 1 
Step 10. Generate the correction value as a random number: 

k = random (–1000, 1000) / 10,000. 
Step 11. Perform weight adjustment: wsw, sn = wsn, sn – k 
Step 12. If a weight correction has been made, then the whole neural network should 

be retrained. retrain = true 
Step 13. Go to the step 3. 
 
The modified algorithm is proposed for the train braking before the level crossing with 

the stationary vehicle on it. It is necessary to stop the train in an emergency, when another 
improvement is not possible. 
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4. LABORATORY EXPERIMENT WITH IMMUNE 
ALGORITHMS  

The data set was collected from two controllers which were connected to the vehicle 
and to the level crossing. The diagram is on Fig. 4.1. [author’s publication 11]. 

 
Fig.4.1.	Data	collection	diagram.	

Communication between controllers is performed using GPRS modules and a server 
which is working on the computer and records data rows into the database. This data serves as 
the basis data set for the algorithms’ test [author’s publication 13]. 

The real-valued negative selection (RNS) detector generation starts with a population 
of candidate detectors, which are then matured. It consists of following steps: 

 In the problem space U which contains all possible parameter value combinations 
define the current situation S which will be continuously monitored. For the initial 
training purposes fill S with normal or secure situation parameter sets. S = {S1, S2, 
..., Sn}, Si = {p1, p2, ..., pm} 

 Generate a set of detectors F each of which does not match any element of S. 
Similarly to a biological immune system one could simply discard every candidate 
which matches an S element but a more optimal approach is to maximize the field 
coverage with a minimum number of detectors F = {F1, F2, ..., Fk} 

 Continually check S for safety-threatening changes by comparing it to the  set of 
detectors F. If any of the detectors is triggered it means that there is a change which 
is picked up by detectors which are specifically designed in a way that does not 
respond to safe situations. 

This algorithm for the detection of candidates populations evolve within an iterative 
process [3]. The variables for each detector are its center and radius, which determines the 
size of the detector m-dimensional field — these values are selected randomly at first. 

On every iteration each detector is examined whether it differs from the known “self” 
elements or other detectors. If this is the case, then the candidate is moved away from the 
matched or overlapped elements by changing the center coordinates. Then detectors are 
ranked according to their size (radius) — those which are larger and overlap with other 
detectors less are considered to be the best and selected for the next generation. The worst are 
replaced with clones of the best. Clones are moved from by a fixed distance, so they do not 
overlap with the original detector. Then a set of new random detectors is introduced in order 
to increase the nonself space coverage and maintain the diversity. 

The whole detector generation process terminates when a set of mature (minimum 
overlapping) detectors are evolved and can provide significant coverage of the nonself space. 

A detector is defined as d = (c, rd), where c = (c1, c2,…, cm) is an m-dimensional point 
that corresponds to the center of a hypersphere with rd as its radius. The following parameters 
are used (Fig. 1.7): 

 rs: threshold variation of a self point; 
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 α: variable movement of a detector away from a self sample or existing detectors; 
 ξ: maximum allowable overlap among the detectors, allowing some overlap can 

reduce holes in the nonself coverage. 
Movement of detector is described as following: 
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where ctuv is the closest canditate and || || is the norm of m-dimensional vector. 
Movement of clones: 
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where w(d, d’) is the overlapping measure of two detectors d = (c, rd) and d’ = (c’, rd’): 
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where m is dimension of the observed area or number of parameters and δ is: 
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where D is a distance between c and c’. δ value is within the bounds of 0 and 1. 
 

 
Fig.	4.2.	Screenshot	from	the	RNS	algorithm	PC	implementation	showing	the	initial	settings	for	

training	the	detector	set.	
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Fig.	4.3.	Test	runs	with	a	sample	of	antigens	on	each	detector	generation	with	detection	results.	

