

Systems with Fast Ionic Transport

ISSFIT-12

Program and abstracts

Anomalous Temperature Dependences of Na₂MnP₂O₇ **Electrical Properties**

S. Daugėla^{1*}, T. Šalkus¹, A. Kežionis¹, D. Valdniece², A. Dindune², M. Barre³, A. F. Orliukas¹

1) Department of Radiophysics, Faculty of Physics, Vilnius University

Institute of Inorganic Chemistry, Riga Technical University

Institut des Molécules et Matériaux du Mans (IMMM, UMR 6283), Univerité du Maine, France 3)

> Saulėtekio ave. 9/3 LT-10222, Vilnius, Lithuania Tel.: +370-5-2366064 saulius.daugela@ff.vu.lt

Abstract

Na₂MnP₂O₇ was proposed as a potential candidate for sodium-ion battery cathode [1]. Its structure and electrochemical properties were studied previously [2], however, all the investigations on this compound were only performed at room temperature. In the current work we study high temperature behavior of Na₂MnP₂O₇ powders and ceramics.

Na₂MnP₂O₇ was synthesized by solid state reaction. X-ray powder diffraction (XRPD) showed the triclinic symmetry of the compound (space group P1), identical to the one obtained in [2]. Differential thermal analysis clearly showed an endothermic peak at 670 K on heating the powder and an exothermic peak on cooling down. This suggested a structural phase transition of Na₂MnP₂O₇ and it was confirmed by thermal XRPD.

Impedance spectroscopy of the sintered Na₂MnP₂O₇ ceramics was performed in the frequency range of 10 Hz - 3 GHz and 300-700 K temperature interval. Surprisingly, a significant decrease of conductivity was observed up to 340 K. It was shown, that a very small amount of water in the sodium-manganese-pyrophosphates affects their room temperature conductivity, which must be mixed Na+ and protonic at the same time. At 670-680 K, a sharp increase of conductivity and dielectric permittivity was associated with a phase transition taking place in Na₂MnP₂O₇. The anomalous change of electrical parameters at the phase transition temperature was frequency independent.

Acknowledgement. The research leading to these results has received funding from Lithuanian-Swiss cooperation programme to reduce economic and social disparities within the enlarged European Union under project agreement n° CH-3-ŠMM-02/06.

- [1] V. Palomares, et al., Energy Environ. Sci., 6 (2013) 2312.
- [2] P. Barpanda, et al., Journal of Materials Chemistry A, 1 (2013) 4194.

Notes:			
	C	on 11	Doctor D2 5