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Abstract 
 

Linear and weakly nonlinear stability analysis of shallow mixing layers is 
presented in the Doctoral Thesis. The flow is assumed to be slightly curved along 
the longitudinal coordinate. Linear stability is analysed from temporal and spatial 
points of view under the rigid-lid assumption. The friction coefficient varies with 
respect to the transverse coordinate (the case of constant friction coefficient usually 
analysed in the literature is a particular case of the analysis presented in the Thesis). 
The corresponding linear stability problems are solved numerically using pseudo-
spectral collocation method based on Chebyshev polynomials. In addition, the 
problem is generalized for the case of two-component shallow flows under the 
assumption of large Stokes numbers.  

The effect of asymmetry of base flow profile on the stability characteristics 
is analysed. Two approaches to weakly nonlinear stability are presented as well. The 
first approach is based on the parallel flow assumption and can be applied for the 
case where the bed-friction number is slightly smaller than the critical value. Using 
the method of multiple scales, an amplitude evolution equation is derived for the 
most unstable mode. It is shown that for slightly curved shallow mixing layers, 
which contain or do not contain particles, the amplitude equation is the complex 
Ginzburg-Landau equation. The coefficients of the equation are calculated explicitly 
in terms of integrals containing linear stability characteristics of the flow. Stability 
of plane wave solutions of the Ginzburg-Landau equation is analysed. Numerical 
solutions of the Ginzburg-Landau equation are presented for different initial 
conditions.  

The second approach takes into account slow longitudinal variation of the 
base flow. The analysis is based on weakly nonparallel WKBJ approximation.  
A first-order amplitude evolution equation is derived. The solution of the amplitude 
equation is then used to obtain the first-order approximation in the perturbation field.  

Key words: Linear stability, weakly nonlinear theory, method of multiple 
scales, Ginzburg-Landau equation, collocation method. 
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Introduction 
The Structure of the Thesis 

The main goal of the Doctoral Thesis is to develop mathematical models, 
which can be used to analyse linear and weakly nonlinear instability of shallow 
mixing layers for the case of a single-component flow or two-component flow. The 
flow is assumed to be slightly curved along the longitudinal coordinate and the 
friction coefficient is assumed to be a function of the transverse coordinate.  

The Thesis consists of the introduction, 6 chapters and conclusion. The 
volume of the Thesis is 104 pages. It is illustrated by 19 figures. Within the research, 
69 reference sources have been consulted. The Doctoral Thesis has been written in 
English. 

Chapter 1 presents a review of the literature used in the Doctoral Thesis. 
Basic equations used in the research are also described.  

In Chapter 2, the linear stability and weakly nonlinear methods for analysis 
of slightly curved shallow mixing layers are presented in detail. Numerical methods 
used for the solution of stability problems are analysed. 

Chapter 3 is devoted to the analysis of a similar problem for the case of 
slightly curved two-component shallow mixing layers. Linear and weakly nonlinear 
stability analysis is performed under the assumption of large Stokes numbers.  

Chapter 4 is devoted to the spatial stability analysis of slightly curved shallow 
mixing layers.  

In Chapter 5 analyses linear and weakly nonlinear instability of shallow 
mixing layers with variable friction in the transverse direction. 

Chapter 6 is devoted to the numerical analysis of solution of Ginzburg-
Landau equation. 

The Topicality of the Research 

The understanding of the interaction between fast and slow fluid streams in 
shallow mixing layers is important for the analysis of flows at river junctions and for 
design of compound channels. Real channels and rivers are not straight. Thus, the 
effect of curvature on the stability characteristics of shallow mixing layers should 
also be taken into account for proper design and analysis of compound channels. The 
case of non-uniform friction in the transverse direction is important from an 
environmental point of view. The friction coefficient in floodplain is usually higher 
than in the main channel (especially in case of floods). Complex vortex structures 
can accumulate contaminants and residues, thereby adversely affecting the 
environment. Hence, there is a need for a model that describes the shallow flow, as 
well as methods that allow analysing the flow stability and following up the 
development of perturbations. 
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The Objectives of the Doctoral Thesis 
 

1. Analysis of linear and weakly nonlinear stability of slightly curved shallow 
mixing layers. 

2. Investigation of linear and weakly nonlinear stability characteristics of slightly 
curved two-component shallow mixing layers. 

3. Study of spatial stability of slightly curved shallow mixing layers. 
4. Investigation of linear and weakly nonlinear instability of shallow mixing layers 

with variable friction. 
5. Numerical analysis of linear and weakly nonlinear models. 

 
Research Methodology 

 
A base flow with a relatively simple structure is selected. Equations of motion 

are linearized in the neighbourhood of the base flow. The linearized equations are 
solved by the method of normal modes. The corresponding linear stability problems 
are solved numerically using pseudo-spectral collocation method based on 
Chebyshev polynomials.  

Two approaches to weakly nonlinear stability analysis of single and two-
component slightly curved shallow mixing layers are described. The first approach 
is based on the parallel flow assumption. Method of multiple scales is used in order 
to derive an amplitude evolution equation for the most unstable mode. It is shown 
that the amplitude equation is the complex Ginzburg-Landau equation. The second 
method takes into account a slow longitudinal variation of the base flow. The 
analysis is based on weakly nonparallel WKBJ approximation.  

 
Scientific Novelty and Main Results 

 
- Analysis of the asymmetry of the base flow velocity profile with regard to the 

linear stability. 
- Investigation of the effect of flow curvature on the linear and weakly nonlinear 

stability. 
- Linear and weakly nonlinear stability analysis of two-component shallow flows. 
- Analysis of the two approaches to the solution of a linear stability problem:  

- spatial stability analysis; 
- temporal stability analysis. 

- Analysis of the two approaches for weakly nonlinear stability: 
- the base flow does not depend on the longitudinal coordinate; 
- the base flow slightly varies on the longitudinal coordinate. 

- Investigation of the stability of shallow mixing layers with variable friction in a 
linear and weakly nonlinear case. 

- Explicit formulas for the computation of the coefficients of the Ginzburg-
Landau equation are obtained for slightly curved shallow mixing layers, for 
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slightly curved two-phase shallow mixing layers, for shallow mixing layers with 
variable friction. 

- Amplitude equation, describing the evolution of the amplitude of the 
perturbation with respect to the longitudinal coordinate, is derived. 

 
Applications 

 
Understanding stability characteristics and development of instability in 

shallow flows is important for design of compound channels. Since mixing layers 
also occur at river junctions and rivers are not straight, the analysis of the effect of 
curvature should also be taken into account. In some cases, flows can contain heavy 
particles moving with the fluid. Linear and weakly nonlinear analysis of two-
component shallow mixing layers performed in the Thesis explained the effect of 
particle loading parameter on the stability characteristics of the flow under the 
assumption of large Stokes numbers.  

Shallow water equations are nonlinear. Thus, numerical modelling of shallow 
water flows requires considerable computational resources since the number of 
parameters characterising the problem is large. Amplitude evolution equations for 
problems in thermal convection and Taylor-Couette flows are found to be quite 
useful in describing the dynamics of the corresponding flows at the initial stages of 
instability. Amplitude evolution equation in the form of a complex Ginzburg-Landau 
equation is derived in the Thesis from the equations of motion in a weakly nonlinear 
regime for the case of single or two-component slightly curved shallow mixing 
layers where the friction coefficient is constant or non-constant in the transverse 
direction. Since the Ginzburg-Landau equation is quite rich in terms of different 
solutions (depending on the values of the coefficients), in many cases it is used as a 
phenomenological equation for the analysis of spatio-temporal dynamics of complex 
flows.  

