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Abstract — Unmanned aerial vehicles have become more widely
used for military, security, building inspection etc. Flight path and
collision avoidance are the main research tasks for UAV control.
This paper serves as background for a new method, which can be
used for UAV onboard trajectory determination. Collecting UAV
control methods and their advantages is possible to create one
method that collects advantages of various control methods.
Trajectory is established by using the image sensor and image
processing methods. New method can be used to cancel out inertial
navigation system errors like GPS does.
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|. INTRODUCTION

Unmanned aerial vehicles are used almost everywhere. In
recent years, unmanned aerial vehicle (UAV) has become a
major focus of active research, since it can extend our capability
in a variety of areas, especially for applications, such as search-
and-rescue and inspection. UAVs tend to fly in open sky, far
from any obstacles and rely on external beacons — mainly GPS —
to localize them-selves and navigate.

The control of quadcopter during autonomous flights relies
on knowledge of variables such as position, velocity and
orientation, which can be partly calculated using information
provided by on-board inertial sensors. Knowledge of
environment can also be gained from visual sensors, such as
camera. Using optical flow and other image processing
methods, it is possible to detect and recognize obstacles and
avoid collisions with them.

Another task of UAVs is to cooperate to solve some tasks
especially at low altitude where GPS cannot be used for such
flights. We can take inspiration from flies and bees, study their
sensor suites and ways of processing information in order to
extract principles that could then be applied to UAV. It turned
out that insects are mainly relying on low-resolution, monocular
vision [1], inertial and airflow sensors [2] to control their flight.
This is interesting because the corresponding sensors are now
commercially available with small, light packaging, and
extremely low power. Therefore, rather than opting for bulky
active 3D range finders weighing a few kilograms, dynamic
flight in the vicinity of obstacles can be achieved with far lower
weight by using passive sensors such as vision,
microelectromechanical system (MEMS) rate gyros and
miniature anemometers [3].
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UAV movement trajectory detection is one of main tasks for
localization, collision avoidance and other research topics.
Flight trajectory can be calculated by various methods. In this
paper, some methods are presented to find a flight trajectory.
All methods are compared, and their advantages and
disadvantages are also determined. According to advantages of
the methods studied, a new method is proposed for flight
trajectory determination. In this section, we describe the main
problem to be solved: flight trajectory determination.
According to advantages of all methods, an embedded solution
to onboard flight trajectory detection is introduced with the aim
to be used for indoor and outdoor flights. In obstacle avoidance
and cooperative flight tasks is used flight trajectory of UAV to
find new flight trajectory avoiding collisions with other UAVs
and with obstacles.

Il. EXISTING METHODS

A. Inertial Navigation System

As mentioned before, all unmanned aerial vehicles contain
Inertial Measurement Unit (IMU). IMU typically contain three
orthogonal  rate-gyroscopes and  three  orthogonal
accelerometers, measuring angular velocity and linear
acceleration respectively. Some IMUs include three orthogonal
magnetic field sensors to find the yaw angle according to North.
By processing signals from these sensors, it is possible to track
the position and orientation of a device. Inertial navigation is
used in a wide range of applications, including the navigation
of aircraft, tactical and strategic missiles, spacecraft,
submarines and ships. To track the position of an INS, the
acceleration signal a, (t) obtained from the accelerometer is
projected into the global frame of reference:

Apx (t)

ap(t) = |apy(t) (1)
Apz (t)

ay(t) = C(®)ap(t) (2)

where C(t) is UAV attitude at time t. Acceleration due to
gravity is then subtracted and the remaining acceleration is
integrated once to obtain velocity, and again to obtain
displacement:



Technologies of Computer Control

2015716
Rate—gyroscope_’ > Ori .
signals » Urientation
Initial Initial
Velocity Position
Project
Accelerometer accelerations Correct for R . .
signals onto global gravity Global ! \a’elociwr Postr
axes Accel
Fig. 1. Strap-down inertial navigation algorithm.
, that the INS is usually aided with either GPS, Doppler heading
aq(t) = V,(0) + fo ay(t) — g4dt, (3) sensor or air-data dead reckoning systems as it can be seen in
Fig. 2. INS uses attitude and heading reference system output
data to calculate speed, path and other outputs. As it can be
t - - .
seen in Fig. 2, GPS outputs are used in INS to correct
= 4 .
59(1) = 54(0) + jo Vy(Bdt @ calculation errors.

where 1,(0) is the UAV initial velocity, s,(0) is the UAV
initial displacement and g, is the acceleration due to gravity in
the global frame [4].

