
Applied Computer Systems

36

ISSN 2255-8691 (online)
ISSN 2255-8683 (print)
December 2017, vol. 22, pp. 36–46
doi: 10.1515/acss-2017-0016
https://www.degruyter.com/view/j/acss

©2017 Konstantīns Gusarovs, Oksana Ņikiforova.
This is an open access article licensed under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open.

Workflow Generation from the
Two-Hemisphere Model

Konstantīns Gusarovs1, Oksana Ņikiforova2
1, 2 Riga Technical University, Latvia

Abstract – Model-Driven Software Development (MDSD) is a
trend in Software Development that focuses on code generation
from various kinds of models. To perform such a task, it is
necessary to develop an algorithm that performs source model
transformation into the target model, which ideally is an actual
software code written in some kind of a programming language.
However, at present a lot of methods focus on Unified Modelling
Language (UML) diagram generation. The present paper
describes a result of authors’ research on Two-Hemisphere Model
(2HM) processing for easier code generation.

Keywords – Code generation, model transformation, system

modelling, two-hemisphere model.

I. INTRODUCTION

Business process modelling is one of the most popular
trends in software development [1], and distinct kinds of
models are used at various stages of software development
process [2]. However, it is crucial to mention that most often
models are applied to the initial business analysis process and
are not reused at other stages of software development.

System model is usually a set of diagrams with specific
notations defined for each specifying its syntax and semantics.
Various notations exist now and researchers are currently
developing new notations as well as working on
transformations to make existing ones usable in practice [1].
One of the oldest diagram notations is Data Flow Diagram
(DFD) notation developed in 1974 [3]. It describes both a
process execution sequence and data flows inside the system,
i.e., which process requires which data and what is produced as
a result of process invocation. Two-Hemisphere Model [4] first
presented in 2004 is like the DFD with several improvements –
in addition to the information DFD contains, it also focuses on
the presentation of the data structures used in the target
software system and gives an ability to assign potential
objects-performers of their operations, which is vital for
successful implementation.

Since the Two-Hemisphere Model is based on a well-known
(as well as well-studied and often used) model, it is logical to
focus on its transformation in favour of other models.
Moreover, as it was mentioned before, in an ideal case a
transformation target is a source code of a computer program.
To define a transformation from the source model to the target
one, it is necessary to define what both models are. For the
source model (2HM) a definition is provided in form of
notation and rules that are described later in the paper.

To define the target model, the authors would like to cite
ISO/IEC 2382:2015 standard [5]. The first definition from it is
a “computer program”, which should be a result of every
software development process. ISO/IEC 2382:2015 defines it
as a “syntactic unit that conforms to the rules of a particular
programming language and that is composed of declarations
and statements or instructions needed to solve a certain
function, task, or problem”. By analysing this definition, it is
possible to define the two main parts of the target model:

 declarations;
 statements or instructions needed to solve a certain

function, task, or problem.
Declarations are used to describe data structures and

variables used in the target model. Several studies in 2HM
transformation area covered in [6]–[8] propose several
approaches to obtain this part of a target model. Statements or
instructions, however, are not currently covered by existing
methods. By further analysing the ISO/IEC 2382:2015, it is
possible to see that those can also be described as an
algorithm – “a finite ordered set of well-defined rules for the
solution of a problem”. By combining these definitions, it is
possible to define the second part of a target model as “a finite
ordered set of statements or instructions” or “a sequence of
statements or instructions”. Thus, it is possible to say that the
transformation algorithm should generate:

 data structure and variable definitions – the static
aspect;

 sequence of instructions or statements that use the
former part to solve a certain problem – the dynamic
aspect.

While the first part of the result has already been examined
in several studies, the second one is not being covered at this
moment. The paper presents the results of the authors’ research
on solving this task.

The paper is structured as follows. In the second section, an
introduction to the 2HM notation and existing approaches is
given. The third section presents the approach proposed by the
authors in this paper. Section 4 provides proof of the approach
being able to preserve the original information presented in the
model. In the fifth section, an example of the proposed
technique application to the 2HM model is provided. Finally,
the sixth section contains the authors’ conclusions as well as
covers several areas of the future research.

Applied Computer Systems

__ 2017/22

37

II. BACKGROUND OF THE TWO-HEMISPHERE MODEL DRIVEN

APPROACH AND RELATED RESEARCH

As it was already mentioned, the Two-Hemisphere Model
was first presented by Oksana Nikiforova and Marite Kirikova
in 2004 [4]. Later, various approaches to transform the Two-
Hemisphere Model into the UML class diagram were
developed [6]–[8]. UML class diagram [9] allows representing
the static part of the system by defining the classes and
relations between them. Now, there are a lot of methods to
generate a code from the UML class diagrams – since this is a
straightforward transformation that consists of a lot of one-to-
one transformation rules that describe how the class diagram
entities are converted to the code entities.