The coefficients of the equation are estimated using experimental data, and 
the equation then can be used to model complex phenomena in fluid mechanics. It 
is shown in the Thesis that the coefficients of the Ginzburg-Landau equation can be 
calculated in closed form using linear stability characteristics of the flow. Thus, 
varying the parameters of the problem and re-calculating the coefficients of the 
Ginzburg-Landau equation one can use the equation to analyse spatio-temporal 
dynamics of the flow in a weakly nonlinear regime. 
 
Publications 

 
1. Eglite, I., Kolyshkin, A., and Ghidaoui, M. Weakly nonlinear analysis of 

shallow mixing layers with variable friction. In: Materials of the 11th World 
Congress on Computational mechanics, 6th European Conference on 
Computational Fluid Dynamics, Spain, Barcelona, 20–25 July 2014. Barcelona: 
CIMNE, 2014, pp. 1–2. ISBN 978-84-942844-7-2. 
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2. On the stability of shallow mixing layers with non-uniform friction. The  
10th Latvian Mathematical Conference. The 2nd International Conference on 
High Performance Computing and Mathematical Modelling, Liepaja, Latvia, 
11–12 April 2014.  

3. Spatial stability analysis of shallow mixing layers with variable friction 
coefficient. IASTED Intern. Conference on Modelling, Identification, and 
Control, MIC 2014, Austria, Innsbruck, 17–19 February 2014.  

4. Spatial and temporal instability of slightly-curved particle-laden shallow mixing 
layers. V Intern. Conference on Computational Methods for Coupled Problems 
in Science and Eng., Spain, Ibiza, 17–19 June 2013.  

5. Linear instability of shallow mixing layers with non-constant friction 
coefficient. International Conference on Applied Mathematics and Scientific 
Computing, Croatia, Šibenik, 10–14 June 2013. 

6. Spatial stability analysis of curved shallow mixing layers. 15th International 
Conference on Mathematical Methods, Computational Techniques and 
Intelligent Systems, Cyprus, Limassol, 21–23 March 2013.  

7. Spatial instability of curved shallow mixing layers. 17th Intern. Conf. on 
Mathematical Modelling and Analysis, Estonia, Tallinn, 6–9 June 2012.  

8. Weakly nonlinear methods for stability analysis of slightly curved two-phase 
shallow mixing layers. International Conference on Applied Mathematics and 
Sustainable Development: Special Track within SCET2012, China, Xi'an, 27–
30 May 2012. 

9. Ginzburg-Landau model for curved two-phase shallow mixing layers. ICCAM 
2012: International Conference on Computational and Applied Mathematics, 
Italy, Venice, 11–13 April 2012. 

10. Asymptotic analysis of stability of slightly curved two-phase shallow mixing 
layers. International Conference on Fluid Mechanics and Heat & Mass 
Transfer, Greece, Corfu, 14–16 July 2011.  

11. The effect of flow curvature on linear and weakly nonlinear instability of 
shallow mixing layers. 16th International Conference on Mathematical 
Modelling and Analysis, Latvia, Sigulda, 25–28 May 2011.  

12. The effect of slow variation of base flow profile on the stability of slightly 
curved mixing layers. WASET International Conference. Italy, Venice 27–
29 April 2011.  

13. Linear instability of curved shallow mixing layers. The 6th IASME / WSEAS 
International Conference on Continuum Mechanics (CM'11), United Kingdom, 
Cambridge, 23–25 February 2011.  

14. Spatial instability of asymmetric base flow profiles in shallow water.  
15th International Conference Mathematical Modelling and Analysis, 
Lithuania, Druskininkai, 26–29 May 2010.  

15. The effect of asymmetry of base flow profile on the linear stability of shallow 
mixing layers. 10th WSEAS Intern. Conf. on Wavelet Analysis and Multirate 
Systems, Tunisia, Kantaoui, Sousse, 3–6 May 2010.  
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Presentations at Local Conferences 
 

1. Amplitūdas evolūcijas vienādojums stabilitātes analīzei divu fāžu sekla ūdens 
plūsmām. 9. Latvijas matemātikas konference. Latvia, Jelgava, 30-31 March 
2012. 

2. Sekla ūdens plūsmas stabilitāte gadījumā, ja bāzes plūsmas profils nav 
simetrisks. 8. Latvijas matemātikas konference. Latvia, Valmiera, 9–10 April 
2010.  

 
1. Mathematical Formulation of the Problem  

1.1. Literature Survey 
 
Linear stability theory is widely used in order to analyse the behaviour of 

fluid flows ([9], [11], [49] and [55]). In many engineering applications of fluid 
mechanics, the transverse length scale of the flow is much larger than water depth. 
Such flows are usually referred to as “shallow flows”. Curved shallow mixing layers 
are of a particular interest (flows in compound and composite channels and flows at 
river junctions represent typical examples of shallow mixing layers). Methods of 
analysis of shallow mixing layers include experimental investigation, numerical 
modelling and stability analysis [39]. Experimental investigation of shallow mixing 
layers is conducted in many papers (see, for example, [6], [59] and [60]). It is shown 
in these papers that bottom friction plays an important role in suppressing 
perturbations.  

Linear stability analysis of shallow flows is performed in [5], [7], [32], [41], 
[43] and [52]. Rigid-lid assumption is used in [7] (water depth is assumed to be 
constant) to determine the critical values of the bed friction number for wake flows 
and mixing layers. The applicability of the rigid-lid assumption to the stability 
analyses of shallow flows is analysed in [32], where it is shown that for small Froude 
numbers the error in using the rigid-lid assumption is quite small. The effect of 
Froude number of the stability of shallow mixing layers in compound and composite 
channels is studied in [41]. Theoretical results and numerical computations presented 
in [5], [7], [32], [41], [43] and [52] confirm experimental observations: the bed 
friction number stabilizes the flow and reduces the growth of a mixing layer. 

Centrifugal instability can also occur in shallow mixing layers. The effect of 
small curvature of the stability of free mixing layers is investigated in [34], [38] and 
[50]. It is shown in [50] that curvature has a stabilizing effect on a stably curved 
mixing layer and destabilizing effect on an unstably curved mixing layer.  

Linear stability analysis can be used to determine how a particular flow 
becomes unstable. Critical values of the parameters (for example, critical bed friction 
number, critical wave number and so on) are also estimated from the linear stability 
theory. Development of instability above the threshold cannot be analysed by linear 
theory. Weakly nonlinear theories [35], [57] are used in order to construct an 
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amplitude evolution equation for the most unstable mode. These theories are based 
on the method of multiple scales [40] and are applicable if the flow is unstable but 
the value of the parameter (for example, Reynolds number or bed friction number 
for shallow flows) is close to the critical value. In this case, the growth rate of 
unstable perturbation is small and one can hope to analyse the development of 
instability by means of relatively simple evolution equations. Such an approach is 
used in [57] for plane Poiseuille flow, in [2] and [46] in order to analyse instability 
of waves generated by wind and in [29], [32], [42], [43] and [51] for shallow wake 
flows. In fact, amplitude equations are used in the literature in two ways. First, a 
particular form of the evolution equation is selected a priori and the coefficients of 
the equation are estimated from experimental data. Then the equation with estimated 
coefficients is used to model the phenomenon of interest. Second, one can actually 
derive an evolution equation from the equations of motion. This approach is used in 
[2], [29], [43], [44], [47], [53], [56] and [57] where it is shown that for two-
dimensional cases the evolution equation is the complex Ginzbrug-Landau equation. 

Ginzburg-Landau equation and its properties are extensively studied in the 
literature ([1], [10]). Numerical analysis of the Ginzburg-Landau equation is simpler 
than numerical solution of the equations of motion. In addition, the analysis of 
stability of some simple (for example, periodic) solutions of the Ginzburg-Landau 
equation allows researchers to simplify the analysis of spatio-temporal dynamics of 
complex flows in fluid mechanics. 

