
Information Technology and Management Science

6

ISSN 2255-9094 (online)
ISSN 2255-9086 (print)

December 2018, vol. 21, pp. 6–14
doi: 10.7250/itms-2018-0001

https://itms-journals.rtu.lv

©2018 Andrey Bondarenko, Ludmila Aleksejeva.
This is an open access article licensed under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0).

Methodology for Knowledge Extraction from
Trained Artificial Neural Networks

Andrey Bondarenko1, Ludmila Aleksejeva2
1, 2 Riga Technical University, Riga, Latvia

Abstract – Artificial neural networks are widely spread models
that outperform more basic, but explainable machine learning
models like classification decision tree. However, their lack of
explainability severely limits their area of application. All mission
critical areas or law regulated areas (like European GDPR)
require model to be explained. Explainability allows model
validation for correctness and lack of bias. Thus, methods for
knowledge extraction from artificial neural networks have gained
attention and development efforts. The present paper addresses
this problem and describes a knowledge extraction methodology
which can be applied to classification problems. It is based on
previous research and allows knowledge to be extracted from
trained fully connected feed-forward artificial neural network,
from radial basis function neural network and from hyper-
polytope based classifier in the form of binary classification
decision tree, elliptical rules and If−Then rules.

Keywords – Artificial neural network, feed-forward neural

networks, knowledge acquisition, knowledge extraction, radial
basis function neural networks.

I. INTRODUCTION
Artificial neural networks are well known to any machine

learning practitioner. ANNs are used (usually) as a non-linear
classifier or a regression model. ANNs are widespread and in
many cases outperform more classical explainable models like
linear regression or C4.5 decision trees. Due to black-box
nature of ANNs, their application is limited in mission-critical
areas, such as healthcare, finance, law, atomic power and
others. For example, thanks to GDPR law in the EU (effective
as of 28 May 2018), all life changing decisions (like loan
rejection) performed by algorithm should be explainable.
Additionally, an ability to explain how a classification decision
is made can lead to new insights and generation of deeper
understanding of the problem under consideration. Figure 1
lists steps required to perform knowledge extraction.

Knowledge
extraction

Knowledge
assessment

and
refinement

Model &

Knowledge

Fig. 1. Knowledge extraction steps.

The first step is to understand the end goal – the way
knowledge will be used; based on that and presence or absence
of the trained model (classifier), the model can be selected or
appropriate knowledge algorithm can be applied. Next step is
model training (if needed) and trained ANN pruning (highly
welcome step, although optional), afterwards knowledge

extraction algorithms can be applied. The final step is
knowledge assessment and refinement, where knowledge in the
form of extracted rules can be assessed and refined. Apart from
description of algorithms, the current paper presents guidelines
for knowledge representation schema selection (which is
correlated to available algorithms), training and extraction and,
finally knowledge assessment and refinement. All these steps
are covered in Section V.

The following paper is organized as follows: Section I
contains introduction; Section II covers knowledge extraction
overview and preliminaries, and Section III provides an
overview of algorithms. Section IV holds methodology
description for knowledge extraction, and Section V contains
conclusions about the developed methodology.

II. KNOWLEDGE EXTRACTION OVERVIEW

A. Types of Knowledge Extraction Algorithms
Let us make a review of the knowledge extraction

algorithms. According to [1], there are three main types of
algorithms:

• decompositional;
• pedagogical;
• eclectic.

Decompositional knowledge extraction algorithms are trying
to extract knowledge using internal structure of the model –
ANN, SVM or any other black-box model. It means that
decompositional algorithms designed for knowledge extraction
from a specific family of ANN are not applicable to other types
of classifiers. On the other hand, such methods usually have
higher performance (in terms of accuracy and precision) and
generally should run faster.

Pedagogical knowledge extraction approaches do not make
assumptions in regard to inner structure of the model being
processed. Usually such algorithms use the trained classifier
model as a black box to sample input space and get dense
outputs. This allows the algorithm to build dense representation
of decision boundary and capture it in the form of M of N rules
or decision trees. It is easy to note that such algorithms are
model agnostic, i.e., they can be applied not only to the trained
ANNs, but to other types of classifiers as well.

Eclectic approaches are a combination of both
decompositional and pedagogical approaches. More detailed
description of different knowledge extraction algorithms is out
of scope of the present paper. For examples of decompositional
algorithms a reader can refer to [2]–[9]; algorithms using a

http://creativecommons.org/licenses/by/4.0

Information Technology and Management Science
 ___ 2018/21

7

pedagogical approach are described in [10]–[13], and eclectic
knowledge extraction algorithms are presented in [14]–[18]. As
a summary of our analysis, we present comparison of different
rule types in each algorithm class. The estimation is made as a
result of review of existing publications (see a list of references
above). Based on the properties that are important for us (three
first), decompositional algorithms have been selected as the
most prospective ones. Later on, a pedagogical algorithm for
elliptic rule extraction has been developed to extend knowledge
extraction workflow applicability. Accuracy, portability and
tunability have been selected as the most important properties,
as a combination of high accuracy and high tunability
contributes to the most powerful knowledge extraction
approach giving a user flexibility to extract both precise and
comprehensible rules. Table I (the higher value is the better)
contains properties that can help other researchers make their
choice based on their own prioritization of algorithm class
properties.

