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ABSTRACT

Linear and weakly nonlinear stability analysis of shallow mixing layers is presented in
the Doctoral Thesis. The flow is assumed to be slightly curved along the longitudinal
coordinate. Linear stability is analysed from temporal and spatial points of view under the
rigid-lid assumption. The friction coefficient varies with respect to the transverse coordinate
(the case of constant friction coefficient usually analysed in the literature is a particular case
of the analysis presented in the Thesis). The corresponding linear stability problems are
solved numerically using pseudo-spectral collocation method based on Chebyshev
polynomials. In addition, the problem is generalized for the case of two-component shallow
flows under the assumption of large Stokes numbers.

The effect of asymmetry of base flow profile on the stability characteristics is
analysed. Two approaches to weakly nonlinear stability are presented as well. The first
approach is based on the parallel flow assumption and can be applied for the case where the
bed-friction number is slightly smaller than the critical value. Using the method of multiple
scales an amplitude evolution equation is derived for the most unstable mode. It is shown that
for slightly curved shallow mixing layers which contain or do not contain particles the
amplitude equation is the complex Ginzburg-Landau equation. The coefficients of the
equation are calculated explicitly in terms of integrals containing linear stability
characteristics of the flow. Stability of plane wave solutions of the Ginzburg-Landau equation
is analysed. Numerical solutions of the Ginzburg-Landau equation are presented for different
initial conditions.

The second approach takes into account slow longitudinal variation of the base flow.
The analysis is based on weakly non parallel WKBJ approximation. A first-order amplitude
evolution equation is derived. The solution of the amplitude equation is then used to obtain
the first-order approximation in the perturbation field.

Key words: Linear stability, weakly nonlinear theory, method of multiple scales,

Ginzburg-Landau equation, collocation method



ANOTACIJA

Promocijas darba tiek veikta plismu lineara un vaji nelineara stabilitates analize
seklos sajaukSanas slanos. Pliisma tiek pienemta ka nedaudz izliekta garenvirziena. Lineara
stabilitate tiek analizéta no laika un telpas aspektiem saskana ar ,,cieta-vaka” pienémumu.
Atbilstosas linearas stabilitates problémas tiek risinatas skaitliski, izmantojot pseido-spektralo
kolokacijas metodi, kas balstas uz Cebigeva polinomiem. Turklat probléma ir visparinata divu
komponensu seklam plismam ar lielo Stoksa skaitlu pienémumu. Berzes koeficients mainas
Skersvirziena (literatiira parasti ir analiz&ts konstanta berzes koeficienta gadijums, kas ir 1pass
gadijums iesniegta promocijas darba analizg).

Ir analizéta bazes profila asimetrijas ietekme uz stabilitates parametriem. Tiek
izskatitas divas pieejas vaji nelinearas stabilitates analizei. Pirma pieeja pamatojas uz paralelu
plismu pienémumu. To var izmantot gadijuma, kad gultnes berzes koeficients ir nedaudz
mazaks par kritisko vertibu. Izmantojot vairaku mérogu metodi, tiek ieglts amplitiidas
evolucijas vienadojums visvairak nestabilajam rezimam. Paradits, ka nedaudz izliektam
seklam sajaukSanas slanim, kur§ var saturét vai nesaturét sikas dalinas, amplitiidas
vienadojums ir kompleksais Ginzburga-Landau vienadojums. Vienadojuma koeficienti tiek
aprékinati no integraliem, kas satur plismas linearas stabilitates parametrus. Tiek aplikota
plakanu vilpu stabilitate Ginzburga-Landau vienadojumam. Paraditi Ginzburga-Landau
vienadojuma skaitliskie aprékini dazadam parametru vértibam un sakuma nosacijumiem.

Otra pieeja nem véra léno garenvirziena bazes pliismas izmainu. Analizes pamata ir
vaji neparalela WKBIJ aproksimacija. Tiek iegiits pirmas kartas amplitiidas attistibas
vienadojums. Amplitidas vienadojuma atrisinajums tiek izmantots, lai iegiitu pirmas kartas
perturbacijas lauka aproksimaciju.

Atslegas vardi: Lineara stabilitate, vaji nelineara teorija, vairaku meérogu metode,

Ginzburga-Landau vienadojums, kolokacijas metode
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INTRODUCTION
The Structure of the Thesis

The main goal of the Doctoral Thesis is to develop mathematical models, which can
be used to analyse linear and weakly nonlinear instability of shallow mixing layers for the
case of a single-component flow or two-component flow. The flow is assumed to be slightly
curved along the longitudinal coordinate and the friction coefficient is assumed to be a
function of the transverse coordinate. Such a situation describes real flows in compound
channels in case of floods.

Chapter 1 (Introduction) presents a review of the literature used in the Doctoral
Thesis. Basic equations used in the research are also described.

In Chapter 2, the linear stability and weakly nonlinear methods for analysis of slightly
curved shallow mixing layers are presented in detail. Numerical methods used for the solution
of stability problems are analysed.

Chapter 3 is devoted to the analysis of a similar problem for the case of slightly curved
two-component shallow mixing layers. Linear and weakly nonlinear stability analysis is
performed under the assumption of large Stokes numbers.

Chapter 4 is devoted to the spatial stability analysis of slightly curved shallow mixing
layers.

Chapter 5 analyses linear and weakly nonlinear instability of shallow mixing layers
with variable friction in the transverse direction.

Chapter 6 is devoted to the numerical analysis of solution of Ginzburg-Landau

equation.

The Topicality of the Research

The understanding of the interaction between fast and slow fluid streams in shallow
mixing layers is important for the analysis of flows at river junctions and for design of
compound channels. Real channels and rivers are not straight. Thus, the effect of curvature on
the stability characteristics of shallow mixing layers should also be taken into account for
proper design and analysis of compound channels. The case of non-uniform friction in the
transverse direction is important from an environmental point of view. The friction coefficient

in floodplain is usually higher than in the main channel (especially in case of floods).



Complex vortex structures can accumulate contaminants and residues, thereby adversely
affecting the environment. Hence, there is a need for a model that describes the shallow flow,
as well as methods that allow analysing the flow stability and following up the development

of perturbations.

The Objectives of the Doctoral Thesis

1. Analysis of linear and weakly nonlinear stability of slightly curved shallow
mixing layers.

2. Investigation of linear and weakly nonlinear stability characteristics of slightly
curved two-component shallow mixing layers.

3. Study of spatial stability of slightly curved shallow mixing layers.

4. Investigation of linear and weakly nonlinear instability of shallow mixing
layers with variable friction.

5. Numerical analysis of linear and weakly nonlinear models.

Research Methodology

A base flow with a relatively simple structure is selected. Equations of motion are
linearized in the neighbourhood of the base flow. The linearized equations are solved by the
method of normal modes. The corresponding linear stability problems are solved numerically
using pseudo-spectral collocation method based on Chebyshev polynomials.

Two approaches for weakly nonlinear stability analysis of single and two-component
slightly curved shallow mixing layers are described. The first approach is based on the
parallel flow assumption. Method of multiple scales is used in order to derive an amplitude
evolution equation for the most unstable mode. It is shown that the amplitude equation is the
complex Ginzburg-Landau equation. The coefficients of the equation are found in closed form
in terms of integrals containing the following parameters and functions:

1. Critical values of the bed-friction number, wave number and phase speed of the

perturbation.

2. Eigenfunctions of the corresponding adjoint problem.

3. Solutions of three boundary-value problems for ordinary differential equations,

one of which is resonantly forced.



4. Solution of the resonantly forced problem is found using singular value
decomposition.

5. The other two problems are solved by a collocation method based on Chebyshev
polynomials.

The second method takes into account a slow longitudinal variation of the base flow.

The analysis is based on weakly non parallel WKBJ approximation.

Scientific Novelty and Main Results

- Linear stability problem for slightly curved shallow mixing layers, two-component
slightly curved shallow mixing layers and shallow mixing layers with variable friction
is formulated and solved numerically for different values of the parameters of the
problem.

- Linear stability calculations are performed using temporal and spatial approach.

- It is shown that the amplitude evolution equation under the rigid-lid assumption in a
weakly nonlinear regime is the complex Ginzburg-Landau equation.

- Explicit formulas for the computation of the coefficients of the Ginzburg-Landau
equation are obtained for slightly curved shallow mixing layers, for slightly curved
two-component shallow mixing layers and for shallow mixing layers with variable
friction.

- Stability of shallow mixing layers with variable friction in linear and weakly nonlinear
case is analysed.

- Amplitude equation describing the evolution of the amplitude of the perturbation with
respect to the longitudinal coordinate is derived.

- The derived Ginzburg-Landau equation is solved numerically for different parameters
of the problem and different initial conditions.

- Stability of plane wave solutions of the Ginzburg-Landau equation is analysed.

Applications

Understanding stability characteristics and development of instability in shallow flows
is important for design of compound channels. Since mixing layers also occur at river

junctions and rivers are not straight, the analysis of the effect of curvature should also be



taken into account. In some cases, flows can contain heavy particles moving with the fluid.
Linear and weakly nonlinear analysis of two-component shallow mixing layers performed in
the Thesis explained the effect of particle loading parameter on the stability characteristics of
the flow under the assumption of large Stokes numbers.

Shallow water equations are nonlinear. Thus, numerical modelling of shallow water
flows requires considerable computational resources since the number of parameters
characterising the problem is large. Amplitude evolution equations for problems in thermal
convection and Taylor-Couette flows are found to be quite useful in describing the dynamics
of the corresponding flows at the initial stages of instability. Amplitude evolution equation in
the form of a complex Ginzburg-Landau equation is derived in the Thesis from the equations
of motion in a weakly nonlinear regime for the case of single or two-component slightly
curved shallow mixing layers where the friction coefficient is constant or non-constant in the
transverse direction. Since the Ginzburg-Landau equation is quite rich in terms of different
solutions (depending on the values of the coefficients), in many cases it is used as a
phenomenological equation for the analysis of spatio-temporal dynamics of complex flows.

The coefficients of the equation are estimated using experimental data, and the
equation then can be used to model complex phenomena in fluid mechanics. It is shown in the
Thesis that the coefficients of the Ginzburg-Landau equation can be calculated in closed form
using linear stability characteristics of the flow. Thus, varying the parameters of the problem
and re-calculating the coefficients of the Ginzburg-Landau equation one can use the equation

to analyse spatio-temporal dynamics of the flow in a weakly nonlinear regime.
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1. MATHEMATICAL FORMULATION OF THE PROBLEM

1.1 Literature Survey

Linear stability theory is widely used in order to analyse the behaviour of fluid flows
(see, for example, [9], [11], [52] and [60]). In many engineering applications of fluid
mechanics the transverse length scale of the flow is much larger than water depth. Such flows
are usually referred to as “shallow flows”. Curved shallow mixing layers are of a particular
interest (flows in compound and composite channels and flows at river junctions represent
typical examples of shallow mixing layers). Methods of analysis of shallow mixing layers
include experimental investigation, numerical modelling and stability analysis [41].
Experimental investigation of shallow mixing layers is conducted in many papers (see, for
example, [6], [64] and [65]). It is shown in these papers that bottom friction plays an
important role in suppressing perturbations. In addition, the rate of growth of the mixing layer
is also reduced in comparison with the case of free mixing layers.

Linear stability analysis of shallow flows is performed in [5], [7], [33], [43], [46] and
[57]. Rigid-lid assumption is used in [7] to determine the critical values of the bed friction
number for wake flows and mixing layers. The applicability of the rigid-lid assumption to the
stability analyses of shallow flows is analysed in [33], where it is shown that for small Froude
numbers the error in using the rigid-lid assumption is quite small. The effect of Froude
number of the stability of shallow mixing layers in compound and composite channels is
studied in [43]. Theoretical results and numerical computations presented in [5], [7], [33],
[43], [46] and [57] confirm experimental observations: the bed friction number stabilizes the
flow and reduces the growth of a mixing layer.

Centrifugal instability can also occur in shallow mixing layers. The effect of small
curvature of the stability of free mixing layers is investigated in [35], [40] and [53]. It is
shown in [53] that curvature has a stabilizing effect on a stably curved mixing layer and
destabilizing effect on unstably curved mixing layer.

Linear stability analysis can be used to determine how a particular flow becomes
unstable. Critical values of the parameters (for example, critical bed friction number, critical
wave number and so on) are also estimated from the linear stability theory. Development of
instability above the threshold cannot be analysed by linear theory. Weakly nonlinear theories
[36], [62] are used in order to construct an amplitude evolution equation for the most unstable

mode. These theories are based on the method of multiple scales [42] and are applicable if the
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flow is unstable but the value of the parameter (for example, Reynolds number for channel
flows or bed friction number for shallow flows) is close to the critical value. In this case the
growth rate of unstable perturbation is small and one can hope to analyse the development of
instability by means of relatively simple evolution equations. Such an approach is used in [62]
for plane Poiseuille flow, in [2] and [49] in order to analyse instability of waves generated by
wind and in [30], [33], [45], [46] and [55] for shallow wake flows. In fact, amplitude
equations are used in the literature in two ways. First, a particular form of the evolution
equation is selected a priori and the coefficients of the equation are estimated from
experimental data. Then the equation with estimated coefficients is used to model the
phenomenon of interest. Second, one can actually derive an evolution equation from the
equations of motion. This approach is used in [46], [62], [2], [30] and [47] where it is shown
that for two-dimensional cases the evolution equation is the complex Ginzbrug-Landau
equation.

Ginzburg-Landau equation is often used to model spatio-temporal dynamics of
complex flows. In many cases the Ginzburg-Landau equation is used as a phenomenological
model, that is, it is assumed but not derived from the equations of motion. Experimental data
are often used in such cases in order to estimate the coefficients of the equation.

In other cases the Ginzburg-Landau equation can be derived from the equations of
motion (examples are given in [50], [58] and [61]). The coefficients of the equation are
calculated in a closed form as integrals containing characteristics of the linearized problems.

Ginzburg-Landau equation and its properties are extensively studied in the literature
(see, for example, [1] and [10]). Numerical analysis of the Ginzburg-Landau equation is
simpler than numerical solution of the equations of motion. In addition, analysis of stability of
some simple (for example, periodic) solutions of the Ginzburg-Landau equation allows
researchers to simplify the analysis of spatio-temporal dynamics of complex flows in fluid
mechanics.

Linear instability of shallow mixing layers is analysed in [4], [7], [33], [43] under the
assumption that bottom friction is modelled by means of the Chezy formula [51] where the
friction coefficient is assumed to be constant. Usually the friction coefficient is obtained from
semi-empirical formulas [59] which relate the value of the friction coefficient to the Reynolds
number of the flow and roughness of the surface. In such a case the friction coefficient is

assumed to be constant in the whole region of the flow.

16



In some applications friction varies considerably in the transverse direction. One
particular example is related to shallow flows under condition of partial vegetation. This
situation often occurs during floods [66]. Friction force in a partially vegetated area is larger
than in the main channel. It is shown in this case that the base flow profile is distorted and
becomes asymmetric [66]. The difference in friction forces between partially vegetated area
and the main channel is modelled in [66] by a step function. Linear stability analysis is

conducted in [66] under the assumption that the base flow profile is symmetric.

1.2 Shallow Water Equations

Shallow water equations are depth-averaged equations which are obtained by
integrating equations of fluid mechanics with respect to the vertical coordinate. Since
integration takes place over water depth it is necessary to specify stresses at the free surface
and at the bottom. Stresses at the free surface are usually much smaller than the stresses at the
bottom so that only bottom stresses are usually taken into account in shallow water equations.
Empirical formulas (such as Chezy or Manning formulas) are used in practice in order to
represent bottom friction. The detailed derivation of shallow water equations is given in [4].

Shallow water equations under the rigid-lid assumption in the presence of a small

curvature have the form

L N, (L1)
oxX oy

6_u+u6_u+ 8u p S +42 - B’ —u) =0, (1.2)
ot ox 8y 8x 2h

@+u@+‘}@_£u2 L yu? +v —=B(»’ —v) =0, (1.3)
o ox 0y R 6y 2h

where X, y — geometric coordinates;

t—time;

u and v — the depth-averaged velocity components in the x and y directions;
p — the pressure;

h — water depth;

¢t — friction coefficient (can be constant or function of y);

B — particle loading parameter (see [67], [68]);

uP and vP — the components of particle velocities;
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1 0.

<<1 —small parameter;

*

R.— the radius of curvature of the centreline of the curved mixing layer;
0.— the thickness of the mixing layer.

It is assumed in (1.2), (1.3) that the flow can contain heavy particles. The “lumped”
effect of the particles is represented by the particle loading parameter B. Equations
(1.1)-(1.3) are written under the assumption of large Stokes number which implies that there
is no dynamic interaction between the particles and the carrier fluid.

Water surface in (1.1)-(1.3) is treated as the “rigid-lid” (in other words, water depth is
assumed to be constant). Bottom friction in (1.2), (1.3) is modelled by means of the Chezy
formula (see [4]).

As it is shown in [33], the rigid-lid assumption (from a linear stability point of view) is
valid for small Froude numbers.

Following [67], [68] we assume that the following conditions are satisfied with respect
to the distribution of particles within a carrier fluid:

1. The particles are spheres with small diameters.

2. The diameters are small in comparison with the dimensions of large-scale

structures.

3. The particles and the flow are in a dynamic equilibrium at the beginning of the

transient.

4. The material density of the particle is much larger than that of the fluid.

5. The small perturbations imposed on the flow have no effect on the particles during

the initial moment.

Friction coefficient cf in some applications varies in the transverse direction. Examples
include shallow flows under conditions of partial vegetation during floods where water flows
through partially vegetated area [67] or flows in compound and composite channels [43]. In
such cases the resistance force in the main channel is usually smaller than in the vegetated
area of a composite channel or in the shallower area of a compound channel. The variability
of the friction coefficient in the transverse direction is modelled by a smooth differentiable

shape function ¢, ().
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2. STABILITY OFSLIGHTLY CURVED SHALLOW MIXING LAYERS
2.1 Linear Stability

Consider shallow water equations under the rigid-lid assumption in the presence of a
small curvature in the form (1.1)—(1.3), where B =0 ([15], [16], [17], [26]).
Eliminating the pressure p (differentiating (1.2) with respect toyand (1.3) with

respect to x ) we obtain:

u
2 2 2 2
6u+8_u8_u+ 8u+8v8u+6u+8 +cf8u 2?4+ 5y, dy Oy 0

oy oy ox  oxoy vy oyl oxdy 2hoy 2K fg2iyv?

ou ov
2 2 2 Pt Uu—+v—
0v+8_u@+u6_\2/ 6v8v 8v+ P cf 8v /—_Z_u('ﬁ_u cfv Ox ax:O
oox  ox ox  ox?  ox 8y 8y6x 8y8x 2h ox R ox 2h u? +v?