In some aspects, it is possible to relate the Two-Hemisphere
Model to Business Process Model and Notation (BPMN) [10].
Both models are built around business process description and
focus on what is happening in the system. However, from the
authors’ point of view, the 2HM model is easier to work with
since it consists of fewer elements and its notation does not
dictate strict rules on the layout of the diagram, which makes it
more readable. Simple notation also means that the model
processing algorithms are easier to define and improve. In
future, it would also be possible to reuse these techniques for
other kinds of process/data flow diagrams, since they follow
the same rules in the definition. Another question one might
ask is, why not generate the code from the UML sequence
diagram [9], which also describes the dynamics of the system.
The authors would like again to point out to the fact that the
UML sequence diagram has a more complex notation and can
be transformed into the code and vice versa. In some aspects, it
is possible to say that the UML sequence diagram might be
equal to the code, since it contains all the necessary
information, which, in turn, means that its creation requires
greater analytical skills. The 2HM model can be read and
understood not only by system analysts, but also by business
representatives, which makes it a more favourable source
model than BPMN and UML diagrams.

There are also several studies on the dynamic aspect of the
target model [11], [12]. Now, these studies focus on the UML
sequence diagram [9] generation from the Two-Hemisphere
Model. The UML sequence diagram is used to present the
dynamic aspect of the system; however, its transformation to
the code is not as well researched as UML class diagram
transformation is. Thus, while it is possible to obtain the
sequence diagram of a certain quality, its transformation to the
actual source code might be a challenging task. This, in turn,
raises the necessity to define an algorithm that would allow
obtaining the source code directly or through a more suitable
intermediate model. Such an attempt was performed by the
authors of paper [13] by reusing some of the ideas from [12].
However, several problems still exist in the proposed
algorithm – those will be described later in the present paper.

To understand the problems of the above-mentioned
transformation as well as the proposition that authors make in
this paper, it is necessary to understand the notation of the
Two-Hemisphere Model. The notation itself is presented in
Fig. 1 and described in the next paragraphs.

The Two-Hemisphere Model is a concatenation of two
different diagrams – a business process diagram, which is like
the above-mentioned data flow diagram, and a concept diagram.

Business process diagram in Fig. 1 is marked as G1 and its
notation uses the ideas of DFD [3]. It consists of two types of
elements – processes and data flows. Processes show what
happens inside the system, while data flows serve for several
purposes. They are used to interconnect the processes showing
which process accepts which data and which data, in turn, it
produces. Data flows also define the sequence, in which
processes are executed, thus displaying the dynamic
capabilities of the modelled system.

Fig. 1. Notation of the Two-Hemisphere Model.

Concept diagram (G2 in Fig. 1) is a set of concepts that
represent different data types present inside the system being
modelled. Each concept might have 0-n attributes and each
attribute might represent a primitive data type (such as an
integer, floating point number or character sequence), other
concept or collection of the above-mentioned types. An important
aspect to be noted here is the fact that a concept diagram does
not define any kinds of relationships between its elements.

Both parts of the Two-Hemisphere Model are
interconnected. This idea presented in [4] is what distinguishes
the 2HM approach from the simple use of a business process
diagram and conceptual model of any kind. Interconnection is
established via assigning concepts to the data flows – each data
flow might carry one or more concepts, thus representing
which information business process consumes and which
information is produced as a result of process invocation.

It is logical to assume that concepts can be transformed into
the classes of UML class diagram [9] and, as it has already
been mentioned, there are several studies in this area defining
algorithms for such a transformation. These algorithms also
offer approaches for defining relationships between target
classes [6]–[8]. Since the UML class diagram can be used to
generate an actual source code and multiple tools to ensure that
this way of code generation exist (one of the examples could
be SPARX Enterprise Architect CASE tool [14] that allows for
source code generation in multiple programming languages), it
is safe to say that the 2HM approach covers the aspect of
source code generation for static system features.

Concept diagram

Concept B

b1

b2

Concept A

G2G1

Process diagram

External Process 1

Performer 1

Internal Process 1

Concept A // Data Flow A

Concept B // Data Flow B

External Process 2

Performer 2

Applied Computer Systems

__ 2017/22

38

However, in case of code generation for the actual algorithm
(or use case) it is also necessary to define what and in which
order should happen. This aspect of code generation in the
2HM approach is not studied very well at the moment. As it
has already been mentioned, several approaches have been
defined [11], [12] and an attempt to generate the simplified
LISP source code has already been performed [13], but these
approaches suffer from multiple problems – such as missing
or, otherwise, excess information being produced during the
transformation. This is due to the approaches that were used
during these studies – authors tried to use the existing
mathematical methods without considering specifics of the
2HM model. However, these studies were vital for the
development of the approach presented in this paper. The next
section describes this approach in detail.

