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1. Generalized Description of the Doctoral Thesis

1.1 Topicality of the Research
At present, it is widely assumed that modern network traffic has self-similarity properties, which
means the network traffic flow has similar behaviour at different scales (seconds, minutes, hours).
This was confirmed a long time ago by [16]; the authors conducted traffic measurements in
different Bellcore laboratory local networks during the period between 1989 and 1992. The work
described how data packets were collected over short time intervals and probability distributions
obtained. Such distributions were studied at lower scales by decreasing packet count time interval
by 10 times for random distribution subinterval.

Self-similarity concept is closely related to chaos and fractals theory and power series. The
first scientist, who noticed such a phenomena, was Benua Mandelbrot. He proposed the math-
ematical means to describe complex forms of nature [20], more specifically – the fractals, which
are widely encountered in a world around us. The self-similar process seems to be the same (or it
has the same behaviour) at different scales. The scales can be represented by space coordinates
or time coordinate. The quantitative measure of self-similarity is the Hurst parameter.

There are different methods for Hurst parameter estimation and research has been performed
for comparison of the precision of such methods, for example in [6], [32]. The Hurst parameter
evaluation can be performed by different transforms – fractional Fourier transform [33], empirical
mode decomposition (EMD) [10], discrete wavelet transform [1]. The latter, considering its
applicability for scale invariance, has been used in the present research. Thus, in order to
estimate the Hurst parameter in real-time, the real-time discrete wavelet transform algorithm is
required. Such algorithms exist and are described in works, such as [21]. The transform can be
performed at low computation costs by using filter banks [28].

The self-similarity is strongly expressed in modern networks. Despite the fact that old
methods based on Poisson distribution and Markov processes cannot describe modern traffic
[18], they still can be used in addition to modern methods to analyse traffic more precisely
[27]. Interesting to note that traffic can be self-similar not only in computer networks – for
example, [9] describes self-similar traffic in integral circuits (complex ICs, such as DSP). Thus,
it is important to estimate the measure of self-similarity by evaluating the Hurst parameter.
The present research describes such an approach based on discrete wavelet transform, which has
been for the first time proposed in [1]. This work has encouraged interest of many researchers
regarding this topic and it has been continued to design even better estimator based on discrete
wavelet transform. For example, in [17] it has been discovered that the number of wavelet
vanishing moments 1 does not necessarily increase estimation accuracy for the Hurst parameter.
The discrete wavelet transform for estimation of the Hurst parameter is still a topical issue,
which has been proved by latest publications, in which new wavelets are discovered for estimation
accuracy improvement. For example, [22] describes complex wavelet basis functions.

For such traffic it is important to create control systems to manage network resources more
efficiently. There are many studies performed in this field. In order to manage traffic congestions,

1M vanishing moments for wavelet basis function are defined by generating polynomial of degree M − 1, for
which basis function is orthogonal. The more such moments are, the more accurate and complete description of
signal such basis provides.
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the traffic can be divided into several classes with different QoS requirements and priorities. In
such a way the operation of the network can be optimised [14]. The traffic classifier can be
based on the Hurst parameter value estimation as well, as it has been proposed in [24]. The
serious research on traffic classification by means of discrete wavelet transform has been made
in [26]. Moreover, the number of such classes increases rapidly and it is necessary to create new
mechanisms to manage connections (Connection Admission Control, CAC [31], [11], [30]). The
topical issue is buffer memory management to control the length of the queue by using various
algorithms [3], [2], [7].

The studies show that the Hurst parameter of network traffic depends on a user, requirements
and time distribution spent in network connection. It has been attempted to determine, whether
the Hurst parameter can be forecast for several days over previous few days in [13] by researching
the Internet connection delays. The research results show that such periodicity does indeed exist
and there is great difference in the Hurst parameter values during daytime and night-time.

Considering all studies mentioned above, the wavelet transform approach provides various
possibilities for traffic analysis and Hurst parameter estimation; it allows classifying traffic types
(including by the Hurst parameter), forecasting network traffic [29]. Moreover, discrete wavelet
transform can be used for other network related purposes as well – both in wired and in wireless
networks. For example, there is an algorithm proposed for detection of WPS attacks in wireless
networks [23]. By combining discrete wavelet transform with neuron networks [8], it has been
proposed to forecast the required volume of resources in mobile Ad-hoc networks.

Overall, the literature analysis shows that traffic self-similarity is still a topical issue and
discrete wavelet transform can be used in many applications for classification, measurement and
control of such traffic.

1.2 Aims of the Doctoral Thesis
The main aim of the Doctoral Thesis is adaptive processing of traffic according to self-similarity
parameter measurements for various network processing node parameters. In order to achieve
this aim, the following tasks can be specified:

1. to study real-time discrete wavelet transform implementation techniques and implement
such transform with the purpose of network traffic parameter evaluation;

2. to design self-similarity parameter estimator, which can be used to determine the mag-
nitude of traffic self-similarity and change accordingly parameters of network processing
node;

3. to study the influence of network processing node buffer memory limit on self-similar
network traffic packet loss probability for various self-similarity parameter and utilisation
coefficient values;

4. to perform multi-parameter optimisation by using a dynamic programming approach, con-
sidering real costs of channel bandwidth and buffer memory.

1.3 Scientific Novelty and Main Results
Having conducted the research, the following results, not mentioned in literature, have been
obtained:

1. In The Doctoral Thesis, the discrete wavelet transform real-time algorithm implementation
has been performed by using filter banks in high-level programming language (in this
case C++). The main difference from existing solutions is absence of strict hardware
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implementation and no segmentation is needed either, which is the case for most of existing
algorithm software implementations.

2. Based on implementation mentioned above, the process (numerical sequence) self-similarity
parameter estimator has been implemented, which processes every input process sample
separately and, unlike existing solutions, can be used for network routers to estimate the
traffic self-similarity parameter.

3. The results of simulation series show that accuracy of self-similarity parameter estimation
depends not only on the number of scales for discrete wavelet transform (as it has already
been published in literature) but also on the value itself, which is being estimated.

4. The simulation data have been collected and analysed for self-similar traffic with various
values of self-similarity parameter, utilisation coefficient, buffer memory volume, number
of scales for discrete wavelet transform. Such results can be used for adaptive traffic control
or resource distribution scheme implementation in network routers.

1.4 Thesis Statements to Be Defended
The Doctoral Thesis presents the following theses:

1. Studies indicate that saving odd-numbered coefficient during discrete wavelet transform
downsampling operation reduces time delay of reconstructed signal after inverse discrete
wavelet transform.

2. It was observed that optimum number of scales exist for Hurst parameter estimation
with discrete wavelet transform, which depends on measured Hurst parameter value and
specified maximum number of scales for discrete wavelet transform.

3. The Doctoral Thesis reveal that traffic with the Hurst parameter value H = 0.8 has lower
packet loss probability and lower estimation error compared to traffic types with different
values of the Hurst parameter.

