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Abstract — This paper is devoted to a study of nonlinear
parametric oscillations of flexible elements in machines using three
different methods of analysis: mathematical simulation on
analogue-digital computer system, numerical solution with
computer program MATLAB, experimental investigations.
Mathematically the problem is presented as a partial differential
equation describing lateral oscillations of flexible element under
the periodic pulsation of its tension force with due account of
geometrical, static and physical nonlinearities. It is shown that
spectrum of resonance lateral oscillations of flexible elements may
be sufficiently dense. The evaluation of danger extent of different
resonant regimes which can occur in the system is made. Under
some conditions continuous resonant zones occur in wide
frequency range, which defines the scientific novelty of these
investigations. Besides, rare phenomena of abrupt changes of
amplitudes and modes of oscillations become possible within these
zones. In such conditions tuning away of system from dangerous
resonant regimes remains problematic. The possible ways for
practical application are considered.
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parametric, resonant regime.

l. INTRODUCTION

Flexible elements (belts, cables, guy ropes, taut threads, strings,
etc.) are widely used in mechanical engineering for various
practical purposes [1], [2]- In some cases lateral parametric
vibrations of flexible elements, which can occur during the
operation of machine, may be extremely detrimental (belt and
chain transmissions, threads in weaving machines, etc.). In some
other cases special excitation of lateral oscillations of flexible
element is needed to ensure effective operation of vibration
device (for example, flexible belt of vibration mixer, vibration
setup for seismic ground probing, vibrating-element viscometer,
elastic tail of robotic fish, etc.). Therefore, it is very important in
the preliminary stage of designing to compare different resonant
regimes which can occur in the system under periodic pulsation
of axial tension force, using significant criteria (peak values of
resonant displacements and tensile forces in the flexible element,
width of frequency intervals of resonant regimes, etc.).

There is no complete theoretical basis for such criteria in
scientific literature. Most of the known works on non-linear
oscillations of flexible elements are concerned with analysis of
free vibrations (e.g., [3]—[5]). But cases of parametric excitation
are usually considered in application only to the first lower
mode of string’s lateral oscillations [6]—[8]. This paper seeks to
study non-linear properties on different lateral modes of
parametric oscillations. On the base of this study new practical
applications are possible.
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1. DYNAMIC MODEL AND METHODS OF ANALYSIS

Transverse oscillations of flexible element under parametric
excitation are considered (Fig.1). Parametric excitation is
caused by periodic axial tension force of the flexible element.
In forming of differential equation of oscillations some
assumptions are made. It is supposed, that stiffness in bending
of flexible element is negligible in comparison with its stiffness
in tension, but the weight of flexible element is ignorable in
comparison to axial prestressing force To. Besides, it is
considered that oscillations are performed in z-y plane, which
runs along the centre line of a non-deformed flexible element
(see Fig. 1).
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Fig. 1. Model of flexible element considered for dynamic analysis.

Taking the direction of the co-ordinate axis z along this
centre line, the differential equation for transverse vibrations of
flexible element can be stated as follows [2], [5]:
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where Ty is the prestressing force; x and (2 are the non-
dimensional amplitude and the frequency of parametric
excitation; accordingly b; and b; are the coefficients of internal
and external frictions; y is the lateral displacement of the
flexible element.

The functional f(¢) in equation (1) takes into account
additional tension force caused by elastic deformation of
flexible element during its lateral oscillations (physical
nonlinearity). The elongation ¢ of flexible element can be
determined by [5]:
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can be approximately described by the expression:
i f(g)](%ml%]—bzyz.
c=Ee-ps°, (3) 2/ oz
where E is the elasticity modulus of material; Bis the coefficient ~ Then equation (1) takes the form:
of non-linearity. In this case the functional f(¢) can be expressed
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where A is the cross-section area of flexible element. a oz az
Therefore an increment in tension is caused by integral +sl 2t oy
elongation of flexible element and is independent of co-ordinate LY oz )
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with boundary conditions
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account geometrical non-linearity of flexible element [5]. In the p(zty)+a(zt)f (th'y,g =0, (11
case studied here the end boundary conditions are as follows:
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Equation (1), subject to the conditions (4)—(5), was solved in c z,t,y,g =lp 1+1[%) :
MATLAB environment using pdepe solver [9]. For this purpose 2\ oz
initial differential equation (1) was transformed into equivalent 0
set of first-order partial differential equations, and special- oy T (1+ usin _Qt)[1+ f(g)]
purpose  MATLAB  functions  describing  nonlinear f Z,t,yla = oy, o, |
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Dynamics of the system also have been simulated on the
I: specialized analogue-digital computer system developed in
Riga Technical University [10] and some of these theoretical
o ( oy, ooy ) oy, results have been verified by experiments with a uniform rubber
5[5]:5(E1257 (8)  cord. Some numerical results of nonlinear oscillations of
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flexible elements have been examined in works [11], [16]. The
methods of mathematical simulation and the operational
principle of the computer system are described in more detail in

[2], [12].

