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Abstract—Accurate demand forecasting in district heating 
networks is an essential and imperative task in the everyday 
operation of both, the network itself and the heating energy 
suppliers. Multiple regression is one of the possible approaches 
to solving the forecasting problem with sufficient accuracy and 
little computational effort. This paper presents a polynomial 
regression model and offers several additions for its further 
improvement. It is found that grouping the model residuals by 
hour-of-day allows notably reducing the forecast error. The 
value of other modifications and the optimum size of the 
training set can vary over time, thus an automatic model 
parameter selection before each new forecast is advised. 
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I. INTRODUCTION 

Combined heat and power (CHP) plants are an important 
source of heating energy in district heating (DH) networks 
around the world. These plants are characterized by high 
efficiency due to the electricity produced alongside heat; this 
allows them to have lesser fuel consumption and smaller 
carbon footprint compared to when the two types of energy 
are produced separately [1]. 

The primary task of CHP plants connected to DH 
networks is supplying the heating energy, whereas electricity 
is often treated as a byproduct. However, for worthwhile 
participation in electricity markets, more certainty is 
necessary regarding the heating demand. Although there are 
measures which allow more flexibility in the production of 
electrical energy by somewhat untying it from the heat 
demand, i.e., heat storage tanks, peak water boilers, 
improved cycling operation [1], [2], proper scheduling and 
operational control of CHP plants nevertheless heavily relies 
on heating demand forecasts. 

The forecasts necessary for CHP plant operation can be 
categorized in two groups depending on the prediction 
horizon: operational (subhourly to several hours-ahead) for 
near real time adjustments of the production output and day-
ahead for unit scheduling and preparation of bids to a 
wholesale market [3]. 

A great variety of methods for DH heating demand 
forecasting can be found in recent literature, for instance, 
feed-forward neural networks [3]–[8], support vector 
machines [4], [6]–[11], random trees regression [4], [7], [12], 
ridge regression [9], [13], random forest [9] deep learning 
[13], extreme learning machines [5], [12], genetic 
programming [5], [6], [8] and even linear regression [4], [7], 
[13]–[15]. The methods vary in complexity and therefore 
also presumably in their time of execution, unfortunately, 
few authors provide comparable data on computational time.  

However, several studies suggest that the simpler 
regression models can provide similar [4] or even better [13], 
[15] forecasting accuracy than machine learning approaches. 
This study aims to expand the literature on heating demand 
forecasting in DH networks with regression models by 
employing a very straightforward and effective polynomial 
approach and exploring the benefits of improving it with 
three types of modifications – decoupling hot water (HW) 
consumption from space heating demand, taking into account 
the residuals of the fitted regression model and filtering the 
input and output series. Furthermore, as currently the size of 
the overall historical dataset to be used for forecasting is 
seldom tested in the literature, this paper provides insights 
into identifying a reasonable look-back horizon for 
forecasting heating demand with regression methods. 

The remainder of the paper is structured as follows. 
Section II provides description of the forecasting techniques 
employed and the dataset used. Section III lays out the case 
studies and results. Finally, the last section concludes the 
paper. 

II. METHODOLOGY 

A. The Underlying Regression Model 

In general, regression allows us to approximate a 
mathematical relationship between two or more variables if 
their values are known in a number of points. Eq. (1) 
illustrates a multiple regression model (a polynomial), where 
the right-side terms can be both independent variables and 
functions of independent variables. 
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where iy – dependent variable at point i , ix – independent 

variable at point i , n – power of each term, k  – power of 
the last term (i.e., order of the polynomial), i – error term at 

point i , 0a – the intercept term, na – coefficient for the 
corresponding function of the independent variable . 

