
Applied Computer Systems

37

ISSN 2255-8691 (online)
ISSN 2255-8683 (print)
May 2018, vol. 23, no. 1, pp. 37–44
doi: 10.2478/acss-2018-0005
https://www.degruyter.com/view/j/acss

©2018 Kristiāns Kronis, Marina Uhanova.
This is an open access article licensed under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open.

Performance Comparison of Java EE and ASP.NET
Core Technologies for Web API Development

Kristiāns Kronis1*, Marina Uhanova2
1, 2 Riga Technical University, Riga, Latvia

Abstract – The paper describes the implementation of organic
benchmarks for Java EE and ASP.NET Core, which are used to
compare the performance characteristics of the language
runtimes. The benchmarks are created as REST services, which
process data in the JSON format. The ASP.NET Core
implementation utilises the Kestrel web server, while the Java EE
implementation uses Apache TomEE, which is based on Apache
Tomcat. A separate service is created for invoking the benchmarks
and collecting their results. It uses Express with ES6 (for its async
features), Redis and MySQL. A web-based interface for utilising
this service and displaying the results is also created, using
Angular 5.

Keywords – Benchmark testing, computer languages,
programming, software performance.

I. INTRODUCTION

Both Java EE (Java Platform, Enterprise Edition), developed
by Oracle, and ASP.NET (Active Server Pages .NET),
developed by Microsoft, offer features fit for the creation of
web-based applications. However, in recent history, Java EE
has had better cross-platform support – it is possible to install
the HotSpot implementation of the JVM (Java Virtual
Machine), which is supported by Oracle, on both Windows and
GNU/Linux operating systems. However, when dealing with
.NET, the full .NET framework does not run on GNU/Linux
and Mono must be used, which was originally an open source
project and was only acquired by Microsoft in 2016 [1]. It does
not offer support for WPF (Windows Presentation Foundation),
WWF (Windows Workflow Foundation), while offering
limited support for WCF (Windows Communication
Foundation) and ASP.NET [2].

However, with the release of .NET Core in 2016 and,
subsequently, the ASP.NET Core [3], Microsoft is supporting
more operating systems. Now, as there is a first-party CLR
(Common Language Runtime) implementation available on
GNU/Linux, in addition to a modern rewrite of ASP.NET and
a new web server – Kestrel [4], it would be beneficial to re-
evaluate which technology stack is better for new projects.

The evaluation can be performed by examining their
differences, i.e., how the Kestrel web server is different from
IIS, which it is supposed to replace, and the most popular Java
web servers, such as Apache Tomcat [5], how the runtime
performance differs in typical use cases, running under similar,
commonly utilised configurations.

The present paper describes an implementation of a system,
which is to be used for running organic benchmarks (real-world

* Corresponding author’s e-mail: kristians.kronis@edu.rtu.lv

tests) and collecting their results, offering immediate visual
feedback to the user. The main goal of the benchmarking is to
gain an approximation of how performant both technology
stacks are on the GNU/Linux operating system and to highlight
any obvious differences. General guidelines are also laid out for
the software architecture and implementation practices to ensure
the capability of generating hundreds of concurrent requests
and efficiently processing them, as well as handling any errors.

A common REST (Representational State Transfer) API
(Application Programming Interface), which uses JSON
(JavaScript Object Notation) for data transfer is described and
implemented in both technologies and deployed on identical
servers. A separate application, consisting of a front-end for test
configuration written in Angular 5, and a back-end service for
test execution and result processing, written in Express and
Node.js, which uses Redis for temporary storage and MySQL
for result logging, are also created. This system is designed
modularly – the servers implementing the testing APIs can be
configured in the front-end interface, in addition to configuring
Redis and MySQL logging.

While no claims are made that the results will be objective,
the system should serve as a starting point, allowing for
extensibility – adding more servers, which can run different
languages and software or hardware configurations, with no
code changes, or extending the list of benchmarks to be run,
should there be necessity for more specific tests in the future.