1. ANALYSIS OF PARAMETRIC OSCILLATIONS OF FLEXIBLE
ELEMENT

As known [13],[14], parametric resonance of flexible
element occur under periodic tensile force T with frequency Q
which fall in the vicinity of critical frequencies:
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where s and o are the natural frequencies with ordinal
numbers S and k of lateral oscillations of flexible element; e =
1, 2, 3, ... is the order of the parametric resonance. The first
formula describes the condition of a simple parametric
resonance, but the second formula - the condition of a
combined parametric resonance.

As an example, Fig.2 shows the diagram of parametric
resonance zones on the plane of parameters x and 7 = Qw
(zones are section-lined and denoted with symbols 2ws or
wstax), which is obtained using the specialized analogue-
digital computer system. Only main zones (e 1)
corresponding to the three first natural frequencies i, @, and
ws are shown. The diagram is constructed assuming
bian = 0.003 (it is the rough damping in real flexible elements).
Combination resonances of difference type (s —w, )/e for

the system were not observed.
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Fig. 2. Excitation zones of parametric lateral oscillations for flexible element
obtained using the specialized analogue-digital computer system.

In accordance with the conditions (14), some critical
frequencies Qare possible, which theoretically allow excitation
both simple parametric and combination parametric resonances.
For example, such situation occurs under the condition 2 = 2w;
= wi+ws. In this case simple parametric oscillations dominate
over the combination ones (see Fig.?2). Besides, critical
frequencies 2, which theoretically allow simultaneous
excitation of some different combination resonant regimes, are
possible, too. In this case, combination regime that resulted
from the interaction of two adjacent vibration modes is excited.
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For example, at the excitation frequency Q = w1 + w4 = w2 + w3
combination oscillations corresponding to the zone w; + w3 are
realized.

On the base of diagram (see Fig. 2) simple and combination
parametric regimes can be compared. As it is seen, zones of
combination resonance are sufficiently more narrow (by
excitation frequency ) than zones of simple parametric
resonance. For example, under the 4 = 0.2 the width of zones
2cn and 2, are equal to Az = 0.42 and Axs® = 0.83,
correspondingly. But the width of combination parametric zone
(en + ) is about only An**2 = 0.1. Besides, excitation of
combination parametric oscillations are possible only under
higher pulsation g of tensile force T than it is necessary for
excitation of simple parametric resonances. For example, under
the To/EA =2:107* and by an = 0.003 the threshold of parametric
excitation for the zone 2, is equal to Y = 0.0064, but for the
zone (@ + @) it reaches o2 = 0.07 (approximately ten times
higher).

But objective conclusion on failure danger of flexible
element in one or another parametric regime can be made by
comparison of vibration amplitudes and corresponding tensile
forces. Exponential rise of amplitudes of parametric oscillations
during transient process is observed. For example, Fig. 3 shows
the rise of parametric oscillations within the main zone 2, of
parametric instability. A danger of failure of flexible element
on the second and third parametric resonant regimes, as it is
shown in [15], is slightly higher than on the first one (due to
increase of tensile forces and dynamic stress in the flexible
element).

Fig. 3. Exponential rise of parametric oscillations within the main zone of
parametric instability in flexible element (1) under parametric excitation. The
diagram was obtained by numerical investigations using program MATLAB.

Under some conditions (« > 0.15 and # > 11) main zones of
simple parametric regimes 2ws are merging, and as a result a
continuous resonant zone occurs in wide frequency range. For
example, Fig. 4 shows a part of the diagram of parametric
instability corresponding to the frequency range of excitation of
regimes 2ws, 27 and 2ws. The diagram is constructed on the
plane of parameters x and 7 = @y, assuming byw = 0.003.
Above on the same figure AFC of lateral parametric oscillations
of flexible element is constructed (for the case u=0.2,
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To/EA = 2.107* and by = 0.003). Dimensionless peak value of
displacement uo/l in antinodal point of corresponding resonant
mode is projected as amplitude on this AFC.
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Fig. 4. Overlap of parametric instability zones under the high-frequency
excitation obtained using the specialized analogue-digital computer system.