Subtracting the second equation from the first we obtain:

o’u 0°v Oudu Ou v o%u 82 dvou Ovov  0u o*v  d%p

— u +v v +
Otoy Otox Oy Ox OxOx  OxOy 8x oydy oxoy oy’ oyox  OxoOy

ou ov ou  Ov
u_—+v_— u—+v—
8y8x 2h 6y ox 2h u+v:  2h u? +v? R Ox

Simplifying the resulting equation we get

ofou_ov) aufou_av), ofau_ov) ov(ou_ov), ofou o
ot oy ox) ox\oy oOx ox oy ox) oy\ody ox 6y oy Ox
Zuau L3N 2(6u ov

+ —_—
R ox 2k oy axj oidn? +v[ oy x| ox

Introducing the stream function (X, y,t) by the relations
oy oy
U=s—L =y, V=T =y, 2.1
oy v, w Y (2.1)

and using the notation Ay =y, +y,, we rewrite (1.1)—(1.3) in the form
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2 c
@A), +v, Q) —v. (Ay), + v v, +2—;1Al//\/v/f +y
L2

Cs

————(yiv, + 2y, +yiv,)=0
2hfyt eyt e

where the subscripts indicate the derivatives with respect to the variables x,y and t.

+

Here the parallel flow assumption is used. Experiments [64], [65] show that the base
flow slightly changes downstream. The parallel flow assumption implies that the base flow
does not change in the longitudinal direction. As pointed out in [50] this approximation is the
leading-order solution in a multiple-scale expansion which takes into account slow flow
divergence.

Consider the stream function (X, y,t) of the form
Y=y, +y, (2.3)
where the quantity with prime represent small perturbations.

Substituting (2.3) into (2.2) we obtain the following equation:

(Alyo +y), +(wo +v'), (Aly, +¥'), — (v, +v') (Al +¥)),

2 : : c , , ,
o W), Wo 1)y + AW+ o+ )+ W 1))

v, ‘H//')i(l/lo +y'),
. ! ! 1
+ sz — +2(l//0 +y/)x(l//0+l//)y(l//0+‘//)xy -0.
20 + ') + (o +y)’ e e e
0 X 0 o

We assume that perturbations are small so that quadratic or higher terms in the

: . . . . X .
equations may be ignored. Using the Maclaurin series 1+ X :1+§+... we rewrite the

expression \/(l/lo +y'); + (v, +y'); inthe form:

!
!

. . , 2y, v
o +0)2 + (o +1')2 = W2 + 200,07, =V, 1/1+W—y =w0y(1+w—y)=w0y +y'.
Oy Oy
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Thus,

C 1 1 1 C 1 1 1
AW, YW V) o )] = Wy, tY, H L)W, )
2h 2h
C 1 [ ’
= Z_fh(l//Oyyl/IOy +l//yyW0y +l//xxl//Oy +l//0yyl//y)
o +v" )2 (wo +¥'),,

+2(p, +v'), (wo +v'), (v, +y'),
+ (o +¥)iWo ¥ )

Cs

2h(wo +w') + (o + 1)’

c ’ !
= 2_fh((//0yyly0y + l//yyl//Oy + WOWW);)
Dropping the primes we obtain the following equation

l//xxt +l//yyt +l//0y(y/)o(x +l//)gyy)_WOyyyy/x
c 2 (2.4)
2_fh(l//0yl//)cx +21//Oyyvly +2(//Oyl//yy)+EWOyl//xy =

Following the method of normal modes [11] we assume a perturbation of the form

w(x, y,t) = p(y)e" =, (2.5)

where ¢(y) — the amplitude of the normal perturbation;

k — the wave number;

¢ —the phase speed of the perturbation.

The derivatives of y with respectto x, y or t are

— go(y)e’k(x ct) k v, = _ga(y)eik(x—ct)kz;

v, = —(D(y)elk(x ct)lkS; ny — q)r(y)eik(x—ct)l-k;

Ve =—(r)e" ik, v, =@ (ne" ik, 25

l// (y)ezk(x ct) k — (D(y)eik(x—ct)l-k3c; .
=@ (y)etk(’c ct) l// (y)ezk(x ct)

(//yyt =—¢ (y)elk(x ct)l-kc; va = (y)ezk(x—ct)l-k'

Substituting (2.5) and derivatives (2.6) into (2.4) and using the notation
U=y, (2.7)
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we obtain:

—ik’co—ikco' '+U(— ik® + ikgo")— kU, ¢+ ;—fh (sz +2U ¢p+2U¢' ')+%ikU¢)': 0,
or

kK*SU

@"(ik(U —c)+SU)+ go'(% ikU + Sij + q{ik% —ik°U —ikU,, - J =0,(2.8)

C;Ox

where S = — the bed-friction number;

o. — the width of the mixing layer.

Dividing the equation by ik we obtain:

. iSU [ 2 iSU ikSU
(1)) [U_C_Tj-’_(o(ﬁu_ kyJ+(0[k2C—k2U —UW+T):0. (29)

The boundary conditions are
@(o0) =0, (2.10)

Using linear stability theory one can determine the conditions under which a particular

flow becomes unstable. The eigenvalues c¢=c, +ic, determine the linear stability of base
flow. The base flow is said to be linearly stable if all ¢; <0, and unstable, if at least one
¢, > 0. Numerical solution of the corresponding eigenvalue problem (2.10) — (2.9) allows one

to obtain the critical values of the parameters of the problem and determine the structure of
the unstable mode. However, linear theory cannot be used to predict the evolution of the most
unstable mode above the threshold. In the unstable region perturbation grows exponentially
with time (see (2.5)). If the growth rate is large then nonlinear effects quickly become
dominant and there is little hope to analyse the development of instability analytically.
However, if the growth rate of the unstable mode is relatively small then weakly nonlinear
theories can be used in order to develop an amplitude evolution equation for the most unstable
mode.

In a classical theory of hydrodynamic stability [11] the base flow is usually a simple
solution of the equations of motion. As an example we consider the Navier-Stokes equations

where the velocity vector has only one nonzero component which is a function of a radial
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coordinate only. Solving the Navier-Stokes equations we obtain a parabolic velocity
distribution (the Poiseuille flow). This approach does not work for shallow water equations: it
is not possible to find a simple analytical solution U (y) of (1.1) - (1.3). Base flows in the case
of shallow water equations are usually chosen in the form of relatively simple model velocity
profiles such as hyperbolic tangent profile for shallow mixing layers or hyperbolic secant
profile for shallow wake flows. These profiles are chosen on the basis of careful analysis of

available experimental data. The following two base flow profiles will be used below:
U(y)=2+tanhy (2.11)
and

U(y)=2-tanhy. (2.12)

r r r ! r
-3 -2 -1 1 2 3 -3 -2 -1 1 2 3

Fig. 2.1. Base flow profile a) U(y)=2+tanhy and b) U(y)=2—-tanhy

Velocity profile (2.11) — Fig.2.1 a) corresponds to stably curved mixing layer (in this
case the high-speed stream is on the outside of the low-speed stream). Profile (2.12) —
Fig.2.1 b) represents the opposite situation (the high-speed stream is on the inside of the
low-speed stream). It is shown in [15] that experimentally observed base flow velocity profile

has similar shape to that of the plane mixing layer.

2.2 Numerical Method for Linear Stability

In this subsection we describe a numerical method for the calculation of the marginal

stability curves and growth rates of unsteady perturbations.
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The pseudospectral collocation method based on Chebyshev polynomials is used to

solve eigenvalue problem (2.9)-(2.10) numerically. The interval —oo < y < +oo is transformed

into the interval (-1, 1) by means of the transformation r = Earctan y . The solution to (2.9)
T

is then sought in the form
N-1 ,
o(r)=>a;1-r*)T;(r), (2.13)
j=0

where T, (r) = cos jarccosr — the Chebyshev polynomial of the first kind of degree j;
a; — unknown coefficients.

The factor 1—r? guarantees that the boundary conditions (2.10) in terms of the new
variable r are satisfied automatically at r = +1. The use of the base functions that satisfy the
given zero boundary conditions considerably reduces the condition number of the matrix

obtained after discretization [38].
Using the chain rule we compute the derivatives of the first and second order of ¢

with respecttoy :

dp _dedr 2 _d¢_ =[+)* =1+tan? L = 1 :Ecoszzd—q),
dy dr dy x(d+y%) dr 2 o & 7 2 dr
dp d (2 ,mdyp 4 do 4 d’p
2= | ZC0S ———|=- e 5. T2 N2 1.2
dy* dy\xn 2 dr 7d+y°) dr x°(Q+y°) dr
2
=i2cos4zd—(f—ism cos® 299
T 2 drf & 2 2 dr
(2.14)
The derivatives of ¢ with respect to r are evaluated using (2.13):
dp <& 2\
P Z_;a [-2rT,(r) + @—r?)T;(n)],
(2.15)
dZ(D N-1 . -
= =D, [-2T,(r) = 4rT;(r) + A —r)T; (n)].
=0

[u—
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Substituting (2.15) into (2.14) the derivatives of the first and second order of ¢ with

respect to y will be as follows:

dp 2 , w3 I
— =—C0S" — \=2rT.(r)+Q—7r°)T.(r))
R j_oa,( 1T, () + L= r2)T, (1)
do 4 o . e (2.16)
R ) a, (=27, (r) = 4T, (1) + U= r2)T] ()
4 & :
~—sin"-cos’ - a,(- 2T, (1) + A= r2)T ()
j=0
The following set of collocation points is used to solve (2.9), (2.10):
I =cos M m=12..N. (2.17)
N +

In order to evaluate the function ¢(r) and its derivatives up to the second order we

need to compute the values of the Chebyshev polynomial T,(r) and its derivatives at the

collocation points (2.17):

T;(r,) = oS arccos(cos—) = cos 3|
N+1 N+1
jsin Jm
T (r,) = J —sin jarccos(cos m N+1 (2.18)
1=t sin
N+1

jam o jam

J -

sin
N+1 N+1 N+l.
sin?

N +1 N +1

jcos

Tj“(rm) =

sin®

Substituting (2.13-2.18) into (2.9) we obtain the linear system of the equations

(m=212,...,N) in the form:
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Jjrm

o jsin——
—2cos ™ _4cos ~ N+1
N +1 N+1 .. 7m
sin———
N +1
4 71 COS N1 jcos M _gjn /"
2 cos® +1 a N+l N+1
2 j
i j=0 sin® -
- +sin2N I N+1
U-c-2Y * j*cos J 7
k _ N+1
sin’
N +1
—2c0s 2 _cosL "
N+1 N+1
_meos oS T .
——sin 5 *2cos® ; 1> a, jsin?
=0 | 4sin? . N+1
N +1 sin """
N+1
2 iSU \2 ZCOS Nl m jmm ]Sm]i
+| U -—=2 |=cos’ +157; | —2cos cos +sin? : N +1
R k )n =’ N+1 N+1 N+1 G,
N +1
. N-1 .
+[k2c—k2U—UW+lkSUJZajsin2 o5 _ .
= N+1 N+1
Simplifying the obtained equation we get
7C0S N1 - o - -
— cos’ N+1Zaj(—2cos]——3jsin TP ot —jzcos]—j
. 0 N+1 N+1 N+1 N+1
[U—c——lSUj im Jm an
k 7 COS COoS Vo1 —2COSN 1COSN 1
AginNtlegg N+1Y, v+ +
V4 2 7 | 4 rsin LM gip M
jsin sin
N+1 N+1
A 7T COS N-1 . ) . -
o 2y | 2609 +1 aj(—Zcos S cos— 4 j.sin L gin -2 j
R r 0 N+1 N+1 N+1 N+1
. N-1 .
i ke—ru-u_ +*Y Da;c s/ sinz 1 _,
Y2 )37 N+l N+l

Reshuffle terms which contain the factor ¢ we obtain the linear system of the

equations (m=212,..., N) in the form:
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zcos o o - o
_20054—N+1 —Zcos]——3jsinj—cot——jzcosj—
V4 2 N+1 N+l N+1 N+1
(U z‘SUJ ,
- mm m
k 4 zcos 705 | —2cos?™ . cos
N- —Zsin N+1COS3 N+1 N+1 N+1
a, T 2 2 . . jmm . 7m
— + j-sin -sin
/ N+1 N+1
zcos
iSU i .7 .
2y B 202 N1 peos T s T + j-sinZ gin 1
R k )« 2 N+1 N+1 N+1 N+1
(rev+u, — Y o5t ginz
o2 N+1 N+1
zcos - - o -
—Zcos“—N”(—Zcosj——ajsin]—cot——jzcos]—j
V4 2 N+1 N+1 N+1 N+1
& —2c0s ™ cos T
—c-) a, m m N+l  N+1 =0
= 4 7COS ZCOS—— - i
——=sin N+1¢o¢2 N+1|, isin /™ sin
V4 2 2 N+1 N+1
— k% cos LM gjn2 T
N+1 N+1
or
N-1 N-1

a;(B(j,m))-c> a;(D(j,m))=0.

j=0

—
I
o

We obtain the generalized eigenvalue problem of the form

(B—cD)a=0, (2.19)

where B and D are complex-values N x N matrices and a =(a, a,...a,_,)" .

There are at least two reasons why solutions of the form (2.13) are more convenient

than those obtained by “classical” collocation methods [3]:

1. The use of the base functions that satisfy the given zero boundary conditions

considerably reduces the condition number [39].
2. The matrix Din (2.19) is not singular.
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Problem (2.19) is solved numerically by means of the IMSL (International
Mathematics and Statistics Library) routine DGVCCG (Computes all of the eigenvalues and
eigenvectors of a generalized complex eigensystem Az = ABz).

The results of numerical computations for the case of stably curved shallow mixing

layer (base flow velocity profile (2.11) — Fig. 2.1.a) are shown in Table 2.1.

Table 2.1. The Results of Numerical Computations for the Case of Stably
Curved Shallow Mixing Layer (Base Flow Velocity Profile (2.11)).

k | S(1/R=0) | S(1/R=0,01) | S(1/R=0.02) | S(1/R=0.03) | S(1/R=0.04)
0.1 0.0260 0.0230 0.0205 0.0194 0.0258
0.2 0.0441 0.0408 0.0377 0.0348 0.0321
0.3 0.0554 0.0519 0.0485 0.0452 0.0421
0.4 0.0609 0.0572 0.0536 0.0501 0.0466
0.5 0.0612 0.0574 0.0536 0.0499 0.0462
0.6 0.0568 0.0529 0.0490 0.0451 0.0412
0.7 0.0482 0.0442 0.0402 0.0361 0.0322
0.8 0.0357 0.0316 0.0275 0.0234 0.0224
0.9 0.0196 0.0154 0.0150 0.0142 0.0138

The results of numerical computations for the case of stably curved shallow mixing
layer (base flow velocity profile (2.11)) are shown in Fig. 2.2. Three marginal stability curves

are shown in Fig. 2.2 for the three values of the parameter 1/R, namely, 1/R =0, 0.02 and

0.04, respectively (from top to bottom). The region of instability is below the curves [16].
3

o.o07

0.0€E

0.05

D.ﬂq:

o.oa]

o.a2

0.0l

Fig. 2.2. Marginal stability curves for base flow profile (2.11)
The values of the parameter 1/R are 0, 0.02 and 0.04, respectively (from top to bottom).

As can be seen from Fig. 2.2 curvature has a stabilizing influence on stably curved
shallow mixing layer: the critical values of the bed-friction number S decrease as the

parameter 1/R increases.
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Marginal stability curves for unstably curved shallow mixing layer (base flow profile
(2.12)) are shown in Fig. 2.3.

3
o.o08

o.o07
0. 0E,
0.05"
0.04
o.o32
o.02
0.0l

Fig.2.3. Marginal stability curves for base flow profile (2.12)
The values of the parameter 1/R are 0.04, 0.02 and 0, respectively (from top to bottom)

The results shown in Fig. 2.3 indicate that the increase of the parameter 1/R has a
destabilizing influence on unstably curved base flow profile (2.12): the critical values of the
bed-friction number increase for largerl/R.

Results of numerical computations show that the curvature stabilizes the flow in the
case of stably curved mixing layer while for unstably curved mixing layer the curvature has a

destabilizing effect on the flow.

2.3 Weakly Nonlinear Methods for Analysis of Shallow Flows

Weakly nonlinear theories are usually constructed in the neighbourhood of a critical
point (see Fig. 2.4). Such equations are obtained in the past for the case of plane Poiseuille
flow, shallow water flows, waves on the surface generated by wind and in some other
situations (see [2], [30], [34], [46], [47], [49], [62]).

stable

unstable

»
»

ke k

Fig. 2.4. A typical marginal stability curve for shallow water flow.
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Suppose that S_,k, and c, are the critical values of the stability parameter, wave

number and wave speed, respectively. Then the most unstable mode (in accordance with the

linear theory) is given by (2.5) with S =S,k =k, and ¢ =c, where the eigenfunction ¢(y)
can be replaced by Ceg(y). The constant C cannot be determined from the linear stability

theory. In order to analyse the development of instability analytically in the framework of
weakly nonlinear theory we consider a small neighbourhood of the critical point in the

(k,S) -plane where parameter S is assumed to be slightly below the critical value:
S=S.(1-¢&%). (2.20)

The constant C in this case will be replaced by a slowly varying amplitude
function A. Following the paper by Stewartson and Stuart [62] we introduce the “slow” time

7 and longitudinal coordinates & by the relations
r=8% E=¢g(x— C,l), (2.21)
where c, is the group velocity.