TABLE I
COMPARISON OF KNOWLEDGE EXTRACTION ALGORITHM TYPES

Property
Algorithm class

Decompositional Eclectic Pedagogical

Classification accuracy 4 3 3

Portability (not specific to
classifier) 1 2 3

Tunability 4 3 3

Algorithm consistency
(several runs – the same
result)

1 3 2

Speed 1 3 3

Knowledge representation
variety 4 3 3

Scalability (Big data) 3 3 3

Algorithm complexity
(computational) 1 3 3

It is believed that decompositional approaches are able to
produce most precise knowledge. On the other hand,
pedagogical methods are model-agnostic ones and can be
applied to different types of classifiers (hence portable). As
decompositional methods are accessing inner structure of ANN,
they have much more power in how precise or comprehensive
the extracted knowledge will be, and all in all such an algorithm
can be fine-tuned at a more fine-grained level than a
pedagogical one, which treats ANN as a black-box / oracle
predicting class values for given inputs. Algorithm consistency
– an ability to produce the same result over several runs – is a
weak point for all algorithms, but currently decompositional
ones are the weakest algorithms in this regard. Speed of
execution is somewhat discussible because pedagogical
algorithms need to generate additional inputs to precise location
and form of classification hyperplane, but this can be done in
an intelligent way, while decompositional algorithms will deal
with full inner complexity (number of trainable parameters –

weights or neurons) of ANN. Knowledge representation variety
assessment again is somewhat discussible, but we believe that
a decompositional approach gives an edge in terms of how easy
it is to construct an algorithm that will be able to produce one
or the other type of knowledge. In terms of scalability, all types
of algorithms are equally parallelizable. As far as algorithm
complexity is concerned, at present the count of neuron output
values is what consumes most of the time within
decompositional approaches. On the other hand, intelligent
generation of additional input data can lower the amount of
computations dramatically. Hence, an algorithm will only try to
generate rules explaining outputs in terms of inputs. Therefore,
decompositional algorithms are generally assumed to be more
computationally complex.

B. Comprehensibility vs Performance Tradeoff
Another important decision to be made when considering

knowledge extraction is comprehensibility vs. classification
accuracy (or any other performance measure) tradeoff. There is
a direct correlation between accuracy of knowledge and
complexity. The more accurate knowledge is, the more complex
it will be; thus, it will be less comprehensible. If knowledge to
be extracted should be more comprehensible, its complexity
should be low; hence, accuracy (performance) will be lower (in
comparison with more complex knowledge). Thus, before
knowledge extraction a user must prioritize understandability
and performance. Complex knowledge (hence more accurate)
can be used for model embedding (i.e., as If-Then rules) into
some sort of system (embedded systems or, for example,
DBMS).

C. Knowledge Representation
Knowledge representation is next important choice to be

made. Some knowledge representation schemes are more
comprehensible at the expense of expressive richness (count of
rules needed).

Propositional If−Then / If−Then−Else rules. Rules of this
type consist of If conditional clause and Then classification
clause. Optionally, a rule can contain Else classification clause.
The If condition part of a propositional rule is a boolean
combination of logical conditions on the input variables.
Condition part can contain conjunctions, disjunctions and
negations. An example of such a rule is as follows:

𝐼𝐼𝐼𝐼 𝑋𝑋 = 𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌 = 𝑦𝑦,𝑇𝑇ℎ𝑒𝑒𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐴𝐴,

with 𝑿𝑿,𝒀𝒀 being input variables and 𝒙𝒙,𝒚𝒚 – possible values of
these variables. For continuous input variables, the conditions
are usually specified in the form of range restrictions on the
values, e.g.:

𝑋𝑋 ∈ [𝑐𝑐1 , 𝑐𝑐2] 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌 > 𝑐𝑐3 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐1 , 𝑐𝑐2 , 𝑐𝑐3 ∈ 𝑅𝑅.

M-of-N rules. This type of rules is closely related to
propositional rules. They are expressions of the form:

If (at least | exactly | at most) M of the N conditions C1, C2, …
CN are satisfied then Class A1.

Information Technology and Management Science
 ___ 2018/21

8

Equation rules. This type of rules is very similar to oblique
rules, but defines boundaries using equations of slightly more
complex hyperplanes, like ellipsoids or parabolas. Example:

𝐼𝐼𝐼𝐼 �
(𝑥𝑥 − ℎ)2

𝑟𝑟𝑥𝑥2
+

(𝑦𝑦 − ℎ)2

𝑟𝑟𝑦𝑦2
≤ 1� 𝑇𝑇ℎ𝑒𝑒𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐴𝐴

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐵𝐵.