In accordance with the diagram presented, an ambiguity of

exciting parametric regimes exists inside frequency ranges bc
and ef. Dependent on realized initial conditions, regimes of
orders 2ws (6 mode) or 2w7 (7" mode) can be excited inside
frequency range bc. But inside frequency range ef, it is possible
to realize oscillations of flexible element by 7™ or 8" mode.
Besides, pulling of oscillations beyond the borders of instability
zone occurs (frequency intervals ce and fg). Rare phenomena of
abrupt changes of amplitudes and modes of oscillations are
observed in bifurcation points of AFC (e.g. bifurcation jumps
b"-b',d -d" e"-e",g"-g").
Typical parametric regimes of oscillations realized within
instability zones 2ws and 2wy are presented in Fig. 5 and Fig. 6,
obtained by numerical investigations using MATLAB. As it is
seen, during transient process shapes of vibration modes
gradually approach to the shapes peculiar to 6™ and 7™ natural
modes. Some distortions of vibration modes from the standard
harmonic shapes can be caused by two different factors. First,
the influences of geometric and static nonlinearities of flexible
element have to be taken into consideration. Second, the
interaction of different mechanisms of excitation of parametric
regimes may be the reason for distortion of vibration modes.
For example, due to the condition (6) at the excitation frequency
Q = 2we there is a theoretical possibility for additional exciting
of combination parametric regimes of orders ws+w7, watws,
w3twe, w1twi1y and others. Interaction of simple parametric and
combination regimes can result in specific distortions of
vibration modes and frequency spectrum. Further, more
detailed analysis of these effects is needed.
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Fig. 5. Typical parametric regimes of oscillations within parametric instability
zone 2ws: () transition to steady-state oscillations from non-zero initial
conditions; (b) vibration mode at instant of time t =30 s.
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Fig. 6. Typical parametric regimes of oscillations within parametric instability
zone 2ws: (@) transition to steady-state oscillations from non-zero initial
conditions; (b) vibration mode at instant of time t =30 s.

IV. EXPERIMENTAL INVESTIGATIONS

Results of the theoretical study have been verified by
experiments with a uniform rubber cord having the length
I =0.66 m and linear density p =0.0025 kg/m (in unloaded
condition). The experimental setup (Fig. 7a) consists of
uniform rubber cord, stationary base, DC power supply and
block of parametric excitation (Fig. 7b). This block ensures
periodic pulsation of axial tension force and consists of an
electric motor, a slide-block of a crank gear and an eccentric
drive. One end of the flexible element was fixed, but the other
one was connected to the slide-block (Fig. 7b) of a crank gear
(through a system of guiding rolls). During the reciprocation of
slide-block a tension force of flexible element was periodically
changed, and lateral parametric oscillations of the cord were
excited.

The obtained experimental results demonstrate good
agreement with numerical results. Specifically, experimental
relationships between lateral displacements on three first
vibration modes have shown close agreement with the
numerical results. Besides, the existence of wide continuous
resonant frequency ranges and occurrence of vibration regimes
accompanied with abrupt changes of amplitudes and modes of
oscillations is confirmed.
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Fig. 7. (a) General view of the experimental setup: 1 — uniform rubber cord,
2 — stationary base, 3 — DC power supply; (b) block of parametric excitation:
4 — motor, 5 — slide-block of a crank gear, 6 — eccentric drive.

V. CONCLUSION

Existence of resonant parametric oscillations of flexible
element within wide continuous frequency range, realization of
nonlinear effects of abrupt changes in amplitudes and modes of
oscillations (Fig. 4) cause difficulties in vibration protection. In
such cases tuning away of the system from dangerous resonant
regimes remains problematic (e.g., threads in weaving
machines). On the other hand, special excitation of these
regimes can be useful in vibration devices intended for
executing of some technological processes with the aid of
vibrating flexible element (flexible belt of vibration mixer,
elastic tail of robotic fish, emptying of loading hoppers with the
aid of vibrating belt, etc.).

The obtained theoretical
experimentally.

results were confirmed
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Vitilijs Beresnevics, Aleksejs Klokovs. Lokano elementu nelinearo parametrisko svarstibu dazas retas paradibas

Raksts ir veltits lokano elementu nelinearo parametrisko svarstibu izp&tei masinas, lietojot tris dazadas analizes metodes: matematiska modelé$ana analogu-ciparu
datorizéta kompleksa, skaitliska analize ar datora programmu MatLab un eksperimentalie pétjjumi. Matematiski uzdevums ir formuléts ka lokana elementa
parametrisko svarstibu parcialais diferencialvienadojums, kas raksturo $T elementa parametriskas svarstibas, turklat tick nemta véra lokana elementa geometriska,
statiska un fiziska nelinearitate. Paradits, ka lokano elementu rezonanses Sk&rssvarstibu frekvencu spektrs varétu but bitiski blivs (dazadu kartu parastie
parametriskie rezonanses rezimi, kombinacionalas rezonanses). Apskatamaja sistéma tiek novertéta dazadu potenciali iesp&jamu rezonanses rezimu bistamibas
pakape. Konstatéts, ka pie daziem nosacijumiem var eksistét nepartrauktas rezonanses zonas plasa frekvencu diapazona. Turklat So nepartraukto zonu ietvaros
novérotas retas paradibas, kas realizgjas lokana elementa svarstibu amplitiidu un formu l&cienveida izmainas. Sis Ipatnibas nosaka izpildito pétfjumu zinatnisko
novitati. Nepartraukto rezonanses zonu eksisté$ana apgriitina sistémas noregulésanu péc frekvences no bistamiem rezonanses rezimiem. Raksta apskatiti iesp&jamie

varianti $o nelinearo efektu praktiskai izmantoSanai.
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