During the straightforward detection process the matured detectors are continually 
compared to new test data samples [author’s publications 3, 4]. The distance D between a 
sample pattern p = (cp, rs) and a detector d = (cd, rd) is computed in the same way as in the 
detector generation phase. If D < (rs + rd) then the detector d gets activated indicating 
possible fault. 

 

 
Fig.	4.4.	Feature	space	U	covered	by	the	detectors,	shown	in	two‐dimensional	projections	of	

different	parameter	pairs.	Green	points	are	safe	situations,	blue	circles—detectors,	red	points—
detected	emergency	situations,	yellow	points—non‐hazardous	situations.	

In 8-dimensional field the algorithm showed good field coverage with detectors and 
sound non-self antigen recognition. [author’s publication 5]. Fig. 4.4. shows known safe 
“self” elements (green points) antigens (red points), non-hazardous antigens (yellow points) 
and detectors (blue circles with center points) projected on two different parameter pairs. The 
algorithm tuns quite fast, the time increases with an increase in the number of detectors, tests 
or parameters; in every case the most time is taken by the process of data logging after the 
main algorithm execution. The selected control activities did not differ as it is meant to be 
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done by the second part of the system. The algorithm can be adapted fot multiprocessor 
systems which would significantly improve its speed. 

The section also describes the experiment with the immune clonal selection algorithm 
and the genetic algorithm. The goal of the experiment was to test whether an immune 
optimization algorithm is able to improve the situation and prevent train collisions with road 
vehicles better than a genetic algorithm, and how quickly the immune algorithm can provide a 
solution for improving the situation. 

To compare the immune algorithm with the genetic algorithm [author’s publication 
11, 4] a systemwas modeled which consists of a crossing, a train and a bus. 

During the experiment some parameters of vehicles were changed: distance from the 
crossing, train average speed, distance to the bus crossing, average bus speed. 

The algorithms used the optimization objective function 3.1. 
To test the effectiveness of the immune and genetic algorithms with different 

parameters they were chosen so that they are similar for both algorithms [32]. 
Two groups of 10 experiments were planned. Each experiment had different initial 

model parameters although they are the same across each ith experiment. In the first 
experimental group the crossing system can only slow down the vehicle to remedy the 
situation by reducing its average speed by up to 10 km/h. Consequently, the maximum speed 
change is zero and the minimum speed change is –10. The experiments in the second group 
could increase the speed by up to 5 km/h or reduce speed by up to 15 km/h. 

Since evolutionary algorithms may give different solutions to the same parameters, 
each experiment was performed in six attempts. To gather the statistical data a total of 
240 experiments were performed. 

During the statistical analysis of the experimental results the following hypotheses 
were declared [5]: 

H01: The immune algorithm can prevent the dangerous situation on the level crossing. 
H02: The genetic algorithm can prevent the dangerous situation on the level crossing. 
H03: The neural network can prevent the dangerous situation in the level crossing. 
The summary contains the comparison table while full tables are found in the thesis. 
In order to statistically test the hypothesis of immune and genetic algorithms’ ability 

to improve the situation at the levelcrossingthe author used a statistical z-test evaluation [4, 
32]. A confidence level is defined for the test interval. The value for verification was obtained 
from the initial situation assessment. These tables contain only the collision probability as a 
key parameter for accident prevention. In all experiments the immune algorithm found a 
solution (Table 4.1.). The results show that the hypotheses cannot be rejected with a 
probability of 0.999 (Tables 4.1. and 4.2.). This means that the immune algorithm can help 
avoid the dangerous situation on the level crossing. The genetic algorithm also finds good 
solutions which are better than the original state. 

 
Table 4.1. 

