
DOI: 10.4018/IJISSS.2016040106

Copyright © 2016, IGI Global.

International Journal of Information Systems in the Service Sector
Volume 8 • Issue 2 • April-June 2016

Software Implementation of Real-
time Discrete Wavelet Transform
Algorithm with Filter Banks
Nikolajs Bogdanovs, Department of Transport Electronics and Telematics, Riga Technical University, Riga, Latvia

Elans Grabs, Department of Transport Electronics and Telematics, Riga Technical University, Riga, Latvia

Ernests Petersons, Department of Transport Electronics and Telematics, Riga Technical University, Riga, Latvia

ABSTRACT

This article describes real-time discrete wavelet transform algorithm implementation for high-level
programming language. The article describes multiscale transform algorithms both for direct discrete
wavelet transform and inverse discrete wavelet transform. This algorithm has been implemented
in C++ programming language and tested with Raspberry Pi microprocessor system. This article
proposes the improved delay line algorithm without full shifting of register. New algorithm requires
single reading operation, single writing operation and one division calculation for any length of
delay line. The article includes experimental measurements of processing time on Raspberry Pi for
various scale numbers. The algorithm described in this article can be used with any software tool
capable of using high level programming language, for example Matlab, Octave, Opnet, etc. This
is the main purpose – to create algorithm which is not tied strictly to hardware implementation but
also, nonetheless, provides real-time discrete wavelet analysis capability.

Keywords
Discrete Wavelet Transform, Filter Banks, Multiscale Analysis, Raspberry Pi Microprocessor System

INTRODUCTION

The brief analysis of literature shows that multiscale discrete wavelet transform software
implementation is not widely discussed. The main interest in most works is concerned with hardware
implementation instead. The authors of this article couldn’t find any real-time algorithm proposed
for discrete wavelet transform calculation. It is possible to segment data and process these segments
in real-time if performance of the system is high enough. However the length of segments is limited
from below by the number of analysis scales. So, for multiscale analysis it is necessary to increase
the length of the segments.

70

International Journal of Information Systems in the Service Sector
Volume 8 • Issue 2 • April-June 2016

71

Mallat pyramidal algorithm is being used for most of implementations and it is described in
details in many sources, for example in (Strang & Ngueyen, 1996) or (Mallat, 1999). According to
this algorithm, data segment is being accumulated and further is processed by j = 1 scale filter
bank. The result is composed of approximation coefficients a k


 and detail coefficients d k


 . The

approximation coefficients are being processed further by j = 2 scale filter bank and this process
is iteratively being repeated. It is possible to process data in real-time if segments are small enough
and data rate is very high, for instance in master’s thesis (Bomers, 2000) such approach is described
for audio signal real-time processing. Other works and articles describe segmentation with or without
overlapping in order to minimize the border effect of segmentation (for example, in (Prusa & Rajmic,
2011)).

There is wide variety of hardware implementation descriptions. It is very popular to implement
such filter banks with Field Programmable Gate Array (FPGA) logic, examples are provided in
(Bahoura & Ezzaidi, 2010; Cavuslu & Karakaya, 2010)). Also such implementations are described
in details in master’s thesis (Sripath, 2003). This work proposes different implementations – direct,
polyphase, lattice structures. There are many articles with performance improvements, such as (Jing
& Yuan Bin, 2007; Wenbing & Yingmin, 2008). Another optimization is related to decreased power
consumption for multiplications, for example in (O’Brien & Conway, 2008).

There are discrete wavelet transform implementation algorithms for DSP processors as well,
for example (Ben Hnia Gazzah et al., 2008; QiWei Lin et al., 2009), including parallel processing
in (Wilburn & Alexander, 1994) to increase computational efficiency of discrete wavelet transform
algorithm.

The publishing years of most of these works show that this topic is well researched and evolved.
Of course, there are new works describing multidimensional transforms and more efficient processing
algorithms, for example in (Darji et al., 2014; Darji et al., 2014). In other works the algorithms are
being optimized for specific tasks, few of many examples are (Sardar & Babu, 2014; Cutajar et al.,
2014). Another important topic is energy efficiency, which is also being researched at the present
moment and some publications can give insight in this, for example (Tang-Hsuan et al., 2014) uses
discrete wavelet transform for neuron network processing.

However the hardware implementation is very specific to selected platform and can’t be
used generally in software, for example to perform simulations. It would be necessary to simulate
this hardware platform in the first place. When discussing general purpose and microprocessor
or microcontroller systems, we were unable to find such real-time algorithm. In such case the
segmentation is being used and filter banks process entire segment either via discrete convolution
calculation or by using FFT. At the same time such filter banks are easy to implement directly. The
performance can be further improved by implementing polyphase or lattice filter banks.