One major drawback of these rules is that they are more
difficult to understand and comprehend, especially in the case
of high dimensional input space.

Fuzzy rules. Rules of this type are very similar to
propositional If–Then–Else rules, the only difference is that
instead of Boolean logic, fuzzy rules are multi-valued. In fuzzy
rules, the universe of discourse of the variables is a fuzzy set.
Example of fuzzy classification rule is as follows:

If (X is Medium) and (Y is High) Then Class = A
 Else Class = B.

Here high, medium and low are variables of a fuzzy set. In fuzzy
sets, each element is associated with the corresponding grade of
membership. Like propositional rules, fuzzy rules are generally
easy understandable as they operate with linguistic concepts.

Strengths and weaknesses of knowledge representation
schemas are summarised in Table II.

TABLE II
COMPARISON OF RULE TYPES

Criteria If–Then /
Decision Tree M-of-N Oblique /

Equational Fuzzy

Understandability 4 2 1 3

Compactness 2 1 4 3

Ease of use
(embeddability) 4 3 2 1

Expressive power 3 1 4 2

Total 13 7 11 9

If–Then rules and decision trees are most welcome as they
are easily embeddable, have good comprehensibility and
acceptable expressiveness and compactness. Each decision tree
can be easily represented as a set of If-Then rules. They both
can be easily understood by domain experts and as they have
“built in” inference engine – they are easily embeddable (for
example, as a set of If-Then clauses inside regular SQL
database management system).

Equational and oblique rules are most expressive while least
interpretable by human experts. Expressiveness that means
lower count of rules can be used to describe the same problem
(in comparison with other rule types). Last two groups – fuzzy
rules and M-of-N rules – are of less interest as they are bound
to fuzzy neural networks, which are less common and are not
easily embeddable (require fuzzy inference engine).
M-of-N rule understandability is another discussible property.
We have used a ranked approach making assessment in Table II

– any single row has unique marks. The higher mark – the
better.

Due to its simplicity, ease of use and embedability
(embedded inference mechanism), If-Then rules (or
classification decision tree) have been selected as the main
knowledge schema representation type. To extend applicability
of the proposed knowledge extraction workflow, elliptical rules
have been tested to describe radial basis function neural
networks (RBFNN). Although the algorithm itself is
pedagogical, it can be applied to any kind of classifier to
describe it with a set of elliptical rules.

III. ALGORITHMS
The following algorithms have been developed and used in

the presented knowledge extraction methodology:
• As the first step – an algorithm for neuron pruning is

presented [19], [20].
• Algorithm for binary classification decision tree

extraction from the trained multilayered fully
connected artificial neural network [21].

• Algorithms for extraction of elliptical rules from the
trained radial basis function neural network [22], [23]
and algorithm for If–Then rule extraction from
piecewise linear classifier [24], [25] are covered.

Let us describe all three proposed algorithms. We will start
with a decision tree extraction algorithm that occupies a central
part (due to its general applicability) in the methodology.

A. Decision Tree Extraction
The developed algorithm allows extracting a classification

tree from the trained ANN. This algorithm assumes a
multilayered feed-forward fully connected neural network with
sigmoidal activation functions (although we do not see any
problems in applying this algorithm to RBF neurons).

Decision tree extraction highly welcomes ANN pruning,
optional neuron output discretization and mandatory neuron
output clusterization steps before the final decision tree
extraction step. Overall binary decision tree extraction
algorithm is depicted in Fig. 2.

As we can see, the first step (after training) is pruning. It is a
highly desirable step applied before knowledge extraction. It
not only raises generalization abilities of the trained ANN, but
also reduces the number of neurons, hence, lowers
computational requirements and complexity of knowledge,
which will be extracted. Thus, by controlling the
“aggressiveness level” of pruning procedure, one can control
extracted rule complexity/comprehensibility.

Selection of the most appropriate pruning algorithm is a
complex task. It highly depends on context. In Table III, a
reader can find justification of choice of a sensitivity-based
pruning approach.

According to the criteria listed, a sensitivity-based pruning
approach has been selected as it represents compromise
between factors specified as important. The aim is to select an
efficient and easily implementable method, which could be
used as the first step in knowledge extraction pipeline.

Information Technology and Management Science
 ___ 2018/21

9

Data Start

Too much data?Discretize neurons
output values Yes

No

Train MLP

Clusterize neurons
output values

Prune MLP

Build decision tree

Too complex?Prune tree Yes

End No

Fig. 2. Decision tree extraction algorithm.