Linear instability of shallow mixing layers is analysed in [4], [7], [32] and 
[41] under the assumption that bottom friction is modelled by means of the Chezy 
formula [48] where the friction coefficient is assumed to be constant. Usually the 
friction coefficient is obtained from semi-empirical formulas [54], which relate the 
value of the friction coefficient to the Reynolds number of the flow and roughness 
of the surface. In such a case, the friction coefficient is assumed to be constant in the 
whole region of the flow.  

In some applications, friction varies considerably in the transverse direction. 
One particular example is related to shallow flows under condition of partial 
vegetation. This situation often occurs during floods [61]. Friction force in a partially 
vegetated area is larger than in the main channel. It is shown in this case that the 
base flow profile is distorted and becomes asymmetric [61]. The difference in 
friction forces between partially vegetated area and the main channel is modelled in 
[61] by a step function. Linear stability analysis is conducted in [61] under the 
assumption that the base flow profile is symmetric. 

 
1.2. Shallow Water Equations 

 
Shallow water equations are depth-averaged equations, which are obtained 

by integrating equations of fluid mechanics with respect to the vertical coordinate. 
Since integration takes place over water depth it is necessary to specify stresses at 
the free surface and at the bottom. Stresses at the free surface are usually much 
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smaller than the stresses at the bottom so that only bottom stresses are usually taken 
into account in shallow water equations. Empirical formulas (such as Chezy or 
Manning formulas) are used in practice in order to represent bottom friction. The 
detailed derivation of shallow water equations is given in [4].  

Shallow water equations under the rigid-lid assumption in the presence of a 
small curvature have the form  
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where  x, y – geometric coordinates;  
t – time; 
u and v – the depth-averaged velocity components in the x and y directions; 
p – the pressure; 
h – water depth; 
cf – friction coefficient (can be constant or function of y); 
B – particle loading parameter ([62], [63]);  
up  and vp – the components of particle velocities; 

1
1

*

* 
RR


 – small parameter; 

*R – the radius of curvature of the centreline of the curved mixing layer; 

* – the thickness of the mixing layer. 

It is assumed in (1.2), (1.3) that the flow can contain heavy particles.  
The “lumped” effect of the particles is represented by the particle loading parameter 
B  ([62], [63]). Equations (1)- (3) are written under the assumption of large Stokes 
number, which implies that there is no dynamic interaction between the particles and 
the carrier fluid. 

Water surface in (1.1)- (1.3) is treated as the “rigid-lid”. Bottom friction in 
(1.2), (1.3) is modelled by means of the Chezy formula [4].  

Friction coefficient in some applications varies in the transverse direction. 
Examples include shallow flows under conditions of partial vegetation during floods 
where water flows through partially vegetated area [61] or flows in compound and 
composite channels [41]. The variability of the friction coefficient in the transverse 
direction is modelled by a smooth differentiable shape function cf(y). 
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2. Stability of Slightly Curved Shallow Mixing Layers 

2.1. Linear Stability 
 
Consider shallow water equations under the rigid-lid assumption in the presence 

of a small curvature in the form (1.1)-(1.3), where B = 0 ([14], [15], [16], [25]).  
Eliminating the pressure p , then introducing the stream function ),,( tyx  

by the relations 

xy x
v

y
u 









 ,    (2.1) 

and using the notation yyxx   , we rewrite (1.1) – (1.3) in the form 

,0)2(
2

2

2
)()()(

22

22

f

22f








xxxxyyxyyy

yx

yxxyyyxxyt

h

c
h

c

R






 (2.2) 

where the subscripts indicate the derivatives with respect to yx,  and t . 

Here the parallel flow assumption is used. The parallel flow assumption 
implies that the base flow does not change in the longitudinal direction. As pointed 
out in [47], this approximation is the leading-order solution in a multiple-scale 
expansion, which takes into account slow flow divergence.  

Consider the stream function ),,( tyxψ  of the form 

'0   ,    (2.3) 

where the quantity with prime represents small perturbations.  
Substituting (2.3) into (2.2) and dropping the primes, we obtain the following 

equation: 

0
2

)22(
2

)(

0000
f

00





xyyyyyyyyxxy

xyyyxyyxxxyyytxxt

Rh

c 


. (2.4) 

Following the method of normal modes [11], we assume a perturbation of the 
form 

)(e)(),,( ctxikytyx   ,    (2.5) 

where )(y  – the amplitude of normal perturbation; 

k  – wave number; 
c  – the phase speed of perturbation.  

Substituting (2.5) and derivatives of   with respect to x, y or t into (2.4), 

denoted yU 0  (base flow), we obtain: 
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 ,  (2.6) 

where 
h

δc
S *f  – bed-friction number; 

*  – the width of the mixing layer.  

The boundary conditions are 

.0)(       (2.7) 

Using the linear stability theory, one can determine the conditions under 
which a particular flow becomes unstable. The linear stability of base flow 
determines the eigenvalues c = cr + ici. The base flow is said to be linearly stable if 
all ci < 0, and unstable, if at least one ci > 0. Numerical solution of the corresponding 
eigenvalue problem (2.6) – (2.7) allows one to obtain the critical values of the 
parameters. However, the linear theory cannot be used to predict the evolution of the 
most unstable mode above the threshold. In the unstable region, perturbation grows 
exponentially with time (2.5). If the growth rate is large, then nonlinear effects 
quickly become dominant and there is little hope to analyse the development of 
instability analytically. However, if the growth rate of the unstable mode is relatively 
small, then weakly nonlinear theories can be used in order to develop an amplitude 
evolution equation for the most unstable mode.  

Base flows in the case of shallow water equations are usually chosen in the 
form of relatively simple model velocity profiles such as hyperbolic tangent profile 
for shallow mixing layers or hyperbolic secant profile for shallow wake flows. These 
profiles are chosen on the basis of careful analysis of available experimental data. 
The following two base flow profiles will be used (Fig. 2.1): 

yyU tanh2)(      (2.8) 

and 
yyU tanh2)(  .    (2.9) 

                         a)     b) 

 

Fig. 2.1. Base flow profile a) yyU tanh2)(   and b) yyU tanh2)(  . 
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Velocity profile (2.8) corresponds to stably curved mixing layer (in this case 
the high-speed stream is on the outside of the low-speed stream). Profile (2.9) 
represents the opposite situation (the high-speed stream is on the inside of the low-
speed stream). It is shown in [52] that experimentally observed base flow velocity 
profile has similar shape to that of the plane mixing layer.  

 

2.2. Numerical Method for Linear Stability  
 

The pseudospectral collocation method [3] based on Chebyshev polynomials 
is used to solve eigenvalue problem (2.6) – (2.7) numerically. The interval 

 y  is transformed into the interval (-1, 1) by means of the transformation 

yr arctan2
 . The solution to (2.6) is then sought in the form 







1

0

2 ),()1()(
N

j
jj rTrar    (2.10) 

where rjrTj arccoscos)(   – the first kind Chebyshev polynomial of degree j; 

ja  – unknown coefficients. 

The factor ( 21 r ) guarantees that the boundary conditions (2.7) in terms of 
the new variable r  are satisfied automatically at 1r . The use of those base 
functions considerably reduces the condition number [37]. 

The following set of collocation points is used to solve (2.6), (2.7): 

.,...,2,1,
1

cos Nm
N

m
rm 





  (2.11) 

Substituting the function )(r  and its derivatives at the collocation points 

into (2.6), we obtain the linear system of the equations in the form: 

,0)(  acDB     (2.12) 

where B  and D  are complex value matrices NN  , matrix D  is not singular 

and  T110 ...  Naaaa .  

Problem (2.12) is solved numerically by means of the IMSL (International 
Mathematics and Statistics Library) routine DGVCCG that computes all of the 
eigenvalues and eigenvectors of a generalized complex eigensystem .Az Bz  
The results of numerical computations for the case of stably curved shallow mixing 
layer (base flow velocity profile (2.8)) are shown in Table 2.1. 