II. JAVA EE

Java EE (Java Platform, Enterprise Edition) is a superset of
the Java SE (Java Platform, Standard Edition), which extends
the general-purpose Java APIs to provide features, which are
useful in an enterprise setting, such as dependency injection
(CDI, EJB), transaction management (JTA) and dynamic
webpage functionality (JSP, JSF), as well as features for
creating web services (JAX-RS, JAX-WS), at the same time
also shortening the development time and the software
complexity (Fig. 1) [6]. The development is organised with the
Java Community Process (JCP) and based on Java Specification
Requests (JSR).

The present paper describes a setup that uses Java EE 7,
which was released in 2013 [7]. The Java EE 7 platform can be
further divided into the Full Platform and Web Profile, the
purpose of which is to provide a more limited set of features,
which is easier to support [8]. The developed API
implementation takes advantage of Servlets, JSON, CDI and

Applied Computer Systems

__ 2018/23

38

JAX-RS, thus using elements of the Full Platform specification.
Java EE 7 was chosen, because at the time of writing, Java EE
8 adoption was still limited, only Glassfish 5.0 and Payara 5
supported the specification, neither of which was as popular as
Apache Tomcat, upon which Apache TomEE was based.

Fig 1. A diagram of the Java EE Full Platform and Web Profile specifications.

III. ASP.NET

ASP.NET (Active Server Pages .NET) is a web application
framework that is developed by Microsoft and utilises the CLR
[9]. The features provided are similar to Java EE, for example,
Web Forms allows creating dynamic content, in a similar
fashion to JSP and JSF (Fig. 2) [10]. A number of components,
notably ASP.NET Web API, ASP.NET AJAX, ASP.NET
MVC provide various functions [11]. ASP.NET is typically run
on IIS (Internet Information Services), which is not supported
on GNU/Linux by Microsoft; thus, Kestrel must be used
instead.

Fig. 2. A diagram of .NET Framework Architecture with ASP.NET displayed.

IV. ASP.NET CORE

ASP.NET Core is the next generation of ASP.NET
developed by Microsoft and community contributors [12] and
can be run on both the full .NET framework and the .NET Core
platform. It is a rewrite, which is meant to provide a slimmer,
but more up-to-date set of features, as well as a new lightweight

web server, Kestrel (although using IIS is still possible on
Windows). It supports multiple components – Entity
Framework Core, MVC Core and Razor Core [13], amongst
others, which act as alternatives to those found in ASP.NET
[14].

V. REQUIREMENTS FOR TESTING

To ensure optimal results, without interference caused by the
configuration of the used operating system, some guidelines are
defined for the design of the system:

1. The implementations for the APIs are to be placed on
separate servers. In this case, VPS (virtual private
servers) are used.

2. Both servers should have the same type and version of
operating system. In this case, Ubuntu 16.04.4 LTS was
chosen.

3. To ensure that the servers perform equally, they are to be
tested by synthetic benchmarks. Both are to be subjected
to the same types of benchmarks. Here, sysbench 0.4.12
was used.

4. The servers should run the same software with the same
updates, differing only in the packages that are required
to run the implementations – in this case, OpenJDK and
.NET Core.

5. To test how well the web servers of the specific technology
stacks perform (Apache TomEE and Kestrel), no reverse
proxies (such as Apache httpd or Nginx) are to be used.

Requirements were also laid out for how the testing should
be conducted to prevent memory leaks and errors caused by the
implementation of the testing system itself:

1. The service that is invoking the benchmarks should not
have its load capacity exceeded. This is ensured by each
of the APIs being tested sequentially to prevent the
service from being affected by the load, while it is still
possible to run multiple iterations of a single test in parallel.

2. It should be possible to easily add and remove tests to be
run, using a scheduler – this is implemented in the front-
end, thus not limiting the testing service to sequential
execution, but only utilising it in such a manner. This
allows for future-proofing, should there ever be a
requirement for the concurrent testing of multiple APIs.

3. The exchange of data that are not relevant among the
layers of the system (APIs, testing service and the front-
end) should be minimised. Here, the contents of the
testing requests are generated on the testing service itself
and are only exchanged with the APIs, which are to be
tested. The front-end only receives the results.

4. The test results should be chunked and provided to the
front-end upon request, before the completion of all of the
scheduled test iterations, however, should also expire
after a set amount of time if not retrieved.

5. The web interface should be lightweight. This is achieved
by grouping the results and showing the averages in the
groups when over 100 iterations are run, to prevent the
chart framework from negatively affecting the perfor-
mance. The MySQL database can be used for a finer anal-
ysis of the results.