TABLE III
COMPARISON OF PRUNING ALGORITHMS

Criteria

Se
ns

it
iv

it
y

ba
se

d

Se
ns

it
iv

it
y

an
al

ys
is

 I
I

O
B

D
/O

B
S

M
ag

ni
tu

de
 b

as
ed

W
ei

gh
t

de
ca

y

M
ut

ua
l i

nf
or

m
at

io
n

b
d

Si
gn

if
ic

an
ce

 b
as

ed

In
te

ra
ct

iv
e

pr
un

in
g

Simplicity 4 1 5 2 3 1 2

Execution time 0 1 3 2 3 1 1

Memory footprint 3 0 3 3 1 2 2

No special training
procedure 2 1 2 0 2 2 2

Classification
precision / generalization 3 2 0 n/a n/a 3 n/a

Pruned neuron / weight
count 3 3 0 n/a n/a 4 n/a

Applicability to RBFNN 2 1 1 2 0 2 n/a

Total score 17 9 14 9 9 15 7

Sensitivity-based method is coupled with retraining, fail-
retry mechanism, which will not stop an algorithm until specific
count of subsequent failed pruning iterations is encountered
(thus allowing it to escape local minimums), and memory
pocket, which allows storing last best known neural network
structure that showed best performance. Another feature is an
error-rise tolerance parameter, which allows accepting a
classification error decrease to a certain degree over the course
of pruning. Table IV depicts conceptual parts of existing
sensitivity-based pruning algorithms and highlights the
proposed improvements.

TABLE IV
COMPARISON OF THE PROPOSED PRUNING ALGORITHM

WITH THE CLOSEST RIVALS

Pruning algorithm
specific N2FPA N2PS Proposed

Neuron/weight pruning
approach Sensitivity Magnitude Sensitivity

Pruned network error-
rise threshold usage + + +
Saving pre-pruned

network state − + +
Pruning retry
mechanism − − +

The developed pruning approach allows both node and
weight pruning. In sets of experiments it was shown [19] that
weight pruning could produce ANN with higher accuracy, but
at the cost of longer computation. But overall node pruning is a
default option to be used as difference is rather small. For
details of algorithm implementation and experimental results,
as well as an extensive list of pruning algorithms please refer to
[19], [20].

Table V describes the influence of the proposed pruning
algorithm parameters on the end goal. In addition, it highlights
differences between pruning of different entities – neurons and
weights.

There are two critical parameters that provide a user with an
ability to influence pruning aggressiveness. These parameters
are as follows:

• error rise threshold (an error rise level after which
neuron removal is rolled back) and

• pruning retry count (when neuron/weight removal is
cancelled – we need to stop or will retry pruning).

Error rise threshold ideally should allow for a small growth
in an error, if precision is less important than
comprehensiveness, then it can be set even higher. In our
experiments, 5 % threshold value has been used.

Last pruning parameter is retraining epoch count – the
number of retrain epochs after neuron/weight removal.
Choosing a retrain epoch count value to be too high will waste
computational resources, while choosing it to be too small can
trap algorithm in local minimum.

The proposed sensitivity-based neuron pruning [20] will
result in a faster pruning procedure than weight pruning. There
is a chance that weight pruning will produce ANN with higher
accuracy and generalization abilities, but a pruning procedure
will run longer (as there is a much higher count of weights than
neurons). Large retrain epoch count will allow pruning to run
longer. Large error rise tolerance threshold will allow pruning
more neurons and hence will produce smaller ANN with less
neurons, which will result in smaller decision tree and more
understandable knowledge. If more precise knowledge is
required, an error rise threshold should be as small as possible.
Small retraining epoch count alone can speed up pruning, but
can lead to situations when a network will not be able to fully
restore its accuracy after pruning; hence, a classification error
will rise too much and a pruning procedure will stop.

Information Technology and Management Science
 ___ 2018/21

10

TABLE V
INFLUENCE OF PRUNING PARAMETERS ON PRUNING SPEED,

EXTRACTED KNOWLEDGE ACCURACY

Requirement Solution Consequences

Faster
pruning

Set a small
retrain epoch
count

Pruning can be trapped in local
minimum

Apply neuron
pruning

Results should be as good as for
weight pruning, but there is a
change that weight pruning would
be better

Set a small error
rise tolerance
threshold (fast
stopping)

Few (if any) pruned nodes –
complex and precise decision tree

Set a small failed
pruning retry
count

Faster pruning, but early pruning
stopping can occur

Smaller
decision tree
(more pruned
neurons)

Set a large retrain
epoch count

Less chance for pruning to get
into local minimum

Set a larger error
rise tolerance
threshold

Will prune neurons/weights even
if they are somewhat important

Set a large failed
pruning retry
count

Longer pruning, but less chance of
getting into local minimum

More precise
knowledge
(less pruned
neurons)

Set a large retrain
epoch count

Less chance for pruning to get
into local minimum

Set a small error
rise tolerance
threshold

Less pruned neurons or weights

Better
classifier
generalization

Set a large failed
pruning retry
count

Longer pruning, but less chance of
getting into local minimum

Apply weight
pruning

Longer pruning, not always, but
can get better results than neuron
pruning

Fully connected neural network layers are widespread and
used not only to build fully connected ANNs classifiers, but
also as a part of many deep learning architectures, be it long-
short term memory (LSTM) or convolutional NN.