Thus, A= A(&,7) and the function w in (2.5) now has the form

i (x, & 0,1,7) = A, T)p(0)e" ) + 4/ (&,2)p (1)

. (2.22)
= A(&,7)p(y)e" " +cc.
where the abbreviation c.c. means the complex conjugate.
The stream function in (2.5) can be represented as follows:
w =w(Xy,1,8(x1),7(t). (2.23)

Using the chain rule we can rewrite the derivatives of y with respect to t and x in

the form

oy (X, ¥,t,£(%.1),z(t)) _ov_ . a—w+528—w,

ot ot “of T or

oy (x Y, t,E(x0),2() _ow , oy
ox ox 0
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In other words, the differential operators % and 9 are replaced by

OX
2—>g—g.cgi+gzi, (2.24)
ot ot o0& ot
g—>£+g-i. (2.25)
oX  OX o0&

A perturbed solution y is sought in the form

w=w,(Y)+ey, +&w, + W, +..., (2.26)
then
v, =Sy, ey,
W, >y, —c,ey, +87y,
Vo SV, FEY:,
Wiy Wy 26V +E°YW

Vp = Vay TEVey,

0 0
0 0 2 2 — 3 352 3
Vi =>(§+€8—§)(wm F26Y A E W) TY o FIEY e FIEY e HEY

0 0 0
( xx +V/)y )t = (E—ng—-i-gz _)(l//xx +2£‘//x§ +82V/§§ +Wyy)

o0& or
Vora = CeWine Voo = CeVonme T Vine
— 2 8
= E(V/lxxr ¥ )+ £+ 2y, HE| 2y — 20,V F Yy
+ l//Zyyt + Cgl//lyyf + l//3)yt - Cgl/IZyyf + l//lyyf

78 +W)2) = (Wx TEY, )2 'H//i =&’y +28" (v, W Wi +(//§y +2ey,,p,,
+52(2‘//0y'//2y 'H//lzy )+ 283(‘)”1)/(//2)) +l//Oyl//3y)

l//Oxy +€l//1xy +82l//2xy +83l//3xy
+EY,,: +52‘//1.§y +83l//2§y

Vo Waw TWoWas, ]

l//yl//xy = (l//Oy + gl/lly + gzl//Zy + 83(//3)/{

2 3
=W Wi, +E Wo Won +Wo Wi, YW W1, )+ E
0¥ 1 0y¥ 2y T¥O0yFILy T ¥y y [l//lyl//w+l//1yl//1:y+l//zy‘ﬂm
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Using the following formulas

=1+ Ax+Bx? +Cx®, o(0)=1
. A+2Bx+3Cx? , A
@ = ] a)(O)=—
24/ A+ 2Bx + 3Cx? 2
2 2
o A+ 2BX + 3Cx 2B + 6Cx (0)= g A

=— +
4@+ Ax+Bx2+Cx%)® 241+ Ax+Bx? +Cx° 4

oro (A+2Bx+3Cx")°  2(A+ 2Bx +3Cx’)(2B+6Cx)
8L+ Ax+BX2 +Cx%)° 41+ Ax+BX? +Cx%)°
_ (A+2Bx+3Cx*)(2B + 6Cx) . 6C
40+ Ax+ B2 +Cx3)° 1+ Ax+BxZ +Cx3

3
a)"'(O) _ 3A° —-12AB +24C

8
we obtain
_ A2 3_
J1+ AX+ Bx2 +Cx° :1+éx+<4B A )X2+(A 4AB+8C)X3
2 8 16
— A? 3
14 Ac1Be? +Ce° =14 D g UBZA )82+(A 4AB+8C)83
2 8 16
Thus,
vty =

W8, + 28wy uy, +eXwo vy, +wl vl )+ 26 o v, Wi WLV, W0V, )

v 1+ 2¢ l//ly N 82(2l//oyl//2y + l//lzy + ‘//fx) 283(’//2xl//1x + l//lxl//lé‘ + l//lyl//Zy WOyl//?)x)
0y +
) Yo, l//02y wéy

1

N 2'//1y ot 4(2‘//oyW2y +l//12y +l//12x)_ 4‘//12y i
Vo, 2 Vo, vo, ) 8

:l//Oy
N 8‘//13y B 8‘//1y (2‘//0yl//2y + ‘//12y + ‘//12x)+ 16(‘/’2x‘//1x TY W TY LW, T '//Oy) i
l//gy l/joyl//gy l//gy 16

2 2
=Wy, +EW,, +E° | W, + Vi 14 g8 - V/ly‘/glx Yo Vil +/s, |
2 2y, Yo, Yo,

0y
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Similarly:

= . : w(0)=1
V1+ Ax +Bx2 +Cx°
, A+ 2Bx + 3Cx? ' A
w =- ] a)(O):—_
2./(A+2Bx +3Cx?)? 2
v 3(A4+2Bx+3Cx%)° 2B +6Cx
4+ dx+ BY® +Cx°)°  2/(1+ Ax+ Bx® + Cx°)°
2 —_—
o/(0)= 3A - 4B

w___15(4+2Bx+3Cx’)’ L 3:2(4+2Bx+ 3Cx?)(2B +6Cx)
8\/(1+ Ax + Bx* + Cx*)’ 4\/(l+ Ax + Bx* + Cx*)°
L 3(A+2Bx+ 3Cx*)(2B+6Cx) 6C
4\/(1+ Ax + Bx* + Cx*)° 2\/(1—1- Ax + Bx* + Cx*)®

w"(0)= B3
8 2

1 A 3p*_4B , (-5A°+12AB-8C) .
=1-—X+ X"+ X",
J1+ Ax+BX’ +Cx° 2 8 16
Hence,
l— lr//ly &+ 2W12y _217”0)}!//2)/ _lrlllzx 82
1 1| Yo 2y,

Wity Ve & (- 208, + 8y W W, + 3w W = 2u, W,
3
2y, \ - 200, W1 Wie — Zl/lgyl//Sy

v,(Ay), v, (Ay), =y V. +v,). -v.v.+v,),
=eWo,Wim tVoWip ~ViWou)

Yool o + W0 Wine Wi Wie T Wi,V + ‘//oy‘//zwa
Vo Wisy ~ViWin ~ViWim ~VoWon ~ViWoun

N

+&

VoV s +3V/oy‘//2m5 +3’//oy‘//1x§.§ TV LW o0 +3l//1lexx§ TV Wi TV, W0
TEFY LW TV W TV LW TV, W ~ VoW i VWi ViV ow
- 2‘//1xl//1xy.»; ViV VoW Wi Won ViV —WoelWoy
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WAL 20 i, = i, +euo v, v, Yun, vl
l//lzyl//Oyy + 2‘//0yl//2yl//ow + 2‘//0yl//1yl//1yy
+ l//gyWZyy + er//lxl//nylr//lxy

N

+&

2w0yl//3yl//0yy + zl//lyl/IZyWOyy + llylzyl)ylw + ZWOyWZleyy + ZV/Oy!r//lyWZyy
+ &% Yo W + 20 W W + 20 W Wi + 20, W0 Wi
+ 20 W0 Wy 20 WLV, WY L

w

AY =Y Y, DY T2y, +E Y Y,
= W T EWi FEW, HE W, +26y,, +252‘//1x§ +253‘//2x§

2 3 2 3
TE Woee TE Wi TWoy, TEY, TEVY,, TEY;,,

¢
m(‘/@‘//yy 2y, + wiv.)

I/IZyWOyy + l//ly!r/llyy + l//OyWZyy

2
Vo,Wix

+2Wlxl//lxy - 20); - _WOyWOyy
Oy

WOyl//Oyy + g(WOyyWIy + l/jlyyl//()y)+ &

V/Oyy l/lly l//lzx _ WOyy l//lx l//2x _ l/IOyy l//lx l//1§
=57 ngy l/IO y VIO y

3 l//l Ty 7 ix l//lx
2y,

- l/IOyyl//3y + leyl/IZy

FW LWy T2 Wy, F W0, Way, 2V,

Oy

2
Vil in
+2UL W 2 W, 20, # ~VouW1, —Vi,Wo,
y

ZhAt//\/t//x +y;

ViV TW¥WoWo, 2‘//2x.§‘//0y

l//Oyy l//lzx
2y

+ WZ)yl//Oy - l//Oyl/IO}y

l//lxxl/IOy + l//OyyWIy
+ l/IOyWI)y

WOyWO}y +8( ]+82 +WO){yW2y + +leyl//ly

0y

— Gt l//l)oc l//l X

= E VialWo, + 2 TV, TVWaWo, T 2‘//1x§W1y + 2‘//0yl//2x§

0y
l/IOyyl//lvl//lzx + Vo Wi.Wox + VoV Wie

ngy l/IOy l/IOy

3
TE| FWieWo, — Vo,V

+ l//2yyl//ly + l//3yyWOy - l//lxxWOy - y/Oyley - l//Oleyy
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Subst

ituting all expressions into (2.2) we obtain the following equation:

Vore — Colline Vit ~CoWore TWinr
2 3
& (‘//mz T Wi )+ e+ 2‘//1x§t té& |+ 2‘//2x§t - chl//lx§§ T Y
T W TCW1ye TWs —CoWoye TV,

+ S(Woy‘/flm TWo Wi — Wlxlr//Oyyy)

N

+&

w

+&

+_
2h

2h

2 (eWo, Wiy + & Wo,Way +Wo Wi + VW)

Vo Wiay Vil Vil ~VaWon ~VicWoyu

VolWaum +3WoWore +WoWie Vi Wou +WiWiwe T Vo, Wi
Vo W VLW a0 T W0 Wape WLV 15, T W0,V o5y — VoW1
VWi ~ViWory — 2WViWige ~ViWon ~Vollip ~VaWon
VWi ~WocWoy,

VoWorae T 3WOyW1xx§ TV Vo TV LW T l//Oyl/IZyyx]

l//Oyyl/lly

2
VoW X
+ Wl)/yl/IOy o

+ Zl//lxy/lxy - 7 - l//Oyl//Oyy

Oy

l//Zyl//O}y + l//lyl//lyy + l//OyWZyy
l//Oyl/IOJ{y + 6{ J ?

Vo Wili Vo VilWao Vo Wilas
2‘//02)/ l//Oy l/IOy

_ l)”l W l//lzx
2y,

- l/IOyyl//3y + l//lyylr//2y

w

+&

+ l//ly‘//Zyy + 2!//3yl//0yy + Zl//OyW:iyy + 2W1xW2xy

0y
2
l//lx l//l)oc

0y

l//lxxl//ly + l//2xxl//0y

+ Zl/jlxy/léy + 21//2xlr//lxy + 2‘//15!//1)0) +

- l//Oyyl//ly - ley‘/IOy

l/jlxx WO y

+ 2‘//2x§V/0y TWo, ¥y
+ &
+ l//Oyyl//ly + WOleW

l/IOyWOyy + 8[

+ VIZWwa - l//OyWO}y

2
ViaWa, + Wzl;”/i VoW, Ve, + WV, + 20, W

0y

2
Vo Wi | YouVWi¥or | Vo, ViV

+l//l§§l//0y— 0); 12y 1 + Oy 71 2 + 07 Ix7"1&
+(C.: l//Oy I//Oy l//Oy
{//lzx
zl//Oy

w

+ l//OyyWSy + leyWZy + ley + WZyley + l/ISyyWOy

- l//lxxWOy - lr//Oyyl//ly - WOy!r//lyy

=0.

R{+¢° (‘//oy‘//sxy TWoWoe TWLWo, TV LW t l//Zyl//lxy)
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Collecting the terms of orders ¢, &2, &* we obtain the following three equations:

l//lxxt + l//lwt + l/IOyl//lxxx + l//Oyl//l){yx _l//lxl/IOyyy +
.

(2.28)
o (‘//thoy + 204,01, + ZV/OleW): 0.

2
+E‘/’ome +

l//Z,\:\ft - Cgl//l,\:\f§ + 2‘//1x§t + l//2yyt - cgl//lyyg + WOyWZm + 3‘//Olexx§ + l/llle)ooc

TYL V1 TV W o T W0, V15 ~ VWi — VWi ~Wollor ~ViWoyy

2
+ E (l//OyWZXy TWo, Wi t V/lbecy)

2
Vo,V 2.29
Vi, YW Wo, + 21//1x§l/10y TWo,Wo, T 20(; =+ ViV, ( )

0y
Cs

+ o TYouWoy ~Wo,Woy TV2,¥Woy T Wi,V =0.

l//Oyy!//fx
T —Vo,¥o,

0y

+Wo, Vo, + 20 W0, —

Vit ~CqVome TWinr T 2!//2x§t - zcgl//1x§§ T Wi TWap —CoWope T Wy,
VoW aum +3WoWore +WoWie + ViWau +3WWine T Vo, Wi

TV W TWLY o0 T W0 Wap TWLV1s, T W0, Wosy ~VollWlin ViV
VW oy — VWV 1ge — ViV oy ~ Vol —ValWony —ViWim — VoW oy

2
+ E (WOyl/ISxy TWoWos TV, Woy TV W5 T l//2y{//lxy)

VilVs
ﬁ VoW, TWaWo, T 2‘//1x§‘//1y + 2‘//oy'//2x§

0y

l//lxx l//Zy +

B l/IO}yl//lyl//lzx n Vo WiWo N Vo WiWie
2'7[/02y l//Oy
‘//2
Zyllx + VIZylev + l//?:yyl/IOy - lr//lxxWOy - !/IOyyl//ly - ‘//oyl//l)y
0y

+ V/Oyylr//3y + lr//lyyWZy

l//Oy

Ty

2
YootV VorVsbax  VorVubie VouWay TV1,V2y
2!//Oy l/IOy !//0)/

_ Wl B4 l//lzx

> Ty, t 2'//3yl//oyy T¥o, W3, T 2'//1x‘//zxy + 2Wlel§y

Yoy (2.30)
2

xlr// XX
Wl L V/Oyyl//ly - ley‘//Oy + l//lg‘flr/IOy

+ ZV/Zx!//lxy + 2W1§Wlxy +

Oy
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Let

Lo=¢.,+@, + 0P+ Po,Ppr — Poyy®Ps
(2.31)

S

2h ((p0y¢,oc + 2¢Oyy¢y + 2§00y¢}y)

2
+ EqDOy(plxy +

then equation (2.28) can be rewritten as follows:
Ly,=0. (2.32)

Using the notation U =/, , we rewrite (2.28) in the form

Vi T W1, tUW + U — UW‘//lx

2 c (2.33)
+EU%xy +2—fh(lexx +2U y,, + 2U1//1W): 0.

Equation (2.29) is rewritten in the form

L l//2 = Cg (l//l)ocﬁ + l/llyyf) - 2l//lx§ ¢ 3U(//1xx§ - V/lyl//l)ocx
YV Ul//lg w TV LY 1 TVLY L, T U,
(2.34)

_ %

2h ('//lxx(//ly + 2UW1X§ + Zleley - ZUUy + ZWlxl//lxy)

- % (U Ve, + t//lywlxy) :

Note that the operator L on the left-hand side of (2.34) is the same as in (2.32) and it
will be the same for all orders of ¢.

In terms of the operator L equation (2.30) can be rewritten as follows

Lys=c,(Woue TWape) ~Vine =Wy, ¥ 20V =V, ~ Wiy
—3UW e =3UW 1L =V Woie =W Wine Vo Wi — Vo,V
VW ~VL WV, UV, VWi YV T VLY oy

+ 20 Wiy TWLW oy TV W, VW, F VU,

3yt
ViuWoy + oy Yo Wy + 20, + 20, (2.35)
C
- i + Ul//l§§ + 21//1}3/!//2)) + 2'7”2)/ylr//ly - UWlxx - 2Uyl//ly

=2Uy,, + 20V, + 200, 2,0 200,

2
- E (Ul//2§ y + l//lyl//ny + !//lyl//1§ y + WlxyWZy)
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First, we solve the linear stability problem. In equation (2.33) the solution will be
sought in the form y, = ¢, (y e,
Substituting derivatives into the equation (2.33) we obtain:
o . Ct 2 73 3 . Ct 2
¢1(Uzk—lkc+7 j+¢l[ Ulk+7 j+(p1(1k c—Uik” —ikU , _Z_hUk j =0

or

- iSU '
(pl"(U —c—%}wg(% > VJW{ch—kzu -u,, +'k%j =0 (2.36)

where S = 0

o. — the width of the mixing layer.
The boundary conditions are

@, (+0) =0. (2.37)

Numerical solution of (2.36), (2.37) is obtained in Section 2.2. We can find the critical

values of the S, , &, and ¢, (stability parameter, wave number and wave speed, respectively).

Assume now y, in the form (2.22). Next, we consider the solution of (2.34).

Derivatives of the right side of the equation are:

= Agjike"* ) —ika"ge ) Wy = —iK3Ape" ) Lk A pre
Ve = A ) 4 A e ) _ Agy @0 1 A g
Vie , = A§¢lyeik(X—ct) + A§ (Ply g iklret) A€”1yy Koet) A*(nyye_ik(x_a)
Wi =—|<2Agoleik(X U K2 A" pre ) Vi = A, €00 + A g, @)
Vioe =K Ape" " — A e Wiy = A, ke 0 ) kAT gy,
Vi = ik3CAfpleik(X @) _jk3cA” @e —k(x-ct) Wiy = A¢1yw (x—ct) +A*go* o k(xt)

=—k? A(ply (x=ct) sz*(pfye_ik(x_Ct) —IkA(oly (x—ct) —IkA* - o k(xct)

Vigy = A§01yyikeik(x Y kA" g, e Ve = KA. —ikArgTe

V/lxgt k CA | k(x—ct) +k CA*¢* —|k(x ct)
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We substitute the derivatives in the right-hand side of the equation (2.34) and
simplify:

ik 0 + ikl o + ke p;, — ik Lo, — ik3¢1¢*1y

;—thUUy + AAT| —ikp; o, +ikoe; | — ikg" T th kz(plgol*y T St g2 @ @,
Y 20,07, - o 20,1, - th 2k 0, 0; — 2;1 2k o)1

- cgkz(p1 +e,p, — 2k’co, - cgkz(pl* +c,op, — 2k’ce;

+ Ageik("*c’) +3Uk*p, ~Up,, +U . |+ A;e*"k("*“) +3Uk*p; —Ug;,, +U @/
- % 2ike, — %U% + %ZUik(pf - %Ucofy
ikp, 0, ~ ke, 01, ik, — ik, 0,
+ ikqolqolm - ikswly — ikl g;,, + ik?’(p{}(pf

+ A + ko0, ~-20,0,, |* ATe ) + 2L kgigl, ~L2g, ], |
21(2(/)1yg01 2 ikgolzy Zh 2k2¢1y¢1 —%ikqﬁfyz

2h

Terms proportional to AA" have the form:

* * 2 * 2 *
0 coly(plyf —caly(*olw o [Foap, *+k 2 c*oly | (2.38)
T 0Py, — PL Py, 2h | + 2¢1y¢1yy + 2¢1y¢1yy

ik(x—ct)

Similarly, terms proportional to 4, -e are as follows:

2 c .
c,-U 1W—EUgoly+(—cgk2—2k2c+3Uk2+UW—Z—thUzk)gol. (2.39)

Finally, terms proportional to 42 - e2*““)have the form:

2 £ ikl (2.40)

3k2¢1¢1y + 2¢1y¢1w) R

ik(¢1¢1wy - ¢ly¢lyy) oh (

The following three groups of terms will emerge:

a) the terms that are independent on time;
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b) the terms proportional to the first harmonic e*“~) (here and in sequel we drop the
subscripts and use the notation k& =k, and c = ¢, for convenience);

c) the terms proportional to the second harmonic e?**—),

Thus, the function y, should also contain the same three groups of terms. More

precisely, we seek the solution to (2.34) in the form

vy = AL G (0) + A () + g2 (1)
+ AA ¢(0) (y)+A §¢(l) (y)e—ik(x—ct) +AZ*¢§2)*(y)e—2ik(x—ct) (241)
= A4 0 (y) + 4.0 (n)e" 0 + A9 (n)e™ ) +cc.,

where % (y), o (y) and ¢{? (y)are unknown functions of y ;

A" denotes the complex conjugate of A
the superscript reflects the index of the harmonic component;
the subscript represents the order of approximation.