REAL-TIME DISCRETE WAVELET TRANSFORM

The main disadvantage of segmentation based algorithms is impossibility to use result immediately
– the entire segment has to be processed first. Since filter bank shown in Figure 1 includes
downsampling by factor of 2, the segment length for each consecutive step (scale) is reduced by 2
times. That means, for multiscale analysis over J scales it is necessary to assemble segment with
length 2J at the first scale. The higher is number of scales, the greater segment must be. For very
high numbers of scales it is impossible to calculate even the first scale coefficients unless segment
has been accumulated. However, such digital filtering should be possible in real-time and it is possible
to provide approximation and detail coefficients at least for lower numbered scales.

International Journal of Information Systems in the Service Sector
Volume 8 • Issue 2 • April-June 2016

72

Filter banks usually consist of Finite Impulse Response (FIR) filters, and as of such the time
delay before first coefficient at the filter output can be easily estimated for any scale number j . This
delay determines the time necessary to wait until the first coefficient value, the further coefficients
shall follow without additional time delay. It is important to know this delay in order to perform
perfect signal reconstruction.

The generalized Daubechies-3 wavelet transform filters have order of N = 5 , which are used
for analysis (decomposition) and synthesis (reconstrution) filter bank implementation. These filters
have different impulse response coefficients:

• Analysis Filter Bank: lowpass filter with h n
0



 and highpass filter with h n

1



 , where

n N= …0 1 2, , , , ;
• Synthesis Filter Bank: lowpass filter with f n

0



 and highpass filter with f n

1



 , where

n N= …0 1 2, , , , ;

For orthogonal filter bank (such is the case of Daubechies-3 wavelets) transfer functions for any
of these filters can be calculated from analysis filter bank lowpass filter impulse response coefficients
h n

0



 according to following equations (Strang & Ngueyen, 1996) for analysis filter bank highpass

filter:

H z z H z h n zN

n

N
n N n

1 0
1

0
0

1() = −() == −() 




− −

=

− −()∑ , (1)

where N is order of the filter, synthesis filter bank lowpass (approximation) filter:

F z z H z h n zN

n

N
N n

0 0
1

0
0() = () == 




− −

=

− −()∑ , (2)

and synthesis filter bank highpass (detail) filter:

F z H z h n z
n

N
n n

1 0
1

0
0

1() = − −() == − −() 




−

=

−∑ . (3)

Since it is proposed to implement an algorithm in software with high level programming language
(specifically, C++ has been chosen), it is necessary to save the state for each filter at every scale to
use it for next signal sample processing. These states MEM n

0



 and MEM n

1



 are the same for

Figure 1. Direct discrete wavelet transform with filter bank

International Journal of Information Systems in the Service Sector
Volume 8 • Issue 2 • April-June 2016

73

analysis filter bank, since both filters are FIR filters and have the same input samples. Therefore they
share a common delay line with state MEM n


 , n N= …0 1 2, , , , .

In such case, for Daubechies-3 wavelets, the structure of analysis filter bank approximation/detail
filters can be formed according to Figure 2. The length of delay line is equal to the number of FIR
filter impulse response coefficients L N= +1 . The approximation filter coefficients h n

0



 and

detail filter coefficients h n
0



 have to be specified as well for n N= …0 1 2, , , , :

a h x MEM n h n
k i

n

N

= 


 + −








=
∑0
1

0
0 1 , 	 (4)

where x
i
 is current input sample and

d h x MEM n h n
k i

n

N

= 


 + −








=
∑1
1

1
0 1 . 	 (5)

Both of these discrete convolutions can be calculated in single cycle with further time shift of
the filter state. As a result of function calculation the approximation coefficient a

k
 and detail

coefficient d
k
 are being determined for every input signal sample x

k
. The last previous L N= +1

signal samples are saved in filter state.
The algorithm for this function calculates a

k
 and d

k
 coefficients for every input sample. The

filter bank includes downsampling operator, which removes either odd, or even numbered samples
(the choice can be made) leaving the half of original number of samples. As of such, after calculation
the result is ready to be used immediately and can be sent to the next scale analysis filter bank input.
This process can be iteratively repeated and still will yield result immediately after it has been
calculated. There is no need to wait for entire segment processing.