1.5 Research Methodology
In order to accomplish specified tasks, the set of methods should be used, including, but not
limited to:

• Literature and reference analysis for deeper research of the issue, evaluation of existing
solutions and determination of less studied aspects;

• Theoretical analysis – to prove experimental or simulation data, to determine and explain
observation causes, to search for relationships in the obtained simulation results;

• Computer simulation – simulation model creation and research, by repeating simulation
with various model parameters and summarisation of the results. The simulations have
been performed in Matlab and Simulink environments;

• Measurements – in order to estimate computational efficiency of calculating algorithms
and traffic parameters estimation errors;

• Multi-parameter optimisation – in order to find compromise for network processing node
resource distribution with self-similar traffic, specified constraints and total costs.
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1.6 Practical Application of Research Results
The algorithms presented in the Doctoral Thesis have been designed for microprocessor/microcontroller
systems, which can perform discrete wavelet transform in real-time with filter banks and esti-
mate from transform coefficients the magnitude of process self-similarity – the Hurst parameter.
Such algorithms can be implemented in routers in order to evaluate the parameters of incoming
network traffic and classify different types of traffic with further separate QoS service of these
traffic types. Discrete wavelet transform algorithm can be applied in other tasks as well, which
are not related to traffic analysis and require evenly time-distributed processing time of minimal
value.

1.7 Approbation of the Results
The results obtained within the framework of the Doctoral Thesis have been presented at the
following international conferences:

1. The 16th International Conference of ELECTRONICS, Palanga, Lithuania, 2012.

2. The 5th International Conference on Information Systems and Technologies, Istanbul,
Turkey, 2015.

3. The 7th International Computational Intelligence, Communication Systems and Networks,
Riga, Latvia, 2015.

4. Advances in Wireless and Optical Communications, RTUWO’2015, Riga, Latvia, 2015.

5. The 3rd IEEE Workshop on Advances in Information, Electronic and Electrical Engineer-
ing AIEEE’2015, Riga, Latvia, 2015.

The research results have been published in the following scientific publications:

1. Grabs, E., Sarkovskis, S. Real-Time Estimation of Traffic Self-Similarity Parameter in
Simulink with Wavelet Transform. Electronics and Electrical Engineering, 2013, vol. 9,
no. 3, pp. 88–91;

2. Asars, A., Grabs, E., Petersons, E. Analysis of Wavelet Estimation of Self-Similar Traffic
Parameters in the Simulink Model. Automatic Control and Computer Sciences, 2013, vol.
47, no. 3, pp. 132–138;

3. Grabs, E., Petersons E., Optimal Strategy Modelling for Routers Resources Allocation
in Self-Similar Traffic Environment. 7-th International Conference on Computational In-
telligence, Communication Systems and Networks Proceedings, Latvia, Riga, 2015, pp.
70–74*;

4. Bogdanovs, N., Grabs, E., Petersons, E. Software Implementation of Real-time Discrete
Wavelet Transform Algorithm with Filter Banks for Network Traffic Parameters Estima-
tion.The 5th International Conference on Information Systems and Technologies (ICIST2015)
Istanbul, Turkey, 21–23 March 2015 Proceedings, 2015, pp. 1–7;

5. Grabs. E., Petersons, E. Hurst Parameter Estimation with Wavelet Transform by Filter
Banks for Matlab Generated Traffic. Automatic Control and Computer Sciences, 2015,
vol. 49, no. 5, pp. 286–292;

6. Grabs, E., Petersons, E. Software Implementation of Real-time Hurst Parameter Estimator
Algorithm with Filter Banks. Advances in Wireless and Optical Communications 2015,
Latvia, Riga, 2015, pp. 78–81*;
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7. Grabs, E., Petersons, E. Analysis of Self-similar Traffic Parameters for Network Perfor-
mance Improvement with Real-time Discrete Wavelet Transform. Advances in Information,
Electronic and Electrical Engineering, AIEEE’2015, Latvia, Riga, 2015, pp. 1–6*;

8. Асарс, А., Грабс Э., Петерсонс Э. Анализ Вейвлет-Оценивания Параметров Само-
подобного Трафика Модели Simulink. Автоматика и Вычислительная Техника, 2013,
vol. 47, no. 3, с. 28–36**;

9. Граб, Э., Петерсонс Э. Оценка Параметра Херста с Помощью Вейвлет-Преобразования
и Банка Фильтров для Генерированного в Среде Matlab Трафика. Автоматика и Вы-
числительная Техника, 2015, vol. 49, no. 5, с. 47–56**.

* IEEEXplore indexed publications.
** Published in Russian, English translations are 2nd and 5th respectively.
The results have been used in the project: National research programme: “DEVELOPMENT

OF INNOVATIVE MULTIFUNCTIONAL MATERIALS, SIGNAL PROCESSING AND IN-
FORMATION TECHNOLOGIES FOR COMPETITIVE KNOWLEDGE INTENSIVE PROD-
UCTS”, Project No 2: “Innovative Signal Processing Technologies for Smart and Effective Cre-
ation of Electronic Systems”.

1.8 Structure of the Doctoral Thesis
The contents of the Doctoral Thesis are divided in four chapters.

The first chapter provides a theoretical review on traffic self-similarity in computer net-
works, its influence and causes. The chapter includes the literature analysis, which describes
the achieved work in traffic analysis, self-similarity parameter measurements and application, as
well as discrete wavelet transform application for network traffic. The basics of discrete wavelet
transform are also described in this chapter. The chapter concludes with the self-similar network
queuing model analysis in Simulink with a self-similarity estimator block.

The second chapter describes discrete wavelet transform practical implementation in high-
level programming language C++. The literature review is also available, which justifies a
necessity of such algorithm design. There are multiple implementations proposed for direct and
inverse discrete wavelet transform with filter banks: direct, polyphase and lattice structures.

The third chapter contains research on self-similarity (Hurst) parameter estimation with
discrete wavelet transform and accuracy of such estimation. There are series of simulations
made and results have been summarised in tables. Multiple relationships have been studied,
as well as a number of required transform scales and traffic window length have also been
researched. The chapter concludes with a self-similarity parameter estimator algorithm based
on discrete wavelet transform with filter banks and implementation of such algorithm in C++
programming language.

The fourth chapter contains series of simulations with research of self-similarity parameter
influence on network processing node buffer memory volume and packet loss probability. The
chapter concludes with a queuing system optimisation task solution by using a dynamical pro-
gramming method with the purpose to minimise total costs for specified packet loss probability
value achievement at different values of self-similarity parameter values.