Derivatives on the left side of the equation (2.34) are:

Wy = f(pz Dike ) Az(pgz)Zikez”‘(x‘“)_A*§¢£1)ike—ik(x—ct)_ P 2 Die 20
l// _ §¢2y|kelk (x—ct) + A2¢2y 2Ike2|k (x—ct) _A §¢£13ike_ik(x_0t) —Az*gﬁg)*Zike_Zik(x_Ct)

_ —k A |k x—Cct) _ 4k Az 2|k(x—ct) _sz*§¢£ )e—lk (x—ct) _ 4k A2* —2|k(x ct)

l//zy _ AA*q)gy) A (Dg)? ik(x—ct) +A2(D( ) 5 2iK(x—ct) L AAY ¢)( ) +A (D() ik(x—ct) +A2 ¢( ) —Zlk(x ct)

2y

* ik(x— |kx Zik( x— " " (X
= PR + A 0+ PepTet ) ARG A e+ ATl e P

W = Ik3A et _gik A2 gkOe) _jk3 A g klt) _gip AZ* "o 2ik(ct)

Vo = §¢§1y)yikeik(x—ct) +2ikA2¢)£§zle2ik(x—ct) _A ¢)§ly);‘ike—ik(x—ct) . Az*gogiz/*Zikefzik(xfct)

s

2|k X— ct

Ve = IK°CA@ ") 1 8ik°cA?p e —iKCA e O _gikIcAZ g e

l//zyyt =_ikCA§¢£];,)yeik(x_Ct) _ZikCAz(pZZ) e2|k(>< —ct) +ikcA 5(p2y)y ik(x—ct) +2|kCA2 o (2)* —2|k(x ct)

W
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Substituting the derivatives on the left-hand side of the equation (2.34) we obtain:

ik’cpy) —ikepl) —ik*Upl) +ikUpy) —ikU, ol

¢ o 2
+lkEU¢§y) 2h(Uk (p2 -2U gozy) 2U¢>2);)

8ik*co? — 2ikep?) ~8ik*Up®? +2ikUpl) —2ikU o

2 2ik(x—ct) 2 2
+A e 1k\x—ct
+ % 2ikUpl?) — L (4k?Up? - 2U ¢ - 2Up?) )

2y 2% 2y 2y

—ik3c¢§l)*+ikc¢§ly);—ikSUgog)* kugo()* kuyygoz)*
+A*§e—ik(x—ct) 2 ¢
~ik > Up o - (UKo —2U ol — 204l

—8ikSc) + 2ikcp?) —8ik*Up?" — 2ikUpl) + 2ikU , 2"

+A2*e—2ik(x—ct) 5
—Ezikngg) - 5 (42Ul —2U o — 20" )

+2ad' (2, (ol + ol )+ 20 (0l + 0L )

Terms proportional to AA™:
o 52U (o) + ol )+ 2U () + 6T )). (2.42)

Terms proportional to A, gitle=a),

ik’colV —ikepl —ik*UplV + ikUgoél))y —~ ikUyygoél) + ik%U(p(l)

2y I
(2.43)
C
—2—fh(Ukz¢z ~2U o) —20p%) )
Terms proportional to 42 - e~
kel d O o7 0@ + 2 2k U0l
8ik’cp, ZZkC(pz —8ik*Up)! +2ikUp;,, = 2ikU ¢, +EZZkU(p2y
(2.44)

(4k Ugo2 -2U gozy 2U¢£W)

2k
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Collecting the terms proportional to AA™ on the left-hand side of the equation (2.34)

and using (2.38) we obtain the equation for ¢*':

;_fh (20, (0 + ol )+ 2U(6) + o)

. L. ¢, (Koo, +k o,
= lk(¢1y¢lw - ¢ly¢1)y + ¢l¢1y}y - ¢1 ¢1yyy)

2h + 2q01y(pl*yy + 2¢fy¢lyy

Since gog,) is real we have ¢\ =¢\"". Using SchTg* the equation for @) is

transformed to the form:

48U, o + Up) )= iklp, 0, — 01,00, + 0001, — Oi00,,)

S(h « g . . (2.45)
- E(k 0, + kg, O, + 2¢1y¢1yy + 2§01y¢1yy)
The boundary conditions are
93" (+00) = 0. (2.46)

Similarly, collecting the terms proportional to e*®) on the left-hand side of the

equation (2.34) and using (2.39) we obtain the following equation for the function ¢{":

ik?’cgogl) - ikcgog)y —ik*U (pgl) + ikU(pS), -ikU,, (oél) +ik % U (pgl)

o (U2l - 2U ) — 20 )

2yy
—(c,~Ulp,, —%U% +(— e k? = 2k*c+3Uk* +U —;—thUik]gol
Dividing both sides by ik we obtain:
(U—c—sué}ogg +(%U - SU, éj(pg? +(k2c—k2U—UW +5Uﬁj¢§”
(2.47)
i 2i . . . i
= —;(C—U)(/le +R—kU(01y +(1kc+ 21kc—3lkU—;UW —SU}(/)1
with the boundary conditions

@l (+o0) = 0. (2.48)
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2ik(xfct

Finally, collecting the terms proportional to e ) we obtain:

y

8ik’cp?) — 2ikepl?) —BikUp?) + 2ikUpl?) - 20kU o + %zzwgoga

C
- 2—;1(4k2U(p§2) - 2Uyg0£2y) - 2U¢)§2y;)
. c 2.
= lk((p1¢1m - ¢1y¢1}y )_ j(_ 3k2(p1¢1y + 2¢1y¢1}y )_ Elk¢12}

Dividing both sides by ik the following equation for the function ¢{? is obtained:

i 4 i 8ck? —8k°U
2U —2¢—SU— (2)+(—U—SU —] 2 @
( ¢ kj%w R )7 T —au, + 25Uk )72

(2.49)
i

2
kwlywl)y __(Dly

S(,.
= (¢1(plyyy — PPy, )_ E(3Zk¢l¢1y -2 R

with the boundary conditions

P (+00) = 0. (2.50)

Comparing (2.47) and (2.36) one can see that the left-hand side of (2.47) is exactly the

same as the left-hand side of (2.36) if ¢ (y) is replaced by ¢, (y). Thus, (2.47) is resonantly
forced and solvability condition should be applied at this stage to guarantee the existence of
the solution. Using the Fredholm’s alternative [69] we conclude that equation (2.47) has a

solution if and only if the left-hand side of (2.47) is orthogonal to all eigenfunctions of the

corresponding homogeneous adjoint problem.

The adjoint operator L* and adjoint eigenfunction ¢ are defined by the relation

[of - Lody= [o,- Lopidy. (2.51)

The left-hand side of (2.51) is equal to zero since Lg, =0. Thus, the adjoint equation

is defined by the formula

Lol =0. (2.52)

Integrating the left-hand side of (2.51) by parts and using the boundary conditions
(2.37) we obtain:
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or

T isU\ (2 . iSU, ikSU
j(pl((ol (U—C—T]-l-(pl[EU— k)]+gol(k2c—k2U—Uw+ > Ddy

< S iSU o iSU . iSU
ol e B} 3]l 5% o
T2 iSU, 2 iSU,
__'[O¢)1¢l (EU_ A J+¢1[EU)/_ 2 jdy

0

+ I (pl(pf(kzc — kU -U, + lkzuja’y

" . ' SU
o [U—c-BY N gy 22y
T k 7" kR =
:J.(Dl ) TSU d =I¢1-La¢fdy
—o al 7.2 2 l —w
+(p1(kc—kU—EUy+ > j

Hence, the adjoint operator is

a a_ a iSU 2 isSU, 2
L(Dl Egﬂlw(U—C—Tj-i'(Dly(ZUy— ky—EU]

ikSU 2 ):0

(2.53)

+(of(kzc—k2U+ _EUy

The boundary conditions are
@2 (£0) =0. (2.54)

The adjoint eigenfunction ¢ is the solution of the problem (2.53), (2.54).
Applying the solvability condition to (2.47) we obtain

' 2 —kzcg ~2k’c
I qDl U¢1y(cg - U Lyy _E + +3k2U n U —lkUS ¢l Y = 0 (255)
Z» W

Equation (2.55) defines the group velocity:

[ gola[U(plyy + ;U% +(2k2c-3k2U U, + ikUS)goljo’y
c, == (2.56)

g +oo
J(ﬁf((olw - kz)jy
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c, = (2.57)

where

n=[of (g, —Kp)dy, (2.58)

+00

a 2 :
= j @ (U% +EU¢1y + (2k*c—3k*u, —U,, +kuS)(pljdy. (2.59)
Solving three boundary value problems (2.45) - (2.46), (2.47) - (2.48) and (2.49) -
(2.50) numerically we obtain the functions ¢{”(y), »{"(y) and ¢{?(y). The function v,
(the second order correction) is then given by (2.41).
Let us consider the solution at the third order in ¢ . Equation (2.35) also has a solution

if and only if the right-hand side of (2.35) is orthogonal to all eigenfunctions ¢, of the

corresponding homogeneous adjoint problem (2.53), (2.54). Applying the solvability
condition to (2.35) we obtain:

T(pf Ly,dy=0

CoWome +Wape) =

“Winr — 29”2)“; T 20, Y1 e = Vit ™

Wi =30V =30V — Vi Wo =W, Wi —
Vo Wi ~Vo Ve ~ Vi Wope VW, UV, F
Yo Wiy T Wiy T VLW 20y + 2V W1 F VLY, +

s Yoy T WV, WU, —
[ ¢ dy =0 (2.60)

31V
= Wi, + # FWo W, 20+

B % + 20, + U + 2y, 0, + 20, W0, — | _
- U'//lxx - 2Uy'//1y - 2UV/1yy + 21//1)‘1//2@ +

Zl/llxl//l§ y + ZWZlexy + 2l//1§lr//lxy

2
_E( W2§ y + leWny + lel//1§ y + WlxyWZy)
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The derivatives of (2.22) and (2.41) are:

vy = Agiike ) —ikd gle )

tk (x—ct) * —lk (x—ct)

v = A:pe +A.pe

ik, (x—ct)

* —zk (x—ct)

Vi, =4:p,8 +A4:,'e

Vi = _sz goleik(x*d) _ kZA*wl*e—ik(xfct)

l//lxxf = _szggpleik(x c) k A ¢* —tk(x ct)

(x—ct)

Vi = ik°cA e —ikcd ple )

Vi =k Ay &0 — I A g

V/lxyy = A¢lwikeik(x—vf) —ikA*(DfWe_ik(x_ct)
l//]_m — Zk3A¢l ik(x—ct) +lk3A* * _,k(x ct)
[//ly :A(Dlyeik(x_c’)_i_A*(D:y —ik(x—ct)

ley :A¢1yyeik(x_d)+A*¢:We—ik(x_ct)

l//lyy,; :Aéwlyyeik(xict)+A;¢I‘Wefik(x—ct)

!f//lxyy = A(Dlwl'keik(x*Cf) _ ikA*(D:We—ik(xfct)

Wiy = A¢lmeik(x—ct)+A*¢1*Me—ik(x—ct)

1, = ikAp, ) — kA gf g7 M)

l//lx,f lkA (01 lk (x—ct) —lkA ¢1 efik(xfct)

* K —zk(x ct)

Vi, = kchgqoleik(x_“) + kchggpl

l//l)ocr - k A ¢l lkx Lt k A *w* —lk(x (’t)

l//lyyr :Arwlweik(x*d) +AT*(hWe7ik(x7ct)

Wlx§§ =lkA§§ lkx a) lkA * —lk(x ct)

ik(x—ct)
1

l//lxxf = _k2A§¢e _kZA;(Dfefik(xfct)

V... , = —ikcAu e +iked, g e )

l//2x :Aégogl)ikeik(x_d)+A2¢£2)2ik62ik(x—ct)
_Aggogl)ike—ik(x—ct)_A2*¢£2)*2l-ke—2ik(x—ct)

l// = §¢§1y)l'keik(x_ct)+A2¢£i)2ike2ik(x—g)
- §¢2 Wike =) A2*¢£i)*2ike_2ik(x_ct)

y

_ 4k2A2¢§2)e2ik(x—ct)

—Ztk(r ct)

W, = —szg(Dgl)eik(x_w)
_kZA;qoél)efik(xfct) 4k% A7 (pg >

( lk x L[)

Wy = —zk3A§(02 —8ik*4 (og )p?kxet)
—lk3 éqogl)"eﬁk(x —ct) —8ik3A2 ¢£2)*e—21k(x—ct)

Vo = A:00) ke 1 2ik A’ pl2) e

2y

§¢£)2y ke lk(x ct) A2*¢g;*2ike—2ik(x—ct)

2ik(x—ct)

Woy = ikscA§¢§l)eik(x"Ct) + 8ikscA2(p§2)e
_ikSA;gogl)efik(xfct) 8lkscA2 (og > 721k(x ct)

2ik (xfct)

o= A8 Ao e
+AA*¢£?,)k+A;¢)£l)?ke_ik(x_d)+A2*¢)§i)*e_2ik(x_d)

Vo =AA*§0(O) +A§g0£1) eik(x—ct)+A2(D§2n)}e2ik(x—ct)

2y
+ AA ¢£”)) + A§¢§) —ik(x—ct) AZ*Q( 1 —21k(x )
Yo = _l'kCAgv(Dél) ik(x—ct) 21kcA2¢§ 2ik(x—ct)

+ikcA;gog‘Ze”‘k(x*C’) + 2ikcA% (Dé)ie 2ik(x—ct)

_széf(oé) ik(x—=ct) 8k AA ( ) 2ik(x—ct)

—8k*A4 Az (2

l//Zxx§ =
_ k A 5(02 —zk x ct

—21k(x ct)

= AgA*¢g¢)v + AA;(DS;; + Aééq)(l) eik(x*Ct)

2y

+2A§¢£2)e2ik(x—ct)+A A*¢£0)*+AA;¢(O)*

2y

+A§§¢£) —ik(x=ct) 4 9 4* 4 ¢( Jrg2ik(x—ct)

lr//2yy§
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Substituting the derivatives into the right-hand side of (2.35) we obtain:

+

+

KA e ) 8k 44 ol

2 A s e ) _ 8k 44 P2 e)

AA QL) + AL cpf) + A, @) ) + 2.4, g K0!
A QL) + AL Q) + A zplTe ) 124 A e

—21k(x ct)

At~k e M g M) gl e )

&

(Dg )kzcezk(x—ct)

A + 8AA§¢§ )k ce21k(x—c;)
+ A §§¢2)k e —ik(x—ct) +8A Ag (Dz)kz —2ik(x—ct)

|

+ 2, (ikd ") — ikd sz ple ) ik o)~ ikA o)

- (— lkcAﬁ (ple ke (omer) | ikcA*gggol*

szgg%
KA

() th ct

() —zkx ct

8kAA
—8k*A'A

e_ik’ (x- ct))

) 2ik(x—

(2

_3U[—

cQ, €

P,

ct)

—21k(x ct)

|

(0)

2tk(x—ct)

(0)
U(4A%W+AA

+ A AP

2yy

U A A ¢( )+AA §¢£)+A§§¢( )elk x—ct) +24 ¢ ) 2ik(x—ct)
+
M+ 4,400 + A4 )"

(A¢1y ik(x—ct) +A*(01*y —lk(x ct)

AA*(pg) S

_ +A2(o(2)e2ik(xfct)+AA*¢£O)*

+A Q’g) —ik(x— cz)+A2 (ng)
—k Ach)gy)elk(x}t) 4k AZ(D( ) 2ik(x—ct)
_ 2 g% ()n-ik(x—ct) 2% (2)* 21k(x ct)
Agpiike™) k*A cpy 0 —4k° 47 o)) e
+{ 1 .. _lkx o) +AA*(D£?; +A§(0£) ik(x— CI)+A2¢(”)) 2ik(x—ct)
—ikA »e (0)* () y—ik(x—ct) 2 (2 *21k(x o)
+ A4 gy + A ey e + A7)
+2Qk%¢b£mu%n_ﬁkA*¢; ﬂﬂrag

+ A§¢(1)e

Doy

ik(x—ct)

+A§§go()e”” “) 424 (02)

+ A4 @) + A @l e ) 1 24 4 e

+A§¢£) —lk(x ct)_I_ZAA
—lk3A§(0£) 1k(x ct)

—ik*4 (p£
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21k(x CI)J

¢2 ) —Ztk(x L[)

2yy

|

—sz(x ct)

)

81k3A2(0£ ) 2ik(x—ct)
—lk(x ct) 8lk3A2 ¢£
+ 3(_ k quplelk(xfct) —k A§*¢1* ﬂk(x ct)

+ A§¢g{)yl-keik(xfct) + zlkA2(0§”)} 2ik(x—ct)
—ikA gqoé) “ikx=et) _ ik 42" Py (2)q-2ik(x—c)
+A§¢1yyezk(x —ct) + 4 §¢1yye—zk(x ct)

(_ lk3A (pleik(x—ct) + ik3A*¢1*e_ik(x_ct)
. ik(x—c ) . * ok —ik(x—c )
—2ik(x—ct) + Alelke V- lkA ¢1yye '

|



ik(xfct)

—1k(x ct)

N Aggogl)ikeik(xfct) + A2¢§2)2ik62ik(x—ct) _k2A¢1yeik(X ct)
2*¢£2)*2ike—21k(x ct) + A§01

_A*};gogl)l-kefik(xfcl) _A

K
(A§¢1 ik, (x— ct)+A§ ¢1 —lk (x ct){

+ AA*§¢(O)

2y

+ AA ggo()

2y

A.ApY)
+ A A go( y

2y

+A4

(A§01y lk(x ct) +A*¢;y —tk(x ct)

>U|N

ALY + 4.9l ) 1+ 47

4+ A4 + 4 go(l)*e’”‘(""“)

2y
—2ik(x—ct)

+ A pf)e

+Ag, e" )+ L'g] e

+ Agf(oél e

k A¢* —lk(‘( ct)
+ A (/’1me
k A* * —lk(x ct)J

—zk(x ct)
—Ztk(x ct)J

Afwg}?iketk(x—ct) + A2¢éy)2ike21k(x—ct) + l//1§ ,
§gogt})ike—ik(x—ct) _ AZ*(Dg))* zike—Zik(x—ct)

(2)52ik(x—ct)

¢2ye

tk x ct
A¢1y

)pik(x—ct) + 2Aé¢(2)e2ik(x—ct)

2y

e 24 gl

- A

(ikA(plyeik(x—ct) _ lkA*gﬁfy —tk(x ct))

2 A¢likeik x—ct _
_ lkA* * —zk(x—ct

Ag@ély)l.keik(x_a) + A2¢§i)2ike2ik(x—c[)
_ A*“ng)ike-ik(x—cz) . Az*(ogzy)* Zl.ke—zm(x-cz) n '//15 )

J

— K A, i) _ 47 g2 gl
A sl ) 4k2 Az*q,gzre—m(x—cz)
e e
+ AA (D(O)k + A go(l)ke miklaat) 4 A2 (ogy)*eJik(xﬂ)
+ 24, piike™ ) i sl )
AA*(pg) + Afgpgly) k) 4 4 gog‘ — k%A pette)
+[+ AA*gog,)* + 4 g(Dély)ke “ikle) 4 g7 gog)*ez"k(“’)J[—k ‘A" ple g kl-a)

ikdgp, ")~ Y 4
+ 2 YL —lk(YI ct)
—ikd ¢, e -

. 3(_ sz(Dlelk(x’a) —k A*(o*e”" x— ct)XA¢likeik(x—ct) —l'kA*(D*eflk(f Ct))z )
2U
— 2Uy (A (olyeik(xfct) +A4 (0* —lk(x ct)) ZU(A (ol}yeik(xfct) + A*(ofwe,ik(x,ct))