III. WORKFLOW GENERATION FROM THE TWO-HEMISPHERE

MODEL

While describing the approach, the authors would like to
point out the fact that it is not necessary to consider a concept
diagram at all – it serves other tasks and is not necessary to
define the sequence of instructions and statements that are the
part of the resulting model, i.e., the source code. In this case,
only a business process model is important, since it contains all
the necessary information – a sequence in which processes are
invoked and data these processes consume and produce. While
these data are presented in form of data flows, it is not
important that these data flows are holding the information of
the concepts – it is possible to use the information in future
when a sequence of statements or instructions is defined.

By analysing the structure of the business process diagram,
it is possible to note that this diagram is nothing else but a
directed multigraph with cycles [15], so graph processing
algorithms might be used for the transformation. It is also
possible to note that the idea of business process modelling
itself is to represent different states in which the system might
reside and data (and possibly conditions) that are necessary for
the system to enter such states. This point of view gives the
idea that the business process diagram could also be
considered a Finite-State Machine (FSM) [16], which is also
the directed multigraphs allowing cycles. This idea was used in
[12] and [13], and in conjunction with a transitive closure [15]
method it allowed converting the business process diagram
into the regular expression.

Important note about regular expression is the fact that it is a
linear structure, i.e., a sequence of tokens, which corresponds
to the expected result – a sequence of statements and
instructions. However, while the result of transitive closure
method application to the business process model is correct, it
contains excess information, which is noted in [13]. Source
code generated from such an expression would suffer from the
duplications. For example, a body of the loop would be
generated twice – before the actual loop and inside it. Such a
source code would be hard to debug and maintain. Thus, pure
mathematical methods are not enough for business process
diagram transformation to the source code.

However, the idea of graph processing algorithm utilisation
during the transformation is valid. It is only necessary to define
or develop correct algorithms that would keep all the source
information intact and be able to transform the directed
multigraph (or FSM) to the linear sequence of statements or
instructions.

To successfully complete such a task, the authors propose
using a process-centric approach, i.e., using business processes
from the business process diagram as the main building block
for the linearisation task purpose. Data flows in this case
determine process inputs, outputs and execution sequence. To
achieve this purpose, it is necessary to perform two operations:

 For each process in the business process model its
inputs and outputs are taken into account and the model
is transformed into the vertex in a graph forming
something like the function signature. Because of this
transformation, data flows are removed from the
diagram becoming parts of the processes and edges in
the graph that do not carry any information. This step
of transformation is shown in Fig. 2. Figure 2
represents part of the business process diagram with a
single process P that has two incoming data flows –
IDF1 and IDF2 and two outgoing – ODF1 and ODF2.
While the structure of the model is kept intact, its edges
are now serving only one purpose – process execution
order definition. Information about incoming/outgoing
data is now part of the process itself.

 After moving data flows inside processes, it is possible
to exchange graph vertices and edges. During this
transformation, it is possible for new edges to appear in
the graph – this happens when the process has several
inputs and is totally valid for further transformation
steps. Example of such a transformation is shown in
Fig. 3. Figure 3 demonstrates the model that has
5 processes, one of which – P4 – consumes 3 different
data flows and produces a single output. Therefore, the
transformation graph contains 6 vertices (instead of
initial 5) and some duplicated edges.

Fig. 2. Process signature definition.

P1

IDF1

IDF2

ODF1

ODF2

P1(IDF1, IDF2)⇒(ODF1, ODF2)

Applied Computer Systems

__ 2017/22

39

After those two steps performed, the business process
diagram turns out to be almost like the FSM, where vertices
represent the states system can stay in, but edges show what
sequence of actions must be executed for the system to leave
one state and enter another. Now it is possible to perform the
linearisation task to reduce this FSM into a smaller one. In an
ideal case, which is the target state, the graph/FSM should
have only two vertices – the initial state and the final state, and
a single edge connecting those. To achieve such a situation, the
authors have developed 9 different minimisation techniques.
Each of these techniques targets a single area in the graph and
transforms it. Minimisation/linearisation task, in turn, becomes
an iterative process when on each iteration these techniques are
being tried against the current state of the graph. If at least one
of them succeeds, iteration starts over. During their
experiments, which comprised the application of the proposed
algorithms to ~100 different process models including various
possible cases, the authors found out that these techniques
were enough to achieve the target state of the graph with two
vertices and a single edge in all the test cases. However, it is
possible that such a graph, which cannot be minimised, exists
but was never discovered. In this case, after all the
minimisation/linearisation iterations it would be possible to
apply the above-mentioned transitive closure [15] method to
perform the final reduction of the graph. In the next
paragraphs, the authors will define all the techniques used for
the minimisation purpose and provide examples.

Fig. 3. Vertex-edge exchange process in a graph.