Applied Computer Systems

__ 2018/23

39

VI. DETAILS OF THE TESTING SYSTEM COMPONENTS

The system is composed of several components, each using
common technologies to re-create configurations, which could
be found in real-world usage.

A. Java API Implementation

The Java API is implemented using Java EE features and
avoiding third party frameworks, such as Spring, where
possible. It is running on Apache TomEE Web Profile 7.0.2,
which provides the functionality of Java EE 7 Web Profile using
open-source components (OpenEJB, Apache CXF, etc.) [14]. It
is based on Apache Tomcat – a popular application container
[15]. It is run through OpenJDK, version 1.8.0_151.

B. ASP.NET Core API Implementation

The ASP.NET Core API is implemented using ASP.NET
Core features and avoiding third party frameworks, where
possible. It is running on Kestrel web server 2.0.1. The
distribution is run through .NET Core, version 2.1.3.

C. Node.js + Express Testing Service

The testing service is running on Node.js v9.2.1 and based on
Express 4.15.5. It uses cors, redis, express-redis and request-
promise-native packages (installed through npm), amongst
others, to provide the necessary functionality.

D. Angular 5 Web Interface

The front-end is created with Angular 5.0.0, TypeScript 2.5.3
and Bootstrap 4, which is used for providing styling and
behaviour of the user interface, in combination with jQuery
3.2.1. In addition, ng2-charts is used to serve as a bridge
between Angular and Chart.js, a framework that provides
HTML5-based graph display capabilities [16].

VII. THE DESIGN OF THE FRONT-END

The front-end serves as a façade to the rest of the system and
allows configuring the Redis and MySQL instances to use, as
well as the servers to be subjected to testing. It does not handle
generating the test request contents, but makes schedule
invoking the testing service in the back-end.

The application structure is based on a single Angular module,
which has services for storing data about settings and tests, the
latter of which contain both the test entries themselves – with
data about the test type, iterations and other parameters – and
the servers that are to be used, each test having a reference to
one of the server objects.

The rest of the app is composed of utility classes (such as
enumerables, or notification components) and components for
displaying the data and organising input and output – tab, menu
and chart components.

The interface is tabbed to display only the information that is
relevant to the user at any given moment – there are tabs for
running tests and displaying their results (Fig. 3), as well as
configuring the servers themselves (Fig. 4), and changing the
system settings.

Fig. 3. The web interface, with the test tab open, which lists the available test
types.

Fig. 4. The web interface, with the server configuration tab open, which lists
the current servers.

Lastly, the benchmarking process also attempts to divide the
request run time into its components, which are also displayed
differently in the graphs (Fig. 5) – the time that a request spends
on the network and the time that it spends being processed. The
horizontal axis displays the iteration or a span of iterations (if
more than 100 iterations are run), whereas the vertical axis
displays the execution time, in milliseconds.

Fig 5. A part of the web interface, displaying the results of a test and controls
for changing its parameters.

This is achieved through self-reporting by the systems and is
displayed in the form of a stacked bar chart, in which the bottom
bar displays the reported test execution time on the API, while
the top bar displays the remainder of the time, which it took for
the request to reach the testing service (which is calculated by
subtracting the execution time from the total time).

Applied Computer Systems

__ 2018/23

40

VIII. COMMUNICATION BETWEEN THE FRONT-END
AND THE BACK-END

Layers of the system communicate (Fig. 6) using HTTP
requests, which are provided by the HttpClient class in
combination with the JavaScript JSON class on the Angular
side, and Express routing with body-parser on the back-end.
This format was chosen because it allowed for easy information
exchange between the layers, as they use the contents as any
other JavaScript object.

Fig. 6. A diagram of network requests, with Redis shown as an internal part of
the back-end as a possible configuration.

Two paths are exposed by the testing service: /schedule and
/results, the former of which allows scheduling a new test for
execution, while the latter can be polled by the front-end to
periodically receive and clear the result list stored in Redis, as
well as check whether the execution has finished. Both utilise
Redis for temporarily storing data, chosen because of its
performance, as it uses RAM (random access memory) for
temporary key-value storage. It is accessed through the express-
redis library, which mirrors the official API and allows for
atomic access [17]. The only exception is setting the TTL value
for lists, which is done in a separate call, to make the values
expire should they not be requested in a certain amount of time.
For debugging purposes, all the communication between the
layers of the system can be logged, either in the browser console
or the Node.js output, which is redirected to a file.