The conclusion of the Doctoral Thesis summarises main results and conclusions of the Doc-
toral Thesis. Appendices contain modelling results and algorithm implementation source codes
related to the Doctoral Thesis contents.
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2. Detailed Descripton of the Doctoral Thesis

2.1 Self-Similar Traffic Model and Discrete Wavelet Transform

In the field of computer networks, it is often necessary to forecast results of specific changes in
network, for example, an increase of the utilization coefficient. In other cases, it is necessary
to create a project of the computer network matching specific requirements. In all cases, the
performance of system is of great interest – depending on a specific task, this performance can
be evaluated as response time, channel bandwidth or other parameters. In order to estimate
performance of the system, forecasting mechanisms must be used, and such a problem can be
solved by analytical models of queuing theory [35]. Note that the mathematical apparatus of
the queuing theory itself is rather complex, but in many cases the practical application of this
theory is easy enough.

In modelling of the queues, the main assumptions are given by Kendall’s notation as fol-
lows: X/Y /N/K, where X specifies distribution law of request inter-arrival time, Y specifies
distribution law of processing time, N is the number of processing units and K is the volume
of buffer memory, which determines maximal queue length. Thus, model P/M/1/K consists
of a single processing unit, time intervals between requests are Pareto distributed, processing
time is exponentially distributed and buffer memory volume is K units2. The structure of such
simplest model is shown in Fig. 1.1.

Queue
Processing
node

K

Requests
Processed
requests

Fig. 1.1. The simplest queuing model with one processing unit.

In order to generate self-similar traffic in simulations, it is required to determine model pa-
rameters – intensity of requests λ and self-similarity parameter H. In case of Pareto distributed
process, the probability density function is:

f(x) =
α

β

(
β

x

)α+1

, (1.1)

where distribution parameters can be evaluated as follows:

α = 3− 2H, (1.2)

β =
α− 1

αλ
, 1 ≤ α ≤ 2. (1.3)

2For instance, in case of network traffic one packet can be considered to be such a unit.
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According to the diagram shown in Fig. 1.1, the Simulink model has been created, which
evaluates length of the queue and its average value for different self-similarity (Hurst) parameter
H and utilisation coefficient ρ values. The total number of requests in the queuing system for all
experiments is about 2 · 106 units. Self-similarity parameter values were changed from H = 0.5
to H = 0.9 with step of 0.1 and last value H = 0.99, which corresponded to a process with the
highest self-similarity measure.

The modelling results consisting of Simulink data were summarised for every value of util-
isation coefficient ρ in the range from 0.5 to 1.0 for all values of Hurst parameter H. These
values were summarised in multiple tables, such as Table 1.1:

Table 1.1. Comparison of Queue Length K for Utilisation Coefficient ρ = 0.5

Simulink GPSS Average Calculated
H = 0.5 0.29 (15) 0.29 (12) 0.39 1.00
H = 0.6 0.35 (18) 0.35 (15) 0.5 1.19
H = 0.7 0.49 (21) 0.49 (17) 0.73 1.59
H = 0.8 0.88 (28) 0.87 (25) 1.41 2.83
H = 0.9 4.02 (86) 3.94 (81) 7.08 16.00
H = 0.99 2.46 · 105 9.91 · 105 2.38 · 105 5.63 · 1014

(4.41 · 105) (2.004 · 106)

The recommended volume of buffer memory Kbuf according to [35] is calculated using (1.4):

Kbuf =
ρ

1
2(1−H)

(1− ρ)
H

(1−H)

. (1.4)

By analysing results in the tables, it can be observed that (1.4) in analytical expression cannot
be applied, since this formula does not account for packet loss probability Ploss, which greatly
influences buffer memory volume.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4
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r,

 δ
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δ
H

 = 5%

H = 0.6
H = 0.7
H = 0.8
H = 0.9

Fig. 1.2. Self-similarity parameter estimation E[Ĥ[n]] relative error in percentage relative to
source specified value H for utilisation coefficient ρ = 0.8.

The created model was further improved by adding the Hurst parameter estimator, described
in Chapter 3. This estimator evaluates momentary value Ĥ and average value E[Ĥ] of the Hurst
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parameter. For an average value, the relative error was determined:

δĤ =

∣∣∣Ĥavg[n]−H
∣∣∣

H
· 100,%. (1.5)

The errors calculated according to (1.5) for all values of H = {0.6 0.7 0.8 0.9} are shown
in Fig. 1.2 with 5 % interval. Overall, we can observe that for lower values of H parameter
the deviation of Ĥavg[n] estimates is higher; however, in all cases the self-similarity parameter
estimate assymptotically approaches a specified source value. It seems that this time interval
does not depend on actual value of self-similarity parameter H.

2.2 Real-Time Discrete Wavelet Transform with Filter Banks
The analysis of literature shows that multi-scale discrete wavelet transform implementation
for real-time transform calculation has not been sufficiently researched. There are no such
algorithms, which could be applied for self-similarity parameter estimation in real-time. Note
that only algorithms processing every traffic sample on all scales are of specific interest here,
avoiding segment accumulation and further processing of entire segment.

That is, mostly, the way in which discrete wavelet transform algorithm is available in lit-
erature – it is based on Mallat pyramidal filter bank algorithm [19] that is well described in
many theoretical sources (for example, [28]). According to this algorithm, the data segment is
accumulated with further processing by j = 1 scale filter bank (the entire segment at once),
afterwards the resulting approximation coefficients are processed by j = 2 scale filter bank, and
so on. Such an approach can be successfully used in real-time processing, as it has been shown
in Master’s Thesis [5] for audio signal real-time processing. Many other studies describe segmen-
tation – with or without overlapping to reduce border-effect of the segmentation (for example,
[25]).

However, if discrete wavelet transform is calculated by filter bank approach (see Fig. 2.1(a)),
the first real results can be used at once, before the whole segment has been processed, if
operation of these filters is implemented directly by means of software, without calculation of
discrete convolution for the entire data segment. It is possible, since the transform procedure
itself by its nature is none other than a digital filtering operation, which can be performed in
real-time. Moreover, in case of wavelet transform very often non-recursive digital filters are used
with finite impulse response length; thus, time delay before the first result can be estimated and
has low values.

Fig. 2.1(a) shows discrete wavelet transform for 1 scale with filter banks. Fig. 2.1(b), in
its turn, demonstrates inverse discrete wavelet transform. Here H0(z) is a transfer function of
approximation (lowpass) filter, and H1(z) – detail (highpass) filter transfer function. At the
outputs of the filters from input samples x[i] the output samples of, accordingly, approximation
coefficients a[k] and detail coefficients d[k] are formed. In order to keep the total number
of samples without changes, the number of coefficients must be twice as small, which can be
achieved by performing a downsampling operation (↓ 2) by keeping only odd (or even) numbered

↓2H0(z)

H1(z)

a[k]

d[k]

x[i]

↓2

↑2 F0(z)

↑2 F1(z)

a[k]

d[k]
y[i]

Fig. 2.1. Discrete wavelet transform with filter banks: a) direct, b) inverse.