The first and most obvious technique to be used is the
elimination of duplicate edges. It is possible to describe it
using the following rule:

If there are vertices A and B in the graph that are
interconnected with the same edges X, Y, … = Z, then it is
possible to eliminate these duplicate edges replacing those

with a single one – Z. An example of this technique being
applied to a graph is provided in Fig. 4. The figure shows a
part of the graph being transformed where two vertices are
interconnected with the same two edges, and a transformation
results in duplicate edges eliminated.

Fig. 4. Duplicate edge elimination.

Next technique also analyses vertices that are interconnected
with an edge set. However, in this case all the edges in the set
should be different. The authors call this technique
“disjunction definition”, and it can be described as follows:

If there are vertices A and B in the graph that are
interconnected with the different edges X, Y, … such as
edges in the set are different and it is not possible to extract a
common suffix from these, it is possible to eliminate these
edges and replace them with a single edge (X | Y | …).
There is a definition in the rule that requires additional
explanation. The authors consider that two edges have a
common suffix if an action sequence associated with each of
the edges ends with the same sequence of actions. The simplest
example in this case is duplicate edges mentioned before – it is
possible to consider that duplicate edges have a common suffix
which is the whole edge. Another example that could be
mentioned here is the set of two edges – (X,Y,Z) and
(W,Y,Z). Edges in this example would have a common
suffix – (Y,Z). Disjunction definition technique will not
affect the edges that share a common suffix since there are
several techniques that are meant specifically for such cases.
Example of a disjunction definition technique is provided in
Fig. 5. In this case, there is again a graph with two vertices that
are interconnected with two edges. In contrary to the previous
example, these edges are different; however, they are still
eliminated and replaced with a single edge.

To process and transform common suffixes in an edge set,
the authors propose two different techniques that are described
below. The first technique is used in case when two vertices
A and B exist, and these vertices are interconnected with an
edge set sharing a common suffix. In this case, the authors
propose introducing new vertex C and interconnecting it with
A and B in such a way that C is connected with B via a single

P1()⇒(A1)

P2()⇒(A2)

P3()⇒(A3)

P4(A1,A2,A3)⇒(A4) P5(A4)⇒()

P1()⇒(A1)

P2()⇒(A2)

P3()⇒(A3)

P4(A1,A2,A3)⇒(A4)

P4(A1,A2,A3)⇒(A4)

P4(A1,A2,A3)⇒(A4) P5(A4)⇒()

P(A,B)⇒(C,D)

P(A,B)⇒(C,D)

P(A,B)⇒(C,D)

Applied Computer Systems

__ 2017/22

40

edge containing a common suffix, while A is interconnected
with C via multiple edges that contain different sequences that
were left after common suffix extraction. Example of this
technique is shown in Fig. 6.

Fig. 5. Disjunction definition.

Fig. 6. The first common suffix processing technique.

The second technique used for common suffix processing is
different. It analyses only a single vertex A in a graph and an
edge set that is incoming inside. If this edge set shares a
common suffix, it is possible to create new vertex B that is
interconnected with A using an edge carrying a new suffix.
Other vertices connected with A before the application of this
technique, in turn, will become connected to vertex B via
edges carrying parts of original action sequences minus a
common suffix part. An example of this technique is shown in
Fig. 7.

Fig. 7. The second common suffix processing technique.

At first, it might seem that both common suffix processing
techniques increase graph complexity by adding new vertices
and edges, while the main task of all techniques that the
authors define is opposite – to minimise the graph and convert
it to a linear structure. However, after the application of these
techniques, a graph becomes available for processing with
other techniques that will eliminate new additions and, as a
result, reduce the complexity of it. For example, in case of the
first common suffix processing technique shown in Fig. 6, it is
possible to see that part of the graph is now available for
application of disjunction definition, while without common
suffix processing it would be impossible.

Next two techniques defined by the authors of this paper
target cycles and circles that might appear in the graph of the
business process model. The first technique searches the graph
for vertices A and B that are interconnected with edges X and Y
in such a way that a cycle is formed in the graph. If it is
possible to find such vertices, then it is possible to merge them
into a single vertex forming a circle. In this case, it is
necessary to determine which vertex in original process graph
was the beginning of the cycle, and which was its ending. This
is achieved by analysing, how far vertices are from the initial
state of the graph shown in Fig. 3. Since graph transformation
to the FSM will always create a single initial and single final
state, this task becomes trivial and can be performed by
calculating the shortest paths from the initial state to vertices A
and B. If one of the paths includes one of these vertices, then
the vertex becomes the end of the cycle. Newly created circle,
in turn, might be described as (X,Y)* or (Y,X)* depending
on the result of this calculation, where * defines the fact that
the given sequence of action might be executed zero or more
times. An example of this technique is shown in Fig. 8.