Fragment of immune algorithm hypothesis test results by a collision probability criterion 
Exp. No. Confidence 

leve 
Test interval Tested 

value 
Result 

1 99.90% (0.0017; 0.00166) 0.62601 H01 cannot be denied with prob. 
99.90% 

2 99.90% (0.0017; 0.0017) 0.5768 H01 cannot be denied with prob. 
99.90% 

 
 
 



21 
 

Table 4.2. 
Fragment of genetic algorithm hypothesis test results by a collision probability criterion 

Exp. No. Confidence 
level 

Test interval Tested 
value 

Result 

1 99.90% (-0.0293; 
0.26966) 

0.62601 H02 cannot be denied with prob. 
99.90% 

2 99.90% (0.0025; 
0.02232) 

0.5768 H02 cannot be denied with prob. 
99.90% 

 
Experiment with a neural network [20] used the target function defined in (3.1), but 

unlike evolutionary algorithms it was taught to decide on the change of speed to prevent a 
collision between trains and trucks. If the total number of trains and vehicles is n, then the 
neural network has 2n input pairs. Since this number can vary depending on the number of 
vehicles, the neural network input and the output neuron count is dynamic. 

Each neural network input pair consists of two parameters: the vehicle’s distance to 
the object and the crossing object average speed vi. 

According to the object count the neural network has n outputs which deliver the 
change in object’s speed necessary to avoid a collision. Output layer neural inputs have 
weights Wij, which determine a multiplier for each ith input layer neuron output for each jth 
output layer neuron and a bias bj. Each output layer jth neuron generates jth vehicle speed 
change Δvj. To decide on the need for training the neural network, the calculated Δv1 ... Δvn 
values are transferred to the self-learning multi-objective function F which measures the 
output efficiency (the collision probability) P and total train speed changes ΣΔvi. The 
structure of the neural network is shown in Fig. 4.5. 

 

 
Fig.	4.5.	Structure	of	the	neural	network	

During the training process each element of the training set is put into the neural 
network input layer. The output — bus and train speed changes Δv1 and Δv2 — is measured 
by the objective function. 

A trained neron is such that each of the speed change elements reduces the collision 
probability by at least 0.005 and the average change of train speed is less than 3 km/h. 

The hypothesis H03 that neural networks can prevent dangerous situations at the level 
crossing, was statistically tested (Table 4.3). 
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Table 4.3. 
Fragment of neural network hypothesis z-test results 

Exp. 
No. 

Confidence 
level 

Test interval Tested 
value 

Result 

1 99.90% (0.0001; 0.0007) 0.62601 H03 cannot be denied with prob. 
99.90% 

2 99.90% (0; 0.00048) 0.5768 H03 cannot be denied with prob. 
99.90% 

 
 According to the analysis of experimental results it can be concluded that all the tested 
algorithms can improve the situation at the level crossing. 
 Immune algorithm performance is compared with the genetic algorithm and the neural 
network by following criteria: the average value of the collision probability, machine time 
for an algorithm and stability the results. 
 

Table 4.4. 
 Immune algorithm criteria mean value comparison with genetic algorithm results 

Criterion 
Mean of Immune 
Algorithm (IA) 

Mean of Genetic 
Algorithm (GA) 

IA in comparison 
with the GA 

Target function 0.00119 0.00962 708.40%
Collision probability  0.00086 0.00327 280.23%
Train speed change 0.04167 0.7 1579.87%
Machine time 0.35433 0.34762 -1.89%
    

Table 4.5. 
 Immune algorithm criteria mean value comparison with neural network results 

Criterion 
Mean of Immune 
Algorithm (IA) 

Mean of Neural 
Network (NN) 

IA in comparison 
with the NN 

Target function 0.00119 0.00263 121.01%
Collision probability  0.00086 0.00088 2.33%
Train speed change 0.04167 0.15028 260.64%
Machine time 0.35433 0.15961 -54.95%
    

 
Table 4.6. 