In addition, a binary classification decision tree is easily
understandable knowledge format. Finally, a decision tree can
be easily translated into a set of If-Then rules. The first step for
knowledge extraction (which is optional, but highly welcome)
is neuron output value discretization and clusterization. Neuron
output value discretization algorithm proposed by Rudy Setiono
in [2] is shown in Fig. 3.

Neuron output value discretization is highly recommended in
cases when one has a large dataset because in the next step
(neuron output value clusterization) a high number of unique
neuron output values within each separate neuron to be
clustered will worsen computation time.

End

d=0

For each neuron in
every layer (starting

from output)

Start

Round neuron
neuron

output to d digits
after comma

Classification
error rises?

d=d+1
Yes

No

No

All neurons
processed?

Yes

Fig. 3. Neuron output value discretization.

Neuron output value discretization is a simple approach to
round up and lower amount of data points to be processed. Next
step is neuron output value clusterization (see Fig. 4).

Input data
vectors left?

Yes

Record
output values of all
neurons for passed
in input data vector

No

Start: pruned
ANN

More
layers
left?

Neurons in
layer left?

Clusterize neuron
output values to find

cluster boundaries where
ANN classification
decision changes.

Pick next neuron in
current layer

Pick next layer
(starting from

Output)
Yes

No

Yes

End: All neuron output value
clusters found

No

Fig. 4. Neuron output value clusterization.

Neuron output value clusterization algorithm brakes non-
linear nature of ANN classifier by substitution of all neuron
output values belonging to a single cluster with cluster mid-
point – mean output value of the cluster. As clusters are formed
with constraints on classification accuracy worsening – such an
operation should not lower ANN performance. Doing this
operation sequentially neuron by neuron (in random order),

Information Technology and Management Science
 ___ 2018/21

11

layer by layer starting from output layers allows clusterizing all
neurons down to an input layer.

Finally, when the number of neuron outputs is sufficiently
small (due to output clusterization) it is possible to describe
each layer outputs in terms of its inputs using If-Then rules.
In his NeuroRule [2], Rudy Setiono proposes such an
algorithm. The shortcoming of the method is a necessity to
merge sets of rules describing different layers. Such sets of rules
must be clustered, pruned and merged.

In contrast, Fig. 5 shows a modified decision tree extraction
algorithm, which allows skipping rule generation for each layer
and directly generating decision tree using cluster boundaries of
input layer output values. A detailed algorithm description and
experimental results can be found in [21]. This algorithm is
better than NeuroRule algorithm [2], but uses a classical
decision tree algorithm applied to inter-cluster boundary points
of output values of input layer neurons to build a classification
decision tree. Only these cluster boundaries of output values (or
midpoints that can serve as a border between two nearby
clusters), i.e., input neuron output values that influence a
classification decision, i.e., if a neuron output value moves over
such a point, the classification decision made by the whole
network can change, are allowed to be used as splitting points
of input space for decision tree construction.

Neuron
output value
clusters in all

neurons

Start: pruned
ANN

Select neuron
output value cluster

boundaries in input layer

End:
Classification
Decision Tree

Use standard decision tree
pruning mechanisms if

needed

Points left
not covered by

d.tree?
No

Find best split based on input
layer neuron

output value cluster boundaries
as only possible split points

(use real input data points for
GINI or Information Gain

calculation)

Yes

Add split to
decision tree

Fig. 5. The proposed decision tree extraction algorithm.

This algorithm is not prone to curse of dimensionality, and is
able to produce a classification decision tree for multiple
classes.

B. Elliptical Rule Extraction from RBFNN and If-Then Rule
Extraction from Piecewise Linear Approximation

The idea behind both algorithms is quite simple. First of all,
both of them are optimization-based approaches, which
somehow limits them as makes them prone to curse of
dimensionality, but in return for If-Then rules in case they are
extracted from piecewise linear classifier because of convex
optimization problem – global optimum will always be found.
In regard to RBFNN, elliptical rules are much more expressive
than If-Then rules and only few such rules can describe a
complex classification decision boundary, which has a large

number of If-Then rules. General idea is to recursively search
for inscribed ellipsoid or hyper-polytope into the RBFNN
classification boundary or piecewise linear classification. First
iteration is straightforward, subsequent ellipsoids/hyper-
polytopes should be searched with slight modifications in
regard to constraints. Experimental evaluation and further
algorithm details of elliptical rule extraction from RBFNN can
be found in [22], [23]. Details of If-Then rule extraction from
piecewise linear classifier can be found in [24], [25].