12



samples of signal. This choice affects the result of transform, since the values of coefficients in
these two cases are different. During the simulation it has been determined that when odd
numbered samples are kept, during the reconstruction with filter bank shown in Fig. 2.1(b),
the reconstructed signal has shorter delay by 1 sample time interval compared to reconstruction
from even numbered samples.

For perfect reconstruction H0(z) and F0(z), as well as H1(z) and F1(z) must be mutually
orthogonal. Furthermore, H0(z) and H1(z) separate different frequency bands – one filter is
for lowpass band (H0(z)) and another – for highpass band (H1(z)). In such a case, transfer
functions of all four filters can be expressed from H0(z):

H1(z) = z−NH0(−z−1), (2.1)

F0(z) = z−NH0(z
−1), (2.2)

F1(z) = −H0(−z), (2.3)

where N is the order of filter. The filter pair H0(z) and H1(z) forms analysis filter bank,
which performs signal decomposition into coefficients, while filter pairF0(z) and F1(z) forms
synthesis filter bank, which performs signal reconstruction from coefficients. In this Doctoral
Thesis, Daubechies-3 discrete wavelets [12] have been used as a popular choice in applications.
In the created programs it is possible to specify impulse responses of any other wavelet filters,
if necessary. The coefficients of the Daubechies-3 wavelet transfer functions are the following:

Table 2.1. Coefficients of Daubechies-3 Discrete Wavelet Filter Bank Transfer Functions

h0[k] {0.0352 –0.0854 –0.1350 0.4599 0.8069 0.3327}
h1[k] {–0.3327 0.8069 –0.4599 –0.1350 0.0854 0.0352}
f0[k] {0.3327 0.8069 0.4599 –0.1350 –0.0854 0.0352}
f1[k] {0.0352 0.0854 –0.1350 –0.4599 0.8069 –0.3327}

The analysis filter bank is formed of two FIR filters with impulse responses specified by two
first rows of Table 2.1. The synthesis filter bank is not required for Hurst parameter estimation.
Considering the fact that these two FIR filters have common input, it is possible to merge delay
units of the filters and create a filter bank with diagram shown in Fig. 2.2.

x[k]

h0[0] h0[1]

a[k]

d[k]

h0[2] h0[3] h0[4] h0[5]

h1[0] h1[1] h1[2] h1[3] h1[4] h1[5]

Fig. 2.2. Digital filter bank with merged delay line for Daubechies-3 wavelets.

Fig. 2.2 shows direct implementation of discrete wavelet transform with filter banks, assum-
ing that a downsamlping operation (↓ 2, not specified in the figure) for coefficients a[k] and d[k]
will be performed separately after filtering. It is inefficient, since the half of the filtered values
are calculated and then ignored. A more efficient solution – polyphase filter bank structure
shown in Fig. 2.3.

The polyphase filter bank signal is divided into even and odd numbered samples, and each
component is separately filtered by the polyphase filter bank. The total number of calculations
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a[k]

d[k]

h0[0]

xev[k]

xodd[k]

2

2

x[i]

h1[0]

h0[2]

h0[4]

h1[2]

h1[4]

h1[1]

h1[3]

h1[5]

h0[1]

h0[3]

h0[5]

Fig. 2.3. Polyphase filter bank implementation with odd numbered samples after downsampling.

per filtering operation is the same for one signal sample; however, considering the fact that only
a half of the samples will be processed (the downsampling ↓ 2 here is performed before filtering),
the total number of samples is also only a half of the input signal samples.

According to the filter bank structure shown in Fig. 2.3, the program in high-level program-
ming language has been written, which implements the algorithm of real-time discrete wavelet
transform with the polyphase filter bank. This algorithm is shown in Fig. 2.4, assuming that a
downsampling operation keeps odd numbered samples.

MEMev[0] = xev

MEModd[0] = xodd

ak = ya0 + ya1

dk = yd0 + yd1

Setting parameters
N, NN = (N – 1)/2 + 1
n = 0, 1, 2, ..., N, h0[n], h1[n]
xev, xodd, m = 0, 1, 2, ..., NN
MEMev[m], MEModd[m]

Begin

End

ya0 = xevh0[1], ya1 = xoddh0[0]
yd0 = xevh1[1], yd1 = xoddh1[0]

n > 0?

n = NN

Yes

nev = 2n, nodd = nev + 1
MEMev[n] = MEMev[n – 1]
MEModd[n] = MEModd[n – 1]
ya0 = ya0 + MEMev[n]h0[nodd]
ya1 = ya1 + MEModd[n]h0[nev]
yd0 = yd0 + MEMev[n]h1[nodd]
yd1 = yd1 + MEModd[n]h1[nev]

n = n – 1

No

Fig. 2.4. Polyphase implementation of the filter bank with odd numbered samples.

Fig. 2.4 illustrates the algorithm for a single-scale discrete wavelet transform. In order to
calculate transform for a greater number of scales, the previous scale approximation coefficients
aj−1[k] must be used as an input signal for very same filter bank of the next scale transform,
which will result in next scale approximation coefficients aj [k] and detail coefficients dj [k].
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Setting parameters
N, J, NN = (N – 1)/2 + 1

n = 0, 1, 2, ..., N
 j = 0, 1, 2, ..., J – 1
m = 0, 1, 2, ..., NN
MEMev[j][n] = 0,
MEModd[j][n] = 0

h0[n], h1[n]

Begin

j = 0, ya = xi

MOD = 2, hMOD = 1

j < J

No

Yes

i mod(hMOD) =
= hMOD – 1

xi

Yes

i mod(MOD) =
= MOD – 1

i = i + 1 No

a[j] = ya,  d[j] = yd

Yes

hMOD = MOD
MOD = 2MOD

j = j + 1
No

i = 0

xodd = xa

xev[j] = xa

xev, xodd, NN, MEMev[j][n]
MEModd[j][n], h0[n], h1[n]         
           MEModd[j][n]
           MEMev[j][n], ya, yd

FWTpolyphase

Fig. 2.5. J scale real-time fast discrete wavelet transform algorithm with the polyphase filter
bank for odd numbered samples.

Such polyphase structure implementation has two times higher performance compared to
direct implementation of discrete wavelet transform in Fig. 2.2. The polyphase filter bank
can be improved further to the lattice structure filter bank with even greater performance
potential.

2.3 Traffic Self-Similarity Parameter Estimation,
Implementation with Filter Banks and Estimation Error

Very often discrete wavelet transform is calculated repeatedly. In such a case, for next discrete
wavelet transform scale WT (j) the input signal is represented by approximation coefficient sam-
ples {aj−1,k} of scaleWT (j−1), and such a process can be recursively repeated upon an affordable
result or unless the set of approximation coefficients {aj,k} becomes too short to perform further
decomposition. Such a way, after J scale discrete wavelet transform the total result consists of:

• the largest scale J approximation coefficient set {aJ,k};

• detail coefficient sets for every analysed scale: {dJ,k}, {dJ−1,k}, ..., {d1,k}.