When starting a test on the testing service, all of the relevant
data to its execution must be passed in the first request: its kind,
the iterations to be run, its unique identifier, information about
the testing API to be used, as well as the configuration data for
Redis and MySQL.

The response to a request for test results contains information
about whether it is finished, as well as an array of the results.
The results include the contents as well as the response of the
request, the specific iteration, which the entry describes, as well
as information about errors, should any have occurred (in the
form of the contents of a stack trace of the language used).
Timestamps are also included for measuring execution times.

The received timestamps come in pairs, the source ones are
generated by the Node.js server, whereas the target ones are
generated by the test API. Only their subtraction is important,
so they do not have to match, allowing for server time
configurations to differ without impacting the functionality.

Example of a logged request, which is used to launch the
execution of a test through the testing service:

{
 "testKind": "connectionCheck",
 "iterations": 5,
 "testId": 1396483829,
 "results": [],
 "errorCount": 0,
 "successfulPercent": 100,
 "controlsBusy": true,
 "isRunning": "true",
 "parentServer": {
 "serverName": "Java Server",
 "serverAddress": "java.kronis.gdn:8080",
 },
 "chartData": null,
 "settingsRedisURL": "kronis.tk:6379",
 "settingsRedisDBNumber": "15",
 "settingsRedisPassword": "39fsdk2491",
 "settingsParallelTestIterations": 1,
 "settingsUseAudit": false,
 "settingsAuditURL": "kronis.tk:3306",
 "settingsAuditDBName": "audit_prod",
 "settingsAuditUsername": "audit_prod",
 "settingsAuditPassword": "4jsl3679kj"
}

Example of a logged response, which returns the information
about the status of a test execution, as well as the results:

{
 "testingFinished": "finished",
 "testResponses": [
 "responseContents": {
 "text": "pong"
 },
 "targetReceivedTimeStamp": 1520196324474,
 "targetSentTimeStamp": 1520196324476,
 "requestContents": {
 "text": "ping"
 },
 "error": false,
 "responseIteration": 0,
 "sourceSentTimeStamp": 1520196324404,
 "sourceReceivedTimeStamp": 1520196324495
],
 "resultsTruncated": true,
 "resultsLength": 5
}

Example of a logged request, which requests an updated list
of results from the testing service:

{
 "testId": 139648329,
 "settingsRedisURL": "kronis.tk:6379",
 "settingsRedisPassword": "39fsdk2491",
 "settingsRedisDBNumber": 15
}

Example of a logged response, which responds to a request,
to create a new test:

{
 "createdID": 1396483829,
 "creationStatus": "successful",
 "creationError": null
}

Applied Computer Systems

__ 2018/23

41

IX. COMMUNICATION BETWEEN THE BACK-END
AND TESTING APIS

The communication between the back-end and the APIs to
be tested varies more as there is not a unified data format,
differences existing from one benchmark to the next; however,
they share a common lifecycle (Fig. 11). The test execution is
implemented with the ES6 async and Promise functionality,
which allow for parallelisation of iterations, depending on the
parameters set in the front-end. As soon as a response from the
API is received, it is logged to Redis and that iteration is
forgotten apart from it.

Fig. 7. A diagram of network requests and internal processes of the back-end
and testable APIs, when processing test iterations.

X. TEST API BENCHMARK LIFECYCLE

The testing APIs follow a common format of request
processing lifecycle – first, a request is received by the REST
controller, where the time it has been received is logged.

Then, the request is de-serialised from the JSON format into
objects that the language can then work with natively. Since the
individual benchmarks differ, this process is done dynamically
instead of utilising predefined resource formats.

Then, the benchmark is executed with the acquired data and
the results are written into memory, and are later serialised back
to JSON, so that a response can be made. After the result
serialisation is complete, the current time is logged once again
and written to JSON separately in order not to cause an
overhead. The response is then sent back to the testing service.