-ul- sz(ﬂle”‘(““'“) KA g '“))+ Uldpe ) 4 4, g o0
2 lkA lk(x ct +4lkAA 2lk x—ct)
—ikA écf(D(l) —ik(x—ct) —4ZkA A §¢£2)*e—2ik(x—ct)

Agolyeik(xfct) +
+ A* * —zk( —ct)
+ (01)1

2ik(x—ct) +

éwgl)ikeik(x—ct) + A2¢§2)2ik62ik(x—ct
A*g wgl) i ke—ik(x—ct) _ g% (ogz)* 2 ke—Zik(x—ct) + Ve

Collect the terms proportional to A . gikl=<t)

Wi ~ l//lyyr = _((Dlyy - kZ(Dl)
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Collect the terms proportional to A4 - e~

_ 5

C
(20w, — 20y, + Uy, )= — (U, ¢, +2Uq,, ~Uk?p,) (2.62)

Collect the terms proportional to 4. . giklr=ar)

CeWore tWa,e) — 2'//2x§ Tt 2 W — Wiee o~ U, —3UW,
_&

2
o (ZU‘//zx: +U‘V1§¢)_EU‘/’25 y

- Ul/lZ.f w + l/jng)/y

¢, (- K2 + o) )= 2k2c ) + 2¢ ikg, + ikep, + 3UK* @) - 3Uike,

2yy

c ‘ 2 (2.63)
~Ugl) +U, o - Z—Z(ZUzkgogl) + U(ol)— EUgo(l)

2y
Nonlinear terms proportional to A|A|2 ,

_V/zy('/’lm +l//1yyx)+l//1x(!//2xxy + 2l//1xy§ ‘H//zm-)
_V/ly('/’zm +3W1xx§ Vo +l//1§ yy)"‘ ‘//zx(‘//my ‘H//l)w)

3y, '//12x
2U

+ 2y, + 201,05,
+20, W, 2W W, 20,
+ 2w2xl//lxy + 2‘//1451//1)9;

lr//lxxWZy + + WZxxlr//ly

TV (l/jlmy Wi, )_ g_fh

2
- E (‘//lyl//ny + l)[/lyl//]_§ y + l//lxyl)ZIZy ):>

6ik*pP ), — 2ikey, 02 +3ik’p, oF) + ik’ p (0} + 0, ") +ikoPp;,

(2) (0) *(0)

D+ 0, ) — ik ) + ik (03, + @,00) + 2k @i (2.64)

- lkgolyy (§02y + (02)1

— k2, (pf) +9,\7) + 3k, 0f?
2) .*
S 3k4 2 (0) *(0) lk ¢2y ¢1y
——| oo +20,, (0, +9,,) -2—
2| 2u, wATey g R+ (pé(;) o1,
(2)

+ 20,05 + 20, (02, + 0,)) + 2050 @y
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The equation (2.60) is rewritten in the form:

Cg (lr//2xx§ + lf/lz)’yff) - 2‘//2)65 t
. © + 2Cglﬂlx§§ - ng ¢ - SU(//Zxrf
J.g’la (V/lxxr TV )dy - .[ 7| - SUW g — UWZ;‘ w? Vol >

c 2
- Z_fh (ZUW2x.»; +Uy )_ EUV/ZSE y

0

A C
- j 2] Z_fh(_ 2Uy!//1y - 2Ul//lyy + UWlxx )iy
Vi Vo — 3l//1yl//l)oc§ Vo Wi ~ Vo, Wi VLW
VWi, TV TV e TV LY o0 T 20 Wi

TWVLWo TV W, TV,

—00

+ [ o 31V d
_‘[O i YiuWoy + # T2 W VW, 5 Vi,Vax ’
C
- j +20, W0, + 205, W0, T 20 W0, R MR LT TN (2.65)
+ 2l//1xl//1§ y + ZWZxV/lxy + 2W1§W1XJ’ + l//lxyl//zy

Using (2.61) - (2.64) equation (2.65) is rewritten as the amplitude evolution equation

for slowly varying amplitude function A(&, ) of the form:

A =0, A+ S A, — w|A”A
or

2
?:amag;-m/w A (2.66)
T

Equation (2.66) is the complex Ginzburg-Landau equation with complex coefficients

o,0 and u :

o= s it (2.67)
n

where o=o0,+io;, 6=0,+io, and u=p +iy are complex coefficients which can be

computed using linearized characteristics of the flow.
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Coefficients o,,5, u, and n are given by:

S a
o, =3 Igol (—k2U¢l+2Uy(p1y +2Ugolw)dy, (2.68)

U
(Cg -U 51) 2 E gpély)

_Vy_

8= [@i| + (- Koe, ~2K?c+3K°U +U,, ~ikSU) ldy, (2.69)

+ qol[Zikcg + ikc —3ikU — U%)

6ik°pPp;, — 2iker, o2 + 3ik°p o + ik (0 + 9 )

— ik, (0 + 3@ )+ ikpPgr, + ik (@0, + 939

@) ik ( @ * . (0 )

—ikg )+ 2ikey 0P —2 =W, reile,
= ¢a * * 3k4 * dy,
= L . — 12,0 + 9,0 )+ 32 2 o Pl (2.70)
0
S * *

-5 |20, (0 + 9,0 )+ 202

+20, (00 + 9 )+ 202 g,
n=[ol(p, —Kp)dy. (2.71)

—00

The constant , is known as the Landau constant in the literature. If 4, >0 then finite

saturation of the amplitude is possible and (2.66) can be useful in analyzing the development

of instability. There are many examples in fluid mechanics including rotating convective
flows [54], [56] and shallow water flows [30], [46], where the constant , > 0. However, for
plane Poiseuille flow g, <0 (see [33]) so that (2.66) is not useful at all since higher-order

terms become important as well.
Formulas (2.67) represent the coefficients of equation (2.66) in terms of the

characteristics of the linear stability of the flow. More precisely, in order to obtain o, and

1 we need to perform the following calculations:
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1. Solve the linear stability problem (2.36) - (2.37) and determine the critical values
of the parameters k, S, c and the corresponding eigenfunction ¢, (y);

2. Solve the homogeneous adjoint problem (2.53) - (2.54) and determine the adjoint

eigenfunction ¢;

3. Solve three boundary value problems (2.45) - (2.46), (2.47) - (2.48), (2.49) - (2.50)

and determine the functions ¢{” (y), ¢’ (y)and ¢{? (y);

4. Evaluate the integrals in (2.67).

Ginzburg-Landau equation is often used to model spatio-temporal dynamics of
complex flows. The reason is that (2.66) exhibits a rich variety of solutions depending on the
values of the coefficients o,6 and x. In addition, it contains the terms representing linear
growth, diffusion and nonlinearity. In many cases the Ginzburg-Landau equation is used as a
phenomenological model, that is, it is assumed but not derived from the equations of motion.
Experimental data are often used in such cases in order to estimate the coefficients of the
equation.

In other cases the Ginzburg-Landau equation can be derived from the equations of
motion (examples are given in [50], [58] and [61]). The coefficients of the equation are
calculated in a closed form as integrals containing characteristics of the linearized problems.

Ginzburg-Landau equation and its properties are extensively studied in the literature
(see, for example, [1] and [10]). Numerical analysis of the Ginzburg-Landau equation (see
section 6) is simpler than numerical solution of the equations of motion. In addition, stability
of some simple (for example, periodic) solutions of the Ginzburg-Landau equation allows
researchers to simplify the analysis of spatio-temporal dynamics of complex flows in fluid

mechanics.

2.4  Numerical Method for Weakly Nonlinear Stability

In this subsection we present a numerical method for the calculation of the coefficients of the
Ginzburg-Landau equation. The solutions of linear stability problem (2.36)-(2.37), adjoint problem
(2.53)-(2.54), boundary value problems (2.45)-(2.50) are sought in the same form (2.13), where

o(r) represents any of the functions ¢,(r), ¢@*(r), @(r), ¢(r), @2 (r) (recall that
r zzarctan y ). Using the chain rule we compute the derivatives of the first, second (2.14)
T

and third order of ¢ with respectto y:
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d’ (12tan2 - j wdp 24 . wd’p 8 o d®
- cost T 9P _ ein oot T L P, O ot T AP (2.72)
2 2 2 2 d 3

dy® T 2 dr =« 2 2 drt & r

The derivatives of the first, second (2.15) and third order of ¢ with respect to rare

evaluated using (2.13):

N-1

d—i’ a,(- 6T (") = 6T (r) + (1= )T (7). 2.73)

J
In order to evaluate the function ¢(r) and its derivatives up to the third order we need
to compute the values of the Chebyshev polynomial T;(r) and its derivatives at the

collocation points (2.13):

.2 .2 zm
.3 3jcos - 3j°cos i
T () =| —L—L—+ N+1 igjn 79 _ N+lcos Y (2.74)
sin’® ine " N+L1 o gjps N
N +1 N +1 N +1

The values of ¢,(r), its derivatives up to order two inclusive and the coefficients of

equation (2.37) at the collocation points (2.13) can be evaluated using formulas (2.72) - (2.74)
so that the elements of the matrices B and D (see (2.19)) can be computed and the generalized
eigenvalue problem (2.19) can be solved numerically. Similar approach can be used in order
to solve boundary value problems (2.45) - (2.46) and (2.49) - (2.50). System of linear
algebraic equations of the form

Fa=G (2.75)

is obtained in each case after discretization where a=(a,q,...a, ;)" . The matrix F is not
singular for problems (2.45) - (2.46) and (2.49) - (2.50). Therefore, any linear equation solver
can be used in order to find a. Thus, the functions ¢{” (y) and ¢{”(y) can be evaluated by

means of the expansions of the form (2.13).

The same form of the expansion (2.13) is used to solve boundary value problem
(2.47) - (2.48). Equation of the form (2.19) is also obtained after discretization in this case,
but the matrix F is singular since the corresponding homogeneous part of (2.47) has a

nontrivial solution at S=S_,k=%k, and c=c,. Equation (2.75) is solved in this case by
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means of the singular value decomposition method [3]. It is known that if F is a complex

N x N matrix, then there exist orthogonal N x N matrices U and V such that
U"-F.V=%, (2.76)

where X =diag(y,, 7, 7n) -
Equation (2.76) is called the singular value decomposition of the matrix F and

V1,V ¥y are the singular values of F . In our case only the last of the singular values will
be equal to zero (y, >y, >...> ¥4 > 7y =0). Hence, the solution to (2.75) in this case can

be written in the form
a=V-2*.U".G, (2.77)

where the last column of V , the last row of U" , the last column and the last row of X *are

deleted. In component form the solution to (2.77) is

NApH
a= ZUI—GVI, (2.78)
i=1 Vi

where U!" and V; are vectors (columns of the matrices U™ and V , respectively).

Hence, the values of the function ¢ (y) can be computed using formula (2.13) where
the coefficients a; are the components of the vector a in (2.78).

The final step of the computational procedure involves the calculation of integrals in
(2.67). Adaptive quadrature formula described in [31] can be used to compute the integrals in

(2.67).

54



3. LINEARAND WEAKLY NONLINEAR INSTABILITY OF SLIGHTLY
CURVED TWO-COMPONENT SHALLOW MIXING LAYERS

3.1 Linear Stability

Consider the two-dimensional shallow water equations in the presence of a small
curvature under the rigid-lid assumption (1.1) — (1.3) [13], [14] and [28]. It is assumed that
the carrier fluid contains small heavy particles. The assumptions that are used in the
derivation of the governing equations are summarized in Section 1.2. Eliminating the pressure

p and introducing the stream function (X, y,t) (see 2.1) system (1.1) — (1.3) can be reduced

to one equation

2 c
(Ap), +y,(Ay), —y (Ap), + vy, + S Ayl )

R 2h
i Wiy +2 2y )+ BAy =0 ¢4
t !//‘// + l//xl//r!// +l//xl//)oc + l//: !
Zh\/m yryy »7xy
A perturbed solution to (3.1) is sought in the form
vy, D) =wo(Y) + ey (X Y, D) + 9, (X Y, ) + £wa(x y, D+ (3.2)

where ¢ —a small parameter which will be defined later.

Substituting (3.2) into (3.1) and linearizing the resulting equation in the

neighbourhood of the base flow we obtain (see 2.1):

Ly, =0, (3:3)
where

Ll// =V, +l//Wt +l//0yl//m +l//0yl//yyx _WOwax

c 2
+ Z_fh(l//Oyl//xx + ZWOWWy + ZWOyWW) + EWO))W}Q} + B(Wlxx + Wl)/y)
A hyperbolic tangent velocity profile of the form v, =U(y)

U2

U@y)=2*

U,-U,
+ tanh 3.4
5 5 y (3.4)

is often used in practice in order to represent the base flow for the case of a mixing layer.

Here U, and U, are the velocities of undisturbed flow at y = —o and y =+o0, respectively.
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The solution to (3.3) is sought in the form of a normal mode

V/l(x:y:t) = ¢1(y)eik(x*ct)- (3-5)

Using (3.3) and (3.5) we obtain

Loy, =0, (3.6)
where
" iSU iB (22U iSU
ta=a{v-e- 57 -F)s 1(?‘ kyJ
+ ¢1(k?‘c -KU-U,, + ST + ikBj.
The boundary conditions are
@, () =0. (3.7)

Here S = % — the stability parameter.

Note that (3.6), (3.7) is an eigenvalue problem (the complex eigenvalues are

c=c, +ic ). Base flow (3.4) is said to be stable if all ¢, <0 and unstable if at least one ¢, >0.
Marginal stability of flow (3.4) is described by the relation ¢; =0. Problem (3.6), (3.7) is

usually solved numerically (details of numerical algorithm based on collocation method are
given in Chapter 2). Thus, solution of (3.6), (3.7) allows one to obtain the critical values of

the parameters S.,k.,c.. A typical marginal stability curve for shallow water flows is a

crire?

convex curve with one maximum (the coordinates of the maximum point in the (k,S) — plane
are k=k,and S=35,).
3.2  Weakly Nonlinear Stability

Assume that the bed-friction number is slightly smaller than the critical value:
S=S (1-&%). (3.8)

Now the role of the parameter ¢ in (3.2) becomes clear: it characterizes how close is

the parameter S to the critical value S_. In addition, (3.8) implies that base flow (3.4) is
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unstable if the bed-friction number is equal to S. However, since ¢ is small, the growth rate
of the most unstable perturbation is also small. Hence, one can try to characterize the
development of instability analytically by means of weakly nonlinear theory.

Following [62] we introduce the following “slow” variables

T =g, &=¢e(x—cyt), (3.9
where ¢ is the group velocity.
The stream function y, in (3.5) is replaced by

v (x,,0,8,7) = A, 0y ()", (3.10)

where ¢, (y) is the eigenfunction of the marginally stable normal perturbation with
S=S,k=k, and c=c,. The objective is to derive equation for the evolution of the
amplitude function A(&,7).

Using (3.9) we replace the derivatives with respect to x and t in (3.1) by the

following expressions

0 0 0
&9&4‘(‘3%
(3.11)
0 0 0 , O
— — =&, —+ & —
a o ieEf ar

Using (3.1), (3.2), (3.11) and collecting the terms that contain &® we obtain

Ly, = ¢ Wre +Vine )= 20, | =30V = Vi Wi = Vi Wi

— Ul//]_g W + l//lelxxy + l//lxl//ly_'yy + Uyyl//lg
(3.12)

S
- E(l//lxxl/lly + 2Ul//1x§ + Zl/jl)yl//ly - 2(]ljy + Zl/jlxl//lxy)

2
- E( l//l§ y + l//lyl//lxy )_ ZB l//1x§'

Analyzing the structure of the right-hand side of (3.12) and using (3.10) we conclude

that y, in (3.12) should be sought in the form

Vo = AL 0P () + A0 (1) 4 A (1), (3.13)
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where A" is the complex conjugate of A and ¢{”(y),0"(y) and @{”(y) are unknown

functions of y. Substituting (3.13) into (3.12) and collecting the time-independent terms we

obtain the following ordinary differential equation for the function ¢{” (y):

25(U, (02 + 0,2)+ U@ + 0,9+ 2B(p2) + 9,
y k[qoly(pfw -0 0, J S [kz(col(pfy +o0,) )J (3.14)

0~ 00, ) 2\ +2Aene, + 00,

The function ¢{” (y) satisfies the following boundary conditions:

P (0) = 0. (3.15)

Substituting (3.13) into (3.12) and collecting the terms containing the first harmonic

we obtain the equation

(U —c- SU% = %}aﬁjy + (2% -SU, éj(pély) + (kzc kU -U, + LS ikqu)f)
i iU . . i .
- —%(cg Uk, +2 01, + (Zch—Sku—%UW +ike, ~US - 23}01
(3.16)
with the boundary conditions
PP (+00) = 0. (3.17)

Finally, using (3.13) and (3.12) for the terms that contain the second harmonic, we
obtain

8ik’co? — 2ikce?® —8ik*Up? + 2ikUp? — 2ikU, o

2yy 2yy

2U ¢?) — Ak*Upl? ;
ks e R 0 1 B(p® - ak2e?) (3.18)
+2U¢;3,) R
: 2ik
= lk(¢l¢)lw - ¢1y¢1yy )_ S(2¢l)’¢lyy - 3k2¢1¢1y )_ ?@lzy
The boundary conditions are
@$? (+00) = 0. (3.19)

Comparing (3.6) and (3.16) we see that the left-hand sides of both equations are the
same. Thus, (3.21) has a solution if and only if the right-hand side of (3.16) is orthogonal to
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all eigenfucntions of the corresponding adjoint problem (see [69]). The adjoint operator L*

and adjoint eigenfunction ¢ are defined as follows:

[ of Loydy = [ o Lody. (3.20)

The adjoint problem is
Lol =0, (3.21)
@7 (£0) =0. (3.22)

Integrating the left-hand side of (3.20) by parts and using boundary conditions (3.7),
(3.22) we obtain

a_a_ _a i i a ) U
L(Dl =(01W(U—C—SUz—B%j+¢1y(2Uy—SUy%—ZEj
" U (3.23)
+¢f(kzc—k2U+%SU—2?y+Bikj.

Solvability condition for (3.16) has the form

+J2° . ( U ,U —2k*c+3k*U +U,, . (3.24)
ol e, — L —2—@ + @, dy=0. :
LU Y TR K, +ikUS + 2Bik |

Hence, the group velocity ¢, can be found from (3.24).