This way the result of discrete wavelet transform for scale J consists of K samples. Such
recursive discrete wavelet transform is a base for network traffic self-similarity parameter H
estimation: for every current scale the analysed frequencies are decreased twice. If the analysed
process is self-similar, i.e. it has similar behaviour over different time scales, the detail coefficients
are bound to indicate that fact.
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Such self-similarity is represented by detail coefficient power Dj , where j is the number of
current scale, i.e. the number of current discrete wavelet transform level. This power can be
calculated according to (3.1) and it increases exponentially over each scale at a constant increase
rate.

Dj =
1

nj

nj∑
k=1

d2j,k, (3.1)

where j is the number of scale for which power Dj is calculated, dj,k – detail coefficients dk of
respective scale and nj – the number of such coefficients at scale j.

Fig. 3.1 shows log2(Dj) relationship to scale number with separate dots, each of them
corresponds to logarithm of detail coefficient power at scale j. After linear interpolation of this
relationship, it is possible to determine slope a, which can be used according to:

a = 2H − 1, (3.2)

for self-similarity parameter H evaluation. Fig. 3.1 shows the logarithm of detail coefficient
power log2(Dj) relative to scale number for Pareto random process with self-similarity parameter
H = 0.8. As a result of such relation approximation, the following expression has been obtained:
log2(Dj) = 0.6024j+7.329, according to which for slope parameter of a = 0.6024, by using (3.2),
the self-similarity parameter value can be estimated Ĥ = (a+1)/2 = 0.8012. This value is very
close to the specified value during simulation of H = 0.8.
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Fig. 3.1. Logarithm of detail coefficient power log2(Dj) relative to scale j.

For evaluation of relationship slope parameter a, the Least squares method is well suited
(3.3):

a =

J∑
j=1

j2
J∑

j=1
log2(Dj)−

J∑
j=1

j
J∑

j=1
jlog2(Dj)

J
J∑

j=1
j2 −

(
J∑

j=1
j

)2 , (3.3)

where j is the number of scale, for which power Dj is being evaluated and J is the number of
such scales.

After describing self-similarity parameter H estimation algorithm, the Matlab function has
been created, which performs discrete wavelet transform with Daubechies-3 wavelets and filter
bank approach (Figure 2.1(a)) and Hurst parameterH estimation function. With this function it
is possible to estimate self-similarity parameter Ĥ average value, and the number of total scales
J can also be specified. The parameter is estimated over all scales up to specified number3.

3Naturally, the minimal number of scales for such estimation is 2, thus at least for 2 scales the discrete wavelet
transform has to be calculated. This is explained by a minimal number of points required for approximation of
linear function.
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For purpose of studying of the number of discrete wavelet transform scales, transform window
length and its relationships to traffic self-similarity parameter H, the program in Matlab has
been created. This program estimates self-similarity parameter Ĥ and absolute estimation error
∆H = |Ĥ − H| for different transform window lengths and considers different numbers of the
scales. The purpose is to define the measure of the influence for these parameters on estimation
accuracy and how this accuracy depends on these parameters, if the value of estimated parameter
H changes.

The self-similar traffic is formed as the number of requests per time interval ∆t, where
intervals between requests are generated with Pareto distributed random numbers. If the current
request exceeds the interval of measurement ∆t, then it is counted at the next measurement
period. Such traffic has been saved as files for further postprocessing and analysis. For all
simulations the traffic being used has measurement interval of ∆t = 1 and intensity λ = 50,
while total volume of traffic consists of T = 224 ∆t units. There are two series of the simulation
measurements:

• traffic analysis for self-similarity parameter values in range 0.5 < H < 0.99 with increment
step of 0.1;

• traffic analysis for self-similarity parameter values in range 0.8 < H < 0.99 with increment
step of 0.05.

The traffic has been processed by segments with lengths from Mmin = 210 = 1 024 to
Mmax = 224 = 16 777 216, and after every increase of segment length for 2 times the maximum
number of scales has also been increased by 1.

The results of described simulations are summarised in appendices of the Doctoral Thesis.
These tables can be used to construct graphs of self-similarity parameter estimated average
value Ĥ and average absolute error ∆H relative to number of the scales J for various segment
length values (the segment length is increased from left side to the right, starting from top and
continuing to bottom).

The analysis of the results shows that it is difficult to accurately estimate self-similarity
parameter for low (i.e., H = 0.5) and high (H > 0.9) values, while values in the range of
H = 0.8 (Figure 3.2) can be estimated with high accuracy.
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Fig. 3.2. Ĥ estimate for H = 0.8 and segment length M = 221.

It is interesting that for values in range 0.7 < H < 0.8 the optimal number of scales is
discovered, and for case of H = 0.8 the interval of these optimal values is wider (see Fig. 3.2).
This proves that a maximum number of scales used for estimation, i.e. calculation of discrete
wavelet transform for such number of scales, is not necessarily the best option. However, at
the same time, in case of segment length increase a higher number of scales has to be used to
maintain accuracy at the same level.
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Fig. 3.3. Self-similarity parameter estimate Ĥ relative to segment length logarithm for H = 0.7
and J = 7 scales.

Furthermore, the case when number of scales J is constant for various values of the segment
length has been studied. This means that by increasing the length of the segment M , the new
scales are ignored and previous number of scales is being kept instead. Very interesting that
in such a case, regardless of specified Hurst parameter H and length of the segment, meaning
in all cases without exceptions, the resulting behaviour is the same as shown in Fig. 3.3. This
means that for every scale there is an accuracy limit and, in order to increase the accuracy, it
is insufficient just to increase the segment length, but also a higher number of scales has to be
used.
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∆H

Fig. 3.4. Average absolute error ∆H for H = 0.8 and segment length M = 215.

By analysing self-similarity parameter Ĥ estimate average error ∆H, it can be concluded
that starting with specific segment length M0 for value of H = 0.8 the error relationship to
number of the scales J has a minimum4 (see Fig. 3.4), and this behaviour is preserved for all
values of the segment length M > M0. For values H < 0.8 the behaviour of error relationship
has a negative slope (decrease), while for values H > 0.8 the behaviour of the error has a positive
slope (increase).

The simplified Hurst parameter estimation diagram is shown in Fig. 3.5. It is based on
discrete multi-scale wavelet transform from Fig. 2.5. This implementation uses the polyphase
filter bank; however, if it is necessary, it can be easily switched over to the lattice filter bank.