A. Java Implementation

In Java, System.currentTimeMillis() is used for
keeping track of time, and javax.json.* packages are
utilised to handle the JSON data format. The
JsonObjectBuilder is used to allow writing the response
dynamically, for example:

this.responseContentsBuilder
 = Json.createObjectBuilder();
this.testVO.getResponseContentsBuilder()
 .add("text", responseText);

In a similar fashion, data can be de-serialised from JSON in
a JsonObject and typecast to Java’s types.

int size = this.testVO
 .getRequestContents().getInt("size");

B. ASP.NET Core Implementation

Keeping track of the time was achieved with the following:

this.receivedTime = DateTime.UtcNow.Ticks /
TimeSpan.TicksPerMillisecond;

In regard to processing JSON, C# provides automatic type
casting; in this case a Dictionary was used (later the
response contents were passed to the Json() method):

Dictionary<string, string> responseContents
 = new Dictionary<string, string>();
responseContents.Add("text", responseText);
this.testVO.responseContents
 = responseContents;

As for reading JSON, the dynamic data type was used:

int size = this.testVO.requestContents.size;

XI. TESTING BENCHMARKS

The web-based interface is only aware of the benchmarks in
the form of an enumeration, which is passed to the testing
service. Therefore, implementing new tests mainly takes place
in the testing service, which generates the requests and the
testing APIs themselves.

The tests implemented here were intended as a proof of
concept, and as such avoided the use of external systems or
databases (such as MySQL with JDBC or ADO), as I/O
(input/output) would most likely increase their execution times
noticeably.

The implemented tests are as follows:
 Connection Check – sends a short text string and receives

a modified response;
 Static Content, Text – requests a response of a specific size

from the server, consisting of randomly generated
alphanumeric characters;

 Maths, Addition – performs addition with 1000 randomly
generated real numbers;

 Maths, Multiplication – performs multiplication with
1000 randomly generated real numbers;

 Maths, Division – performs division with 1000 randomly
generated real numbers;

 Maths, Powers – raises e to different powers with 1000
randomly generated real numbers;

 Maths, Logarithms – calculates natural logarithms with
1000 randomly generated real numbers, checks whether
the results are finite numbers;

 Dynamic Content, Prime Numbers – generates 100
sequential prime numbers;

 Dynamic Content, JSON Structure, Reading – reads a
JSON structure of nested objects, which contain arrays of
numbers, and transforms it into a flat array;

 Dynamic Content, JSON Structure, Writing – writes a
JSON structure of nested objects, which contain arrays of
numbers, based on input parameters;

 Sorting, Whole Numbers – sorts an array of whole
numbers, which has 1000 entries, returns the results;

 Sorting, Real Numbers – sorts an array of real numbers,
which has 1000 entries, returns the results;

Applied Computer Systems

__ 2018/23

42

 LINQ / Streams – sorts the objects present in a JSON
structure, which contains arrays of numbers, based on the
average of all the elements present in each one;

 Cryptography, SHA256 – generates SHA256 hashes for
the input strings;

 Cryptography, MD5 – generates MD5 hashes for the input
strings.

XII. SERVER BENCHMARKING RESULTS

To ensure that there were no notable discrepancies in the
performance of the servers, synthetic benchmarks were run on
them, provided by the sysbench package. There were minute
differences in the results of the benchmarks, but overall the
execution time was similar:

TABLE I

SYNTHETIC BENCHMARK EXECUTION TIME

Benchmark used Java server time .NET server time

--test=cpu 15.4 s 13.0 s

--test=threads 11.8 s 13.2 s

--test=memory 62.0 s 54.0 s

XIII. TESTING RESULTS

After ensuring that the performance of the servers was
comparable, the tests were run on each of the servers, with 10,
25, 50 and 100 iterations in each test run, each of these runs
being tested with 5, 10, 15 and 25 parallel iterations.

A. Test Success Percentage

First, it is important to explore, how well the servers
performed under load. This was achieved, by checking how
many iterations were scheduled per test type and how many
were actually run and had results returned by the APIs. These
were considered to be successfully executed.