  18

Table 2.1. The Results of Numerical Computations for the Case of Stably Curved 
Shallow Mixing Layer for Base Flow Velocity Profile (2.8) 

k S(1/R=0) S(1/R=0,01) S(1/R=0.02) S(1/R=0.03) S(1/R=0.04) 

0.1 0.0260 0.0230 0.0205 0.0194 0.0258 
0.2 0.0441 0.0408 0.0377 0.0348 0.0321 
0.3 0.0554 0.0519 0.0485 0.0452 0.0421 
0.4 0.0609 0.0572 0.0536 0.0501 0.0466 
0.5 0.0612 0.0574 0.0536 0.0499 0.0462 
0.6 0.0568 0.0529 0.0490 0.0451 0.0412 
0.7 0.0482 0.0442 0.0402 0.0361 0.0322 
0.8 0.0357 0.0316 0.0275 0.0234 0.0224 
0.9 0.0196 0.0154 0.0150 0.0142 0.0138 

Three marginal stability curves are shown in Fig. 2.2 for the three values of 
the parameter 02.0,0/1 R  and 0.04, respectively (from top to bottom). The region 

of instability is below the curves [15].  

 

Fig. 2.2. Marginal stability curves for base flow profile (2.8). 

Marginal stability curves for unstably curved shallow mixing layer (2.9) are 
shown in Fig. 2.3. The values of the parameter R/1 =0.04, 0.02 and 0, respectively 
(from top to bottom). 
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Fig. 2.3. Marginal stability curves for base flow profile (2.9).  

Results of numerical computations show that the curvature stabilizes the flow 
in the case of stably curved mixing layer while for unstably curved mixing layer the 
curvature has a destabilizing effect on the flow [16].  

 
2.3. Weakly Nonlinear Methods  

 
Weakly nonlinear theories are usually constructed in the neighbourhood of a 

critical point (Fig. 2.4). Such equations are obtained in the past for the case of plane 
Poiseuille flow, shallow water flows, waves on the surface generated by wind and in 
some other situations (see [2], [29], [33], [43], [44], [46], [57]).  

stable

S

cS

ck k

unstable

 
Fig. 2.4. A typical marginal stability curve for shallow water flow.  

 
Suppose that Sc, kc and cc are the critical values of the stability parameter, 

wave number and wave speed, respectively. Then the most unstable mode (in 
accordance with the linear theory) is given by (2.5) with S = Sc, k = kc and c = cc 
where the eigenfunction )(y  can be replaced by )(yC . The constant C  cannot 

be determined from the linear stability theory. 



  20

Consider a small neighbourhood of the critical point in the ),( Sk plane where 

parameter S is assumed to be slightly below the critical value:  

).1( 2
c ε SS     (2.13) 

The parameter   characterises how close the parameter S is to the critical 
value Sc. Moreover, (2.13) means that the base flow is unstable if the stability 
parameter is equal to S. However, since   is small, the growth rate of the most 
unstable perturbations are also small. Therefore, one can try to describe analytically 
the development of instability using the weakly nonlinear theory. 

Following the paper [57], we introduce the “slow” time   and longitudinal 
coordinates   by the relations 

),(,2 tcxt g     (2.14) 

where gc  is the group velocity.  

The constant C  in this case will be replaced by a slowly varying amplitude 
function A . Thus, ),( AA   and the function   in (2.5) now has the form 

,..e)(),(

e)(),(e)(),(),,,,(
)(

)(**)(
1

ccyA

yAyAtyx
ctxik

ctxikctxik











(2.15) 

where * and the abbreviation c.c. means the complex conjugate.  

A perturbed solution   is sought in the form 

...,)( 3
3

2
2

10   y   (2.16) 

Substituting all expressions into (2.2) and collecting the terms of orders  , 
2 , 3  we obtain three equations. Let 
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, (2.17) 

then the first equation (terms of orders  ) can be written as follows: 

01 L .    (2.18) 

Using the notation yU 0 , we rewrite (2.18) in the form  
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  (2.19) 
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The second equation (terms of orders 2 ) is rewritten in the form 

22 fL  ,    (2.20) 

where 
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Note that the operator on the left-hand side of (2.20) is the same as in (2.18) 
and it will be the same for all orders of  .  

The third equation (terms of orders 3 ) can be rewritten as follows: 

33 fL      (2.21) 

where 
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The solution to the linear stability problem (2.6), (2.7) is discussed in Section 
2.2. 

We consider the solution to (2.20). The following three groups of terms will 
emerge: 

a) the terms that are independent on time;  

b) the terms proportional to the first harmonic )(e ctxik   (here and in sequel 
we drop the subscripts and use the notation k = kc and c = cc ); 

c) the terms proportional to the second harmonic )(2e ctxik  .  
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Thus, the function 2  should also contain the same three groups of terms. 

More precisely, we seek the solution to (2.20) in the form 
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where )(),( )1(
2

)0(
2 yy   and )()2(

2 y are unknown functions of y ; 
*A denotes the complex conjugate of A ;  

the superscript reflects the index of the harmonic component; 
the subscript represents the order of approximation.  

Collecting the terms proportional to *AA of the equation (2.20), we obtain 

the equation for  0
2 : 
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The boundary conditions are  

.0)()0(
2      (2.24) 

Similarly, collecting the terms proportional to )(e ctxik  , we obtain the 

following equation for the function )1(
2  with the boundary conditions: 
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Finally, collecting the terms proportional to )(2e ctxik   we obtain: 
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with the boundary conditions 

.0)()2(
2       (2.28) 

Comparing (2.6) and (2.25), one can see that the left-hand sides are exactly 

the same if )(1 y  is replaced by )()1(
2 y . Using the Fredholm alternative [64], we 

conclude that equation (2.25) has a solution if and only if the left-hand side is 
orthogonal to all eigenfunctions of the corresponding homogeneous adjoint problem. 

The adjoint operator aL  and adjoint eigenfunction a
1  are defined by the 

relation 
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    (2.29) 

The left-hand side of (2.29) is equal to zero since 01 L . Thus, the adjoint 

equation is defined by the formula 
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Integrating the left-hand side of (2.29) and using the boundary conditions 
(2.7), we obtain the adjoint operator 
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The boundary conditions are 

.0)(a
1           (2.32) 
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Applying the solvability condition to (2.25), we define the group velocity:  
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Solving three boundary value problems (2.23) – (2.24), (2.25) – (2.26) and 

(2.27) – (2.28) numerically, we obtain the functions )(),( )1(
2

)0(
2 yy   and )()2(

2 y . 

The function 2  is then given by (2.22).  

Let us consider the solution at the third order in  . Equation (2.21) also has 
a solution if and only if the right-hand side of (2.21) is orthogonal to all 

eigenfunctions a
1  of the corresponding homogeneous adjoint problem (2.31), 

(2.32). Applying the solvability condition to (2.21), we obtain: 
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Equation (2.36) is converted to the amplitude evolution equation for slowly 
varying amplitude function ),( A  of the form 
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Equation (2.37) is the complex Ginzburg-Landau equation with complex 
coefficients  ,  and    
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Coefficients 11,  1  are given by 



  25

 
   

 

 
 
 

dy

u

k
kk

S

R

ik
ikik

ikikik

ikikikik

yyyyyyyy

yyyyyyy

yyy

yyyyyyyyyy

yyyyyyyyyyyyy

yyyyyyy













































































 




*
1

)2(
2

)0(*
2

)0(
21

)2(
2

*
1

)0(*
2

)0(
21

*
1

2
1

0

4
)2(

2
*
1

2)0(*
2

)0(
21

2

1
)0(

2
*
1

)2(
2

)2(
2

*
1

)2(
2

*
1

)0(*
2

)0(
21

*
1

)2(
2

)0(*
2

)0(
21

)0*(
2

)0(
21

3)2(
2

*
1

3)2(
2

*
1

*
1

)2(
2

3

a
11

22

22

2

3
3

2

22

326













 , 

(2.39) 

 
  dy

S
UikUikcikc

ikSUUUkckck

R

U
Uc

yy

yyy





























 





 




2
32

32

2

g1

22
g

2)1(
2

)1(
2

)1(
2g

a
11







 , (2.40) 

 dyUUUk
S

yyyy 111
2a

11 22
2

  




.  (2.41) 

Formulas (2.38) – (2.41) represent the coefficients of equation (2.37) in terms 
of the characteristics of the linear stability of the flow.  