Using (3.1), (3.2), (3.11) and collecting the terms that contain &° we obtain:

Lll//3 = Cg (lr//ZJOCr,g + WZWg )_ lr//l)ccr - 2!//2x§ ¢ + 20ngx.§r§ - W]_g; ¢ - l//lyyr
- 3U‘/’2xx§ - 3Ul//lx§§ ViV — 3‘//1y'//1m§ Vo Wi —Wo Wi
_{/llyWZ}yx - l//lyW1§ W _Ul//2§ W + l//2x{//lxxy + l//l;’l//l)ocy + WleZxxy

+ 20 Wige TV o, H W W, H WY, WU

3.25
VialWo, 150, W1 U+, 0, + 20,0, + 22Uy, (3:25)

5 +UV e v, W0, + Vo, 00, — Uy, =20y, =20y,
+ l//lyyl//2y + lel//Zyy + 2!//1)6(//2)0) + 21//1)61//15 y + 2’//2)(1//1)02 + 2‘//151//1@1

2
- E( l//zéz y + leVIny + l//lyl//l{:z y + !//Zlexy )_ B(Zl//2x§ + l//1§§ )
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The evolution equation for the amplitude function A(&,7) is determined from the

solvability condition at the third order. Multiplying the right-hand side of (3.25) by ¢/, using

(3.13) and the solutions of the boundary value problems (3.14)-(3.19) we obtain the complex

Ginzburg-Landau equation for the amplitude A(&,7) of the form

%=UA+5
or
where
O‘:—l’ 5:
n

%A

2

—

| Al A,

and the complex coefficients o,,0,, 1, and n are given by

n= T(pf (01, — K2 )y,

o) = % Icof(— K*Up, +2U,0,, +2Ug,, Wy,

6ik’p{?

(0

T n(2) oF
+Zk¢2y qol}y

(0)

(2) >

@

(cg —U)(DZW -

®
+¢;

+(/71(

+00

o, = I(/)l

Y

+ ik3¢1(¢2y +@,,

U
2=
R(P

*(0)

— ik(pl*

*(0)

+ lk ¢1 (¢2 »wy + ¢)2 wy

O

_k2¢1(¢’2y +@,,

(0)

(0

+ 2¢1y(¢2)y + (02yy

ik
- 2}(¢2y ¢ly + ¢§?/)¢ly

o1, — 2ike, 030 + 3ik’p o3
)_ Zk¢1yy (¢2y + ¢2y

(2)

gDZyyy

)+ 2ike,,

*(0)

*(0)

+ 2¢1yy (gDZy + ¢2y

*(0)

@
2y

Zikcg +ikc—3ikU—UE—B

60

*

(2)

(0) *(0)

)

(2)
®;

> (2)

)+ 3k2¢1¢2y -

2u, (2R %1
057

*
(Dl y

) + 2 ¢;.Vy

)+ 2(053

)

(~k?c, —2k?c+3k2U +U,, —ikSU—2ikB)

S

J

(3.26)

(3.27)

(3.28)

(3.29)

dy, (3.30)

dy. (3.31)



The coefficients of the Ginzburg-Landau equation (3.26) can be computed using
formulas (3.27) - (3.31). Note that in order to perform calculations it is necessary to solve the
linear stability problem (3.6) - (3.7), the corresponding adjoint problem (3.21) - (3.22), three
boundary value problems (3.14) - (3.19) and numerically evaluate integrals in (3.27) - (3.31).
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4. SPATIALSTABILITY OF SLIGHTLY CURVED SHALLOW MIXING
LAYERS

4.1 Linear Case

There are two basic approaches for the analysis of linear stability of a base flow in
fluid mechanics: (a) temporal stability analysis and (b) spatial stability analysis [11]. In both
cases the analysis is performed using the method of normal modes: perturbations are assumed

to be proportional to exp(i(ax — f)), where both parameters  and 8 may be complex:

a=a +ia;, =0 +if.

In case (a) the wave number « = ¢, is real while g is complex. For the case of spatial
stability analysis g = g, is real and the wave number « is complex: o =q, +ic;. From a

computational point of view temporal stability analysis is simpler since the corresponding

eigenvalue problem is linear with respect to eigenvalue g. On the other hand, spatial

eigenvalue problem is nonlinear in «. However, spatial growth rates are usually evaluated
experimentally so that spatial stability characteristics should be calculated for a proper
comparison with experimental data.

M. Gaster [32] suggested a transformation which can be used to approximate spatial
growth rates if temporal growth rates are known. However, Gaster’s transformation can be
used only in the vicinity of the marginal stability curve.

A spatial stability problem for the case of slightly curved shallow mixing layers is
solved in this chapter. Spatial growth rates are calculated for different values of the
parameters of the problem. The effect of curvature on the stability of the base flow is
analysed.

Shallow water equations under the rigid-lid assumption in the presence of a small
curvature have the form (1.1) — (1.3) [12], [20], [21], [22] and [27]. Introducing the stream
function (see Chapter 2.1) by the relations (2.1) we can rewrite (1.1) — (1.3) in the form (2.2).
Consider a perturbed solution to (2.2) of the form

w (X, y.1) =wo(y) +epi (X y,0) +.. (4.1)

where y,(y) — the base flow solution,

w, —asmall unsteady perturbation.
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Substituting (4.1) into (2.2) and linearizing the resulting equation in the

neighbourhood of the base flow we obtain (see Chapter 2.1)
Ly, =0, (4.2)
where
Ly =W o +V 0 VoV e TVl ~ Vo Vs
S o + 20w, + 20, )+ oo

2h R

Method of normal modes is used to solve (4.2), that is, the perturbation v, is

represented in the form
v (x,0.1) = () expliCe - A1), (4.3)
where ¢(y) — the amplitude of the normal perturbation.

Since spatial stability analysis is used, assumes that g = g, is the real frequency of the
perturbation and a = «, +i¢; is a complex number.

Substituting (4.3) into (4.2) and denoted U =/, we obtain the following differential

equation

ia?US

: . Vo
9,,(aJ — B—iSU)-isU o, A +(p(az,6’—a3U —alU,, + J: 0 (4.4)

with the boundary conditions

@(+0) =0, (4.5)

b

where § = — the bed-friction number;

b — a characteristic length scale (in this case width of the mixing layer).

Problem (4.4), (4.5) is an eigenvalue problem. Base flow U (y) is said to be linearly
stable if all ; > 0 and unstable if at least one ¢; <0.
As it is mentioned above, the corresponding problem is linear with respect to £ but

nonlinear with respect to « . Hence, the following computational procedure is suggested for
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the solution of the problem. Assuming that both « and g are complex of the
forma =qa, +ic;, p=p, +if,, for each fixed S,a, and S, we calculate ¢; such that g, =0.

This is achieved by solving linear generalized eigenvalue problem and selecting the new

approximation to S using bisection method. Then we change «, (for the fixed value of S)
and repeat the calculation. The region of spatial instability is described by the relation ¢; <O0.

The base flow is selected in the form
1
U(y)=§(1+tanh y). (4.6)

The first set of calculations is performed for the case without bottom friction (S =0).
The growth rates — ¢, versus g, are shown in Fig.4.1. It follows from Fig. 4.1 that curvature

has a stabilizing influence on the flow (the growth rates decrease as the curvature increases).

0.15 0.25 0.3 0.35

B,

Fig. 4.1. Growth rates — «, versus g, for three values of %: 0; 0.025 and 0.05

(from top to bottom).
The growth rates — ¢, versus g, are shown in Fig. 4.2. As can be seen from Fig. 4.2,

the increase of the values of S also leads to more stable flow — the growth rates decrease as

the parameter S grows.
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.

Fig. 4.2. Growth rates — ¢; versus g, for three values of S=0; 0.05and 0.1
(from top to bottom).

It is shown that both the bottom friction and flow curvature have a stabilizing
influence on the flow.

Following M. Gaster [32] we denote by (T) and (Sp) the solutions to (4.4), (4.5)
corresponding to temporal and spatial problems, respectively. It is shown in [32] that near the

marginal stability curve:

a,(T)=a,(Sp), A(T)=p.(sp), @:(Sp)= —% ,
B.(T)
where  ¢(T)= (T)

It follows from the Gaster’s transformation that on the stability boundary either spatial
or temporal stability analyses can be used since in this case o;(Sp)=4(T)=0. If the
objective of the analysis is to construct a marginal stability curve then it is recommended to
use temporal stability analysis (which is a simpler method from a computational point of view
than spatial stability analysis). However, the use of the Gaster’s transformation away from the
marginal stability curve can result in relatively large errors. We have computed temporal and
spatial growth rates for the case S = 0.05, B =0 and 1/R = 0. The relative percentage errors &

in using Gaster’s transformation are shown in the Table 4.1.
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Table 4.1: Relative Errors in Using
Gaster’s Transformation.

a, 5(%)
0.1 11.6
0.2 15.4
0.3 16.3
0.4 15.0
0.5 12.7

It is seen from Table 4.1 that errors in using Gaster’s transformation for the calculation

of growth rates away from the marginal stability curve can be quite large.

4.2  Weakly Nonlinear Case

In this Chapter we describe the second approach which can be used in order to derive
an amplitude evolution equation under the assumption that the base flow is not parallel but
slightly changes downstream.

Consider the system of shallow water equations of the form (1.1) — (1.3). Let
w(X,y,t) be the stream function of the flow. The velocity components can be written in the
form (2.1). Using (2.1) and eliminating the pressure from (1.1.) - (1.3) the system of shallow

water equations reduces to the following equation for the stream function

2 c
Ay), +y, (Ay) —y (Ay), + vV, +2—;1Aw,/1//f +y?

(4.7)

Cs 2 2
+———=W Y, T2y, ty )+ BAy =0.
2h l//)f-l-w)% yryy J xy

Assume that A is the wave length of a perturbation and | is the length scale of the
longitudinal variation of the base flow. In shallow mixing layers (see [64], [65]) the following
condition is usually satisfied: A <<1. Thus, a small parameter ¢ can be defined as follows:
g=A/l. Following [36] we introduce a slow longitudinal coordinate X by the relation

X =e&x. The base flow velocity components are U(y, X) and &V (y, X), respectively.
The stream function w(X,y,t) is represented as the sum of the basic part y,(y, X)

and fluctuating part y'(X, y,t):

w (%, Y,0) =y (Y, X) +y' (X y,1) (4.8)
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where X =&x —a slowly varying coordinate;

¢ — the small dimensionless parameter that characterizes the non-parallelism

of the base flow;

w,(y, X) —the stream function of the base flow;

w'(x,y,t) —a perturbation.

. oy oy,
In addition, U (y, X)=—"-2 and V(y, X)=-——-2.
(y, X) & (y, X) X

Using (4.8) the derivatives of y with respect to x, y and t we get in the form
(linearizing equation the effect of the perturbation ' and ¢ is small, therefore the quadratic or

higher terms of the ' and &€ may be ignored):

oy(xyt) O, . oV :—v5+%:yx
X oX X OX X

Oy (Y1) _ oy, Oy, oy _

74
oy a oy o 7
2. 2 3 3
W—>Q+al’g ww—>826U2+62W _)621//
oy oy oX ox‘oy  ox°oy
ou oy oU o’y
Y > e+ —— Wiy & + 5
OX  oxoy OXoy  oxoy
N oy oy U oy
Vi D S o ¥ e Vi o T o
5 OV 83l//' 831//' 821//' oU 821//'
— —& + = —t+—
Yo 2 a8 T o8 Ay =y +y, = ol o + oy
2. 2. 2. 2.
R B e
ay ay t ay t
o’y oU o’y
A = + = + - +& +
( l//)x (l//xx ‘//yy)x lr//xxx l//yyx ax:s 8X8y axayz
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y/§+y/§—>—2gva—‘”+uz+2ua—‘”
OX oy

1 3 2 3

v (Ay), > U+al// 61/3+€6U+6l//2

! oy \ ox 0X0y  Ox0Oy
3 2 3 2 1
81/;U+€6UU+81//2U+88U81//
ox o0Xoy Ox0Oy 0X0oy Oy

' 3 2 3
z//x(Aw)ye(—gV+aWj(al// +6U+a'/g}—>

ox \ox’oy oy oy
3 2
_gVazz// _SV(?(Z] Vaws o%U oy’
ox“0y oy oy oy? ox
2.1 2. 1
/R4 U+6w 6_U 6 —)gUa—U+U—aw+ga—V/a—U
Y oy 6X Gxéy oX Ox0Oy oy 0X

o'\ oU o'
+2 + —>|U?+2U +
Vv, +2r ., iy, [ o ][ o o ]

2. 1 1 2.
+2(—5V+al//j gUa—U+U—aW +58—W8—U +(—25 8_1//} az/g -
ox oX oxoy oy oX ox )\ oOx
2 2.1
2 0U 2U6U8t// Uzay/ 2VU8W+2U6U81//
oy oy oy oy* ox0oy 0X Ox

U

Using function Maclaurin series v1+ X = 1+§ o

68



Oy U, ;W' &V oy’ oU  oU oy
o’ oy o U ox oy 0oy Oy

VW ¥ 20 Wy TV
N
2 2. 1
SUN W YOV oy OV 0, OV
oy oy oy oy oxoy X ox

LV AUy oy
U oy ox oy oy

Substituting all this expressions into (4.7) we obtain:

(azw'+azw'] (831// UielU 0, 0U al//']

ox® oy’ o’ 0Xoy oxoy® o0Xoy oy
3 2
__gVa;// _8V8l2] V@yg o*U oy
ox“oy oy o oy® ox
2( U o, %a_UJ

U (4.9)

&
oX Ox0y oy oX
2.1
oy LU O eV oy'au | aanj

2n\ 7 o’ oy o* U ox oy Oy oy

2 ' 2 1
v UV OV ey OV s
C oy oy 0oy oy’ axay oy' oy
+— +B| —+—|=0.
2|, OU Oy oV 0U By’ U oy’ ooy

oX ox U 0dy ox 0Oy Oy

Simplifying the expression (4.9), grouping the terms and denoting the primes, we get:
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g(azw +82WJ+U 0 [821// . azwj_aw oU

ot\ ox*  oy® ox\ ox* o ox oy°
2 2 2 2
+ U 81/2/+281/2/ +28U61,// +B _81,/2/+81,/2/
2h ox oy oy Oy ox oy

2 2 2
o°U 8_1//+V8(81//+81//j

voxX oy ovl o 92

2 U
+el + - 28_U6_1//_2V oy +—yVa—l// =0
2h\ 0X ox ovox U  0Ox
L 20U 0w
R 0X oy (4.10)

Using the WKBJ approximation (see [36]) we represent the stream function in the

form

(o n) = (3. X) exp(z‘(‘g XY rjj , (4.11)
&

where ¢(y, X) —a slow-varying amplitude function;

o(x)
&

— a fast-varying phase function.

The amplitude function ¢(y, X) is expanded in a power series of the form

oy, X) =@ (Y, X) + e, (y, X) +... (4.12)

Substituting (4.11) and (4.12) into (4.10) we obtain the following equation at the

leading order:

Lo =0, (4.13)
where
" 2 ! 1 lk
Loy=¢'"-k*py———@,+—-Up'+B 2]
U-= U-=
k k (4.14)
in 2 " 1 1
——— |\~ Uk‘p, + 2Up,"'+2U .
Zh(kU— w)( 2] 2] (2] )

Here primes denote the derivatives with respect to y and 6, =k. Using equation

(4.12) with zero boundary conditions at oo we obtain linear stability problem where X
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appears as the parameter. The corresponding eigenfunction of the linear stability problem,
@ (y, X), is represented in the form

where A(X) —slowly varying amplitude;

d(y, X) —anormalized eigenfunction.

At the next order the following equation is obtained:

Loy, =F, (4.16)
where

2wk® — 3Uk*D + UD"—DdU ™"
= kU—a)d_X 2U iUKD

-——+c¢, p + 2ikBD

RO'
oD

dk

oX dXx

2wk—+a>cb——3Uk28iD

ox

dk op" oD

—u"

- 3Uk—®+U
dX

+ ! A +8U CD'—Zgag
kU — o oX R 00X

oX oX

+V(@m—k2D)

2 2 22 4 2ik Y @ 1 1K U — 2ik v
ox ox ax

+ B(Zikag +id ﬁ)
oX ax

Equation (4.16) has a solution if and only if the right-hand side F is orthogonal to all

eigenfunctions @ of the corresponding adjoint problem:

j Fddy =0. (4.17)

Using (4.16) and (4.17) we obtain the following equation for unknown amplitude
A(X):

M(X)g—Q+ N(X)A=0, (4.18)

where
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+w2a)kd)—3Uk2®+Ud)"—d)U"—2Ud)'+c}ziUkCD+ 2ikBD _

M(X)=i j kU_wR ddy, (4.19)
N(X) =i | b® (4.20)
kU -o
and
D =20k 22+ oo K _ 302 0P _gp I gy O
o X ox dx ox
gy VO (g ko) (4.21)
oX oX RoX
c—f(inkai)+2ika—UcD+iﬁU®—2iqu>'j+B[zikaﬁnﬁq)j
2h ox oxdx ox ldx

As a result, the fluctuating part of the stream function has the form

w(x, v,1) ~ A(X)D(y, X) xexp({%?k()()d)(—a)t}} (4.22)

Formula (4.22) takes into account (in asymptotic form) slow longitudinal variation of

the base flow. It is shown in [8] that in a similar asymptotic formula the growth rate and phase

speed of a perturbation depend not only on the choice of flow quantities but also on the

location of the point (x,y), where these quantities are calculated. This fact has to be taken

into account for a proper comparison of (4.22) with experimental data.

A few important conclusions can be drawn from the asymptotic analysis (see [8]):

1. Each multiplier on the right-hand side of (4.22) contains information related to both

amplitude and phase of the perturbation.

2. The selection of the perturbed quantities plays an important role in the calculation of the

growth rate and phase speed of the perturbation.

3. The growth rate and the phase speed of the perturbation depend not only on the perturbed

quantity (velocity component or pressure), but also on the location of the downstream

station where the quantities are calculated.

Hence, a meaningful comparison of the weakly nonlinear model (4.18) can be made

only if a particular quantity of interest Q is selected (for example, longitudinal velocity

component or pressure). In this case (see [8]) a local wave number &, can be defined by the

formula
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k(5 ) == InO(x, y) (4.23)
Oox

wherek, =k, +ik;.
The values of &, and k; are interpreted as the local phase speed and local spatial

growth rate, respectively. Thus, in order to compare weakly nonlinear model (4.18) with
experimental data the following steps should be performed:

- select a flow quantity Q;
- measure the quantity Q at some point (X, Y) ;

- compute the right-hand side of (4.23) at the same point (X, Y) .

In summary, weakly nonlinear model (4.18) can be validated if detailed experimental

data or numerical results of the solution of nonlinear shallow water equations are available.
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5. STABILITY OF SHALLOW MIXING LAYERSWITH VARIABLE
FRICTION

5.1 Linear Case

Linear and weakly nonlinear stability problem for the case where the friction
coefficient is varied in the transverse direction by an arbitrary differentiable shape function
depending on transverse coordinate is analysed in this chapter.

Consider the system of shallow water equations under the rigid-lid assumption
(1.1) - (1.3) [18], [19], [23] and [29]. The dependence of the friction coefficient ¢,(y) on the

transverse coordinate y is assumed to be of the form

() =cr 7y (v), (5.1)
where y(y) - arbitrary differentiable “shape” function.