P1(A,B)⇒(C,D)

P2(E,F)⇒(G,H)

(P1(A,B)⇒(C,D)|P2(E,F)⇒(G,H))

P1()⇒(A),P2(A,B)⇒(C)

P2(A,B)⇒(C)

P1()⇒(A)

P3()⇒(B)

P3()⇒(B),P2(A,B)⇒(C)

P1()⇒(A),P2(A,B)⇒(C)

P2(A,B)⇒(C)

P1()⇒(A)

P3()⇒(B)

P3()⇒(B),P2(A,B)⇒(C)

Applied Computer Systems

__ 2017/22

41

Fig. 8. Cycle elimination by vertex merging.

As a result of this technique application, a circle in the graph
is created. The next technique, in turn, targets circles in the
graph to replace. This technique searches for vertex A in a
graph, such that it has only one incoming edge X, only one
outgoing edge Y and circle Z. If such a vertex is found, it is
possible to remove it from the graph and replace it with an
edge(X,Z*,Y)that will connect A predecessor and successor.
An example of this technique application is given in Fig. 9.

Fig. 9. Circle elimination.

Next, the technique defined by the authors searches the
graph for vertices that have only one incoming and only one
outgoing edge. These vertices can be removed from the graph
and replaced with a new edge that will combine input and
output of a removed vertex as a new action sequence. The
proposed technique is simple and straightforward, and the
example of its application is given in Fig. 10.

Fig. 10. Vertex elimination.

Next, the graph processing technique searches the graph for
vertex A, such as it has multiple duplicate outgoing edges X,
Y, … = Z. If such a vertex is found inside the graph, it is
possible to create new vertex B, connect A to B via new edge
Z, and connect B to the original successors of A. Again, this
technique might seem like one that complicates graph structure
instead of simplifying it; however, in this case a degree of
outgoing edges for A is lowered, thus serving the minimisation
task. An example of this technique is provided in Fig. 11. In
this figure, action sequences for the removed vertex
grandchildren are omitted since they do not participate in the
transformation and do not carry any information that is vital
for technique application.

Fig. 11. Duplicate outgoing edge elimination.

During the task of graph minimisation, it is possible to
achieve a situation, such that there is edge X in the graph that
carries no information. One of the examples, when such an
edge can appear, is common suffix elimination, e.g., if there
were edges (X,Y) and (Y)that were sharing common suffix
(Y), after suffix elimination these edges would be
transformed into (X), () and (Y). It is possible to note that
an empty edge has appeared. Such edges can be safely
removed from the graph; however, it is important to preserve
information about an original graph structure when performing
such an operation. The last technique that the authors would
like to describe in this paper targets such situations and
removes empty edges. Example of its application is given in
Fig. 12. This example also shows that after application of this
technique it is possible that a circle will be created in a graph.

(P1()⇒(A),P2(A)⇒(B))*

P1()⇒(A)

P2(A)⇒(B)

(P2(A)⇒(A))*

P1()⇒(A) P3(A)⇒()

P1()⇒(A),(P2(A)⇒(A))*,P3(A)⇒()

P1()⇒(A) P2(A)⇒()

P1()⇒(A),P2(A)⇒()

P()⇒(A) P()⇒(A)

P()⇒(A)

Applied Computer Systems

__ 2017/22

42

Fig. 12. Empty edge elimination.

After successful application of graph minimisation
techniques to the business process diagram, a linear structure is
created. This structure resembles the above-mentioned regular
expression and can be further used for code generation. The
authors call this structure a “workflow model” since it defines
what and in which order happens inside the system when
performing some task.

Workflow model is very close to the source code in terms of
its syntax. For example, the workflow model for the business
process diagram part presented in Fig. 9 might look like (see
Fig. 13):

Fig. 13. An example of workflow model.

It is possible to see that the workflow model is a starting
point for code generation – it has information on variable
names, how they are used, what processes and in which
sequence are invoked. Loops and potential conditional
operators are also detected. However, in the example above it
is possible to note that a loop still misses an important piece of
information – a condition for looping. The same would apply
to the disjunctions – it is not possible to determine if disjointed
sequences of actions are executed in parallel, exclusively or
together as well as it is impossible to determine under which
condition each of the action sequences should be executed.
This is a target for the future research, and it seems that it
would be necessary to make changes to the 2HM model

notation, since its current state makes it impossible to extract
such information from the business process diagram for the
further transformation purposes. It should be possible to define
a condition in a free-text form for each of the processes. Such a
condition should determine when the given process is
executed. Since the process might be part of the process
sequence, this would possibly allow defining finite blocks of
statements that are being invoked under a given condition.

Another thing to be considered in the present research is the
preservation of all the available information, source model,
provided by the 2HM model. It should be prohibited for a
transformation method to ignore parts of the initial model,
since all the information in the business process diagram is
important for the definition of the algorithm it describes. Thus,
it is possible to say that a valid transformation method should
use and preserve all the original information from the source
model in order to make this information part of the target
model as well.