 
2.4. Numerical Method for Weakly Nonlinear Stability  

 
In this subsection, we propose a numerical method for the calculation of the 

coefficients of the Ginzburg-Landau equation. More precisely, in order to obtain 
 ,  and   we need to perform the following calculations:  

1. Solve the linear stability problem (2.6) – (2.7) and determine the critical 
values of the parameters cSk ,,  and the corresponding eigenfunction )(1 y ;  

2. Solve the homogeneous adjoint problem (2.31) – (2.32) and determine the 

adjoint eigenfunction a
1 ; 

3. Solve three boundary value problems (2.23) – (2.24), (2.25) – (2.26) and 

(2.27) – (2.28) and determine the functions )(),( )1(
2

)0(
2 yy  and )()2(

2 y ;  

4. Evaluate the integrals in (2.38).  
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The elements of the matrices B and D (see (2.12)) can be computed and the 
generalized eigenvalue problem (2.6) – (2.7) can be solved numerically. Similar 
approach can be used in order to solve boundary value problems (2.23) – (2.24) and 
(2.27) – (2.28). System of linear algebraic equations of the form 

GFa          (2.42) 

is obtained in each case after discretization where  T110 ...  Naaaa . The matrix 

F  is not singular for these problems. Therefore, any linear equation solver can be 

used in order to find a . Thus, the functions )()0(
2 y  and )()2(

2 y  can be evaluated 

by means of the expansions of the form (2.10).  
The same form of the expansion (2.10) is used to solve boundary value 

problem (2.25) – (2.26). Equation of the form (2.42) is also obtained after 
discretization in this case, but the matrix F  is singular since the corresponding 
homogeneous part of (2.29) has a nontrivial solution at  S = Sc, k = kc and c = cc. 
Equation (2.42) is solved in this case by means of the singular value decomposition 
method [36]. It is known that if F  is a complex NN   matrix, then there are 
orthogonal NN   matrices U  and V  such that 

,H  VFU         (2.43) 

where ),...,,( 21 Ndiag  . 

Equation (2.43) is called the singular value decomposition of the matrix F  
and N ,...,, 211  are the singular values of F . In our case, only the last of the 

singular values will be equal to zero ( 0... 121   NN  ). Hence, the 

solution to (2.42) in this case can be written in the form 

,H1 GUVa       (2.44) 

where the last column of V , the last row of HU , the last column and the last row of 
1 are deleted.  

In component form, the solution is 

,
1

1

H









N

i i

ii VGU
a


   (2.45) 

where HU  and iV  are vectors (columns of the matrices HU  and V ).  

The values of the function )()1(
2 y  can be computed using formula (2.10) 

where the coefficients ja  are the components of the vector a  in (2.45).  

The final step of the computational procedure involves the calculation of 
integrals in (2.38), which uses adaptive quadrature formula described in [30].  
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3. Linear and Weakly Nonlinear Instability of Slightly Curved 
Two-Component Shallow Mixing Layers  

3.1. Linear Stability  
 
It is assumed that the carrier fluid contains small heavy particles. The 

assumptions that are used in the derivation of the governing equations are 
summarised in Section 1.2. Introducing the stream function ),,( tyx we transform 

the shallow water equations to the form 
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A perturbed solution to (3.1) is sought in the form 

...),,(),,(),,()(),,( 3
3

2
2

10  tyxtyxtyxytyx   (3.2) 

Substituting (3.2) into (3.1) and linearizing the resulting equation in the 
neighbourhood of the base flow, we obtain (see 2.1): 

,01 L        (3.3) 

where 
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The solution to (3.3) is sought in the form of a normal mode [11] 
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Using (3.3) and (3.5), we obtain boundary value problem 
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Problem (3.6), (3.7) is usually solved numerically. Details of numerical 
algorithm based on the collocation method are given in Section 2.2. Thus, solution 
(3.6), (3.7) allows one to obtain the critical values of the parameters Sc, kc and cc. A 
typical marginal stability curve for shallow water flows is a convex curve with one 
maximum (the coordinates of the maximum point in the (k, S) plane are k = kc and 
S = Sc).  

 
3.2. Weakly Nonlinear Stability 

 
Assume that the bed-friction number is slightly smaller than the critical value 

).1( 2
c  SS     (3.8) 

Following [57], we introduce the following “slow” variables: 

)(, g
2 tcxt   .   (3.9) 

The stream function 1  in (3.5) is replaced by 

,e)(),(),,,,( )(
11

ctxikyAtyx      (3.10) 

where )(1 y  is the eigenfunction with S = Sc , k = kc and c = cc.  

The objective is to derive equation for the evolution of the amplitude function 

),( A . Using (3.1), (3.2), (3.11) and collecting the terms that contain 2  we obtain 

221
~
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Analysing the structure of the function 2
~
f  in (3.12), we conclude that 2  

should be sought in the form 
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where  )(),( )1(
2

)0(
2 yy   and )()2(

2 y  are unknown functions of .y  

Substituting 2  into (3.12) and collecting the time-independent terms, we 

obtain the boundary value problem: 
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Collecting the terms containing the first harmonic, we obtain the boundary 
value problem  
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Finally, collecting the terms that contain the second harmonic, we obtain  
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The adjoint operator aL  and adjoint eigenfunction a
1  are defined as follows: 
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The adjoint problem is  
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Integrating the left-hand side of (3.20) by parts and using boundary 
conditions (3.7), (3.22), we obtain  
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Solvability condition for (3.16) has the form 

  .0
2

32
2 12

22

11g
a
1 






































dy
BikikUSck

UUkck

R

U
Uc

g

yy
yyy  (3.24) 

Hence, the group velocity gc  can be found from (3.24).  

Collecting the terms that contain 3  we obtain 
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The evolution equation for the amplitude function ),( A  is determined 

from the solvability condition at the third order. Multiplying the right-hand side of 

(3.25) by a
1 , using (3.13) and the solutions to the boundary value problems (3.14) – 

(3.19), we obtain the complex Ginzburg-Landau equation for the amplitude ),( A  

of the form 
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The coefficients of the Ginzburg-Landau equation (3.26) can be computed 
using formulas (3.27) – (3.31). Note that in order to perform calculations, it is 
necessary to solve the linear stability problem (3.6) – (3.7), the corresponding adjoint 
problem (3.21) – (3.22), three boundary value problems (3.14) – (3.19) and 
numerically evaluate integrals in (3.27) – (3.31).  

4. Spatial Stability of Slightly Curved Shallow Mixing Layers  

4.1. Linear Stability  
 

There are two basic approaches to the analysis of linear stability of a base 
flow in fluid mechanics:  

(a)  temporal stability analysis; 
(b)  spatial stability analysis [11].  
In both cases, the analysis is performed using the method of normal modes: 

perturbations are assumed to be proportional to   txi  exp , where both 

parameters   and   can be complex: ir  i , ir  i . 

In case (a), the wave number r   is real while   is complex. For the 

case of spatial stability analysis r   is real and the wave number   is complex:

ir  i . From a computational point of view, temporal stability analysis is 

simpler since the corresponding eigenvalue problem is linear with respect to 
eigenvalue  . On the other hand, a spatial eigenvalue problem is nonlinear in .  