Figure 2. Digital filter bank with common delay line for Daubechies-3 wavelets

International Journal of Information Systems in the Service Sector
Volume 8 • Issue 2 • April-June 2016

74

Figure 3. Discrete wavelet transform filter bank delay line shift operation algorithm

Figure 4. Discrete wavelet transform filter bank convolution operation algorithm

International Journal of Information Systems in the Service Sector
Volume 8 • Issue 2 • April-June 2016

75

It is inefficient to calculate all coefficients, when half of them will be removed by downsampling.
Therefore, the function has been divided in two parts: time shift part in Figure 3 and convolution part
in Figure 4. If the sample is skipped (its number is either odd, or even) then only time shift part is
being applied. Otherwise, sample is being saved and both algorithm parts apply.

REAL-TIME INVERSE DISCRETE WAVELET TRANSFORM

The inverse discrete wavelet transform is also implemented with filter banks – the synthesis filter
bank shown in Figure 5 with approximation filter transfer function F z

0 () and detail filter transfer
function F z

1 () . This filter bank has two inputs – approximation coefficients input and detail
coefficients input respectively. Before filtering, the coefficients are being upsampled, i.e. the missing
samples from downsampling are replaced by zeroes.

The transfer functions for synthesis filter bank can be expressed from analysis filter bank transfer
functions according to (2) for approximation filter and (3) for detail filter. After filtration procedure
the outputs of both filters are added and signal samples x

i
 are reconstructed. In case of multiscale

transform the higher scale j −1 approximation coefficients a
j i−1, are reconstructed. It is obvious,

the inverse wavelet transform is calculated for all scales in opposite order comparing to direct discrete
wavelet transform, i.e. J j≥ ≥ 1 , where J is the number of scales.

Figure 6 shows algorithm for inverse discrete wavelet transform with filter banks. The input
samples for two filters are different – for lowpass filter with F z

0 () the input data are approximation
coefficients a k


 and for highpass filter with F z

1 () the input data are detail coefficients d k

 . This

means, that contrary to direct transform algorithm, the inverse transform algorithm requires to store
each filter state separately in MEM n

0



 and MEM n

1



 accordingly, n N= …0 1 2, , , , . The length

of each state equals to length of filter impulse response L N= +1 .
Similar to direct discrete wavelet transform algorithm, the next part is calculation of two discrete

convolutions to be added for sample y
k

 reconstruction:

y f a MEM n f n
k

n

N

0 0
1

0 0
0 1= 


 + −








=
∑ , 	 (6)

and

y f d MEM n f n
k

n

N

1 1
1

1 1
0 1= 


 + −








=
∑ . 	 (7)

Figure 5. Real-time inverse discrete wavelet transform with filter bank

International Journal of Information Systems in the Service Sector
Volume 8 • Issue 2 • April-June 2016

76

Both discrete convolutions are calculated in single cycle with further time shift of the filters
states. As a result of this function there are two parts of output sample: approximation part y

0
 and

detail part y
1
. These parts are added to calculate value of the output sample: y y y

k
= +� �

0 1
.

As it has been done with analysis filter bank, the sampling frequency is left unchanged. There
is no upsampling operation in this algorithm from filter bank shown in Figure 5. This upsampling
has to be done before calling of this function. Upsampling inserts “0” value after each approximation
coefficient a

k
 and detail coefficient d

k
, so the original number of samples can be restored:

a a
1 2
0 0, , , ,… and d d

1 2
0 0, , , ,…

REAL-TIME MULTISCALE DISCRETE WAVELET TRANSFORM

The real-time discrete wavelet transform algorithm can be generalized for J scales to calculate
approximation coefficients a

j k,{ } and detail coefficients d
j k,{ } for all scales

j J= …1 2, , , .	

In order to perform a perfect signal reconstruction for multi-scale wavelet transform all detail
coefficients d j k, are required for every scale j as well as last scale J approximation coefficients
aJ k, . For other scales j J= … −1 2 1, , , approximation coefficients a j k, are not required, though
algorithm described further allows to save them as well.

Figure 6. Real-time inverse discrete wavelet transform algorithm

International Journal of Information Systems in the Service Sector
Volume 8 • Issue 2 • April-June 2016

77

Figure 7 shows algorithm of real-time discrete wavelet transform calculation implementation
over J scales. This algorithm is based on filter banks shown in Figure 2. The algorithm requires
approximation filter impulse response coefficients h n

0



 and detail filter impulse response coefficients

h n
1



 for n N= …0 1 2, , , , . It is also necessary to specify required number of scales J . This number

is the upper limit of calculated scales, so if the number of processed samples allows calculation for
bigger scale, only specified J scales will be processed.