TABLE II

TEST SUCCESS PERCENTAGE, BY TEST TYPE

Test Type
Success Percentage

Java ASP.NET

Connection Check 100.0 100.0

Static Content, Text 100.0 87.67

Maths, Addition 100.0 100.0

Maths, Multiplication 100.0 100.0

Maths, Division 100.0 100.0

Maths, Powers 100.0 100.0

Maths, Logarithms 100.0 100.0

Dynamic Content, Prime Numbers 100.0 100.0

Dynamic Content, JSON Structure, Reading 100.0 100.0

Dynamic Content, JSON Structure, Writing 100.0 100.0

Sorting, Whole Numbers 100.0 100.0

Sorting, Real Numbers 100.0 100.0

LINQ / Streams 100.0 100.0

Cryptography, SHA256 100.0 96.0

Cryptography, MD5 100.0 100.0

B. Test Network Time

Next, it was checked, how well the web server components
of the technology stacks performed, to see whether there were
any clear disadvantages to using Kestrel or Apache TomEE on
GNU/LINUX (average values were checked for all successful
iterations, for simplicity).

TABLE III

TEST NETWORK TIME, BY TEST TYPE

Test Type
Time, milliseconds

Java ASP.NET

Connection Check 132 107

Static Content, Text 679 2096

Maths, Addition 212 395

Maths, Multiplication 208 403

Maths, Division 206 377

Maths, Powers 200 403

Maths, Logarithms 201 380

Dynamic Content, Prime Numbers 111 106

Dynamic Content, JSON Structure, Reading 274 356

Dynamic Content, JSON Structure, Writing 148 241

Sorting, Whole Numbers 166 177

Sorting, Real Numbers 251 458

LINQ / Streams 114 124

Cryptography, SHA256 467 844

Cryptography, MD5 405 454

C. Test Processing Time

Lastly, it was checked, how well the actual language runtime
performed in processing the request contents, to see, how their
performance differed and whether there were any clear
advantages to either technology in some use case (average
values were checked for all successful iterations, as before).

TABLE IV

TEST PROCESSING TIME, BY TEST TYPE

Test Type
Time, milliseconds

Java ASP.NET

Connection Check 5 2

Static Content, Text 23 11

Maths, Addition 11 1

Maths, Multiplication 8 2

Maths, Division 8 1

Maths, Powers 10 3

Maths, Logarithms 10 2

Dynamic Content, Prime Numbers 5 1

Dynamic Content, JSON Structure, Reading 12 2

Dynamic Content, JSON Structure, Writing 4727 64

Sorting, Whole Numbers 14 2

Sorting, Real Numbers 17 2

LINQ / Streams 11 1

Cryptography, SHA256 28 23

Cryptography, MD5 22 11

Applied Computer Systems

__ 2018/23

43

XIV. INTERPRETATION OF THE TEST RESULTS

After reviewing the data, a few points of interest appear,
which require further explanation.

A. ASP.NET Core Test Success Percentage

While Java was able to serve 100 % of the requests that were
made to it, across all levels of parallelisation and test types, this
was not the case with ASP.NET Core. Although in most test
types its success rate was the same, it was unable to serve all of
the requests while generating the large static text responses
(over 1 megabyte in size) and while generating the SHA256
hashes.

This can be explained with the hardware constraints (the
amount of RAM available to the servers) causing the API
runtime to be terminated by the operating system, after
exhausting all of the available resources (Fig. 12).

Fig. 8. Output of htop on the server running the ASP.NET Core implementation,
shortly before a crash.

While the implementations of the StringBuilder concept,
provided by the standard libraries, were used in both
implementations, for both Java and ASP.NET Core, it appeared
that ASP.NET Core’s usage of memory was slightly less
optimised; therefore, it could not successfully run the tests with
the resources provided. This behaviour was also reproducible
for other test types, with increased request for data size.

B. ASP.NET Core Static Text Benchmark Results

It appeared that the ASP.NET Core text generation
benchmark not only had worse success rates, but also much
greater test execution times, which can be attributed to the
network time component of the results – ASP.NET Core took
2096 milliseconds, on average, to receive and send responses,
compared to Java’s average of 679 milliseconds, a difference
by a factor of approximately 3.

One possible explanation is that the Kestrel web server,
which is used by ASP.NET Core, currently is worse optimised
when compared to Apache Tomcat and Apache TomEE, as it is
relatively new. This is evidenced not only by the fact that this
particular test involved sending and receiving the largest
packets, but also by the fact that the network times for the
ASP.NET API implementation were higher in 13 of the 15
benchmarks.