The algorithm shown in Fig. 3.5 for every traffic sample (for example, this can be packet
count per time unit) calculates discrete wavelet transform in real-time and saves detail coeffi-
cients of total number LEN per one scale. As it has been mentioned before, the number of scales
J has a great impact on Hurst parameter estimation accuracy and this value in the algorithm
can be specified and modified during execution in order to adapt to Hurst parameter changes.
If detail coefficient power values have been evaluated, i.e. algorithm processed the last analysed

4Traffic with H = 0.8 has been generated repeatedly for two times, and in both attempts the results were the
same, even the minimal length of segment M0 in these experiments was the same.
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Begin

scale < J

DWT Initialization

Yes

No

Initialization and reset
of detail coefficients 

memory

Reading traffic
1-st scale

DWT Polyphase
Filter Bank

Det. coeff. moving 
window, LEN

Det. coeff. power 
logarithm sum 

calculation
scale = J

Next
scale

Hurst parameter estimate
Moving average estimate

Yes

No

Fig. 3.5. Hurst parameter estimation algorithm with the polyphase filter bank, simplified dia-
gram.

scale j = J , the Hurst parameter value can be estimated. For this purpose, the least squares
method can be used according to (3.3) to calculate the slope for average power logarithm relative
to the number of scale.

In addition to the Hurst parameter momentary value, the average value is also estimated
by moving average. The length of the moving average window AV G_LEN according to the
expression:

E[Ĥ] =
AV G_LEN · E[Ĥ] + Ĥ[k]− Ĥ[k − 1]

AV G_LEN
, (3.4)

where Ĥ is Hurst parameter estimate and E[Ĥ] – the average value of such estimate. These
Hurst parameter momentary and average values are calculated per every traffic input sample
and represent the final goal of the described algorithm for estimator.

Table 3.1. Self-Similarity Parameter Estimation for Different Scales j, Jmax = 8

Scale, j Processing time DWT processing time
2 0.021 s 0.0197 s
3 0.0203 s 0.0198 s
4 0.02 s 0.0195 s
5 0.0202 s 0.0203 s
6 0.021 s 0.0198 s
7 0.021 s 0.02 s
8 0.021 s 0.0204 s

Table 3.1 summarizes data for PC with Core i5-4690 processor, clock frequency 3,2 GHz.
As it can be seen from the results, the processing time increases insignificantly compared to
discrete wavelet transform calculation.

However, here it is necessary to account for the fact that traffic values have been read from
hard disk drive with much lower performance and data read speed than performance of CPU
(the computer has high performance SSD hard disk drive). In order to estimate the performance
of algorithm itself excluding the time costs of data read process, the discrete wavelet transform
has been calculated for sample number i instead (which is variable in the register memory) and
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self-similarity parameter of such “traffic” has been evaluated. The results are the following:

• Discrete wavelet transform calculation time is 0.000239273 s;

• Hurst parameter estimate calculation time5 is 0.000564183 s.

Results show that, overall, Hurst parameter estimation requires almost the same time, which is
required to perform discrete wavelet transform over J scales with the polyphase filter bank.

2.4 Packet Loss Probability Analysis for Generated Self-Similar
Traffic in P/M/1/K and G/M/1/K Simulation Models

This chapter describes multiple experiments, in which traffic has been simulated for various
utilisation coefficient ρ and Hurst parameter H values. The main purpose of the series of
experiments is to determine average queue length E[R] and maximum queue length max(R),
compare these two measures and study the relationship between them and the Hurst parameter
H values. Furthermore, these values of average queue length E[R] will be used in G/M/1/K and
P/M/1/K models with limited buffer memory capacity. The volume of buffer memory is limited
by average queue length E[R] and multiples of this value, such as triple queue length 3E[R],
and so on. During the simulation process packet loss probability Ploss is estimated and after the
experiments the relationship between this probability and Hurst parameter H is studied.

By using Matlab Simulink modelling tool the model P/M/1 has been created with unlimited
buffer memory capacity. The parameters of created model are as follows:

• Traffic intensity λ = 100 packets/s, or average request inter-arrival time is Ta = 1/120 s,
the intervals are Pareto distributed.

• Traffic self-similarity (Hurst) parameter H specified in the range from 0.6 to 0.95 with
step of 0.05.

• Total number of the requests in simulation is 1000 000.

• The performance of processing node is µ = 125 packets/s, or average processing time is
Ts = 1/125 s, processing time intervals are exponentially distributed.

Thus, the described model has been researched for utilisation coefficient value ρ = λ/µ = 0.8.
Such a value has been chosen intentionally, since it corresponds to a medium point in the
utilisation coefficient range of real systems. Utilisation coefficient of real systems, for them
to operate efficiently, must be within the range 0.7 ≤ ρ ≤ 0.9. As a result, for every Hurst
parameter H value the average queue length E[R] and maximum queue length max(R) have
been evaluated. In order to determine for every Hurst parameter ht ratio between average queue
length E[R] and maximum queue length max(H), and evaluate dependency of this ratio on the
Hurst parameter value, the graph of such a ratio has been constructed and it is shown in Fig.
4.1.

Fig. 4.1 describes relationship between this ratio and the Hurst parameter. The ratio
decreases for higher values of the Hurst parameter. This can lead to a conclusion that the
higher traffic self-similarity measure, the closer average queue length to maximum queue length.
However, this relationship is not monotonous, as it can be seen in the range of H = 0.8 where
the behaviour of graph has changed and ratio is increasing.

The similar results have been obtained for three traffic generation models:

1. P/M/1 model with Pareto distributed inter-arrival time intervals;
5Which, obviously, includes discrete wavelet transform processing time.
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Fig. 4.1. GPSS P/M/1 model maximum queue length max(R) to average queue length E[R]
ratio.

2. P/M/1 with ON/OFF traffic and Pareto distributed inter-arrival time intervals;

3. G/M/1 model with Weibull distributed inter-arrival time intervals.

The average and maximum queue length values have been evaluated for every model with
multiple values of utilisation coefficient achieved by modifying traffic intensity parameter λ:

1. λ = 75 pck/s and utilization coefficient of ρ = 0.6;

2. λ = 87.5 pck/s and utilization coefficient of ρ = 0.7;

3. λ = 100 pck/s and utilization coefficient of ρ = 0.8;

4. λ = 112.5 pck/s and utilization coefficient of ρ = 0.9.

The simulations have been executed for P/M/1, P/M/1 with ON/OFF traffic and G/M/1
queuing models in Matlab. In this program the values of parameters have been changed, the
simulations have been executed and resulting data have been saved as files. These files have been
used for plot construction, the example of such plots is shown in Fig. 4.2 for P/M/1 model.
For models with other traffic generation model there are similar results.
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Fig. 4.2. Ratio of maximum max(R) and average E[R] queue length for Simulink model de-
pending on Hurst parameter H for various utilisation coefficients ρ.