IV. METHODOLOGY OF KNOWLEDGE EXTRACTION
Based on the presented algorithms [19]–[25], the

methodology of knowledge extraction from several classifier
models has been developed. According to Fig. 1, the
methodology consists of the four steps:

• model and knowledge representation schema
selection;

• model training and pruning;
• knowledge extraction;
• knowledge assessment and refinement.

Let us take a closer look at each of the steps listed above.

A. Knowledge Representation Schema Selection
User can already have a pre-trained neural network, and in

this case he will choose a knowledge representation schema
supported by knowledge extraction algorithms that are capable
of processing ANN he has. If this is not the case, then as it has
been noted, the methodology incorporates three algorithms for
knowledge extraction (If-Then rules, decision tree, and
elliptical rules). In addition, a user is provided with pros and
cons of other types of rules using Table II. Another important
factor to bear in mind is limitations of the developed knowledge
extraction algorithms summarized in Table VI. At this point,
using pros and cons of the presented knowledge representation
schemas (in regard to decision tree, elliptical rules, and If-Then
rules) one can make a selection of classifier + knowledge
extraction algorithm + knowledge representation triplet
selection.

TABLE VI
MODEL AND KNOWLEDGE SCHEME SELECTION BASED ON FEATURE

AND CLASS NUMBER

Given Attributes
Number

Given Classes
Number

Selected
Model

Any Any MLP + Decision tree

Less than 4 Any RBF + Elliptical rules

Less than 11 2 Polytopes + If–Then
rules

During initial classifier model selection, dimensionality of
dataset to be classified should be considered. Datasets of small
dimensionality can be processed by RFBNN. For cases of ten
or less input dimensions, it is feasible to build linear convex

Information Technology and Management Science
 ___ 2018/21

12

polytope classifier (or multi-surface-method tree based
classifier) and apply the developed optimization-based If–Then
rule extraction method. Finally, a binary classification decision
tree can be extracted from feed-forward ANN regardless of
input dimension count. In addition, there are no theoretical
limitations for application of a decision tree extraction
algorithm to RBFNN. But, in any case, according to “No Free
Lunch” theorem, there could be no single classification model
performing equally well on all kinds of datasets. Therefore,
feed-forward ANN could not be the best classifier in all cases;
hence, RBFNN and Polytope classifiers can be used. It is
possible to combine several algorithms covering specific input
space sub-space regions.

B. Model Training and Pruning
Model training is out of scope of the present paper, but model

pruning has been developed in scope of decision tree extraction
from multilayered fully connected ANN (see Fig. 6).
Nevertheless, RBFNN networks (in elliptical rule extraction
pathway) can be pruned using the developed algorithm. Model
pruning is the first step, at which complexity of extracted
knowledge can be controlled. The more aggressive pruning will
be used, the smaller decision tree will be extracted. Less
complex rules / knowledge mean more comprehensibility and
less accuracy – depending on a knowledge usage scenario,
aggressive pruning can be desirable or not.

C. Knowledge Extraction
When model training (and if required pruning) has taken

place, knowledge extraction step can take place. Multilayered
feed-forward ANN can be represented as a binary classification
decision tree (which can be translated into If-Then rules), and
RBFNN classifier can be translated into elliptical rules (in
addition, there are no theoretical limitations to apply a decision

tree extraction algorithm, but no experiments have been
conducted yet). Finally, If-Then rules can be extracted from
piecewise linear classifier.

D. Knowledge Assessment and Refinement
Final step, which should be performed, is the assessment of

extracted knowledge and mitigation of potential problems. This
is the rightmost largest block of Fig. 6.

Figure 6 uses wording like “accuracy too low”, “knowledge
too complex” – we must stop here and describe roots of such
informal description. As a usual end goal drives process, in
knowledge extraction if model understanding is required (for
example, how exactly a specific classifier makes a decision
about loan rejection) one can assume that getting smaller
number of rules is of higher importance; thus, model accuracy
drop is acceptable. The extent of accuracy drop that is
acceptable is again a case specific value. In one scenario, drop
of classification accuracy of 10 % is acceptable, in others a 2 %
drop is not an option. The same applies to knowledge
complexity – is it complex or does not depend on domain
experts’ subjective judgment.

The first step of assessment and refinement is classification
performance check. If classification performance is too low,
several options exist. First, (Fig. 6 – arrow 1), knowledge
extraction parameters can be adjusted; this is applicable to
If–Then rule extraction routine as it has a recursion depth
threshold and applied to elliptical rule extraction routine as it
can have a threshold for count of extracted ellipsoids.

Both thresholds can be increased to get more coarse-grained
rules. If this is not the case, then (Fig. 6 – arrow 2) pruning
parameters can be relaxed and pruning repeated (with
subsequent knowledge extraction).