When minimising the graph, it is important to preserve the
original information it was representing without breaking its
structure. This means that graph processing techniques should
be “non-breaking” operations that will not lose any
information present. In the next section, the authors would like
to give proof that techniques they propose meet this condition
with one exception that will also be described.

IV. PROOF OF INFORMATION PRESERVATION FOR THE

PROPOSED MINIMISATION TECHNIQUES

To prove that the proposed techniques preserve the original
structure of the business process diagram, the authors would
like to use the fact that this diagram and FSM that corresponds
to it are, in fact, directed graphs. This means that it is possible
to define paths in such graphs and analyse that all the paths
that were possible before the application of a single technique
would still be possible after its application. If it is so, then it is
possible to say that a given technique preserves the initial
structure of the graph. It is important to note the fact that only
edges are included in the path – since only edges carry the
information about process invocation. In this section, the
authors will describe the use of this proof for all the proposed
techniques.

Table I covers proof for all the techniques described in this
paper. Its first column contains a technique name, the second
column presents a situation in a graph before the application of
the given technique, the third column shows a situation after
such an application, the fourth and fifth columns, in turn, show
paths before and after application of the technique. In this
table, the authors omit the information about actual action
sequences on the graph edges and use numbers to mark the
appropriate parts of the graph.

A = P1()
repeat: {
 A = P2(A)
}
P3(A)

P()⇒(A)

P()⇒(A)

Applied Computer Systems

__ 2017/22

43

TABLE I

PROOF OF GRAPH STRUCTURE PRESERVATION

Technique Graph Before Graph After
Paths
Before

Paths
After

Duplicate Edge
Elimination

 1

 1
 1

Disjunction
Definition

 1

 2

 1

 2

Common Suffix
Processing I

 1–2

 3–2

 1–2

 3–2

Common Suffix
Processing II

 1–2

 3–2

 1–2

 3–2

Cycle
Elimination*

 1

 (1–2)*
 (1–2)*

Circle
Elimination  1–2*–3  1–2*–3

Vertex
Elimination  1,2  1,2

Duplicate
Outgoing Edge

Elimination

 1

 1
 1

Empty Edge
Elimination  1*  1*

It is possible to see from Table 1 that all the proposed
techniques preserve the initial structure of the graph after their
application with only exception of Cycle Elimination
technique. Cycle Elimination removes the information from
the graph about one of the possible paths. At the current state,
the authors think that this is fine, since cycles in the graph
correspond to the loops in the appropriate algorithm described
by the business process diagram and source code generated
from it. By applying the Cycle Elimination technique,
information about the loop is preserved; however, one of the
possible control flows – premature loop exit is lost. The

authors propose marking such situations in a graph so that in
the future when the source code is generated, it would be
possible to insert an appropriate programming language
statement – one that allows exiting the loop, e.g., break. For
an example given in Table 1, the technique application result
in such a case would be (1,(break|2))* instead of
(1,2)*. However, this is the target for the future work, and it
is possible that there are other solutions to this problem.

All other graph processing techniques preserve all the paths
that were present in the graph before appropriate technique
was applied. Thus, it is possible to prove that techniques the

1

1

1

1

2

1|2

1,2

3,2

2

1

3

1,2

3,2

2

1

3

1

2

1,2

2*

1 3
1,2*,3

1 2 1,2

1 1 1

1 1

Applied Computer Systems

__ 2017/22

44

authors propose are “non-breaking” and can be used to
transform the business process diagram to a linear structure
that, in turn, can be later used for source code generation from
the 2HM model.

In the next section of this paper, the authors would like to
provide a simple example of how the described graph
transformation techniques can be used to convert the initial
business process diagram to a workflow model.

V. A WORKFLOW GENERATION EXAMPLE

To demonstrate how the proposed techniques can be applied
to the 2HM model, the authors would like to refer to a simple
example shown in Fig. 14. In this case, the concept diagram
part of the 2HM model is omitted since it plays no role in the
transformation process. Only the business process diagram is
given. This diagram shows a room booking process at a hotel.
It starts with a booking request submission that contains details
about room preference. After this request is submitted, there
are two options: a room that fits the request might be found or
request might be rejected due to some reason, e.g., no room
meets the criteria, requested dates are not available etc. In case
of request rejection, a user is asked to revise the information
and submit a new request. This process might repeat multiple
times. User might also cancel the booking. In this case, the
business process is ended and the algorithm should stop. If a
room is found and the request can be served, a user is asked to
provide additional information. Finally, the request will be
converted to the booking information and stored in the
database. This business process diagram despite its simplicity
covers multiple possible cases, such as loops and conditions,
and, thus, can be used to show the previously described
techniques in action. All elements in this diagram are marked
with identifiers – processes are marked P1…P8, dataflows –
D1…D8.