Introducing the stream function y by the relations (2.1) and eliminating the pressure

from (1.1)-(1.3) we obtain (see Chapter 2.1):

C.
Ay), +v,(Ay), —v. (Ay), + %At//\/wf +y!

(5.2)

() 2 ) G, (») > ;
+ _Zh > 2 (l//yl//yy + ZU/Y‘//)V/W + l//xlr//xx) + Zh l//y lr//x + l//y — O,
Wiy V

where ¢, (») =c¢;,7'(») - the derivative of ¢, (y) with respectto y.
Consider a perturbed solution to (5.2) of the form

vV =0 (D) + ey (6 V) + £, (YD + (X Y )+ (B.3)
where U (y) =, (y) - the base flow solution.

Substituting (5.3) into (5.2) and linearizing the resulting equation in the
neighbourhood of the base flow U =U (y) we obtain

Ly, =0, (54)

where
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Lll// = l//,\:xt + l//yyt + WOyl//)ocx + W(;yl//)yx - WOyyy‘//x
C,

f,

C,
+ _f(l//Oyl//xx + ZWQW‘//_V + 2‘//Oyl//){v )+ h

2h I//Oyl//y'

Using the method of normal modes we represent the function i, in the form

v, (x, 3,2) = p(y) expli(ax - ft)), (5.5)

where ¢(y) - the amplitude of the normal perturbation;
a - the complex wave number of the form o = ¢, +ic;;

p=p, -real (spatial stability analysis).

Substituting (5.5) into (5.4) and denoted U =y, we obtain the following differential

equation
0, (U - B~ i)8U)=i)8U,p, ~iy'SUp,
ior? 5.6
+§0(a2ﬂ—a3U—aUW+la ;J}/SJ=0, (6)
¢ b -
where § = — - the bed-friction number;

b - the half-width of the mixing layer.
The boundary conditions are

@(10) =0. (5.7)
The following profiles of the base flow velocity U(y) and shape function y(y) are

used to compute growth rates of unstable perturbations:

ﬂw=%a+mmy) (5.8)

U(y) :%(1—tanh y). (5.9)

The choice of the shape function y(y) in (5.9) is based on the following. First, with a

stronger resistance force the base flow velocity becomes smaller so that (5.8) and (5.9) are

consistent. Second, we would like to remove discontinuity in the friction force used in [66]
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and consider more realistic case of a continuous resistance which is changing with respect to

the transverse coordinate.
Fig. 5.1 plots spatial growth rates for the unstable mode for three value of the

parameter S: 0.05, 0.10 and 0.15 (from top to bottom). It is seen from the figure that with

smaller S the growth rate is larger. This is understandable since the parameter S is

proportional to the friction coefficient ¢, ¢ .

0.2

0.175

0.15

0.125
%1 0.2 0.3 &

0.075

B

Fig. 5.1. Growth rates for the three values of S: 0.05, 0.10 and 0.15
(from top to bottom) for the shape function given by (5.12).

In order to see the effect of varying friction more clearly we plot in Fig. 5.2 growth
rates for the most unstable mode for the same three values of S, namely, 0.05, 0.10 and 0.15

(from top to bottom) under the assumption that y(y)=21 (that is, for the case of constant

friction coefficient).

-q,
0.175
0.15
0.125
0.1
0.075
0.05
0.025

0.1 0.2 0.3 0.4 ﬂr

Fig. 5.2. Growth rates for the three values of S: 0.05,0.10 and 0.15
(from top to bottom) for constant friction coefficient.
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It is seen from Fig. 5.2 that the increase in S has a stabilizing influence on the flow

(growth rates are getting smaller as S increases).

0.15
0.1

0.05

Fig. 5.3. Growth rates for the case S=0.1
(variable friction — top curve, constant friction — bottom curve).

However, comparing Figs. 5.1 and 5.2 the overall growth rates for the case of non-
uniform friction are larger than for the case of uniform friction. This fact is clearly seen from
Fig. 5.3 where growth rates for S =0.1 are plotted for the case of variable friction (top curve)
and constant friction (bottom curve).

In the previous example, we considered the case of a symmetric profile, however,
experimental data [66] showed that the base flow velocity profile is asymmetric with respect
to the transverse coordinate. One example of such a flow is the flow in open channel with
vegetation in floodplains [66]. The two-layer structure of the base flow is identified in [66]. A
boundary-layer type of flow is observed in the outer layer (that is, in the main channel) and is
characterized by relatively small velocity gradients. On the other hand, rather large velocity
gradients are present in the inner layer due to the presence of vegetation in floodplains.

Two-parameter profiles of the base flow velocity U(y) are used to compute growth

rates of unstable perturbations:

l+rtanhy, y<O

Uly)= 1+%tanh o, y>0 (5.10)
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Here r is the velocity ratio, and & is the “shape” parameter which reflects the two-

layer structure described in [66]. Note also that the function U(y) and its first and second
derivatives are continuous at y =0.

Following [66] we assume that the drag force has the form

1/2p(Ca + %f)uf, y<0

D= (5.11)

lIZp%UZZ, y>0

where p - the density of the fluid;
C, -the mean drag coefficient;

a - the average solid frontal area per unit volume in the plane perpendicular to
the flow [66].

The drag differential between the layer with vegetation and the main channel is

described by a dimensionless parameter

Cpa

. Cpa (5.12)
Cpa+2¢1h

/4

In addition, the total resistance can be measured by the generalized bed-friction

number

S = (@ﬁﬂb , (5.13)

where b - the width of the shear layer.

Using the linear stability problem (2.9) - (2.10) for R = « we rewrite equation (2.9) in

the form
U 2
(c-U)g, + U, +k*U —0))p :%(% +G—<”y—k7‘”) (5.14)
where
1+y, y<O
H(y)=y L, y=0 (5.15)
1_7/1 y>0
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This eigenvalue problem has complex eigenvalues of the form ¢ =c¢, +ic,. Flow (5.11)
Is said to be linearly stable if ¢, <0, and unstable if ¢, >0. Problem is solved numerically by

means of a collocation method based on Chebyshev polynomials (see Chapter 2.2). Software

package IMSL is used to solve this problem. In order to avoid discontinuity at y =0 the
values of H are replaced by a hyperbolic tangent function of the form tanh 8y with large &

values.
In order to compare the results obtained for asymmetric velocity profile (5.10) with

the symmetric case we used the following symmetric velocity profile

rr (r r
U(y)=1-—+—+| -+——= |tanhy. 5.16
) 2+25+(2+25J amy (.18)

Both profiles (5.10) and (5.16) have the same asymptotes as y — +o. The graphs of
the base flow velocity profiles (5.10) and (5.16) have shown in Figs. 5.4 and 5.5 for two

values of & .

Fig. 5.4. Base flow velocity profiles calculated by means of (5.10) and (5.16)
(top and bottom curves, respectively) for the case y=0.8, 6=0.8.

U

Fig. 5.5. Base flow velocity profiles calculated by means of (5.10) and (5.16)
(top and bottom curves, respectively) for the case y=0.8, 6 =0.6.
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The role of the parameter & is clearly seen from Figs. 5.4 and 5.5: for smaller values

of & the horizontal asymptote is reached at larger values of y if the base flow velocity
profile is asymmetric with respect to the transverse coordinate vy .
Stability curves in the (k,S) plane for different values of the parameters of problem

(5.18), (5.14) are shown in Figs. 5.6 - 5.8. Marginal stability curves are shown for the
symmetric case (base flow of the form (5.16), solid curve) and asymmetric case (base flow of
the form (5.10), dashed curve).

Fig. 5.6 plots the marginal stability curves for the case y=0.8, 6 =0.8. As can be

seen from Fig. 5.6, asymmetry of the base flow velocity distribution results in more stable

flow (the flow is stable above the curves in Figs. 5.6 - 5.8 and unstable below the curves).

Fig. 5.6. Marginal stability curves for the case y=0.8, 6 =0.8.

The stabilizing influence of asymmetry of the base flow is clearly seen also in Figs.
5.7 and 5.8. The asymmetric flow becomes more stable since the critical value of the

parameter S becomes smaller. In addition, the range of unstable values of k also decreases.

0.14
0.12

0.1

0.06

0.04

0.02

Fig. 5.7. Marginal stability curves for the case ¥ =0.8, 6 =0.6.
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0.16

0.14

0.12

0.1

.08

.06

.04

o o O o

.02

Fig. 5.8. Marginal stability curves for the case » =0.8, 6 =0.4.

Numerical calculations showed stabilizing influence of asymmetry of the base flow
profiles: both critical values of the stability parameter and the range of unstable wave

numbers decrease as the asymmetry becomes more pronounced.

5.2 Weakly Nonlinear Case

Linear stability analysis of shallow mixing layers is performed in the previous section.
It is assumed that the friction coefficient is not constant but varies in the transverse direction.
It is seen from the comparison of Figs. 5.1 and 5.2 that non-uniform friction (presence of
vegetated layers in the flow) results in larger growth rates than the case of uniform friction.
The next question to answer is how this fact affects development of instability above the
threshold. It is known from the previous studies on shallow water flows [30], [34], [46], that
weakly nonlinear models can provide some insight into the development of instability in the
case where the bed-friction number S is slightly smaller than the critical value (that is, the
flow is linearly unstable but the growth rate of the most unstable mode is very small). Using
the method of multiple scales an amplitude evolution equation is obtained following the
procedure described in [62].

Consider the system of shallow water equations under the rigid-lid assumption (1.1)-

(1.3). Introducing the stream function y by the relations (2.1), and eliminating the pressure

from (1.1) - (1.3), we obtain equation (5.2). Next is the derivation of the equations of the
second and third approximations, as in Chapter 2.2. Then only one new term we must add

compared with equation (2.6):
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vy + 2ey,, 4,
Gt G,
Ewy\/wf +yl = >t & (2po, v, + 1207 + 4yt — o)
+ 83(wlxwzx W Wor 20, W, + 20, W, — 2!/foyt//1y)

Introducing all expressions into (5.2) we obtain the following equation:

Vora 1€ (‘//1yy§ “Wie

3
+&| Y, T 2‘//2x.§z Wi,
+ 2‘//1)0,Z t + ‘//Zyyt

)J l//3xxt + l/ISJyt + l/jlxxr
—C, (V/zxxg + 2‘//1x§§ + szg)

e+, )+ 52(

+ g(lr//Obeooc TWo Wi — WleoWy)
o 2| VoV W oW VLW VLW W0,V a0
TWo Wiy VWi VWi ~VaWoyy —VicWoun

Vo Wa T+ 3W0yl//2xx§ + 3‘/’0#’1@5 TV Vo T 3W1yy/lxx§ TV, Vi
TYo, Wi TV Vo T W0, Wapn T W Wie TV, Woe yy Wiy
ViV ~ViWory — 201V 1 ~ ViV oy — VoW1 ~VaWoy,
ViV VW oy

+&

(5.17)

2!//0)1!//0)3)
+ 5(W1xx'//oy + 2WOyley + ZWoyV/1yy)
L 2| Ve +WouWo, + 200 Wo, + 200, W5,
+ Zl//lyyl//ly - 2l//0yl//0}y + 2l//0yl//2yy + 2l/llxl//lxy

+— 3 2
2h y/lxxl//Zy + l/;lml/llx +
WOy

+&3 + WieWo, + 201, Wa, —ViaWo, + 205, W1, — 200, W4,
=2y Wy, 2o 20 W + 200
20000 205 W T W W, + 20 W,

VoW1, + 2l//1x§l//1y + 2W0yl/l2x§

+Cf_y Wgy + Zgwo_vl//ly + 82(2w0yw2y +1/ 2'//].2)6 + +l//21y _l/jzo)’) . o
2h | + 53<V/1x‘//2x YL W 205V, + 20 W, — 2‘//0y‘//1y>

Collecting the terms of order ¢, £°, &° we obtain the following expressions:
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l//lx.xt + l//lyyt + l/IOyl//lx’ax + l/IOyl//lyyx - l//lxl//()mf
: ‘., (5.18)
+ ﬂ(‘//lxxWOy + 21//0yylr//ly + Zl//Oyl//lW )+ TWOy!//ly = O )

Vo —CoWie T 2Wiee i Y Wap = CWipe Y WoWore W0, Wine WL,V

TV LV TV, Vo TWoWie y VWiV ~ VWi ~ Voo ~WieWoyy
C_f(l//lxxl//ly +¥. Vo, 2W1x§‘//0y TWo, W, t Zl//lyyl/lly + l//le//oyJ (5.19)

+
2h - I//Oyl//Oyy + l/IZyWOyy + WOyl/IZ}y + 2‘//1xl//lxy - WOyWOyy
G,

tor (@wo,ws, +11 202 +y —y2,)=0.

Vi ~CoVWone TWinr + 2‘//2x§t - chl//lx.§§ TV TVWap —CoWoye TV,

WolWare T WoWore W0, Wier T WL,V ou T3,V 10 TV, W1
TV, Wi TWL,W o0 TWoWape TV LWy T W0 W o VoW ViV
- l//lxl//2xxy - 2‘//1xW1xy.§ - l//lxl/IZW - ‘//2x‘//1w - l//3xl//0yyy - l//lgl//lyyy - W2§l//0yyy

3 2
WinWs, + % FW oWy + 20 W, + 20 Vo + WiV, (5.20)

Oy
C.
+ L + 2l/jl}yl//2y - l/llxxl//Oy + 2(//2)0/!//1}2 - ZV/Oyyv/ly - Zl/IOyl/llyy + Zvllxl//ny

2h
+ 2‘//1x‘//1§ yt 2l//2xl//lxy + 2‘//15‘//1xy + 2[//3Wl//0y T W3 Vo, T 2‘//3y‘//oyy

cr
" i((/lleZX YL + 2o W, 20, 2W0yW1y): 0.

Let

L(D = qoxxt + (Dyyt + @Oy(oxxx + ¢Oy¢yyx - (DOyyy(Dx
C

C. f,
+ ﬁ(gooygoxx + 2<00yy¢y + 2§00y§0yy )+ Tgoo))qoy

then
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Note, then U =/, we obtain the following equation:

View T Wi T Uy, + Ul//bw - le//lx

¢ ¢, (5.21)
+ E(U%’“ +2U y,, + 2Uz//1yy)+ TUl/lly =0.

Collecting the terms of order ¢*we obtain the following equation for the function v, :

L l//Z = Cg (l//l)of + l//l}yg) - 2l//lx§ ¢ - 3Ul//1xx§ - l//lyl//lm
- l//lyl//lyyx - Ul//lé W + l//lxl//lxxy + l//lxl//l)yy + Uyy'//lf

_ 5

2h

(Wlxx‘/lly + 2Ul//1x§ + Zwlyyl)”ly - 2UUy + zl/llxl/jlxy) (522)

Note that the operator L on the left-hand side of (5.22) is the same as in (5.21) and it
will be the same for all orders of ¢.

First we solve linear stability problem - the solution of the equation (5.21) will be
sought in the form (2.5).

Substituting derivatives into the equation and simplifying we obtain:

(Uk —ck —i78U ), "-i(58U, + 7,5U oy +(k’c kU —kU , + ikzy%U)gol =0(5.23)

The boundary conditions are
@,(20) =0. (5.24)

Details of the numerical solution of (5.23), (5.24) can be found in Section 2.1. We can
find the critical values of the S., &, and c,(stability parameter, wave number and wave
speed, respectively).

Assume now y, in the form (2.22).

Next, we consider the solution of (5.22). Substitute the derivatives in the right-hand

side of the equation and simplify:
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c
Soovu, + Lyt
2h 7 2h
lk¢ly¢;yy - ik¢*1yg01yy + +Zk¢l¢fyyy - ik¢*1¢lm
+AA"| + Zh —Lk? ¢1¢1y + 22 k2¢1 21 2h 2¢1y¢1” 2h 2¢1y¢1yy
Crope « Croo2 €, .« S .
- 2_/’1 2k 2% oh 2k ¢1y¢1 oh . o — E 2(P1y(P1y
_ cgkzgol +c,o, - Cgkz(pl* +c,p,
—2k’co, +3Uk’ g, —2k’ce; +3Uk’p;
ik(x—ct) * —ik(x—ct) * *
- ;—fh 2Uikg, + % 2Uikg;
- ikcolyqolyy + ikqol(plw - ikqofycofw —ikep; cofm
2 2ik(x—c ) 2 *2 _2ik(x—ci ) 2
+ A € t 2h 3k ¢l¢1y 2]’1 Zwlywl}y + A € ' 2]’[ 3k (pl qoly 2h 2(p1y(01yy
+ 2 0Bk 4 S 0Bkt = S
2n Tt on ™t 2h Yoon ™t

Terms proportional to AA™:

lk(wl y¢]:y - ¢fy¢1 W + ¢1¢;y)y - gof ¢l Wy )

C
2/’1 (kz(/’l(/’ly +k° (01 @, + 2¢1y(/’1w + 2(/’1y(/’1w) 2;1 ((Pl(/’l + 2¢1y¢1y)

Terms proportional to 4, giklat).

(o= Uka, (-t

—2k%c+3Uk* +U,, — - 2Uik |p
2h !

Terms proportional to 42 . p2iklx=ct)

Cs
ik(ﬂ(%w - ¢ly¢lyy) oh (2(01y¢’1yy 3k ¢’1¢1y) 22 (O-Skz(/’lz + (012)

Thus, the function y, should contain three groups of terms. More precisely we seek

the solution to (5.22) in the form (2.41).
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Substituting the derivatives in the left-hand side of the equation we obtain:

ik°c o) — ike,pl!) — KUY +ikUpl!) —ikU ol

Ageik(x—ct)
LUkl -2, )~ 20g8) )+ Ul

8ik’cp?) - 2ikeel) —8ikUpl) + 2ikUpl?) - 2ikU o)
+ A2 2ik(x—ct) c
C_f(4k2U¢£2) _ 2Uy(0(2) _ 2U§0(2) )+ %Ugo(Z)

- 2 2 2
2h y W y

- ik"’cgqoé”* T ikcgqoﬁﬁli kU@ - ikU(ﬂéﬁZ‘ —ikU,, ¢}
+ A*iefik(x—ct) C
C f, *

—~8ik’cp?" + 2ikeglt) —8ik°Upl?” - 2ikUp(?"