In heat load forecasting, the dependent variable is, of 
course, the heating demand itself, whereas various different 
factors can serve as the independent variables or predictors. 
All of the reviewed studies agree on outdoor temperature as 
the most important predictor in heating demand forecasting. 
However, some additional parameters have been employed 
as well. For instance, papers [4]–[6], [8], [13] also consider 
time-lagged heating demand values. Time factors like hour-
of-day, day-of-week and day-of-year are also sometimes 
used for forecasting [4], [7], [13]. If the forecasting 



algorithm is intended to be applied for a smaller supply area 
(i.e., one substation as opposed to the whole DH network), 
the physical parameters of the DH substation can be used as 
well [4]. Study [9] stands out in that it considers dew point as 
a predictor variable. Finally, solar irradiation [11] and wind 
speed [11], [14] is employed as well, however, the impact of 
wind on the forecasts can vary a lot across different buildings 
and, on a larger scale (i.e. the whole DH network), can even 
out [14].  

However, the inclusion of multiple input variables in 
predictive models can negatively affect their interpretability 
and predictive power. Additionally, it can reduce their 
generalization capability [16]. Consequently, in this paper, 
we focus on outdoor temperature as the most influential 
predictor [9], [11], [16]. 

Thus, we can formulate the function for heating demand 
forecasting. If we assume a third order polynomial 
relationship, the model can be expressed as in (2). 

    2 3
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where  tQ – the forecasted heating demand (output) at hour 

t , 
tT – the temperature forecast (input) at hour t , 0a , 1a , 

2a , 3a – polynomial coefficients (model parameters). 

The model parameters are obtained by solving a least 
squares problem where the sum of the model residuals is 
minimized. The solution can be expressed in matrix 
formulation as: 
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where Y – a vector of dependent variable values (in our case, 
heating demand), V – the Vandermonde matrix for the 
independent variable (outdoor temperature). 

B. Modifications 

Ref. [14] identified HW as an important social 
component in the heating demand curve. In this paper, we 
will test if a polynomial regression model can provide higher 
accuracy for our testing datasets if it is supplemented by an 
additional component for HW handling. While the recorded 
heating demand data does not discriminate between space 
heating and HW, the energy spent on water heating has to be 
identified implicitly. For this, we assume that most of the 
consumption during summer is specifically for HW and thus 
we can obtain the social component by averaging the 
recorded points over the corresponding time period. 
Afterwards, the approximate HW hourly profile can be 
subtracted from the model training dataset and added back to 
the forecast as a temperature-independent component. 

Another addition to the polynomial regression model 
tested in this paper is in handling the residuals of the fit. It is 
done by assigning information on hour-of-day to the error 
term i from (1) for each element i . The residuals are then 

grouped by the respective hours of the day and, thus, an 
average error profile for a full day is obtained. This profile is 
subtracted from the forecast in an expectation to decrease the 
inaccuracy. 
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where t  is the average error of the model in the training 
dataset for each particular hour of the day t  (1..24, since we 
aim to use the forecasting model for day-ahead scheduling of 
CHP plants). 

A third modification to be tested is applying a 
smoothening filter by calculating the weighted double-sided 
moving average of different lengths. This can be applied to 
either the model training data (historical heating demand, 
dubbed input hereinafter), the forecasted demand series 
(output), both or neither. The formulae for smoothening the 
output is provided in (5), but the same principle would be 
used for the input. 
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Finally, the size of the training dataset is also a model 
feature to be determined. We test 24 different setups from 
one week (7 days) to 168 days (roughly 6 months). 

C. Setup of the Simulations 

The performance of the forecasting model is evaluated 
using mean absolute percentage error (MAPE). 
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where iQ – the actual heating demand at point i , m – total 
number of points in the forecast.  

In order to simulate the intended application of the 
forecasting model (i.e., in day-ahead scheduling), the model 
is utilized in a rolling horizon manner – it moves iteratively 
though each day in the testing dataset and performs a 24-
hour prediction; the MAPE for the day is calculated and 
saved; afterwards, the current day is added to the training 
dataset and a forecast for the next 24-hour period is 
performed. Once MAPEs for each of the days in the testing 
dataset are obtained, they are averaged out to find the mean 
error for the whole set. In order to test the effect of the 
features described in section II.B, the model runs are carried 
out a total of 384 times.  