C. Java JSON Write Benchmark Results

Another data point that could attract attention is the average
request processing time for the JSON write benchmark, which
was run on Java. This average of 4727 milliseconds is not only
much longer than that of the ASP.NET Core implementation –
64 milliseconds, but also the longest one in any of the
benchmarks run across all of the test types and technologies
used.

This could be explained by the fact that for both languages,
the JSON for the test requests and responses were both
generated and parsed dynamically, in contrast to the more
traditional approach of generating static entities. While this
sacrifices type safety to a degree, it allows for much greater
flexibility and faster development time, which is why this
approach was chosen.

This is where a difference between the languages manifests
itself – C#, which is the language in which the ASP.NET Core
implementation was written, supports the dynamic data type,
while Java offers no such a feature.

In Java, the Json class was used, which provided support for
creating object and array builders, in addition to reading JSON
data. This does, however, come with the disadvantage of an
object that needs to be created for every item, which must be
serialised. This appears to be noticeable when working with a
deep, nested structure, because of which the performance
degraded, even if it caused no failures.

For example, code in C# can look like

List<dynamic> generatedObjectsArray
 = new List<dynamic>();
return generatedObjectsArray.ToArray();

While in Java, the following must be done

JsonArrayBuilder generatedObjectsArray
 = Json.createArrayBuilder();
return generatedObjectsArray.build();

XV. CONCLUSION

After examining the results, some conclusions can be made,
as well as suggestions for improvement of the testing process
and methodologies used.

A. Test API Implementations

While using the dynamic data type features to circumvent
having to write resource objects for each of the different
benchmarks saves time, it can lead to sub-optimal results, as it
was in the case of the encountered instability.

Testing should also be done, while following the approach of
defining entity classes in the future to see whether the Java
performance improves.

Additionally, the performance of the technologies used could
be compared on servers running Windows as well, where IIS is
also available and could provide different results in relation to
Kestrel. For a deeper insight, it would be useful to also log the
server resource usage and attempt testing on more powerful
hardware configurations, to allow for greater parallelisation and
to see how multi-core processor utilisation differs.

B. Runtime

While problems with ASP.NET Core memory management
appeared, the overall performance of both technologies was
subjectively similar and comparable – neither was noticeably
slower or faster than the other in all of the test types.

It would stand to reason, that because of this result, the choice
of algorithms utilised to solve problems and, in turn, the code
contained in the libraries, which might be used in the
development process, could have a greater impact, as opposed

Applied Computer Systems

__ 2018/23

44

to choosing either of the technologies because of otherwise
insignificant differences in performance.

Scientific studies performed in the past [18]–[21], as well as
more contemporary attempts at benchmarking [22] seem to
indicate that the performance of Java (and Java EE), as well as
C# (and thus ASP.NET and ASP.NET Core) depends on
particular tasks they are applied to.

While ASP.NET Core was faster at processing the requests,
it appeared that the Kestrel web server took longer to deliver
the responses in almost all of the cases. It should also be noted
that in scenarios where no blocking processes were present,
such as waiting for a database to return results, or reading data
from a disk, it appeared that a request would spend the majority
of the time travelling through the network, as the averages of
the processing times were noticeably smaller than those of the
network times.

It should be noted that ASP.NET Core is a new technology
and is in active development. As such, it is not as mature as Java
EE yet, and it is subject to change.

REFERENCES
[1] Microsoft, “Microsoft to acquire Xamarin and empower more developers

to build apps on any device,” 2016. [Online]. Available:
https://blogs.microsoft.com/blog/2016/02/24/microsoft-to-acquire-
xamarin-and-empower-more-developers-to-build-apps-on-any-device/

[2] The Mono Project, “Compatibility”. [Online]. Available:
http://www.mono-project.com/docs/about-mono/compatibility/

[3] Microsoft, “Announcing ASP.NET Core 1.0,” 2016. [Online]. Available:
https://blogs.msdn.microsoft.com/webdev/2016/06/27/announcing-asp-
net-core-1-0/

[4] Microsoft, “Kestrel web server implementation in ASP.NET Core,” 2017.
[Online]. Available: https://docs.microsoft.com/en-us/aspnet/core/
fundamentals/servers/kestrel?tabs=aspnetcore2x