Introducing the stream function (Section 2.1) by the relations (2.1), we can 
rewrite (1.1) – (1.3) ([12], [19], [20], [21], [26]) in the form (2.4) or  



32

,011 L     (4.1) 
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Method of normal modes is used to solve (4.2), that is, the perturbation 1  is 

represented in the form 

)(
1 e)(),,( txiytyx   , (4.3) 

where )(y  is the amplitude of the normal perturbation.  

Substituting (4.3) into (4.2) and denoted yU 0  we obtain the following 

differential equation 
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with the boundary conditions 

0)(  .     (4.5) 

Problem (4.4), (4.5) is an eigenvalue problem. Base flow )(yU  is said to be 

linearly stable if all 0i   and unstable if at least one 0i  . As it is mentioned 

above, the corresponding problem is linear with respect to   but nonlinear with 

respect to . Hence, the following computational procedure is suggested for the 
solution to the problem. Assuming that both   and   are complex of the form

ir  i , ir  i , for each fixed r,S  and r  we calculate i  such that 

0i  . This is achieved by solving linear generalized eigenvalue problem and 

selecting the new approximation to i  using a bisection method. Then we change 

r  (for the fixed value of S ) and repeat the calculation. The region of spatial 

instability is described by the relation 0i  . 

The base flow is selected in the form 

 yyU tanh1
2

1
)(   (4.6) 

The growth rates – i  versus r are shown in Figs. 4.1 and 4.2. 



– i

r
Fig. 4.1. Growth rates – i versus r  

for three values of 1/R=0; 0.025; 0.05 
(from top to bottom). 

– i

r
Fig. 4.2. Growth rates – i  versus r
for three values of S = 0; 0.05; 0.1 

(from top to bottom). 

The first set of calculations is performed for the case without bottom friction 
( 0S ). It follows from Fig. 4.1 that curvature has a stabilizing influence on the 
flow (the growth rates decrease as the curvature increases). As can be seen from Fig. 
4.2, the increase of the values of S  also leads to a more stable flow – the growth 
rates decrease as the parameter S  grows. It is shown that both the bottom friction 
and flow curvature have a stabilizing influence on the flow. 

M. Gaster [31] suggested a transformation, which can be used to approximate
spatial growth rates if temporal growth rates are known. However, Gaster’s 
transformation can be used only in the vicinity of the marginal stability curve.  

Following M. Gaster [31], we denote by (T) and (Sp) the solutions to (4.4), 
(4.5) corresponding to temporal and spatial problems, respectively. It is shown in 
[31] that near the marginal stability curve:

   SpT rr   ,    SpT rr   ,    
 Tc

T
Sp i

i
  ,    

 T

T
Tc

r

r




 . 

It follows from the Gaster’s transformation that on the stability boundary 
either spatial or temporal stability analyses can be used since in this case
    0ii  TSp  . If the objective of the analysis is to construct a marginal stability 

curve, then it is recommended to use a temporal stability analysis, which is a simpler 
method from a computational point of view.  

4.2. Weakly Nonlinear Stability 

In this section, we describe the second approach that can be used in order to 
derive an amplitude evolution equation under the assumption that the base flow is 
not parallel but slightly changes downstream.  
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Consider the system of shallow water equations of the form (1.1) – (1.3). Let 
),,( tyx  be the stream function of the flow. Using (2.1) the system of shallow water 

equations reduces to the following equation for the stream function 
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 (4.7) 

Assume that   is the wave length of perturbation and l  is the length scale 
of the longitudinal variation of the base flow. In shallow mixing layers (see [59], 
[60]), the following condition is usually satisfied: l . Thus, a small parameter 
  can be defined as follows: l/  . Following [35] we introduce a slow 
longitudinal coordinate X  by the relation xX  . The base flow velocity 
components are ),( XyU  and ),( XyV , respectively. The stream function 

),,( tyx  is represented as the sum of the basic part ),(0 Xy  and fluctuating part 

),,(' tyx : 

),,('),(),,( 0 tyxXytyx    . (4.8) 

In addition,  
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. (4.9) 

Using (4.8) in (4.7), we obtain 
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    (4.10) 

Using the WKBJ approximation (see [35]), we represent the stream function 
in the form 
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where ),( Xy  – a slow-varying amplitude function; 

( )X


– a fast-varying phase function.

The amplitude function ),( Xy is expanded in a power series of the form 

...),(),(),( 21  XyXyXy   (4.12) 

Substituting (4.11) and (4.12) into (4.10), we obtain the following equation 
at the leading order: 
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where 

    .''2''2
2

'
2''

''

111
2f

1111
2

11






UUUk
kUh

ic
k

U

ik
BU

R
k

U

U
kL












 (4.14) 

Here primes denote the derivatives with respect to y  and .kx   Using 

equation (4.12) with boundary conditions 0)(1   we obtain linear stability 

problem, where X  appears as the parameter. The corresponding eigenfunction of 
the linear stability problem, ),(1 Xy , is represented in the form 

),()(),(1 XyXAXy  , (4.15) 

where )(XA – a slowly varying amplitude; 

),( Xy  – a normalized eigenfunction.  

At the next order, the following equation is obtained: 

FL 2 . (4.16) 

Equation (4.16) has a solution if and only if the right-hand side F is 

orthogonal to all eigenfunctions 
~

 of the corresponding adjoint problem: 






 .0
~

dyF (4.17) 

Using (4.16) and (4.17), we obtain the following equation for unknown 
amplitude )(XA  
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As a result, the fluctuating part of the stream function has the form 
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Formula (4.22) takes into account slow longitudinal variation of the base 
flow. It is shown in [8] that in a similar asymptotic formula the growth rate and phase 
speed of perturbation depend not only on the choice of flow quantities but also on 
the location of the point ),( yx , where these quantities are calculated.  

Hence, a meaningful comparison of the weakly nonlinear model (4.18) can 
be made only if a particular quantity of interest Q  is selected (for example, 

longitudinal velocity component or pressure). In this case (see [8]), a local wave 
number Lk  can be defined by the formula 

   yxQ
x

iyxk ,ln,L 


 ,       (4.23) 

where LiLrL ikkk  .  

Thus, in order to compare the weakly nonlinear model (4.18) with 
experimental data, the following steps should be performed:  

- to select a flow quantity Q ;  

- to measure the quantity Q at some point ),( yx ;  

- to compute the right-hand side of (4.23) at the same point ),( yx .  

In summary, the weakly nonlinear model (4.18) can be validated if detailed 
experimental data or numerical results of the solution to nonlinear shallow water 
equations are available.  
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5. Stability of Shallow Mixing Layers with Variable Friction  

5.1. Linear Stability  
 
Linear stability problem for the case where the friction coefficient is varied 

in the transverse direction ([17], [18], [22], [28]) is analysed.  
The dependence of the friction coefficient )(f yc  on the transverse coordinate 

y  is assumed to be of the form  

),()(
0ff ycyc      (5.1) 

where )(y is an arbitrary differentiable “shape” function.  

The derivative of )(f yc  with respect to y is 

),()(
0ff ycyc

y
     (5.2) 

Shallow water equations (1.1) – (1.3) can be rewritten in the form 
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 (5.4) 

Using the method of normal modes, the function 1  has the form 

)(
1 e)(),,( txiytyx   .   (5.5) 

Substituting (5.5) into (5.4), we obtain the boundary value problem  
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  (5.6) 

.0)(      (5.7) 

The following profiles of the base flow velocity )(yU  and shape function 

)(y  are used to compute growth rates of unstable perturbations: 

),tanh1(
2

1
)( yy      (5.8) 
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).tanh1(
2

1
)( yyU      (5.9) 

The choice of the shape function )(y  in (5.9) is based on the following. 