Immune algorithm stability comparison with the genetic algorithm 

Criterion 

Standard deviation 
of Immune 
Algorithm (IA) 

Standard deviation of 
Genetic Algorithm 
(GA) 

IA in comparison 
with the GA 

Target function 0.00011 0.00088 700.00%
Collision probability  8.00E-05 0.0003 275.00%
Train speed change 0.00382 0.06417 1579.84%
Machine time 0.01604 0.01495 -6.80%
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Table 4.7. 
Immune algorithm stability comparison with the neural network 

Criterion 

Standard deviation 
of Immune 
Algorithm (IA) 

Standard 
deviation of 
Neural Network 
(NN) 

IA in comparison 
with the NN 

Target function 0.00011 0.00024 118.18%
Collision probability  8.00E-05 8.00E-05 0.00%
Train speed change 0.00382 0.01378 260.73%
Machine time 0.01604 0.00634 -60.47%

 
Comparing the average values from tables 4.4. and 4.5, it can be seen that the best 

result by the collision probability criterion and the minimum train speed change belongs to the 
immune algorithm. The neural network result for collision avoidance was 2.33% worse while 
running 54.95% faster. Analysis of the algorithm results stability from the tables 4.6. and 4.7 
shows that the immune algorithm finds solutions with the smallest standard deviation and the 
results are stable. Neural network shows similar stability by the collision probability criterion. 
By the measure of machine time consumed the immune algorithm loses by 6.80% to the GA 
and by 60.47% to the NN. 

5. EXPERIMENT WITH EMBEDDED DEVICES 
AND IMMUNE SYSTEM 

The aim of experiments with the embedded devices in the real world was to check and 
prove that the thesis developed mathematical models, methods and algorithms are capable of 
performing and technically applicable to real objects. 

For this purpose, three level-crossings in Riga, as well as station Bolderāja and 
Lāčupe–Bolderāja railway section has been selected for tests in collaboration with JSC 
“Latvian Railway”. 

During experiments three types of microcontrollers were tested — Siemens Simatic 
S7-200 PLC, Arduino Uno/Mega and Waspmote; two communication options were tested — 
mobile communications GSM/GPRS and a separate radio channel, and the ability of the 
algorithm to remedy the situation at level crossings and equipment performance and function 
in the real world. 

It is proposed to augment the existing real railway system with the following 
elements: satellite navigation receivers (GPS, Galileo, EGNOS, LATPOS) Sp for level-
crossings, SL for locomotives and SA for road vehicles; wireless signal (GSM or radio 
channel) transmission antennas Ap for level crossings, AL for locomotives, AA for road 
vehicles and AD for control center; the device for object detection on level-crossing Kp, 
braking control system on the locomotive KL and the device of road vehicle KA, device of the 
dispatching center KD and the database DB of area control center. 

Fig. 5.1. shows the apparatus for the data structure. Next to the name in brackets there 
is an example of the device’s unique identification code. Bold solid lines show continuous 
permanent data exchange process, dashed lines show the single data exchange process: 

1. Dispatching center is a common database DB for local railways with each level 
crossing or station located in its area. Zones do not intersect with each other. 

2. KL-board equipment (10) continuously sends locomotives position of the latitude 
X1 and longitude Y1 to the dispatching center device KD (5) 
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3. Dispatching center device KD continuously compares the coordinates of the train 
with a database DB and when the train is in the area defined in database, then DB returns the 
zone ID number (for example, ID number 1000), and KD transfers this code to the train 
unit KL. 

4. While the train device KL (10) is continuously receiving the area code from the 
central controller (eg, ID number 1000) it starts connecting to the level crossing device KP 
(1000) and registers there. 

5. When a new train is registered in the area of the station or level-crossing KP sends 
to the train device (for example, ID 10) the stations stations plan in a form of a graph, which 
describes the station node points (track circuits, points, points, traffic lights, level crossings), 
its geographical coordinates and lines between those points. 

6. Station device Kp continuously sends node controlled conditions (crossings, traffic 
lights and switches) to the trains. 

7. KL-board device, taking into account the motion parameters, calculates the moment 
of time for the safe stop and sends a signal the the station or level-crossing device. 