For MEMS devices, angle random walk (noise) and
uncorrected bias errors are typically the error sources which
limit the performance of the device; however, the relative
importance of each error source depends on the specific sensor
being used. Fig. 1 displays an INS algorithm. As it can be seen,
errors in the accelerations and angular rates lead to steadily
growing errors in position and velocity components of the
aircraft, due to integration. These are called navigation errors
and there are nine of them — three position errors, three velocity
errors, two attitude errors and one heading error. If an unaided
INS is used, these errors grow with time. It is for this reason

B. Camera Sensor Network

Consisting of a large number of low-power camera nodes,
visual sensor networks support a great number of novel vision-
based applications. The camera nodes provide information from
a monitored site, performing distributed and collaborative
processing of their collected data. Using multiple cameras in the
network provides different views of the scene, which enhances
the reliability of the captured events. However, the large
amount of image data produced by the cameras combined with
the network resource constraints requires exploring a new
means for data processing, communication, and sensor
management. Localization is a well-established problem in
sensor networks.
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Fig. 2. Inertial Navigation System error corrected by GPS.
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Algorithms for localization can be categorized into two main
classes, namely, fine-grained algorithms and coarse-grained
algorithms. Fine-grained methods use timing and/or signal
strength for localization. In this class of localization methods,
only a few sensor positions are known. These sensors are called
beacons or anchors. The knowledge of beacons is then
propagated across the entire network to find the position of the
remaining sensors [5].

Coarse-grained algorithms can further be divided into non-
statistical and statistical approaches. Non-statistical approach
is used to calibrate a network of randomly placed cameras with
non-overlapping fields of view using moving scene features in
the near and far fields [6]. Statistical approaches include
numerical, motion-based, maximum a posteriori (MAP), and
velocity extrapolation based approaches. Numerical solutions
are iterative methods for network localization, and each
iteration contributes to the reduction of the residual errors.
Existing approaches are generally variations of the gradient
descent or the Gauss-Newton methods [5], [7].

In structure from motion (SFM), the trajectory of a moving
camera, and the 3D coordinates of a stationary target are
recovered simultaneously from a series of 2D images of a scene.
In [8], the focus is on real-time processing of the image data
using an extended Kalman filter. Similar to SFM, simultaneous
localization and mapping (SLAM) localizes a moving sensor
(robot) and estimates its trajectory using its ego-motion and the
stationary objects in the scene. [6]

Let us suppose we have a network of N non-overlapping
cameras Y = {Cy,C,, ..., C,}, similar to [6]. Let a trajectory
Y; within C; be represented as ¥; = (x;, y;) where (x;,y;) is the
estimated position of the target in the image plane from
camera C;. Furthermore, let each observation be generated by a
motion model as

X1 1 a 0 0][% Ux
Xﬂ _Io 1 0 0‘ IXE’LI%’{ (5)
yil “[o 0 1 a,f|w Uy
v 0o 0 o 1lb?l lw

where (x7,y7) is the velocity of the object on x and y axis. In
addition, (ay,a,) may change over a period of time with
covariance. Moreover, v(]\f(O, ZU)) is modeling additive noise
with covariance 2, = I*** x 1e — 3, where [ is identity matrix.
If each camera C; provides a vertical top-down view of the
scene (i.e., its optical axis is perpendicular to the ground), the
number of parameters for the localization of each camera C; is
reduced to two, namely, the camera C; position
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Fig. 3. Camera view plane by coordinates and angles according to the whole
environment.

P, = (p¥, p}) and the rotation angle, ¢; expressed as the
relative angle between the camera C; and the horizontal axis
(see Fig. 3). To summarize, the parameters Z;for camera C; are
E = v/ @il (6)

If C; observes the object at a particular time instant ¢t and
after ¢ + 7 time intervals the object enters into C;,,, with C; #
Ci+y then it can be visualized as C;,.,, views the object from the
©ii+n Yii+n POSItion, where ¢;;., and Y;,,, are the rotation
matrix and the translation vector, respectively.