Finally, another approach to using the described multiple 
regression model features is tested, whereupon the model 
selects its features (HW exclusion on or off, model residual 
subtraction on or off, type of data filtering and size of the 



training dataset) before each 24-hour period by exhaustively 
enumerating the possible model configurations on data from 
the previous day and selecting the best performer for the 
following day. 

D. Data Set 

For validation of the proposed multiple regression model 
and its modifications, we use historical data from Riga, 
Latvia, particularly, the largest DH network in the right bank 
of the city (annual consumption about 2.4 TWh). The dataset 
used in this study contains heating demand and outdoor 
temperature records from Jan. 1, 2015 to Oct. 31, 2016. 

The forecasting simulation experiments will be run twice 
in this dataset. Case study 1 will forecast demand for days 
from Jan. 1, 2016 to Mar. 1, 2016 (91 days), whereas Case 
study 2 will perform forecasts from Oct. 15 to Oct. 31, 2016 
(17 days). The former represents the middle of the heating 
season, while the latter – the beginning. It should be noted 
that only period when the heating season is assumed to be in 
full effect is included in the regression model (i.e., period 
from April to mid-October is excluded). The hourly forecasts 
are performed in a sliding horizon manner with 24-hour 
increments, but, for comparison purposes, only the final 
MAPE for each case study (and each model setup) will be 
presented. 

In this study, we used the recorded temperatures as 
predictors instead of temperature forecasts. The reason for 
this was to isolate the effects from the regression model 
configuration, since the external temperature forecasts would 
introduce inaccuracies which do not depend from our model 
setup. An evaluation of the impact of temperature forecast 
imperfections is already offered in [3] and [12]. 

III. RESULTS 

A. Selection of Polynomial Order 

Multiple regression with polynomials up to the 5th order 
was tested. In Case Study 1, the 2nd order polynomial proved 
to provide the best accuracy with a MAPE of 5.98 %, while 
the 3rd order was close behind with 6.07 %. In Case Study 2, 
both of these parameters again showed very similar results 
albeit with the 3rd order prevailing (at 4.64 % vs 4.68 %). 
The performance of each of the five models depending on 
the training set size is summarized in Fig. 1 (for both case 
studies combined). Evidently, higher order models tend to 
overfit if the training set is small, but the more the training 
set is increased, the more similar the performance of the 
various polynomials becomes. 

5%

6%

7%

8%

9%

7 21 35 49 63 77 91 105 119 133 147 161

Training set size (days)

1st 2nd 3rd 4th 5th
 

Fig. 1. MAPE per different polynomial orders and look-back horizon 

In the remainder of the paper we will focus on the 3rd 
order model and not vary this parameter further as it is not 
the main subject of this study. 

B. Effect of Modifications and Look-Back Horizon 

Results from the various modified model runs for Case 
Study 1 are summarized in Table I. These are the MAPE 
values averaged over the different look-back horizons. Fig. 2 
and Fig. 3 presents the disaggregated results with the impact 
of the training set size observable. 

Evidently, in Case Study 1, the impact of time series 
filtering is very small – in the range of 0.05 percentage 
points. The best result is achieved if only the output is 
filtered. The inclusion of a social component for HW 
handling has not improved the model performance. The 
explicit correction of hour-of-day specific model residuals, 
however, has more notably improved the forecasting 
performance, i.e., by 0.27 percentage points. In terms of 
training set size, the best results were achieved with a look-
back horizon of 28 days (5.34 %). The results are similarly 
accurate for the range from 14 to 49 days, but with larger 
training sets the MAPE quickly increases. 