Fig. 14. Sample business process diagram.

As it was described before, to prepare the business process
diagram graph for the application of techniques developed by
the authors, it is necessary to convert it to the FSM. The
appropriate FSM for the sample model is given in Fig. 15.

Fig. 15. FSM of sample business process diagram.

Fig. 16. Application result of Duplicate Outgoing Edge Elimination technique.

This FSM is the directed multigraph that allows for cycles,
and it is possible to process it with techniques defined by the
authors. Figure 16 shows this graph after Duplicate Outgoing
Edge Elimination technique application to a vertex that is
marked with a dashed line in Fig. 15.

P1. Start Booking Process

P2. Find Free Room

P3. Request Personal DataP4. Notify Rejection

P5. Revise Booking Request

P7. Save Booking

P6. Confirm Booking

P8. Cancel Booking

D1. Booking
Request

D2. Room
Information

D3. Booking

D4. Booking

D7. Revised
Request

D5. Booking
Reject

D6. Booking
Reject

D8. Booking
Reject

P1()⇒(D1)

P2(D1,D7)⇒(D2,D5)P2(D1,D7)⇒(D2,D5)

P2(D1,D7)⇒(D2,D5)

P2(D1,D7)⇒(D2,D5)

P3(D2)⇒(D3)

P6(D3)⇒(D4)

P7(D4)⇒()

P4(D5)⇒(D6)

P5(D6)⇒(D7,D8)

P5(D6)⇒(D7,D8)

P8(D8)⇒()

P1()⇒(D1)

P2(D1,D7)⇒(D2,D5)

P3(D2)⇒(D3)

P6(D3)⇒(D4)

P7(D4)⇒()

P4(D5)⇒(D6)

P5(D6)⇒(D7,D8)

P5(D6)⇒(D7,D8)

P8(D8)⇒()

P2(D1,D7)⇒(D2,D5)

P2(D1,D7)⇒(D2,D5)

Applied Computer Systems

__ 2017/22

45

Next steps will use other techniques to reduce graph
complexity and convert it to a linear structure; however, due to
limitations of this paper, the authors will omit description of
each step and present the results of technique application in
form of workflow model that was generated from the initial
business process diagram. This model is presented in Fig. 17.

It is possible to see that the resulting workflow model
contains both loop and disjunction. However, in this case

disjunction means that each of its branches is independent, i.e.,
only one of these can be executed. In real life cases, there is
possible such a situation that both branches of disjunction are
executed in parallel. As it has already mentioned, the 2HM
model lacks information that would be necessary to identify
such cases, and it should be enriched to make the
transformation more precise. The same applies to the loops in
the resulting model – there is no condition for loop exit.

Fig. 17. Generated workflow model.

VI. CONCLUSION AND FUTURE RESEARCH

In the paper, the authors have presented a set of techniques
that can be applied to the business process diagram, which is
part of 2HM model. Using these techniques, it is possible to
minimise the initial graph of the business process diagram and
convert it to a linear structure that later can be used for source
code generation.

As a result, an intermediate model that the authors call the
workflow model has been obtained. In the paper, it is
represented in a textual form that is like the source code of the
program; however, it is a linear structure that consists of action
sequences, disjunctions and loops.

The authors provide proof that techniques they offer to use
are “non-breaking” and preserve the original structure of the
graph during the transformation. However, there is one
exception the authors point out in the paper. The exception is
Cycle Elimination technique that “loses” the information about
possible loop exits. The authors propose an approach to fix this
issue; however, it is necessary to perform a detailed analysis of
such an improvement to the current state of art. This is one of
the targets for the future research.

Another task to be solved is to find out if the proposed
minimisation/linearisation techniques can reduce all kinds of
business process diagrams to the workflow model. If it is so,
these techniques are enough to create an intermediate model
suitable for future source code generation. If not, it is
necessary to find cases where these techniques do not apply, as
well as propose the solutions for such case processing.

As it has already been mentioned, the workflow model can
be written in form that is like the source code, which proves
the fact that such a transformation is possible. However, it is
worth noting that it still misses some vital information such as
conditions for loops or disjunctions. Furthermore, it is
impossible to distinguish a type of disjunction – its branches
are exclusive and only one must be executed, or they are
invoked in a parallel and both should be invoked. At the
moment, it is impossible to obtain such information due to the
fact that the initial model misses it. This leads to another
direction of future research – enriching the 2HM model with
the necessary information.

As a conclusion, the authors would like to state that the
approach described in the paper allows achieving results that
are easily convertible to the source code, and further research
in this direction should allow for more precise code generation.