The camera localization process estimates ((pi‘H,,,YL-,Hn) S0
that the configuration estimation error ¢ reaches minimum, that
is

Xitn (t+7)

YVi+n (t+1)
yields

(<Pi,i+n+Yi,i+n) [
_ [fi,m; (t+ T)]
Vii+n(E +7)

(7)

)

where £; ;.5 (t + 1), 94y (t + 1) is the projected estimate of
the object position from C; at t to C;,, att + 7.

If all cameras are located randomly, then according to equation
(6) each camera C; location is calculated by (9) with parameters
of (8) [5].

X

E=" v pof o 6 o] (8)

’ xi+n(t+T)
yi+n(t+7) -
Zi+7](t+T)

@iiantYiiey
O ivn Yoty
Wi itntYiien
Zijeq(t + 1) )
~ yields
=[Pyt +D[=e—> 0
Zijy(t +7)

(9)
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Fig. 4. Room with three cameras (orange dots) locating UAV. Green points
show actual UAV position according to room X, Y and Z axis.

1. OPTICAL FLOW

UAV control systems become more powerful and can be
used for image processing. By processing images, it is possible
to detect obstacles, avoid them, localize and build a 3D
environment map. UAV is used to fly in various environments.
As mentioned before, insects use vision to avoid collisions with
obstacles. Optical flow is one of principles, how image
processing can help us to determine flight direction. There are
various methods for optic flow calculation.

A. The Lucas-Kanade Method

The Lucas-Kanade method assumes that the displacement of
the image contents between two nearby frames is small and
approximately constant within a neighborhood of the point O
under consideration. The image flow vector (V,V,) must
satisfy

L(q)Vse + I, (q)Vy, = —1:(q0), (10)
where gq; is pixel, I, . are pixel intensity at x,y coordinates
and time t [9]. For multiple windows, equation (10) can be
written as

[1:(q1) Iy(a1)]

[1 (@) 1 (th)‘[ ]

L(q) I (ql

—IL.(q1)
-1 (QZ) (11)
_It(ql

or as AV = B. Optical flow vector can be calculated by

Zilx(qi)z Zilx(Qi)Iy(qi) -
D L@@ Y b '
Zl(ql)lt(ql
=V

Z 1,(aD1(@)

(12)

B. The Horn-Schunck Method

The Horn-Schunck method assumes smoothness in the flow
over the whole image. Thus, it tries to minimize distortions in
flow and prefers solutions which show more smoothness. The
flow is formulated as a global energy functional which is then
sought to be minimized [9]. This function is given for two-
dimensional image streams as

= ff [(Ixu +Lv+ It)z] +

+a?(||Vull® + [IVl|*)dxdy

(13)

= [uCx, y), v(x,M]" (14)

where « is regulation constant. This method depends on the
neighboring values of the flow field; it must be repeated once
the neighbors have been updated. The following iterative
scheme is derived

L(Leuy + Ly + 1)
a?+12+17

Ug+1 = U —
(15)
L, (L + Ly + 1)
a?+ 12+ 12

Vk+1 = Vk —
INS and camera sensor network are calculating UAV actual

position. It is still possible to determine flight trajectory by
taking its previous positions [9] and flight trajectory can be

expressed as
X\ X + ox Ex
()’) = <Yt + 0)’) + <5y>,
z Zy+ o0z &,
where x;, y, and z, are actual UAV positions, ¢, ,, , is error and
dx,dy and dz are calculated by

(16)

_ Yk_i X _ Yk_i Vi
=T Y=
(17)
Yk_i2
0z =——
i
IVV. RESULTS

All these methods have advantages and disadvantages. IMU
has an error which increases at the time. There must be an
additional system to correct IMU errors, like GPS. GPS is well
suited for flights in opened environments, without any
obstacles. Our main task is to make UAV flight in various
environments, so the GPS would not be a solution to flight
indoors. Camera sensor network is good suited for closed
rooms. In a similar way, cooperative localization is proposed in
[10]. Each base camera can change its position to extend or
change an environment. Although there is a solution to this
problem, all cameras used in this solution must have an
additional platform to change place. But it cannot be used for
flights, when an environment changes. Using UAV as a moving
platform, the resulting position will include UAV errors
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because of position holding. Optical flow methods have a very
large amount of data to be processed. To use optical flow
methods in the UAV control system, calculation time must be
significantly reduced, but still it should be possible to find
optical flow vectors.