»w
y 2)y

i A*zefzik(xfct) + 2lkU ¢72 (2 _ o (4k2U§0§2)* _ 2Uy¢)£2)* _ 2U¢(2)*)

S, o0 (o)
+ 7 U(”Zy

* C * j* cfy %
+ A4 (ﬁ(ﬂf Aol + ol )+ 20000, + ol )+ —- ULl + L)
Terms proportional to AA":

512, () + 7 b 20 () + 0l ) U (ol 4 01)

Terms proportional to A4, -gikla).

ik’c, ol —ike @) —ik’UpY) +ikUg) —ikU ol

g 2)y 2y
2y 2y

c
— ;—fh (Ukz(p§1) - 2Uygo(l) - 2U(p§1))y )+ %U(p(l)

Terms proportional to 4? - e?*t~")

Bik*cpl?) - 2ikeelt) —8ikUpl) + 2ikUp?) — 2ikU

2y 2y

2y 2y 2y

C.
- g—fh (ak2Upl? - 2U o2 — 2Up?) )+ %Ugo(z)
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Collecting the terms proportional to AA"yields in the left-hand side of the equation

b o _

(0)
n ?; )

(5.22) and in the right-hand side we obtain the equation for go§°) (using: S = =@,

2/5(U, 00 + U )+ 27, SU = ik(p,, 05, — 05,01, + 00 — DL P11 )

75 * * * * 7/ S * *
- ?(k2¢1¢1y + kz@l O, t+ 2¢1y¢1yy + 2¢1y§01yy )_ yT((”l@l + 2¢’1y¢’1y)

(5.25)

The boundary conditions have the form
(0) _
@, (1) = 0. (5.26)

Similarly, collecting the terms proportional to e*“) on the left-hand and right-hand

sides of equation (5.22) we obtain the equation for the function ¢{":

ik’c —ik’U — ikU
iU — ike+ 18U )oY +(8U. + 7 SU Y + o
( ) 2yy ( y ¥ 2) _ %Ukz 2 (5.27)

—(c, ~U)p,,, +(~c k* —2k?c +3UK* + U, —isSUk ),
03 (+0) = 0. (5.28)

The adjoint operator * and adjoint eigenfunction ¢ are defined by the relation

[of Lody=[o- Loy, (5.29)

—00 —00

The left-hand side of (5.29) is equal to zero since Lg, =0. Thus, the adjoint equation
is defined by the formula

Lo} =0. (5.30)

Integrating the left-hand side of (5.29) and using the boundary conditions (5.24) we

obtain:

00

. i i . .
I ((U - VSUJ% —;(y/ySU + 55U, ), +[k2c —KU-U, + ku§j¢1jdy

—00

(el o toorsl],
=[a dy= [, Lo}dy.

+ (pf(kzc kU + ikU%)
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We obtain the adjoint operator in the form

a _.a a l a l
Lo = (olw(U - ;/SU—} + gz)ly(ZUy ~2(sU, + nyU)j
k k
" (5.31)
+ (pf(kzc — kU + %;/SUJ =0.
The boundary conditions are

@; (+0) =0. (5.32)

The adjoint eigenfunction ¢ is the solution of the problem (5.31), (5.32).
Applying the solvability condition to (5.27) we obtain

[0i((c, ~ Vg, +(~Koc, —2k?c +3k%U +U,, —ikUsS)p, liy =0. (5.33)

Equation (5.33) defines the group velocity:

c, =, (5.34)
n
where
n= [l (g, ~Kp)dy, (5.35)
m= [0} (Up,, +(2k%c ~3K°U ~ U, +ikU)S o, Yty (5.36)

Finally, collecting the terms proportional to e?**~) we obtain:

(2)

@ @ | [Bik’c=8ik’U
(2ikU = 2ike+18Up2) + (58U, + 7,SU Jpl?) +

@,
» —2ikU . —298k*U
U,y — 215 (5.37)
. 7Sk
= ik, — 9,00, )+ g@kzwly ~2¢,0,, )+ yT[? o+ ¢>fj
with the boundary conditions
9 (+o0) = 0. (5.38)
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Solving three boundary value problems (5.25) - (5.26), (5.27 - (5.28) and
(5.37) - (5.38) numerically we obtain the functions ¢\° (y), " (y) and ¢{? (y). The function
v, (the second order correction) is then given by (2.41).

Let us consider the solution at the third order in ¢. Similarly, collecting the terms of

order &° we obtain the following equation for the function v, :

Lys=c,Wons *Vape) Vi =W, H 26¥0s ~Vig Vi
—3UV e =3UWrze =¥, Wi =W Wi = Vo, Wiee — VoW
VL Woape VW, UV, T VWi YV T VY oy

+ 20 Wi TVLW oy F VW, VW, F VU,

2
3y Wi, I
. 2U
- ﬁ + Ungg + 2W1yyW2y + 2‘/’2W'//1y -Uy,, - ZUy‘//ly
—2Uy,, + 20 Vo, + 200, 2,0 200,

ViaWo, t+ VoW1, + Zl//lxgl//ly + 2UV/2x§ (5.39)

C

- i(%x%x Y + 20,0, — 20w, )

Equation (5.39) also has a solution if and only if the right-hand side of (5.39) is
orthogonal to all eigenfunctions ¢ of the corresponding homogeneous adjoint problem.

Applying the solvability condition to (5.39) we obtain:

[oiLy.dy=0=

CoWone ¥ Wope) ~Wiwe =20, + 20 W1 =W, — Ve
—3UW e = 3UW 1L — W1,V = W Wine ~ Vo, Wi

Vo Wi VW VoW, —UW,. | H VoW TV,
YW oy + W Wine TV, VoW, TV, T VLU,

3Wlxxl//12x
2U
c
- i +UW e + 20,05, + 2, 00, Uy, = 2U
=20y, + 20V, + 200, 20, + 20

[ ot Vi, + YW, + 20, + 20, dy =0.

ny

2k

(wlx'//zx WL W+ 20,y —2U wly)
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Comparing (5.40) with (2.60) we see that only the last term is added to (5.40):

C

i (l//lxl//Zx TV Wt 2w2yl//1y - 2UV’1y ) =

A ~keik(x—ct) kA* * —zk r Lt) &
( (21 l (01 _A*égo(l)l.kef[k(xfcz)_A2*¢(2)"2ike72ik(xfct)
A A (050)‘{‘14_/45 §0§0)+A§§0(1)e1k(v ct)
(Awlikeik(x_d)—ikA*¢fe_ik(x_6t) +24A4 q)(Z)eZtk(r ct) +A A q)(O) +AA§*(D§Q)*

cf 1 —ik (x—ci *o* (2)*4—2ik(x—c
o + A 2y () + 24 L g e

y gogl)l-keik(xfct)_'_A2¢£2)2ike2ik(x—ct) J

AA*wg())))+A§¢§];})eik(x—ct)+A2¢£i)92ik(x—ct)
+2 + 447 gogor 4 q)(l)*e—ik(x—ct) ( 4 o, pikleet) | 4 Cﬂfy efik(xfct))
+A2 (pgz)*e —2ik(x—ct)

_ZU(A(DU ik (x— Ct)+A*¢;y —ik (e~ ct))

Using (5.40) we collect the terms proportional to:

A4 - eik(xfct) .

- Wlxxr - leyr = (_ k2¢1 + ¢1W ): _((Dlyy - kzgol) (541)
A . eik(xfct)
.
oW, W, + Uy )= 20y, =
(5.42)
c
52U, ¢, +2Ug,, — Uk, )-—(2Ugp,,)
" 2h 7 > 2h g
ik(x—ct) .
A -e :
C, (‘//m; + ‘//2yy§) - 2‘//2x§ .t ZCgW1x§§ Ve T 3UW2H§ - 3U'//1x§§
c
- U‘//Zg w T v, U, — Z_fh(ZU'//ZXe; +Uy, ):>
(5.43)
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—UpY + Uyygpgl) - ﬁ(ZUik(pgl) + U(pl)
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3 2
C_f{l//lxvcl//Zy + % + l//Zxxl//ly + 2‘//1§l//1y + 2l//lyyl//2y + 2l/l2yyl//ly
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20, Wo 20 W + 20,0+ 20
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We rewrite (5.40) in the form:
I(of (l/llxxr + leyr )dy =

CeWane ¥ Wane) =2, F20W 0 — V.,
= .[ goj_a - 3Ul//2x’c.§ _3UW1X§§ - UW2§ W + l/lzéUW dy

- ;_fh (2U‘/’2xé + Uy )

Ne G,
- fqol j(— 20Uy, =20y, +Ut//m)+52U%y dy

- lr//lyl//Zm - 3W1ylr//lxxrf - WZlexxx - ‘//Zyl//lyyx - lr//lyl//Zyyx - l//ly‘//1§ W
TV Wi TV T WLV o0 T 2’//1xl//1xy§ T W TV W,

ST
) Vialay + =0 TV, + W,
a C.
* .[ Pl +yy, _j + 20, W0, + 205,01, .
F2 Yoy TNV T2, 20,
(5.45)

C

- ﬁ(mxufzx YW+ 20, ,)

91



Using (5.41) - (5.44) equation (5.45) is written in the form of an amplitude evolution

equation for slowly varying amplitude function A(,7) of the form:

nA. = oA+ 0,A, _/“1|A|2 A
or

2
8A:O_A+§8 A

— —u| AP A 5.46
P oc HIA] (5.46)

Equation (5.46) is the complex Ginzburg-Landau equation with complex coefficients

o,0 and u :
o= 29t (5.47)
n
where o =0, +io,, 0=0,+id5, and u=p +iy are complex coefficients which can be

computed using linearized characteristics of the flow.

Coefficients o,,0, w, and n are given by:

o, = I(of(% (— kZng)1 + 2Uy¢’1y + 2U¢1)€v )— 7,SUg,, Ja’y, (5.48)
- (cg -U ély)y
5= [ pb| + (- KPe, — 2K+ 37U + U, ~ ikySU) y, (5.49)
+ (pl(Zikcg + ikc—3ikU — U%j

6ik° 0P, — 2ikep; @50 +3ik’ 0 pf2 +ik’p (@) + ;)
—ikpy, (03 + ) +ikoP gy — ik i)

+ ik (9, + ) ) + ik, 3

a *| * 3k4 *
w==[0] — k2o (0 + ") + 3% 0P - —— gl g, dy, (5.50)
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n= [, —Kp)dy (5.51)

Especially important in this case is the sign of the real part of x (known as the

Landau constant in the literature). The Landau constant had the “wrong sign” in [62] which
means that finite amplitude saturation was not possible and higher order terms (with respect
to A) quickly become important so that (5.46) can be used for a very short time (in other
words, practical application of (5.46) is very limited). In contrast to [62] it is shown in [30],
[34], [46] that for shallow water flows the Landau constant in (5.46) has the “right sign” so
that (5.46) can be used (and was successfully used in [30], [34] [46]) in order to describe
some important features of shallow wake flows.

Experimental data presented in [66] showed that coherent structures exist in shallow
mixing layers adjacent to a porous layer. Since Ginzburg-Landau equation has a rich variety
of solutions depending on the values of the coefficients [1] it would be quite interesting to see
whether predictions based on the Ginzburg-Landau model (5.46) will match experimental

observations.
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6. NUMERICAL RESULTS

In this Chapter we consider numerical aspects of weakly nonlinear analysis performed
in the previous Chapters. One of the fundamental questions to answer is: “When does weakly
nonlinear theory is applicable”? It is clear from the discussion in Chapter 2 (Section 2.3 and
Fig. 2.1) that weakly nonlinear approach can be used in a small neighbourhood of the critical
point. Thus, we can apply the theory and compute the coefficients of the Ginzburg-Landau
equation. However, is there a criterion which can be used to convince us that the Ginzburg-
Landau model can adequately represent the dynamics of a fully nonlinear model at least at the
initial stage of transition period when the base flow becomes linearly unstable? The answer to
this question (at least partially) is given in the paper by Suslov and Paolocci [63]. They
proposed a relatively simple criterion for determination whether the Ginzburg-Landau
equation can be used to analyse the dynamics of a linearly unstable flow. The criterion is as
follows: if growth rates of an unstable perturbation can be well approximated by a parabola in
the whole range of unstable wave numbers then the Ginzburg-Landau equation can be used to
analyse the dynamics of the flow (at least in the beginning of the nonlinear regime).

In order to test this assertion we computed growth rates for the range of unstable wave
numbers for the following values of the parameters of the problem for stability of slightly
curved shallow mixing layers for base flow profile (2.11). The results of calculations are

shown in Fig. 6.1 (s<s,) for ¢i (c=c, +ic;, when ¢; >0). As can be seen from the figures,

the curve representing growth rates and parabolic fit are almost indistinguishable. Thus, we
conclude that the Ginzburg-Landau equation can be successfully used to analyse the dynamics

of the flow above the threshold.

Fig. 6.1. Quadratic approximations of the growth rates for the following values
of the parameters S=0.09, 0.08, 0.07 and 1/R=0.03 (from top to bottom).
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Here we present the results of numerical calculations (Table 6.1) of the coefficients of
the Ginzburg-Landau equation (2.66) using formulas (2.67) - (2.71). The results are shown for
the base flow profile (2.11) (see Fig. 2.1) for the values of 1/R in the range from 0 to 0.04.

Table 6.1. Linear and Weakly Nonlinear Stability Characteristics for
Different Values of 1/R (Chapter 2) and Base Flow Profile (2.11).

1/R | 0.00 0.01 0.02 0.04

k 0.456 0.453 0.449 0.440

S 0.123 0.116 0.108 0.094

c 1.954 1.965 1.977 2.004

o | 0.184-0.016i | 0.173-0.015i | 0.163-0.013i | 0.141—0.009i
u 2.861 + 0.494i | 3.046 +0.539 | 3.244+0.590i | 3.673 +0.720i
cg | 1.927 1.924 1.922 1.914

) 6.487+13.2381 | 6.014+13.757i | 5.472+14.4471 | 4.124+16.524i

We also present here the calculations in a weakly nonlinear regime for the case of the
problem considered in Chapter 5 (the case of non-uniform friction). The following “shape”

profile y(y)is used to model non-uniform friction (see formula (5.1)):

y(y) = ﬂTJrl + ﬂT_l tanh(4y) .

The results of the numerical computations of the linear stability characteristics and the

coefficients of the Ginzburg-Landau equation are shown in Table 6.2 below.

Table 6.2. Linear and Weakly Nonlinear Calculations for f=0.3.

A 0.25 0.5 1.0 1.5

k 0.442 0.437 0.438 0.437

S 0.198 0.205 0.211 0.214

c 1.972 1.985 2.004 2.018

o 0.195-0.487i | 0.195-0.080i | 0.183-0.133i | 0.174-0.173i
u 2.374 +0.690i | 2.151+0.687i | 2.090 +0.516i | 2.092 + 0.262i
Cy 1.956 1.981 2.007 2.018

) 7.077+13.243i | 7.330 +12.434i | 7.403+10.752i | 7.255 + 9.645i

After rescaling [1], the equation (5.46) for the complex amplitude A has a form:
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(6.1)

o))
ki

=A+(1+ Cli)%fé_(l—i_ i)
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~ Pl o ~
T =10,, =& |—=, 4=4 /&exp(—icoo;r),
0, o,
1)

Oj i

“
My

) C, =

S

Some closed form solutions of (6.1) are known in the literature [1], [10]. One of the

simplest solutions is the solution of the form

A= aoeXp(iqg +iwt ) (6.2)

where
ao:\ll_q2 ) wz—CZ—(Cl—CZ)qz_

Stability of (6.2) can be investigated by assuming that [38]

A= (ao +a- exp(ikc;g +A %’)+ a - exp(— ik&~ +A 'f)) exp(iqc:,g +ia)?), (6.3)

where 4 and 4" denote the amplitudes of the small perturbations.
Substituting (6.3) into (6.1) we obtain equation for A. For the case of small k the

stability condition has the form:
1+cc, >0 (6.4)
provided that q satisfies the inequality

1+cc,

2
<
| 2¢;

(6.5)

Condition (6.4) is known as the Benjamin-Feir stability condition. If (6.4) is not
satisfied, than plane wave solutions of the form (6.2) are unstable (and, therefore, cannot be

observed in experiments).
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Numerical solutions of the Ginzburg-Landau equation (6.1) are presented below for
different values of the parameters c,, c, and different initial conditions. The problem is

formulated as follows: find the solution of (6.1) for the given boundary conditions:
=0 (6.6)

and the initial condition:

Al-o= (). (6.7)

Method of lines implemented in Mathematica 5 is used for the numerical solution to
problem (6.1), (6.6), (6.7).
Table 6.3 shows numerical values of the coefficients ¢, and c, for different values

of 4. As can be seen from Table 6.3, condition (6.4) is satisfied for all cases considered.

Table 6.3. Numerical Values of the Coefficients c1 and ¢, of
the Ginzburg-Landau Equation for g=0.3.

B 0.3000 0.3000 0.3000 0.3000
1 0.25 0.5 1.0 15
o)
o= g‘ 1.8713 1.6963 1.4524 1.3294
c, =H L 0.2906 0.3194 0.2469 01250
1+ee, 2.1619 2.0157 1.6993 L4547

The first computation is performed for the case C, = 1.3293 and C,=0.1251. The

values of these parameters are taken from Table 6.3. The function f(g) in (6.7) is assumed to

be a small random noise of order 0.01. The results are shown in Fig. 6.3. Since the parameters
of the problem satisfy (6.4) and (6.5) (in other words, are in the region of stability), the
modulus of the amplitude reaches constant value.
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Fig. 6.3. Plot of the W

The second set of computations corresponds is performed for the case

f(f) = w/l—qze"qg where q = 0.5. The results are shown in Fig. 6.4.

0 Vars
S
AL LIIT

Fig. 6.4. Plot of the W

Finally, we consider the case where the Benjamin - Feir stability condition (6.4) is not

satisfied. The values of the parameters are taken from [46]: C,=-0.799564 and C, =2.189654

(these parameters correspond to weakly nonlinear analysis of wake flows). Random noise of
order 0.01 is used as the initial condition. The results are shown in Figs. 6.5 and 6.6. As can

be seen from the figure, stabilization of the amplitude does not occur in this case.
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These examples illustrate the well-known fact that the Ginzbureg-Landau model is
quite rich in terms of different solutions. Illustrative computations in Figs. 6.3-6.6 show that
both initial conditions and the values of the coefficients are responsible for spatio-temporal
dynamics of the amplitude. The domain of applicability of the Ginzburg-Landau equation has
to be defined. The equation is derived in a small neighbourhood of the critical point.
Comparison of fully nonlinear simulations with predictions based on the Ginzburg-Landau

model is required in order to test the validity of the model. This is left for future research.
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CONCLUSION

The main conclusions from the linear stability analysis are as follows:

- Flow curvature effect is twofold: calculations show that the curvature gives a
destabilizing effect on the unstable curved mixing layer and stabilizing effect on the stable
curved mixing layer.

- Particle loading parameter has a stabilizing influence on the flow.

- Spatial stability analysis has been performed in the Thesis as well. One of the
objectives has been to estimate the accuracy of Gaster’s transformation away from the
marginal stability curve.

- It is shown that the base flow asymmetry has a stabilizing influence on the flow.

- Calculations show that growth rates for the case of non-constant friction are higher
than growth rates for the case of uniform friction.

Two methods of weakly nonlinear theory have been used in the Thesis for the stability
analysis of shallow mixing layers. The first method uses parallel flow assumption. Using the
method of multiple scales, the complex Ginzburg-Landau equation is derived from shallow
water equations for slightly curved shallow water flow mixing layers, for two-component
slightly curved mixing layers, for mixing layers with non-uniform friction. The coefficients of
the equation are expressed in terms of integrals containing linearized characteristics of the
flow.

The second method is based on the assumption that the wave length of perturbation is
much smaller than the length scale of longitudinal evolution of the base flow. Perturbed
stream function at the leading order is decomposed in this case into a slow-varying amplitude
function and a fast-varying phase function. Solvability condition at the second order gives
amplitude equation for the unknown amplitude of the most unstable mode.
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