[5] The Apache Software Foundation, “Apache Tomcat”. [Online].
Available: http://tomcat.apache.org/

[6] Oracle, “Java EE at a Glance” [Online]. Available:
http://www.oracle.com/technetwork/java/javaee/overview/index.html

[7] Oracle, “JSR 342: Java Platform, Enterprise Edition 7 (Java EE 7)
Specification”. [Online]. Available: https://jcp.org/en/jsr/detail?id=342

[8] Oracle, “Java Platform, Enterprise Edition 7 (Java EE 7), Web Profile
Specification”. [Online]. Available: http://download.oracle.com/otn-
pub/jcp/java_ee-7-fr-eval-spec/WebProfile.pdf

[9] Microsoft, “Common Language Runtime (CLR)”, 2017. [Online].
Available: https://docs.microsoft.com/en-us/dotnet/standard/clr

[10] Microsoft, “Introduction to Razor Pages in ASP.NET Core”, 2017.
[Online]. Available: https://docs.microsoft.com/en-us/aspnet/core/mvc/
razor-pages/?tabs=visual-studio

[11] GitHub, “ASP.NET”. [Online]. Available: https://github.com/aspnet
[12] GitHub, “ASP.NET Core”. [Online]. Available:

https://github.com/aspnet/home
[13] Microsoft, “Getting started with Razor Pages and Entity Framework

Core”, 2017. [Online]. Available:
https://docs.microsoft.com/en-us/aspnet/core/data/ef-rp/intro

[14] The Apache Software Foundation, “Apache TomEE”. [Online].
Available: http://openejb.apache.org/apache-tomee.html

[15] Plumbr, “Most popular Java application servers: 2017 edition”, 2017.
[Online]. Available: https://plumbr.io/blog/java/most-popular-java-
application-servers-2017-edition

[16] GitHub, “Chart.js – Simple HTML5 Charts using the <canvas> tag”.
[Online]. Available: https://github.com/chartjs/Chart.js

[17] npm, “redis”. [Online]. Available: https://www.npmjs.com/package/redis
[18] G. A. Francia and R. R. Francia, “An Empirical Study on the Performance

of Java/.Net Cryptographic APIs,” Information Systems Security, vol. 16,
no. 6, pp. 344–354, Dec. 2007.
https://doi.org/10.1080/10658980701784602

[19] O. Hamed, “Performance Prediction of Web Based Application
Architectures Case Study: .NET vs. Java EE.,” International Journal of
Web Applications, vol. 1, no. 3, pp. 146–156, Sept. 2009.

[20] A. Abu-Kamel, R. Zaghal, and O. Hamed, “A Comparison between EJB
and COM+ Business Components, Case Study: Response Time and
Scalability,” Communications in Computer and Information Science, pp.
123–135, 2010. https://doi.org/10.1007/978-3-642-14306-9_13

[21] P. Sestoft, “Numeric performance in C, C# and Java,” IT University of
Copenhagen, Denmark, Feb. 2010

[22] The Computer Language Benchmarks Game, “C# .NET Core vs Java -
Which are faster?,” 2018. [Online]. Available: https://benchmarksgame-
team.pages.debian.net/benchmarksgame/faster/csharp.html

Kristiāns Kronis is a third-year Bachelor’s student
majoring in Computer Science at Riga Technical
University and a Java Developer at Ltd. “Autentica”,
where he professionally uses a variety of
technologies.
He is currently studying the practical application of
microservice architecture in web development and
containerization platforms, such as Docker.
E-mail: kristians.kronis@edu.rtu.lv

Marina Uhanova graduated from Riga Aviation
University, receiving the Bachelor’s degree in 1995
and Master’s degree in 1996. In 2007, she received
the Doctoral degree in System Analysis, Modelling
and Development from Riga Technical University.
Since 2000, she has worked as an Assistant and
Lecturer. Her current employment is an Assistant
Professor at the Chair of Software Engineering, Riga
Technical University. Her research interests include
distributed application development and their
applications in insurance.
E-mail: marina.uhanova@rtu.lv

ORCID iD: https://orcid.org/0000-0003-2994-3638

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