First, with a stronger resistance force the base flow velocity becomes smaller. 
Second, we would like to remove discontinuity in the friction force used in [61] and 
consider a more realistic case of continuous resistance, which is changing with 
respect to the transverse coordinate. 

Figure 5.1 plots growth rates for the unstable mode for three values of the 
parameter S : 0.05, 0.10 and 0.15 (from top to bottom). It is seen from Fig. 5.1 that 
with smaller S  the growth rate is larger. In order to see the effect of varying friction 
more clearly, we plot in Fig. 5.2 growth rates for the most unstable mode for the 
same three values of S , under the assumption that 1)( y  (that is, for the case of 

constant friction coefficient). It is seen from Fig. 5.2 that the increase in S  has a 
stabilizing influence on the flow. However, comparing Figs. 5.1 and 5.2, the overall 
growth rates for the case of non-uniform friction are larger than for the case of 
uniform friction. This fact is clearly seen from Fig. 5.3. 

– i            – i  

 r r  

Fig. 5.1. Growth rates i  for the 

shape function given by (5.8). 

Fig. 5.2. Growth rates i  for 

constant friction coefficient. 

 

                    – i  

      r  

Fig. 5.3. Growth rates i  for the case 1.0S  

(variable friction – top curve, constant friction – bottom curve). 
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In the previous example, we considered the case of a symmetric profile; 
however, experimental data [61] showed that the base flow velocity profile was 
asymmetric with respect to the transverse coordinate.  

Two-parameter profiles ([23], [24]) of the base flow velocity )(yU  are used 

to compute growth rates of unstable perturbations 
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We obtain the following equation (details, for example, in [7]): 

   ,0

2

'''
f

2

33

f 


























 

h

Uck

ikUUikcik

SUU
h

c
cUik

yy

y   (5.11) 

The boundary conditions are 

.0)(       (5.12) 

Following [61] we assume that the drag force has the form 
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where   – the density of the fluid;  

DC  – the mean drag coefficient; 

a  – the average solid frontal area per unit volume in the plane perpendicular 
to the flow [61].  

The drag differential between the layer with vegetation and the main channel 
is described by a dimensionless parameter 

hcaC

aC

D

D

/2 f
    (5.14) 

In addition, the total resistance can be measured by the generalized bed-
friction number 

,)
2

( f b
h

caC
S D     (5.15) 

where b is the width of the shear layer. 
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Using (5.11), (5.13), (5.14) and (5.15), we rewrite equation (5.11) in the form 
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Problem (5.16), (5.12) is solved numerically by means of a collocation 
method based on Chebyshev polynomials. Software package IMSL is used to solve 
this problem.  

In order to avoid discontinuity at 0y  the values of H  are replaced by a 

hyperbolic tangent function of the form ytanh  with large   values. 

In order to compare the results obtained for asymmetric velocity profile 
(5.10) with the symmetric case, we used the following symmetric velocity profile: 
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Both profiles (5.10) and (5.18) have the same asymptotes as .y  The 

graphs of the base flow velocity profiles (5.10) and (5.18) are shown in Figs. 5.4 and 
5.5 for two values of  . The role of the parameter r is clearly seen from Figs. 5.4 
and 5.5: for smaller values of r the horizontal asymptote is reached at larger values 
of y  if the base flow velocity profile is asymmetric with respect to the transverse 

coordinate y . 

 
Fig. 5.4. Base flow velocity profiles 
calculated by means of (5.10) and 

(5.18) for the case 8.0,8.0    (top 

and bottom curves, respectively). 

Fig. 5.5. Base flow velocity profiles 
calculated by means of (5.10) and 

(5.18) for the case 6.0,8.0    

(top and bottom curves, respectively). 

Stability curves in the ),( Sk  plane for different values of the parameters of 

problem (5.16), (5.12) are shown in Figs. 5.6–5.8. Marginal stability curves are 
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shown for the symmetric case (base flow of the form (5.18), solid curve) and 
asymmetric case (base flow of the form (5.10), dashed curve). 

The stabilizing influence of asymmetry of the base flow is also clearly seen 
in Figs. 5.7 and 5.8. The asymmetric flow becomes more stable since the critical 
value of the parameter S  becomes smaller. In addition, the range of unstable values 

of k  also decreases. 

 
Fig. 5.6. Marginal stability curves for the case 8.0,8.0   . 

 

 
Fig. 5.7. Marginal stability curves 

6.0,8.0   . 

 
Fig. 5.8. Marginal stability curves 

4.0,8.0   . 

 
Numerical calculations showed stabilizing influence of asymmetry of the 

base flow profiles: both critical values of the stability parameter and the range of 
unstable wave numbers decreased when the asymmetry became more pronounced. 

 
5.2. Weakly Nonlinear Stability 

 
Linear stability analysis is a powerful tool that allows setting the conditions 

under which the flow loses stability. On the other hand, the linear stability analysis 
does not describe perturbation development. In case the growth rate is relatively 
small, the perturbation amplitude development equation can be used to compile a 
weakly nonlinear analysis. 
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Let us go back to (5.3). Using the method of multiple scales perturbation 1  

is sought in the form (see Section 2.1):  

)(e)(),,( ctxikytyx   .    (5.19) 
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Collecting the terms of order 2 we obtain the following equation: 
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Thus, using the function 2  calculated according to (2.22), we obtain three 

boundary value problems 
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Solving three boundary value problems (5.23) – (5.24), (5.25) – (5.26) and 

(5.27) – (5.28) numerically we obtain the functions )(),( )1(
2

)0(
2 yy   and )()2(

2 y . 

The function 2  (the second order correction) is then given by (2.22).  

The adjoint boundary value problem is in the form  
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Applying the solvability condition to (5.29), we obtain (5.32), from which it 
is possible to find the group velocity gc . 
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The third order correction (for 3 ) 

33 fL  .    (5.33) 

Applying the solvability condition to (5.33), we obtain 
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Equation (5.34) converted to the amplitude evolution equation for slowly 
varying amplitude function ),( A  of the form 
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Equation (5.35) is the complex Ginzburg-Landau equation with complex 
coefficients  ,  and   
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Especially important role in this case is played by the sign of the real part of 
  (known as the Landau constant in the literature). The Landau constant had the 

“wrong sign” in [57], which meant that finite amplitude saturation was not possible 
and higher order terms (with respect to A ) quickly became important so that (5.35) 
could be used for a very short time period (in other words, practical application of 
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(5.35) is very limited). In contrast to [57] it is shown in [29], [33] and [43] that for 
shallow water flows the Landau constant in (5.35) has the “right sign” ( 0r  ) so 

that (5.35) can be used. Ginzburg-Landau equation has a rich variety of solutions 
depending on the values of the coefficients [1].  

6. Numerical Solution 
 
It is clear from the discussion in Chapter 2 (Fig. 2.4) that the weakly nonlinear 

approach can be used in a small neighbourhood of the critical point. Thus, we can 
apply the theory and compute the coefficients of the Ginzburg-Landau equation. To 
ensure that the model can adequately represent the dynamics of a fully nonlinear 
model at least at the initial stage of transition period when the base flow becomes 
linearly unstable, the paper by Suslov and Paolocci [58] can be used, where a 
relatively simple criterion is proposed. If the growth rates of unstable perturbation 
can be well approximated by a parabola in the whole range of unstable wave 
numbers, then the Ginzburg-Landau equation produces reliable results. In order to 
test this assertion, we computed growth rates for the range of unstable wave numbers 
for the following values of the parameters of the problem of stability of slightly 
curved shallow mixing layers for base flow profile (2.8). The results of calculations 

are shown in Fig. 6.1 ( cSS  ) for ci ( ir iccc  , when 0i c ). As can be seen 

from the figures, the curve representing growth rates and parabolic fit are almost 
indistinguishable. Thus, we conclude that the Ginzburg-Landau equation can be 
successfully used to analyse the dynamics of the flow above the threshold. 