8. When the car is located in the crossing area and is stopped, the KA sends its 
coordinates X2 and Y2 to the level-crossing device Kp 

9. KP device checks the location of the car, and if it is on a level crossing, generates a 
“busy” signal the train device KL 

10. KL-board equipment, when receiving “busy”signal starts braking process of the 
rolling stock using the braking control algorithm. 

 
Fig.	5.1.	Data	exchange	diagram	

 
An experiment in recognition of dangerous situations was carried out with the detector 

generation phase with SIMATIC controllers. [author’s publication 3]. Antigen recognition 
results were displayed on the screen or the LED and an appropriate for the activated detector 
control signal was sent to the output. 

To test the system which can learn independently using the objective function, a 
prototype system was designed for athe experiment; the prototype is based on Waspmote 
microcontroller board and uses operator-independent radio channel. 

The system is able to assess the situation and offer traffic participants — the train 
driver or the vehicle driver — to change the speed in order to avoid dangerous situations. 
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Experiment setup: a car which is equipped with the developed device is approaching 
the crossing and enters into an earshot of the radio channel, begins sending its speed and 
distance to the crossing, the train which is also entering the area, begins sending its speed and 
distance to the crossing; the crossing facility, which receives data from vehicles, enables the 
immune system based on neural networks which learn using the objective function, and finds 
the amount to reduce the speed of the train so that collision probability would be minimal. 

The detection distance to the vehicle is 500 meters, and train detection distance is 
1000 m. Speed of the train is 80 km/h and the car’s speed is 40 km/h. After evaluation, the 
collision probability is defined as 0.469. Neural network training completed in 
165 milliseconds time and gives an answer to remedy the situation up to a probability of 0.00014. 

The embedded device of the car captures a report on the need to reduce the speed from 
the level crossing equipment with a self-training option. 

 
Fig.	5.2.	System	self‐learning	

	
The new railroad crossing wireless security system consists of 4 components: the 

locomotive device, the car device, the level crossing device and the command center. 
Proposed benefits of the system are such: it works in parallel to the existing ALS and does not 
interfere with the existing operation of the system, increasing the safety of trains; the 
equipment uses wireless communication networks and can work well in track segments with 
semi-automatic locking system. 

The primary function of the locomotive device is to stop the train before crossing 
when crossing the road stands. 
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The main function of the crossing facilities is to check whether anything is blocking 
the crossing and warn the train approaching the crossing. 

The vehicle device features are: determination of the vehicle location, direction of 
motion, speed using GPS and transfer the information to the command center using a wireless 
channel such as GSM or other radio; if an ID of the nearest crossing device is obtained, 
transfer the data to an appropriate level crossing device through the wireless communications 
(GSM or radio) channel, sending a warning to the crossing device through wireless 
communication (GSM or radio) channel when the vehicle is in the crossing area and its speed 
is around 0 km/h. 

The command center device features are: receive locomotives’ location, direction of 
movement, speed using wireless GSM channels, receive cars’ location, direction of 
movement, speed using wireless GSM channel; find nearest crossings on the way of 
locomotive and transmit its identifier to the locomotive device using wireless communication 
channel, find the nearest level crossing to the car and transmit it to the device using a wireless 
channel, save the received data to the database. 

 

        
Fig.	5.3.	Devices	of	the	locomotive,	level‐crossing	and	car.		

 
Level crossing safety equipment had several trials in collaboration with JSC "Latvian 

Railway": 
August 30, 2011 experiment at Jāņavārti–Zemitāni 2.37 km Vietalvas street two-way 

level-crossing of the railway section, equipped with automatic traffic lights, alarm systems 
and automatic barriers. The experiment showed that the level crossing equipment locomotive 
identification feature works well, but signal transfer time delays from 1 to 15 seconds were 
detected, which should be taken into account in the further calculations and proximity to the 
crossing zone definition. 

November 24, 2011 at Lāčupe–Iļģuciems 0.94 km level-crossing (Dzirciema street). 
The experiment showed that the level crossing equipment is running smoothly in a stable 
manner and fulfills all the functions described in the protocol. 