Cameras tend to be smaller and faster for various image
capturing parameters. The same happens with microprocessors.
It is possible to perform some image processing on ARM
processors. In [11], a method for UAV onboard self-motion
estimation was proposed. Images were processed on the
onboard fixed computer with Intel Atom dual core processor.
Camera was faced down by 45° with respect to the UAV frame.
Other study was performed by [12], where using an onboard
visual sensor only vertical speed and yaw angle were
calculated. It could operate only along paths it traveled during
a human-guided training run. Moreover, these paths could be
composed only from straight line segments with a limited
length [12].
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Fig. 5. Optical flow effect vectors divided into nine individual sectors.

In black and white images it is much easier to make image
processing. Big resolution creates massive volume of data to be
processed. Best image resolution for onboard processing is
640X480 pixels. In such resolution images, there is still enough
information about some objects, image depth and etc. The
Lucas-Kanade method for optical flow uses multiple scaled
images. All these images must be processed to find optical flow.
Multiple images use more memory and calculation time.

When UAV flies, main information in pictures is placed at
horizontal and vertical axis. Itis seen in Fig. 5, where all optical
flow vectors are divided into nine groups. Groups with numbers
1, 3, 7 and 9 have additional type of information. These groups
in images can be left unprocessed, when it is known that UAV
flies straight.

To find a flight trajectory, it is necessary to search for
matching pixels in two images, which are taken with some time
delay. The second image will have similar information as the
first one. Both pictures are processed to find edges using
SOBEL operator as it can be seen in Fig. 6 (pictures seen in
Fig. 6 are taken by a phone camera). This will significantly
reduce pixels with different intensities to two different values:
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ones and zeroes. Similar image processing was used for object
tracking in [13]. Objects were tracked using an optical flow
technique.

As mentioned before, these images can be divided into
smaller ones. Let us call these picture parts segments. Fig. 5
demonstrates nine different segments with different
information about an environment. Central segments contain
main changes between both pictures. Fig. 7 displays with
yellow lines the rows and columns processed in pictures.

Fig. 7. White pixel search path. Almost all white pixels on yellow lines are
registered.

In segments 2, 4, 6 and 8 white pixels are searched three
times on rows or columns. Only central segment number 5 is
viewed to find white pixels both on rows and columns.
Segments 4 and 6 are viewed only by rows. Sectors 1, 3, 7 and
9 are processed as a central segment, but only one time for rows
and one time for columns for white pixels.

In some situations after image processing for edge detection,
edges may be close to each other. On the next image taken after
time, these multiple lines for an edge may be displayed as one
line, or vice versa as it is displayed in Fig. 8 by green rectangles.
In order to avoid such situations, a minimal difference must be
set between white pixels found.

When all white pixel positions are collected in matrices M,_,
and M, for both processed images, these matrices are processed
to find differences between white pixels by (18). There must be
some method to ensure that white pixels in M,_; and M, are the
same. For an indoor environment it is done easy by straight lines
basically of windows and doors. When search is processed, all
white pixel coordinates are compared to find a straight line.
Difference between those pixel coordinates cannot be bigger
than threshold . Difference between pixels represents an
optical flow vector for each sector.

A=M_,—M, (18)
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Fig. 8. One and the same edge line on two different images after edge detection.

The flight trajectory will be the sum of vectors from all
sectors. By each flight vector calculation, it is possible to
replace GPS error correction for INS. For flight at high altitude,
this method will not work, except if a camera is faced to the
ground.

V. CONCLUSION

During the present study, three methods have been analyzed,
which can be used to determine UAV flight trajectory. All these
methods are good for specific solutions. We have presented a
new method for UAV flight trajectory determination. This
method in three simple steps can find difference between two
successive captured images. In the first step, an image must be
processed to find object edges. The second step finds object
edges, and the third step calculates the traveled path using
object edge differences between successive images. For future
research, this method should be tested on ARM microcontroller
to determine a processing speed. Using this method with INS,
it will be possible to increase accuracy of trajectory and remove
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INS errors as it is done by GPS.