  

Fig. 6.1. Quadratic approximations of the growth rates for the 
following values of the parameters S=0.09, 0.08, 0.07 and 1/R=0.03 

(from top to bottom). 

Table 6.1 presents the results for the coefficients of the Ginzburg-Landau 
equation (2.38) using formulas (2.39) – (2.42) of numerical calculations. The results 
are shown for the base flow profile (2.8) (Fig. 2.1) for the values of 1/R in the range 
from 0 to 0.04. 
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Table 6.1. Linear and Weakly Nonlinear Stability Characteristics for Different 
Values of 1/R (Chapter 2) and Base Flow Profile (2.8) 

1/R  0.00  0.01  0.02  0.04 
kc  0.456  0.453  0.449  0.440 
Sc  0.065  0.058  0.054  0.047 
cc  1.954  1.965  1.977  2.004 
   0.184 – 0.016i  0.173 – 0.015i  0.163 –0.013i  0.141 –0.009i 
   2.861 + 0.494i  3.046 + 0.539i  3.244+ 0.590i  3.673+ 0.720i 
cg  1.927  1.924  1.922  1.914 

   6.487+13.238i  6.014+13.757i 5.472+14.447i 4.124+16.524i 
 
We also present here the calculations in a weakly nonlinear regime for the 

case of the problem considered in Chapter 5 (the case of non-uniform friction). Base 
flow and the “shape” profile )(y are used to model non-uniform friction  

yyU tanh2)(  ,     

)tanh(
2

1

2

1
)( yy  




 .      

The results of the numerical computations of the linear stability 
characteristics and the coefficients of the Ginzburg-Landau equation are shown in 
Table 6.2 below. 

Table 6.2. Linear and Weakly Nonlinear Calculations for 3.0  

   0.25  0.5   1.0  1.5  
kc  0.442  0.437  0.438  0.437 
Sc  0.198   0.205  0.211   0.214  
cc  1.972  1.985  2.004  2.018 
   0.195 – 0.487i  0.195 – 0.080i  0.183 – 0.133i  0.174 – 0.173i 
   2.374 + 0.690i  2.151 + 0.687i  2.090 + 0.516i  2.092 + 0.262i 
cg  1.956  1.981  2.007  2.018  
   7.077+13.243i 7.330 +12.434i  7.403+10.752i  7.255 + 9.645i 

 

After rescaling [1], equation (5.35) for the complex amplitude A
~

 has the 
form: 
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Some closed form solutions of (6.1) are known in the literature [1], [10]. 
One of the simplest solutions is the solution of the form 

,e
~ ~~

0
 iiqaA      (6.2) 

where 
2

0 1 qa  ,   2
212 qccc  . 

Stability of (6.2) can be investigated by assuming that [37] 

 ~~~~
*~~

0 e)eˆeˆ(
~ iiqikik aaaA   .  (6.3) 

Substituting (6.3) into (6.1), we obtain equation for  . For the case of small 

k  the stability condition has the form: 

01 21  cc     (6.4) 

provided that q  satisfies the inequality 

2
2

212

2

1

c

cc
q


 .    (6.5) 

Condition (6.4) is known as the Benjamin-Feir stability condition. If (6.4) is 
not satisfied, then plane wave solutions of (6.2) are unstable (and, therefore, cannot 
be observed in experiments).  

Numerical solutions of the Ginzburg-Landau equation (6.1) are presented 
below for different values of the parameters 1c , 2c  and different initial conditions. 

The problem is formulated as follows: to find the solution of (6.1) for the given 
boundary conditions 

,0|
~

,0|
~

~
0

~ 
 L

AA


   (6.6) 

and the initial condition 

).
~

(|
~

0~  fA       (6.7) 

Method of lines implemented in Mathematica 5 is used for the numerical 
solution to problem (6.1), (6.6), (6.7).  

Table 6.3 shows numerical values of the coefficients 1c  and 2c for different 

values of . As can be seen from Table 6.3, condition (6.4) is satisfied for all cases 
considered. 
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Table 6.3. Numerical Values of the Coefficients c1 and c2 of the 
Ginzburg-Landau Equation for 3.0  

  0.3000 0.3000 0.3000 0.3000 

  0.25 0.5 1.0 1.5 

r

i
1 

c  1.8713 1.6963 1.4524 1.3294 

r

i
2 

c  0.2906 0.3194 0.2469 0.1252 

211 cc  2.1619 2.0157 1.6993 1.4547 

The first computation is performed for the case 1c = 1.3293 and 2c = 0.1251. 

The values of these parameters are taken from Table 6.3. The function in (6.7) is 
assumed to be small random noise of order 0.01. The results are shown in Fig. 6.3. 
Since the parameters of the problem satisfy (6.4) and (6.5) (are in the region of 
stability), the modulus of the amplitude reaches a constant value. 

 

Fig. 6.3. Plot of the A
~

. 

The second set of computations is performed for the case 
~

21)
~

( iqeqf   

where q = 0.5. The results are shown in Fig. 6.4.  
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Fig. 6.4. Plot of the A
~

. 

Finally, we consider the case, where the Benjamin-Feir stability condition 
(6.4) is not satisfied. The values of the parameters are taken from [43]:  

1c = -0.799564 and 2c =2.189654 (these parameters correspond to the weakly 

nonlinear analysis of wake flows). Random noise of order 0.01 is used as the initial 
condition. The results are shown in Figs. 6.5 and 6.6. As can be seen from Figs. 6.5 
and 6.6, stabilization of the amplitude does not occur in this case.  

 

Fig. 6.5. Plot of the A
~

. 

 

 
 

 

 

Fig. 6.6. The final configuration of A
~

.

These examples illustrate the well-known fact that the Ginzburg-Landau 
model is quite rich in terms of different solutions. Illustrative computations in Figs. 
6.3–6.6 show that both initial conditions and the values of the coefficients are 
responsible for spatio-temporal dynamics of the amplitude. The domain of 
applicability of the Ginzburg-Landau equation has to be defined. The equation is 
derived as a small neighbourhood of the critical point. Comparison of fully nonlinear 
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simulations with predictions based on the Ginzburg-Landau model is required in 
order to test the validity of the model. This is left for future research. 

 
Conclusion 

 
The main conclusions from the linear stability analysis are as follows: 
- Flow curvature effect is twofold: calculations show that the curvature gives 

a destabilizing effect on the unstable curved mixing layer and stabilizing effect on 
the stable curved mixing layer.  

- Particle loading parameter has a stabilizing influence on the flow. 
- Spatial stability analysis has been performed in the Thesis as well. One of 

the objectives has been to estimate the accuracy of Gaster’s transformation away 
from the marginal stability curve.  

- It is shown that the base flow asymmetry has a stabilizing influence on the 
flow.  

- Calculations show that growth rates for the case of non-constant friction are 
higher than growth rates for the case of uniform friction.  

Two methods of weakly nonlinear theory have been used in the Thesis for the 
stability analysis of shallow mixing layers. The first method uses parallel flow 
assumption. Using the method of multiple scales, the complex Ginzburg-Landau 
equation is derived from shallow water equations for slightly curved shallow water 
flow mixing layers, for two-component slightly curved mixing layers, for mixing 
layers with non-uniform friction. The coefficients of the equation are expressed in 
terms of integrals containing linearized characteristics of the flow. 

The second method is based on the assumption that the wave length of 
perturbation is much smaller than the length scale of longitudinal evolution of the 
base flow. Perturbed stream function at the leading order is decomposed in this case 
into a slow-varying amplitude function and a fast-varying phase function. 
Solvability condition at the second order gives amplitude equation for the unknown 
amplitude of the most unstable mode.  
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