December 2, 2011 tests showed that the crossing facility is successfully cooperating 
with the car device, and the vehicle identification is performing and it can detect a  standing 
car on a level crossing. 

On March 23, 2012 experiments were made with the locomotive and level crossing 
devices. The locomotive device was installed on the M62 locomotive and the other in 
Bolderaja relay box. During the experiment communication between the controllers and 
computers was established through the open IRC protocol using string format for variables; 
the data was obtained with PHP software. It was concluded that continuous output of all data 
when it is not the most important, is sub-optimal and there is a need to develop a position and 
velocity prediction algorithms in order to continue the calculation, if the data is received late. 
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On February 27-28, 2013 the new rail safety equipment prototypes “SAFE-R 8” and 
“SAFE-R 9” with their software were tested in real operating conditions at Bolderāja station 
and Lāčupe-Bolderāja railway section. SAFE-R 8 prototypes were installed in the locomotive 
and railcar, and SAFE-R 9 prototype in the relay box of the station. 

The following equipment abilities were tested: receiving GPS signal and determining 
the position and exact track of the locomotive and railcar; SAFE-R 8 receiving control signals 
from SAFE-R 9 via the radio channel; correct data display on SAFE-R 8 screen which 
includes speed, braking distance, braking and emergency information mode indicator, traffic 
lights at the front and rear of the locomotive, distances to these points and their positions; 
receiving full data about the station on demand;correctly backing up traffic light and track 
switching signals; receiving a request through radio communication and transmitting the 
required information without any loss of data. 

During experiments, the locomotive leaves the station on a specified segment. Several 
trips were made moving away and approaching the entrance of the station equipped with a 
traffic light with prohibitive signal. The signal switches to green, the locomotive enters the 
station and stops. Then the railcar departs from the station on a specified segment with several 
trips moving away and approaching the entrance to the station with a prohibitive signal. When 
the signal switched to an allowing signal the railcar enters the station and stops. 

Experimental results showed that the SAFE-R 8 device can work in various movable 
units: locomotive or railcar without configuration changes, SAFE-R 8 and SAFE-R 9 devices 
do not use public wireless communications network and are working on a separate radio 
frequency channel. The SAFE-R system is able to stop the train safely before passing the red 
signal, SAFE-R 8 device is able to determine the service and emergency braking distance to 
warn the driver of the need for braking and automatically stop the train if the driver did not 
respond in timely manner. The devices are compatible with the SCB system and do not 
interfere with the existing system. SAFE-R 8 displays the corresponding traffic light readings 
from the SAFE-R 9 device. Train devices can work in the track sections which are equipped 
with field SAFE-R 9 devices, on other sections they do not apply automatic braking and work 
in the information display mode. Area is limited by the communication equipment capacity. 
During the tests the maximum distance was limited by 12 km in ideal conditions. During the 
experiment, a stable uninterruptable data exchange between train and field SAFE-R 9 devices 
was recorded at 2600 meters. The maximum claimed distance of 12 km was not verified due 
to the test area limitations. The field device SAFE-R 9 is able to read busy tracks, switch 
positions and signals from an existing SCB system and is able to provide data about the 
station and train speed limits for SAFE-R 8 devices. SAFE-R 8 device can accurately 
determine the proper traffic lights and signals despite the satellite navigation signal 
uncertainty. 
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RESULTS AND CONCLUSIONS OF THE THESIS 
 The term „evolutionary algorithm” includes such artificial intelligence systems as 

artificial neural networks, genetic algorithms and immune algorithms. They are 
inspired by evolutionary processes of biological systems and work with data as 
„populations”. 

 The most important features of immune algorithms are self-learning, diversity 
maintenance, memory about the past decisions, recognition of previously unknown but 
similar elements, noise reduction and classification ability. 

 The research looks into such disruptions to the electrical railway transport movement 
as collisions with other objects and ignoring the prohibitive trafic light signal. 