Start

Data

MLP

RBFNN

Polytopes

Decision tree
extraction

Ellipsoids
extraction

If-Then rules
extraction

End

Get data subset
from poorly

classified region

Pick another
model

Prune knowledge
Adjust training
and/or pruning

parameters

Adjust
knowledge
extraction
parameters

Accuracy
is poor in specific

region?

Knowledge
 accuracy

Ok ?

Knowledge
 complexity Ok?

Prioritize

Prioritize
Decision Tree

Elliptical Rules

If-Then Rules

Fig. 6. Methodology for knowledge extraction.

Information Technology and Management Science

 ___ 2018/21

13

If a pruning procedure is excessive, model accuracy is
lowered too much. Finally, if the previous steps do not help, the
model itself should be retrained (Fig. 6 – arrow 2), but only if
we see that the difference between accuracy of classifier and
knowledge accuracy is small, hence by getting a better
performing classifier we can obtain better performing
knowledge (in terms of classification). In cases, when
knowledge performance is good, but knowledge is not
comprehensible, i.e., too complex – several options exist. First,
(Fig. 6 – arrow 4) knowledge pruning can be performed. In case
of a classification decision tree, standard existing decision tree
pruning approaches can be applied. In case of If–Then or
elliptical rules, manual selection of least important rules should
be performed with subsequent elimination. Most obvious
criteria for least important rule can be either count of training
data samples covered, size of area covered by rule or mixture of
both.

If such knowledge pruning fails, then either knowledge
extraction parameters should be changed to be more strict
(Fig. 6 – arrow 5), or pruning itself has to be tuned
(Fig. 6 – arrow 6) for removal of larger count of neurons (or
acquisition of smaller number of polytopes). Finally, if nothing
helps, the model itself should be retrained; of course, it should
be made simpler so that we will extract less complex
knowledge.

Alternative course of actions should be performed in case
when the previous steps returned no results. The alternative
(Fig. 6 – arrow 3) is the assessment of model performance in
regard to input data. If there is only a specific small region of
input data space that is poorly classified, then for only that
specific region another classifier can be trained and knowledge
for that data subset extracted. If this is not the case, then the
whole classifier should be discarded and a new cycle of model
training, pruning, knowledge extraction and assessment
performed.

V. CONCLUSION
The present paper covers the developed methodology of

knowledge extraction from trained ANN classifiers,
specifically:

• highlights comprehensibility vs accuracy trade-off;
• gives recommendations for model and knowledge

representation schema selection;
• for decision tree extraction methodology utilizes ANN

pruning algorithm as a knowledge complexity control
method;

• algorithms for elliptical and If-Then rule extraction are
presented;

• strengths and weaknesses of all algorithms are listed
and recommendations are given for selection of one
over the other;

• presents an overall workflow combining the above-
mentioned algorithms;

• presents a workflow for extracted knowledge
extraction and assessment.

Contribution of the present paper is the following: an
overview of algorithms capable of knowledge extraction along

with their brief description; an overview of the types of
knowledge representation schemas, summarization of their
strengths and weaknesses; presentation of the developed
methodology with guidelines for selection of algorithms and
rule representation schemas.

The methodology highlights decisions a user should pay
attention to and provides guidelines for extracted knowledge
assessment and refinement. The methodology presents a
“checklist” for mitigation of problems with extracted
knowledge highlighting steps necessary to achieve the end goal.
It is specifically underlined that end goals are contradictory in
nature – rule understandability vs rule classification
performance.

REFERENCES
[1] H. Jacobsson, “Rule Extraction from Recurrent Neural Networks:

A Taxonomy and Review,” Neural Computation, vol. 17, no. 6,
pp. 1223–1263, 2005. https://doi.org/10.1162/0899766053630350

[2] R. Setiono and H. Liu, “NeuroLinear: From neural networks to oblique
decision rules,” Neurocomputing, vol. 17, no. 1, pp. 1−24, 1997.
https://doi.org/10.1016/S0925-2312(97)00038-6

[3] J. R. Zilke, E. L. Mencia and F. Janssen, “DeepRED–Rule extraction
from deep neural networks,” in T. Calders, M. Ceci, D. Malerba (Eds.):
Discovery Science 19th InternationalConference, DS 2016, Bari, Italy,
Oct. 19–21, 2016, Proceedings, LNAI 9956, pp. 457−473, 2016.
https://doi.org/10.1007/978-3-319-46307-0_29

[4] M. Sato and H. Tsukimoto, “Rule extraction from neural networks via
decision tree induction,” in Proceedings IJCNN’01. International Joint
Conference on Neural Networks, Washingtom, DC, July 15−19, 2001,
IEEE, vol. 3, pp. 1870−1875, 2001.
https://doi.org/10.1109/ijcnn.2001.938448

[5] S. I. M. Kamruzzaman and M. M. Islam, “An algorithm to extract rules
from artificial neural networks for medical diagnosis problems,”
International Journal of Information Technology, vol. 12, no. 8,
pp. 41−59, 2006.