The number of scales J is equal to the number of used filter banks from Figure 2. These filter
banks are completely equivalent and have transfer functions H z

0 () and H z
1 () and they are

implemented by performing both algorithms shown in Figure 3 and Figure 4. The filter state
MEM j n






 for each scale j has to be saved separately, so the filters state matrix has dimensions

J L× , where L is the number of impulse response coefficients. Every row of this matrix MEM j n







is filter state for scale j . All filter states are set to zeros at the beginning of calculation. The indexes
of approximation and detail coefficients k j() are also set to zeros for every scale

j J= … −0 1 2 1, , , , .	

The first signal sample x
i
 is at i� �=0 on the input of the first filter bank. Since for filter bank

with scale (number) j � �=2 the input data are previous scale approximation coefficients a
j k−1, , it is

convenient to assume that signal samples are approximation coefficients at the scale j � �=0 , i.e.
a x
i i0,
= . This complies with discrete wavelet transform concept, when from coarse approximation

coefficients a
j k,

 with every further scale the more coarse coefficients are extracted (low-frequency
components) and more details (high-frequency components. The values of approximation and detail
coefficients are saved at y

a
 and y

d
, accordingly. The y

a
 values become more coarse with every

scale, so it is safe to assume at the beginning of algorithm that y x
a i
= .

The algorithm calculates transforms of this sample for every scale j up to specified limit J ,
when that is possible, or up to maximal possible scale, based on the number of the sample. After
filtering there is downsampling operation by factor of 2j for scale j . So, it is possible to state, that
downsampling before filtering is made by factor of 2 1j− for scale j (no downsampling at the input
for j � �=1). After such operation only samples with numbers multiple of 2 1j− remain. These samples
are sent to the input of filter bank with further downsampling by factor of 2 (in this algorithm only
odd numbered samples are saved). The coefficients are saved at current scale and the number of
scales is increased by one. If the x

i
 sample number i isn’t multiple of specified falue, the sample is

skipped at this scale and every next scale after that, meaning that processing of this sample has ended.
For bigger scales the number of output signal samples – approximation coefficients is decreased

by factor of 2. So for the first scale j � �=1 every multiple number of 21 sample is being saved, for
scale j � �=2 – every multiple number of 22 sample is being saved (save as the every 2-nd sample of
j � �=1 samples), for j � �=3 scale – every multiple number of 23 and so on.

It is possible to precisely estimate the number of wavelet transformation scales based on the
number of sample i . It is notable, that although not every coefficient is necessary to be calculated
and saved, every coefficient of previous scale affects the filter state. The downsampling by factor of
2 is at the output of the filter, so that means the filter still calculates these obsolete samples. This is
inefficient approach, since it is possible to reduce the number of multiplication operations by 2 times,
increasing the performance of algorithm. In the algorithm described this is achieved by splitting

International Journal of Information Systems in the Service Sector
Volume 8 • Issue 2 • April-June 2016

78

filtering procedure into time shifting and convolution calculation. The time shifting is performed for
every input sample and the convolution is calculated only for odd-numbered input samples.

Generalizing described above:

•	 At the scale j � �=1 every multiple of ∆
1
1� �= numbered sample is processed and every multiple

of ∆
2
2� �= numbered coefficients are saved;

•	 At the scale j � �=2 every multiple of ∆
1
2� �= numbered sample is processed and every multiple

of ∆
2
4� �= numbered coefficients re saved;

•	 At the scale j � �=3 every multiple of ∆
1
4� �= numbered sample is processed and every multiple

of ∆
2
8� �= numbered coefficients re saved;

•	 At the scale j J = every multiple of ∆
1

12� �= −J numbered sample is processed and every multiple
of ∆

2
2� �= J numbered coefficients re saved.

Therefore, for every scale j J� �,� , ,�= …1 2 there is a check to determine from number of sample i
whether there is filtering at the current scale to be done. The check is made by calculating a remainder
from division of i by hMOD j� �= −2 1 according to:

Figure 7. Real-Time multiscale discrete wavelet transform for J scales with filter banks

International Journal of Information Systems in the Service Sector
Volume 8 • Issue 2 • April-June 2016

79

R i hMOD i K
1

0 1 2= () = …� ,�� , , , , ,mod 	 (8)

where K is the number of input signal samples.
When remainder R

1
 is maximal max R hMOD1 1() = −� � , the sample is being processed by

performing time shift according to algorithm shown in Figure 3. For any other case the sample must
be removed by downsampling at previous scales, so processing of this sample should be interrupted,
since there is no data to the filter bank input. The next sample x

i
+1 is being processed from the

scale j � �=1 . Note, at the scale j � �=1 hMOD� �=1 and condition (8) is true, since max R hMOD1 1 0() = − =� � � .
Thus at the scale j � �=1 time shift processing is performed for every input sample.