In order to estimate packet loss probability Ploss, the buffer memory of model must be
limited from above. This volume is to be specified in simulation as specific number. The
studies made show that the volume does depend both on Hurst parameter H and utilisation
coefficient ρ. [35] proposes expression for buffer memory volume estimate calculation; however,
in previous experiments it has been observed that this expression cannot be applied. There are
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recommendations provided on choice of buffer memory volume in [15], but during the following
experiments the volume of buffer memory has been chosen to be multiple of average queue length
E[R] with constant multiplier k according to (4.1). In the present Doctoral Thesis k is an integer
number in range from 1 to 10:

K = k · E[R], where k = 1, 2, 3, ... (4.1)

After simulations and analysis of the results it can be concluded that the buffer memory
volume change leads to packet loss probability Ploss value change. However, comparing values
evaluated in the same Hurst parameter range of 0.6 ≤ H ≤ 0.95 and the same utilisation
coefficients, the following can be observed:

• Ploss values are changing (specifically – logarithmic values lgPloss);

• the general behaviour of plot curve remains same.

Thus, the results of simulations show that the choice of buffer memory volume affects Ploss values
more than dynamics of Ploss changes depending on Hurst parameter H. Utilisation coefficient
ρ also greatly influences behaviour of such changes; however, for the same utilisation coefficient
values at different buffer memory volume the form of curve remains similar. Such results are
valid for 3 described models: P/M/1/K, P/M/1/K with ON/OFF traffic and G/M/1/K with
Weibull distribution law.

For greater observability the results can be represented in 3D-plot form as surface, rep-
resenting the packet loss probability logarithm relation to Hurst parameter H and utilisation
coefficient ρ. This allows visual concluding on minimum value existence for such surface at spe-
cific values of Hurst parameter H and utilisation coefficient ρ. The example of such 3D-surface
is shown in Fig. 4.3 for P/M/1/K model with K = 3E[Q]
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Fig. 4.3. Simulink P/M/1/K queuing model packet loss probability logarithm lgPloss in relation
to Hurst parameter H and utilisation coefficient ρ values.

For other traffic models such minimums exist as well and, accordingly, such parameters, for
which this minimum can be observed, regardless of buffer memory volume K factor k. For
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every specific model this minimum is different; however, in all cases the values of parameters
are close to 1 rather than 0.5. For instance, in case of P/M/1/K model such parameter values
areH ≈ 0.9 and ρ ≈ 0.8.

In order to determine such parameters, i.e. find a solution to an optimisation task, Bellman
algorithm [4] can be applied, which can be used to estimate sequence of decisions on system
parameters K and ρ choice for specific H parameter value in order to provide the minimum
of packet loss probability Ploss and optimal solution within total cost criteria. The dynamic
programming principle itself has no relation to program code writing, i.e. programming in usual
meaning. Instead, the optimisation procedure is performed, in which for every approximation
the better solution is determined, unless requirements for one of the parameters are exceeded.

In order to apply the dynamic programming Bellman algorithm, it is necessary to summarise
experimental data in table for a single value of H parameter value, for which an optimisation
task is solved. These values were collected from series of simulations and included packet loss
probability Ploss values for various values of Hurst parameter H, utilisation coefficient ρ and
buffer memory volume K. In order to provide continuous variation of the last mentioned value,
there were additional simulations performed with buffer memory volumes 2E[R] and 4E[R], as
well as 6E[R], 7E[R], 8E[R], 9E[R] and 10E[R].

 
 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9 
 1 1 1 1 

K = 1E[R] 6 7 8 9 
 0.10748 0.075375 0.057081 0.029627 

 2 2 2 2 

K = 2E[R] 6 7 8 9 
 0.042893 0.026055 0.020595 0.011168 

 3 3 3 3 

K = 3E[R] 6 7 8 9 
 0.018967 0.010185 0.0085718 0.0048284 

 4 4 4 4 

K = 4E[R] 6 7 8 9 
 0.0084389 0.0039853 0.0038761 0.0023069 

 5 5 5 5 

K = 5E[R] 6 7 8 9 
 0.0038934 0.0016982 0.0015656 0.00099385 

 6 6 6 6 

K = 6E[R] 6 7 8 9 
 0.0018009 0.00066002 0.00068674 0.00045967 

 7 7 7 7 

K = 7E[R] 6 7 8 9 
 0.00080708 0.00031331 0.00036305 0.00021448 

 8 8 8 8 

K = 8E[R] 6 7 8 9 
 0.0004042 0.00013092 0.00018028 0.00011016 

 9 9 9 9 

K = 9E[R] 6 7 8 9 
 0.00019813 3.9377·10–5 7.5242·10–5 5.1062·10–5 

 10 10 10 10 

K = 10E[R] 6 7 8 9 

 8.9547·10–5 1.3647·10–5 1.6265·10–5 3.0703·10–5 

 

1 

Fig. 4.4. Dominant sequence of Bellman algorithm for P/M/1/K model with Hurst parameter
H = 0.8.
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For every H parameter value the separate table is created, which summarises packet loss
probability Ploss in relation to utilisation coefficient ρ and buffer memory volume (or factor k
of this volume). The example of such a table for P/M/1/K model is shown in Fig. 4.4. For
every cell of table, in addition to packet loss probability Ploss the costs are provided – both for
utilisation coefficient ρ and buffer memory volume K.

The costs have been estimated as follows:

1. The costs of buffer memory volume C1 are calculated, assuming the length of packet to
be 1500 B according to TCP protocol standard and a maximum number of such packets
in memory is multiple of average queue length by factor k. Thus, the annual costs of 1
MB buffer memory volume can be estimated and total costs can be calculated for 5 years
before the hardware ages.

2. The costs of channel data rate C2 are calculated as percentage of all available channel
bandwidth by using traffic intensity value λ and information on packet length. Thus,
required bandwidth Cchan can be estimated with respective actual data rate Rchan =
ρCchan, which allows calculating monthly and annual costs to match the time interval of
buffer memory service time.

 
 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9 
 172.8 $ and 0.02 $ 201.6 $ and 0.05 $ 230.4 $ and 0.13 $ 259.2 $ and 0.66 $ 