TABLE I.  RESULTS OF CASE STUDY 1 (MAPES) 

Filtering Error correction HW component 

no 
filtering 

5.92 % included 5,78 % included 5.92 % 

filtered I 5.96 % not 
included 

6.05 % not 
included 

5.92 % 

filtered O 5.86 %     

filtered 
I/O 

5.91 %     

 

5.0%

5.5%

6.0%

6.5%

7 21 35 49 63 77 91 105 119 133 147 161

Training set size (days)

normal HW norm.+err HW+err  
Fig. 2. MAPE per model modification and training set size (Case Study 1) 
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Fig. 3. MAPE per filtering type and training set size (Case Study 1) 



TABLE II.  RESULTS OF CASE STUDY 2 (MAPES) 

Filtering Error correction HW component 

no 
filtering 

4.40 % included 4.18 % included 4.36 % 

filtered I 4.37 % not 
included 

4.59 % not 
included 

4.42 % 

filtered O 4.38 %     

filtered 
I/O 

4.40 %     
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Fig. 4. MAPE per model modification and training set size (Case Study 1) 
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Fig. 5. MAPE per filtering type and training set size (Case Study 1) 

The results of the Case Study 2 are similarly summarized 
in Table II, Fig. 4 and Fig. 5. 

The MAPE of the Case Study 2 is overall notably 
smaller. This signifies a season-specific reason for the 
inaccuracies. Similarly to the previous case, filtering does 
little to affect the results (range of only 0.03 percentage 
points) with input filtering providing the smallest error 
(4.37 %). In this case, however, HW component has slightly 
improved the results (by 0.06 percentage points). The 
residual component once again provides the most notable 
accuracy improvements (by 0.41 percentage points). Unlike 
in Case Study 1, here the best results are obtained by a 154 
day look-back horizon (4.09 %), but there is also a range 
with low error estimates in the 28 to 49 days period. 

C. Automatic Feature Selection  

One of the main takeaways of the previous subsection is 
the difficulty to draw strong conclusions on the best 
forecasting model setup, since if applied to different portions 
of the dataset, the modified features offer varying advantages 
and disadvantages. Due to this uncertainty and the low 
computational effort the regression model requires (the 91 
day testing dataset for Case Study 1 handled in less than a 
second), an automatic model setup is proposed and tested. 
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Fig. 6. Frequency of look-back horizon used in both case studies 

If before each day-ahead forecast the model can self-
select those parameters which would have provided the best 
forecast for the previous day, the overall MAPE for the 
testing dataset decreases more significantly – 5.19 % in Case 
Study 1 and 4.27 % in Case Study 2, a 0.73 and 0.12 
percentage point improvement versus the average MAPE in 
the previous simulations respectively. 

The automatic forecasting algorithm chose to employ the 
HW component for 30.77 % of days in Case Study 1 and 
35.29 % of days in Case Study 2. The usage of the residual 
handling feature was more active – 72.53 % and 70.59 % 
respectively. Filtering wise, in both cases, I/O filtering was 
used most often (35.16 %, 35.29 %) while solely input 
filtering was the least used (13.19 %, 17.65 %). 

Fig. 6 summarizes the frequency of training dataset size 
selected in both case studies. While generally this model 
feature has varied a lot, a tendency to cluster towards smaller 
look-back horizons can be observed. 

IV. CONCLUSION 

Multiple (polynomial) regression has proven to be an 
effective tool for heating demand forecasting. One of its 
main strengths is the negligible computational time it takes to 
perform forecasts without loosing much in terms of 
accuracy. 

Furthermore, the forecasting model can be improved by 
certain modifications, the most promising of which has 
turned out to be subtraction of the model residuals averaged 
over hour-of-day. While other modifications (HW 
component and time series filtration) did not produce a 
consistently beneficial effect over the whole dataset, there 
were days when their inclusion aided in improving the 
accuracy. Thus, a model which automatically selects the 
features the forecasting program should consider before each 
daily forecast is advisable. Additionally, it should consider 
automatic selection of the training set size, since the 
optimum look-back horizon tends to vary during the heating 
season. 

While the model tested in this paper already provides 
forecasts with adequate accuracy, further improvements are 
necessary. One promising venue for future work lies in 
further integration of the multiple regression model with an 
ANN-based forecasting approach. Another important 
research topic concerns forecasting the heat energy demand 
in the DH network specifically during the very beginning 
and end of the heating season, when space heating is 
gradually connected/disconnected by building managers. 
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