If the time shifting has been performed, then the filter response (convolution) is calculated
for every 2-nd sample (odd numbered) according to algorithm shown in Figure 4. This means that
coefficient is being saved if the maximal remainder of sample number i is from division by 2 times
greater divisor:

R i MOD i K
2

0 1 2= () = …� ,�� , , , , ,mod 	 (9)

where K is the number of input samples.
When (9) check yields maximum max R MOD2 1() = −� � , the convolutions for filter bank

responses are calculated according to algorithm from Figure 4. The output values y
a

 and y
d

 are
saved at the scale j coefficients a a j

j k,
= 


 and d d j

j k,
= 


 accordingly. Otherwise the calculation

of convolutions is skipped, since this data will be removed after downsampling.

REAL-TIME MULTISCALE INVERSE DISCRETE WAVELET TRANSFORM

Similar to analysis filer banks, the synthesis filter banks used for inverse discrete wavelet transform
operate in real-time. This allows calculating inverse discrete wavelet transform for every sample at
maximal scale J in real-time. However, it is necessary to provide all the detail coefficients from
every smaller scale. The input data for real-time multiscale inverse discrete wavelet transform will
be (assuming scale numeration is starting from j = 0 instead of j = 1 , for convenience for use in
programming languages):

•	 j J= −1 scale approximation coefficient a k
J−



1
 and detail coefficient d k

J−



1
, k = 0 , total

coefficients number KK J −

 =1 1 ;

•	 j J= −2 scale detail coefficients d k
J−



1
, k = 0 1, , with total number of coefficients

KK J −

=2 2� � ;

•	 For every smaller scale j the total number of coefficients increases twice until the number 2 1J−
at scale j � �=0 .

In general, for successful reconstruction of signal up to the scale j � �=0 , for arbitrary scale j it
is necessary to provide KK j


 detail coefficients. This number can be estimated as follows:

KK j J j


 =

− −2 1, 	 (10)

International Journal of Information Systems in the Service Sector
Volume 8 • Issue 2 • April-June 2016

80

where j J= … −0 1 1, , , and J the number of scales for discrete wavelet transform.
As it can be easily seen from (10), for every transformed scale the number of required coefficients

is doubled. This means it is impossible to perform inverse discrete wavelet transform unless all
required coefficients for all scales have been accumulated in memory. Basically, the true real-time
transform can’t be achieved even for hardware implementation with FPGA or DSP, since it’s necessary
to delay all coefficients before the highest scale J coefficients a and d have been received. These
coefficients correspond to last (or first, depending on downsampling operation) received coefficients
for lower scales j J < . So for high number of scales J it is impractical to expect high performance
due to long segments of coefficients. In real-time hardware implementation such real-time processing
can be achieved with delay. If downsampling has been performed so that only even-numbered samples
are saved, this delay can be estimated at scale j from higher scale j � �+1 delay according to the
expression:

L j L j N
delay delay



 = +


 +2 1 . 	 (11)

When downsampling saves only odd-numbered samples, the same delay can be calculated
according to following expression:

L j L j N
delay delay



 = +


 + −2 1 1. 	 (12)

Here N is the order of filters used in analysis filter bank. Note, the sampling frequency decreases
when number of scale j grows, meaning that all sets of coefficients for every scale exist over the
same time interval.

The algorithm of multiscale real-time inverse wavelet transform algorithm is shown in Figure 8.
This algorithm is based on algorithm of synthesis filter bank from Figure 6. This algorithm of filter
bank has been extended by adding accumulation of coefficients, the time delay of coefficients and
upsampling operation.

In this algorithm the greatest number of operations is related to delay lines operation via shift
register according to algorithm shown in Figure 3. Such approach has important disadvantage:
according to (12) expression the total delay line length for lowest scale j � �=1 can achieve value
L
delay
� �=4092 at highest scale J � �=10 for Daubechies-3 wavelet filter bank with order N � �=5 . If the

highest scale is increased up to
J = 20 , this delay line length is also increased considerably L

delay
= 4194300 . Every delay

requires reading and writing operation, so in total it is necessary to perform L
delay

 reading/writing
operations.