Eriks Klavins. Kustibu trajektorijas noteik$anas metodes

Pétijuma mérkis ir izveidot pamatus jaunai metodei, ar kuras palidzibu biitu iesp&jams noteikt bezpilota lidaparata lidojuma trajektoriju. Lai sasniegtu mérki, tika
apskatitas vairakas metodes, ar kuru palidzibu iesp&jams iegiit lidziga rakstura informaciju. Metozu pozitivas pazimes tiek apkopotas, lai veidotu teorétisku pamatu
jaunai metodei. Konkréta metode balstas uz attglu apstrades tehnologiju, ar kuras palidzibu tiek noteikts optiskas pliismas efekts. ST efekta iegiitie izejas vektori
talak tiek izmantoti, lai varétu noteikt lidojuma trajektoriju. Metodes atrdarbibas uzlabosanai kameras dati tiek apstradati, lai noteiktu objektu robezas. Uz
apstradatiem attéliem tiek noteiktas to atskiribas vairakos attéla segmentos, kuras tiek izteiktas ka vektori. Katrs vektors norada segmenta izmainu virzienu, kurus
péc tam izmanto trajektorijas aprékinasanai. Precizitates uzlabosanai jauno metodi biis iesp&jams izmantot kopa ar inercialo navigacijas sistému, kur ta noversis
inercidlas navigacijas sist€émas kludas.

Epuk KnsiBuasm. MeToasl onpe/esieHHsl TPAeKTOPHH IBH:KeHHsI B IPOCTPAHCTBE

Ilenbio HccIenOBaHUS SIBISIETCS YCTAHOBIICHHE OCHOB HOBOTO METOZA, C MOMOMIBIO KOTOPOTO MOXKHO OBUIO OB BEIMHMCIHTH TPAGKTOPHIO IIyTH IOJIETA
OECIMIOTHOTO BO3AYLIHOTO cyaHa. [l pemieHns 3aa4 OblI HCCIIEAOBAH Psijl CIIOCOO0B, C MOMOIIBIO KOTOPBIX MOXHO MOJNYYHTh aHAJIOTHYHYIO HH()OPMALIHIO.
MeToab! HONOKUTEIBHBIX OCOOCHHOCTEH CYMMHPYIOTCS ULl TOTO, YTOOBI CHOPMHUPOBATH TEOPETHIECKHE OCHOBBI HOBOTO MeToza. JIaHHBIN METO[ OCHOBaH Ha
TEXHOJIOTHU 00paOOTKH H300paXKeHHUs, B PE3yIbTaTe YEro MOXKHO MONYIUTh d(P(PEKT ONTHIECKOro NOToKa. McxomHble BeKTOPHI d((eKTa HCIONIB3YIOTCS 3aTeM
JUTSL OTIPEAENICHHs TpaeKTOpHHU. UTOOB! yIydIIUTh IPOBEACHUE PACUETOB, IS ONPEIeICHUS TPaHUL 00BEKTOB 00padaThIBalOTCs JaHHbIEe KaMmephbl. B 00paboTaHHbIX
N300pKEHUSIX ONPEIENAIOTCS Pa3IMIUs B PsJie CETMEHTOB, KOTOPbIE BBIPAXKAIOTCS B BHAE BEKTOPOB. KaxIblii BEKTOp CeTMEHTa yKa3bIBaeT HAIpPABIICHUS
H3MEHEHHUI!, KOTOpbIe 3aTeM UCIONB3YIOTCS ANl pacdera TPaeKTOpHU. UTOOBI MOBBICHTh TOYHOCTH, HOBBII METOJ MOXKHO OyJeT MCIIONb30BaTh B COUCTAHHUH C
HHEepLHMaIbHON HABUTAIIMOHHON CUCTEMOMH, KOTOpasi HOMOXKET MPEAOTBPATHTh OLIMOKH HHEPUUATIEHOH HAaBUTALIMOHHOM CHCTEMBI.

63


http://dx.doi.org/10.1109/robot.2010.5509920
http://dx.doi.org/10.1155/2011/604647
http://dx.doi.org/10.1109/MIS.2010.92
http://dx.doi.org/10.1109/ipsn.2006.244053
http://dx.doi.org/10.1109/34.993559
http://dx.doi.org/10.1145/212094.212141
http://dx.doi.org/10.1109/coase.2012.6386387
http://dx.doi.org/10.1109/iros.2012.6386234