(D1.Booking Request) = P1.Start Booking Process();
repeat: {
 (D2.Room Information, D5.Booking Reject) =
 P2.Find Free Room(D1.Booking Request, D7.Revised Request);
 (D6.Booking Reject) = P4.Notify Rejection(D5.Booking Reject);
 (D7.Revised Request, D8.Booking Reject) =
 P5.Revise Booking Request(D6.Booking Reject);
}
disj{
 case1: {
 P8.Cancel Booking(D8.Booking Reject);
 }
 case2: {
 (D3.Booking) = P3.Request Personal Data(D2.Room Information);
 (D4.Booking) = P6.Confirm Booking(D3.Booking);
 P7.Save Booking(D4.Booking);
 }
}

Applied Computer Systems

__ 2017/22

46

REFERENCES
[1] W. M. P. van der Aalst, “Business Process Management:

A Comprehensive Survey,” ISRN Software Engineering, vol. 2013,
pp. 1–37, 2013. https://doi.org/10.1155/2013/507984

[2] M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software
Engineering in Practice, 1st edition. USA: Morgan & Claypool
Publishers, 2012.

[3] W. P. Stevens, G. J. Myers, and L. L. Constantine, “Structured Design,”
IBM Systems Journal, vol. 13, no. 2, pp. 115–139, 1974.
https://doi.org/10.1147/sj.132.0115

[4] O. Nikiforova and M. Kirikova, “Two-Hemisphere Model Driven
Approach: Engineering Based Software Development,” Lecture Notes in
Computer Science, pp. 219–233, 2004.
https://doi.org/10.1007/978-3-540-25975-6_17

[5] ISO/IEC 2382:2015 Information technology – Vocabulary [Online].
Available: https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:ed-1:v1:en

[6] O. Nikiforova and N. Pavlova, “Development of the Tool for Generation
of UML Class Diagram from Two-Hemisphere Model,” 2008 The Third
International Conference on Software Engineering Advances, pp. 105–112,
Oct. 2008. https://doi.org/10.1109/icsea.2008.37

[7] O. Nikiforova, K. Gusarovs, O. Gorbiks, and N. Pavlova, “BrainTool.
A Tool for Generation of the UML Class Diagrams” Proceedings of the
Seventh International Conference on Software Engineering Advances,
Mannaert H. et al. Eds, pp. 60–69, Lisbon, Portugal, November 18–23,
2012.

[8] O. Nikiforova, L. Kozacenko, D. Ungurs, D. Ahilcenoka, A. Bajovs,
N. Skindere, K. Gusarovs, and M. Jukss, “BrainTool v2.0 for Software
Modeling in UML,” Applied Computer Systems, vol. 16, no. 1, pp. 33–
42, Jan. 2014. https://doi.org/10.1515/acss-2014-0011

[9] Unified Modeling Language (UML) [Online]. Available:
http://www.uml.org

[10] BPMN Specification – Business Process Model and Notation [Online].
Available: http://www.bpmn.org

[11] O. Nikiforova, L. Kozacenko, and D. Ahilcenoka, “UML Sequence
Diagram: Transformation from the Two-Hemisphere Model and
Layout,” Applied Computer Systems, vol. 14, no. 1, pp. 31–41, Jan.
2013. https://doi.org/10.2478/acss-2013-0004

[12] O. Nikiforova, K. Gusarovs, and A. Ressin. “An Approach to Generation
of the UML Sequence Diagram from the Two- Hemisphere Model,”
Proceedings of The Eleventh International Conference on Software
Engineering Advances (ICSEA), 2016.

[13] K. Gusarovs, O. Nikiforova, and A. Giurca, “Simplified Lisp Code
Generation from the Two-hemisphere Model,” Procedia Computer
Science, vol. 104, pp. 329–337, 2017.
https://doi.org/10.1016/j.procs.2017.01.142

[14] UML tools for software development and modelling – Enterprise
Architect UML modeling tool [Online]. Available:
http://www.sparxsystems.com

[15] T. Koshy, Discrete Mathematics with Applications. Academic Press,
p. 1042 p., 2003.

[16] “Finite State Machines,” 2005 [Online]. Available:
http://www4.ncsu.edu/~drwrigh3/docs/courses/csc216/fsm-notes.pdf

Konstantīns Gusarovs received the Master degree in
Computer Systems from Riga Technical University,
Latvia, in 2012. At present, he is the third year
Doctoral student and Researcher at the Department of
Applied Computer Science, Riga Technical
University, as well as Java Developer in C.T.Co Ltd.
His current research interests include object-oriented
software development and automatic obtaining of
program code.
E-mail: konstantins.gusarovs@gmail.com

Oksana Ņikiforova received the Doctoral degree in
Information Technologies (system analysis, modelling
and design) from Riga Technical University, Latvia,
in 2001.
At present, she is a Professor at the Department of
Applied Computer Science, Riga Technical
University, where she has been working since 1997.
Her current research interests include object-oriented
system analysis, design and modelling, especially the
issues in Model Driven Software Development.
E-mail: oksana.nikiforova@rtu.lv

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