At the same time, the only important elements of this delay line are input coefficient and output
coefficient. The rest of coefficients are not necessarily required immediately. It would be much more
efficient to read required coefficient directly from buffer memory and write in its place a new
coefficient value. The volume of required buffer memory is unaffected in this case – it is still L j

delay





elements for scale j .
The coefficients are processed as follows:

•	 The index of coefficient is being determined as num i MOD� � � /= −()1 ;
•	 This index value num num

L
 = is increased after every detail coefficient reading operation by

one. In order to set this value to zero after the maximum index num L j
L
= 



 −delay
1 has been

International Journal of Information Systems in the Service Sector
Volume 8 • Issue 2 • April-June 2016

81

Figure 8. Real-time inverse multiscale discrete wavelet transform algorithm with filter banks over J scales

International Journal of Information Systems in the Service Sector
Volume 8 • Issue 2 • April-June 2016

82

reached at scale j it is possible to use remainder from the division of index num with delay
line length L j

delay



 instead of pure index value.

•	 Thus the element of array y delay j num
L

 = 







 with index num

L
 is being read and instantly

overwritten with: delay j num koeff
L









= . After L j

delay



 of such operations, the index num

L

will point at this element again. Thus, it will be read with delay equal to the length of delay line
L j
delay



 .

Such approach makes it possible to reduce the number of reading and writing operation from
L j
delay



 to single operation with additional remainder calculation. This number of operations is

minimal and unaffected neither by order of filters used in filter banks, nor by number of scale and
thus the length of delay line L j

delay



 .

EXPERIMENTAL MEASUREMENTS OF PROCESSINGTIME ON RASPBERRY PI

The Raspberry Pi microprocessor system has been chosen as low cost Linux OS based microprocessor
system. Both algorithms (for direct and inverse transforms) have been implemented in C++
programming language for this microprocessor system.

The main topics of interest for this experiment are:

1. 	 How fast real-time multiscale discrete wavelet transform is being calculated?
2. 	 How choice of wavelets affects performance?
3. 	 How number of analysed scales affects performance?

The measurements have been made for three Daubechies wavelets: Daubechies-2, Daubechies-3
and Daubechies-4 wavelets. The numerical notation describes the number of vanishing moments of
these wavelets. The orders of filters used in filter banks are, accordingly, N

2
3� �= , N

3
5� �= and N

4
7� �= .

Each filter bank has been estimated for following numbers of scales J : 5, 10, 15, 20. The total
number of data samples is K � �=221 and the samples themselves are represented by their indexes in
floating point format number. The measurements results are shown in Table 1 for direct wavelet
transform and in Table 2 for inverse wavelet transform.

In order to estimate the time of single transform it is necessary to determine the total number of
transforms. Since downsampling operation reduce the number of filtered samples by 2 times at every
scale, it is possible to calculate the total number of transforms for scale j as M K

J
j� � /= −2 1 . The

total number of transforms up to scale J in such case is a sum:

M K
J

j

J
j=

=

−

∑
0

1

1 2/ , 	 (13)

where K � �=221 is number of samples.
Then it is possible to estimate the processing time of single scale wavelet transform as

T T M
Jmin

= / , where T is total processing time. For any other scale processing time is to be
multiplied by number of scales up to maximum scale J with processing time T JT

max min
= .

International Journal of Information Systems in the Service Sector
Volume 8 • Issue 2 • April-June 2016

83

For inverse discrete wavelet transform there are two measurements – with delay line and without.
The second option, obviously, leads to incorrect signal reconstruction but the main interest here is to
estimate processing time for delay line operations, which can be determined as a difference of these
two measurements. Then, the processing time of single inverse wavelet transform iteration can be
estimated as:

T
T T K

Jiter

delay=
−()
2

, 	 (13)

where K � �=221 is total number of signal samples. The iteration of wavelet transform here processes
entire segment of coefficients with length of 2J at lowest scale j � �=1 .

CONCLUSION

The processing time of single discrete wavelet transform iteration T
min

 at the scale j � �=1 is unaffected
by number of scales. For any higher scale j � �>1 the processing time increases proportionally up to
jT
min

.
The length of filter impulse response, which is determined by chosen wavelet, changes processing

time proportionally both for direct and inverse wavelet transform.
The iteration time of inverse discrete wavelet transform depends greatly on number of scales J .

As such, for high numbers of analysed scales it is impossible to achieve real-time reconstruction of
signal, since it is necessary to accumulate a large set of data and process it all at once.