 A structure of the intelligent rolling stock safety control system and its algorithm was 
designed. 

 The intelligent railway transport safety control system must be structured in two 
phases—anomaly recognition (implemented with the immune negative selection 
algorithm) and selection of the best reaction based on the type of the anomaly 
(implemented with the immune clonal selection algorithm). 

 Examples of immune algorithm implementations for computers and embedded devices 
were developed. 

 Controller modules and sensors were selected for the experiments. 
 The data flow between the embedded devices and control center computers was 

implemented, as well as its logging into the database. 
 Experiments in the laboratory and in the field were conducted; the embedded device 

prototypes were connected to the locomotives, traffic light and level crossing relay 
boxes. 

 Analysis of the experiments’ results shows that: it’s necessary to limit the data output, 
leaving only the most important data for each time moment and precisely stating the 
addressee; imprecise or late data can cause wrong decisions by the algorithm. 

 Limited memory and processing power is the reason for controller to implement the 
immune algorithm in a simpler form. 

 Analysis of experimental results showed that the amount of data output should be 
limited, leaving only the most relevant data, and a more precise addressing system 
should be used; inaccurate or late data can cause wrong or late decision. 

 The developed prototypes of embedded devices can be connected and are able to 
cooperate with the railway facilities, and the locomotive, traffic lights and crossing 
relay cabinets that allow them to use the existing railway infrastructure and rolling 
stock. 

 Neural networks can be used as a mechanism in the immune system that can self-train 
and improve the situation of the transport system by reducing the collision probability. 

 The defined multi-objective function can be used in evolutionary algorithms, i.e. 
neural networks, immune and genetic algorithms. 

 The modified braking control algorithm makes it possible to stop the train and prevent 
a collision where a correction of the situation is not possible, and that provides an 
additional security feature for the level crossing’s AIS. 

 Laboratory computer experiments compared three evolutionary computing methods—
an immune algorithm, a genetic algorithm and a neural network—that made it possible 
to assess the immune algorithms by rail and road vehicle collision avoidance criterion, 
the train speed to benchmark and machine time consumed in the operation of the 
algorithm; 
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 The immune negative selection algorithm showed good space coverage with detection 
and sound “foreign” antigen recognition, which can effectively find a dangerous 
situation on a level crossing and run the optimization mechanism to remedy the 
situation; 

 The immune algorithm decreases the probability of collisions up to 280% better than 
the genetic algorithm and 2.88% better than the neural network. 

 Immune algorithm kept the train speed up to 1579% closer to the one defined at the 
beginning than the genetic algorithm and up to 260.64% closer than the neural 
network. 

 Despite the stochastical behavior, the immune algorithm shows an average of 850% 
more stable solutions compared with the genetic algorithm and 126.30% compared to 
the neural network. 

 Neural network training has the smallest machine time consumed which is 60.47% 
less than the immune algorithm. 

 The genetic algorithm works 1.89% faster than the immune algorithm which can be 
considered negligible in comparison with the outcome of the immune algorithm found 
measured by the objective function criteria. 

 After the performed experiments with the additional level crossing safety devices it 
can be concluded that: 
o the additional level crossing safety equipment is in working order; 
o the devices can provide identification of approaching cars and locomotives; 
o the devices can transfer current status of control relays to the locomotives and 

cars; 
o the devices can provide the location of cars parked in the crossing area and pass 

the information on to the locomotive using the wireless communication channel; 
o the devices are connected in parallel to an existing railway control system and do 

not disturb functionality of the existing control system increasing the existing 
safety level of the railway system. 

 During the experiment, it was found that: 
o a continuous output all the data, if not the most important, is not optimal; 
o it is necessary to develop a position and velocity prediction algorithms in order to 

continue the calculation if the data is received too late; 
o to stabilize GPS data the Kalman filter can be used but its implementation in 

controllers will take up a lot of memory and computational resources. 
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