K = 1E[R] 0.10748 0.075375 0.057081 0.029627 
 172.82 $ 201.65 $ 230.53 $ 259.86 $ 

 172.8 $ and 0.04 $ 201.6 $ and 0.1 $ 230.4 $ and 0.26 $ 259.2 $ and 1.32 $ 

K = 2E[R] 0.042893 0.026055 0.020595 0.011168 
 172.84 $ 201.7 $ 230.66 $ 260.52 $ 

 172.8 $ and 0.06 $ 201.6 $ and 0.15 $ 230.4 $ and 0.39 $ 259.2 $ and 1.98 $ 

K = 3E[R] 0.018967 0.010185 0.0085718 0.0048284 
 172.86 $ 201.75 $ 230.79 $ 261.18 $ 

 172.8 $ and 0.08 $ 201.6 $ and 0.2 $ 230.4 $ and 0.52 $ 259.2 $ and 2.64 $ 

K = 4E[R] 0.0084389 0.0039853 0.0038761 0.0023069 
 172.88 $ 201.8 $ 230.92 $ 261.84 $ 

 172.8 $ and 0.1 $ 201.6 $ and 0.25 $ 230.4 $ and 0.65 $ 259.2 $ and 3.3 $ 

K = 5E[R] 0.0038934 0.0016982 0.0015656 0.00099385 
 172.9 $ 201.85 $ 231.05 $ 262.5 $ 

 172.8 $ and 0.12 $ 201.6 $ and 0.3 $ 230.4 $ and 0.78 $ 259.2 $ and 3.96 $ 

K = 6E[R] 0.0018009 0.00066002 0.00068674 0.00045967 
 172.92 $ 201.9 $ 231.18 $ 263.16 $ 

 172.8 $ and 0.14 $ 201.6 $ and 0.35 $ 230.4 $ and 0.91 $ 259.2 $ and 4.62 $ 

K = 7E[R] 0.00080708 0.00031331 0.00036305 0.00021448 
 172.94 $ 201.95 $ 231.31 $ 263.82 $ 

 172.8 $ and 0.16 $ 201.6 $ and 0.4 $ 230.4 $ and 1.04 $ 259.2 $ and 5.28 $ 

K = 8E[R] 0.0004042 0.00013092 0.00018028 0.00011016 
 172.96 $ 202 $ 231.44 $ 264.48 $ 

 172.8 $ and 0.18 $ 201.6 $ and 0.45 $ 230.4 $ and 1.17 $ 259.2 $ and 5.94 $ 

K = 9E[R] 0.00019813 3.9377·10–5 7.5242·10–5 5.1062·10–5 
 172.98 $ 202.05 $ 231.57 $ 265.14 $ 

 172.8 $ and 0.2 $ 201.6 $ and 0.5 $ 230.4 $ and 1.3 $ 259.2 $ and 6.6 $ 

K = 10E[R] 8.9547·10–5 1.3647·10–5 1.6265·10–5 3.0703·10–5 

 173 $ 202.1 $ 231.7 $ 265.8 $ 

 

1 

Fig. 4.5. Dominant sequence of Bellman algorithm for P/M/1/K model with Hurst parameter
H = 0.8 and specified parameter costs.
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After calculation of costs, the algorithm shown in Fig. 4.4 can be applied again considering
the new values for costs; however, this time the actual price costs are considered instead of some
abstract (or relative) values as it has been done the first time. The appendix of the Doctoral
Thesis includes tables of dominant sequences for all described in this chapter traffic models:
P/M/1/K, P/M/1/K with ON/OFF traffic and G/M/1/K with Weibull distribution. Hurst
parameter values vary in range of 0.6 ≤ H ≤ 0.95 by step of 0.05. In a similar way, Fig.
4.4 shows dominant sequence for Hurst parameter value H = 0.8 considering costs. If during
simulation all the packets have been processed, i.e. Ploss estimation is 0, then such a result is
skipped. The example of such a dominant sequence is shown in Fig. 4.5.

For every cell in Fig. 4.5 the separate costs are specified: the costs of channel data rate
C2 and costs of buffer memory C1; the packet loss probability is Ploss and total costs estimated
as sum C2 + C1. The dominant sequence has been created according to the Bellman dynamic
programming algorithm and, comparing Fig. 4.4 with Fig. 4.5, the conclusion can be made that
a dominant sequence in this case has not been affected by addition of actual price costs, since in
both cases the channel data rate cost considerably exceed buffer memory volume cost. Based on
table data the plot can be constructed to visualise the relation of total costs C2 + C1 to packet
loss probability logarithm lgPloss for different values of Hurst parameter H values. The example
of such a plot is shown in Fig. 4.6.
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Fig. 4.6. Total costs of P/M/1/K model related to packet loss probability for different Hurst
parameter values.

Based on curves of Fig. 4.6, it can be concluded that minimum costs can be achieved, and
the value of these minimum total costs vary, depending on Hurst parameter H values. This
minimums match a set of system parameter values, for which costs can be determined. These
minimal costs can be summarised in table and used for router parameter configuration in real-
time.
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Main Conclusions

The aims of the Doctoral Thesis have been successfully achieved and all tasks have been accom-
plished. The results of the research can be summarised by the following conclusions:

• the existing buffer memory volume estimation methods for self-similar traffic do not pro-
vide adequate volume estimates and adaptive control of system parameters is necessary,
including control of buffer memory volume based on traffic measurements;

• for different Hurst (self-similarity) parameter values the different buffer memory volume
corresponds, and, in general, buffer memory volume increase trend can be observed in
relation to both the Hurst parameter and utilisation coefficient values;

• the filter bank approach can be used to perform discrete wavelet transform in real-time
(including the cases, when no DSP or FPGA is used) with further improvements to the
structure, such as polyphase or lattice filter banks;

• the algorithm of discrete wavelet transform implemented in C++ language is fast enough
to be used for Hurst parameter estimation in real-time;

• after studying inverse discrete wavelet transform it has been discovered that in order to
achieve faster signal recovery it is useful to perform signal downsampling in filter banks
such a way that only odd numbered samples remain – this minimises delay at every level
(scale) of the transform and as of such – the total delay of signal reconstruction over all
of the scales;

• the Hurst parameter estimator can be created in such a way that it renews Hurst param-
eter estimates for every traffic sample at the input, performing multi-scale analysis and
calculation time is comparable to discrete wavelet transform calculation time, meaning
that such estimator can be practically used;

• the Hurst parameter measurement precision can be improved by a choice of specific number
of analysed scales, which is lower than a full number of analysed scales. The algorithm
proposed can be extended to have adaptive control for a number of scales during execution;

• when estimating packet loss probability for the system with limited buffer memory, it has
been observed that for an adaptive choice of buffer memory amount the Hurst parameter
increment does not necessarily increase packet loss probability. For example, for Hurst
parameter values in the range of 0.8 ≤ H ≤ 0.9 the opposite has been observed;

• self-similar traffic with Hurst parameter H = 0.8 or close to this value has abnormal
behaviour for multiple relationships, such as average/maximum queue length relation to
the Hurst parameter, or Hurst parameter estimated error relative to process actual Hurst
parameter value. In many publications, the examples are provided for this value of H =
0.8, which corresponds to medium self-similarity magnitude;

• the obtained Hurst parameter, buffer memory volume and packet loss probability measure-
ments can be used to perform multi-parameter optimisation with the Bellman dynamic
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programming algorithm for different criteria: total costs, packet loss probability minimum,
and so on;

• Bellman algorithm application for self-similar network traffic with real bandwidth and
buffer memory volume costs taken into account show that by the end of 2013 the buffer
memory volume must be increased and utilisation coefficient must be decreased in order
to minimise total resource costs;

• dominant sequence graphs show total costs relative to packet loss probability, and for
Hurst parameter value of H = 0.8 the behaviour of curve is also different compared to
curves of other Hurst parameter values and it has resulted in too high costs.

The main results of the Doctoral Thesis have been described in publications and presented
at international conferences.
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