The total processing time of inverse wavelet transform, however is proportionally greater, than
total processing time of direct wavelet transform. There are two reasons, that impact this increase the

Table 1. Real-time multiscale discrete wavelet transform processing time for various numbers of scales

Number of scales Processing time

Daubechies-2 Daubechies-3 Daubechies-4

J = 5 Total: 3.54s Total: 4.73s Total: 5.82s

Min: 1.74µs Min: 2.33µs Min: 2.86µs

Max: 8.71µs Max: 11.65µs Max: 14.32µs

J = 10 Total: 3.64s Total: 4.9s Total: 6.02s

Min: 1.74µs Min: 2.34µs Min: 2.87µs

Max: 17.36µs Max: 23.4µs Max: 28.74µs

J = 15 Total: 3.65s Total: 4.93s Total: 6.01s

Min: 1.74µs Min: 2.35µs Min: 2.87µs

Max: 26.1µs Max: 35.26µs Max: 43µs

J = 20 Total: 3.66s Total: 4.92s Total: 6.02s

Min: 1.74µs Min: 2.35µs Min: 2.87µs

Max: 34.89µs Max: 46.94µs Max: 57.41µs

International Journal of Information Systems in the Service Sector
Volume 8 • Issue 2 • April-June 2016

84

most. Firstly, accumulation and delay operations, which can’t be avoided for inverse discrete wavelet
transform. As these experiments show, the total time spent for delay operations does not depend on
any parameters, such as filter impulse response length or number of scales. It is affected only by total
number of processed samples.

The second source of additional computations is upsampling operation. In analysis filter bank
convolution has been calculated only for odd-numbered samples. For synthesis filter bank the number
of calculated convolutions is doubled. It is possible to reduce number of operations in both filter
banks by implementing polyphase filter banks. Another option is to create lattice filters, which also
divide signal in two phases and process them with reduced number of operations.

Table 2. Real-time multiscale inverse discrete wavelet transform processing time for various numbers of scales

Number of scales Processing time

Daubechies-2 Daubechies-3 Daubechies-4

J = 5 Total: 3.54s Total: 4.73s Total: 5.82s

Min: 1.74µs Min: 2.33µs Min: 2.86µs

Max: 8.71µs Max: 11.65µs Max: 14.32µs

J = 10 Total: 3.64s Total: 4.9s Total: 6.02s

Min: 1.74µs Min: 2.34µs Min: 2.87µs

Max: 17.36µs Max: 23.4µs Max: 28.74µs

J = 15 Total: 3.65s Total: 4.93s Total: 6.01s

Min: 1.74µs Min: 2.35µs Min: 2.87µs

Max: 26.1µs Max: 35.26µs Max: 43µs

J = 20 Total: 3.66s Total: 4.92s Total: 6.02s

Min: 1.74µs Min: 2.35µs Min: 2.87µs

Max: 34.89µs Max: 46.94µs Max: 57.41µs

International Journal of Information Systems in the Service Sector
Volume 8 • Issue 2 • April-June 2016

85

REFERENCES

Bahoura, M., & Ezzaidi, H. (2010). Real-time implementation of discrete wavelet transform on FPGA.
Proceedings of the 2010 IEEE 10th International Conference on Signal Processing (pp.191-193). IEEE Press
Piscataway. doi:10.1109/ICOSP.2010.5655177

Ben Hnia Gazzah, I., Souani, C., & Besbes, K. (2008). DSP implementation and performances evaluation of 1D
and 2D DWT using the lifting scheme. Proceedings of the Design and Test Workshop (pp. 166-172).

Bomers, F. (2000). Wavelets in real time digital audio processing: Analysis and sample implementations
[Unpublished master’s thesis]. University of Mannheim.

Cavuslu, M. A., & Karakaya, F. (2010). Hardware implementation of Discrete Wavelet Transform and Inverse
Discrete Wavelet Transform on FPGA. Proceedings of the 2010 IEEE 18th Signal Processing and Communications
Applications Conference (SIU) (pp.141-144). IEEE Press Piscataway. doi:10.1109/SIU.2010.5653126

Cutajar, M., Gatt, E., Grech, I., Casha, O., & Micallef, J. (2014). Design of a hardware-based discrete wavelet
transform architecture for phoneme recognition. Proceedings of the 2014 6th International Symposium on
Communications, Control and Signal Processing (ISCCSP) (pp.554-557). doi:10.1109/ISCCSP.2014.6877935

Darji, A., Shukla, S., Merchant, S. N., & Chandorkar, A. N. (2014). Hardware Efficient VLSI Architecture for
3-D Discrete Wavelet Transform. Proceedings of the 2014 27th International Conference on VLSI Design and
the 2014 13th International Conference on Embedded Systems (pp.348-352).

Darji, A. D. Shashikanth, Konale, Limaye, Ankur, Merchant, S.N. & Chandorkar, A.N. (2014). Flipping-based
high speed VLSI architecture for 2-D lifting DWT. Proceedings of the 2014 IEEE 57th International Midwest
Symposium on Circuits and Systems (MWSCAS) (pp.193-196).

Daubechies, I., & Sweldens, W. (1998). Factoring Wavelet Transforms into Lifting Steps. Fourier Analysis and
Applications, 4(3), 247–269. doi:10.1007/BF02476026

Jing, C., & Bin, H.Y. (2007). Efficient Wavelet Transform on FPGA Using Advanced Distributed Arithmetic.
Proceedings of the 8th International Conference on Electronic Measurement and Instruments ICEMI ’07 (pp.
2-515 – 5-515). doi:10.1109/ICEMI.2007.4350730

Mallat, S. (1999). A wavelet tour of signal processing (2nd ed.). Academic press.

O’Brien, A., & Conway, R. (2008). Lifting scheme discrete Wavelet Transform using Vertical and Crosswise
multipliers. Proceedings of the Signals and Systems Conference ISSC ‘08 (pp.331-336). IET Irish.

Prusa, Z., & Rajmic, P. (2011). Real-Time lifting wavelet transform algorithm (Vol. 2, pp. 53–59). International
Society for Science and Engineering.

QiWei Lin. Zhenhui Liu & Gui Feng (2009). DWT based on watermarking algorithm and its implementing
with DSP. Proceedings of the 3rd International Conference on Anti-counterfeiting, Security, and Identification
in Communication ASID ‘09 (pp. 131-134).

Sardar, S., & Babu, K. A. (2014). Hardware Implementation of Real-Time, High Performance, RCE-NN Based
Face Recognition System. Proceedings of the 2014 27th International Conference on VLSI Design and the 2014
13th International Conference on Embedded Systems (pp. 174-179).

Sripath, D. (2003). Efficient Implementations of Discrete Wavelet Transforms Using FPGAs [Unpublished
master’s thesis]. The Florida State University.

Strang, G., & Ngueyen, T. (1996). Wavelets and filter banks. Wellesley: Wellesley-Cambridge Press.

Wang, T.-H., Huang, P.-T., Chen, K.-N., Chiou, J.-C., Chen, K.-H., Chiu, C.-T., Tong, H.-M., Chuang, C.-T.,
& Hwang, W. (2014). Energy-efficient configurable discrete wavelet transform for neural sensing applications.
Proceedings of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1841-1844).

Wenbing, F., & Yingmin, G. (2008). FPGA Design of Fast Lifting Wavelet Transform. Proceedings of the
Congress on Image and Signal Processing CISP ’08 (Vol. 4, pp. 362-365).

Wilburn, V. C., & Alexander, W. E. (1994). A parallel implementation of the discrete wavelet transform.
Proceedings of the 26th Southeastern Symposium, System Theory (pp. 260-264). doi:10.1109/SSST.1994.287872

http://dx.doi.org/10.1109/ICOSP.2010.5655177
http://dx.doi.org/10.1109/SIU.2010.5653126
http://dx.doi.org/10.1109/ISCCSP.2014.6877935
http://dx.doi.org/10.1007/BF02476026
http://dx.doi.org/10.1109/ICEMI.2007.4350730
http://dx.doi.org/10.1109/SSST.1994.287872

International Journal of Information Systems in the Service Sector
Volume 8 • Issue 2 • April-June 2016

86

Nikolajs Bogdanovs is researcher in Transport Electronics and Telematics at the Faculty of Electronics and
Communications of the Riga Technical University, Latvia. He obtained his PhD degree in Computer Control,
Information and Electronics Systems of Transport. His main research interests are related to sensors, sensor
networks, network traffic control and processing, digital signal processing and microcontroller programming.

Elans Grabs is researcher in Transport Electronics and Telematics at the Faculty of Electronics and Communications
of the Riga Technical University, Latvia. He obtained his Master’s Transport Electronics and Telematics, and is
presently completing his PhD degree in Computer Control, Information and Electronics Systems of Transport.
His main research interests are related to network traffic control and processing, digital signal processing and
microcontroller programming, wireless communication systems, digital systems and filtering.

Ernests Petersons is chief researcher and professor in Transport Electronics and Telematics at the Faculty of
Electronics and Communications of the Riga Technical University, Latvia. He obtained his Habilitated Doctor’s
degree in Electronics and Computer Science. His main research interests are related to computers & network
performance evaluation, fault-tolerant computer structures, information technology in aviation. Lately he has
become interested in application of Catastrophe Theory for understanding complex computer systems instability.