[6] E. R. Hruschka and N. F. F. Ebecken, “Extracting rules from multilayer
perceptrons in classification problems: A clustering-based approach,”
Neurocomputing, vol. 70, no. 1-3, pp. 384−397, 2006.
https://doi.org/10.1016/j.neucom.2005.12.127

[7] P. Shinde, “Data mining using artificial neural network tree,” IOSR
Journal of Engineering, pp. 9−12, 2012.

[8] J. M. Benítez, J. L. Castro and I. Requena, “Are artificial neural networks
black boxes?,” IEEE Transactions on Neural Networks, vol. 8, no. 5,
pp. 1156−1164, 1997. https://doi.org/10.1109/72.623216

[9] H. Tsukimoto, “Extracting rules from trained neural networks,” IEEE
Transactions on Neural Networks, vol. 11, no. 2, pp. 377−389, 2000.
https://doi.org/10.1109/72.839008

[10] M. W. Craven, “Extracting comprehensible models from trained neural
networks,” Ph.D. thesis, University of Wisconsin−Madison, Madison,
USA, 1996.

[11] S. Thrun, “Extracting Rules from Artificial Neural Networks with
Distributed Representations,” in NIPS'94 Proceedings of the 7th Int. Conf.
on Neural Information Processing Systems, pp. 505–512, 1994.

[12] M. G. K. T. Augasta, “Reverse Engineering the Neural Networks for Rule
Extraction in Classification Problems,” in Neural Processing Letters,
vol. 35(2), pp. 131–150, 2012. https://doi.org/10.1007/s11063-011-9207-8

[13] K. Sethi, D. Mishra and B. Mishra, “KDRuleEx: A Novel Approach for
Enhancing User Comprehensibility Using Rule Extraction,” in Third
International Conference on Intelligent Systems Modelling and
Simulation, Kota Kinabalu, Malaysia, Feb. 8–10, pp. 55–60, 2012.
https://doi.org/10.1109/ISMS.2012.116

[14] N. Barakat and J. Diederich, “Eclectic Rule-Extraction from Support
Vector Machines,” International Journal of Computational Intelligence,
pp. 59–62, 2005.

[15] M. R. A. Iqbal, “Eclectic Rule Extraction from Neural Networks Using
Aggregated Decision Trees,” in 7th International Conference on
Electrical & Computer Engineering (ICECE), pp. 129–132, 2012.
https://doi.org/10.1109/icece.2012.6471502

https://doi.org/10.1162/0899766053630350
https://doi.org/10.1016/S0925-2312(97)00038-6
https://doi.org/10.1007/978-3-319-46307-0_29
https://doi.org/10.1109/ijcnn.2001.938448
https://doi.org/10.1016/j.neucom.2005.12.127
https://doi.org/10.1109/72.623216
https://doi.org/10.1109/72.839008
https://doi.org/10.1007/s11063-011-9207-8
https://doi.org/10.1109/ISMS.2012.116
https://doi.org/10.1109/icece.2012.6471502

Information Technology and Management Science
 ___ 2018/21

14

[16] A. B. Tickle, “DEDEC: Decision Detection by rule extraction from neural
networks,” Technical Report NRC QUT, Queensland University, 1994.

[17] M. W. Craven and J. W. Shavlik, “Learning Symbolic Rules Using
Artificial Neural Networks,” in Proceedings of the Tenth International
Conference on Machine Learning, pp. 73–80, 1993.
https://doi.org/10.1016/B978-1-55860-307-3.50016-2

[18] R. Setiono, “Understanding Neural Networks via Rule Extraction,” in
Proceedings of the 14th International Joint Conference on Artificial
Intelligence, Montreal, Canada, Aug. 20–25, pp. 480–485, 1995.

[19] A. Bondarenko, A. Borisovs and L. Aleksejeva, “Neurons vs Weights
Pruning in Artificial Neural Networks,” in Environment. Technology.
Resources: Proceedings of the 10th International Scientific and Practical
Conference, Rezekne, Latvia, June 18–20, 2015, vol. 3, pp. 22–28. 2015.
https://doi.org/10.17770/etr2015vol3.166

[20] A. Bondarenko and A. Borisovs, “Artificial Neural Network
Generalization and Simplification via Pruning,,” Information Technology
and Management Science, vol. 17, no. 1, pp. 132–137, 2014.
https://doi.org/doi:10.1515/itms-2014-0020

[21] A. Bondarenko, L. Aleksejeva, V. Jumutcs and A. Borisovs,
“Classification Tree Extraction from Trained Artificial Neural Networks,”
Procedia Computer Science, vol. 104, pp. 556–563, 2017.
https://doi.org/10.1016/j.procs.2017.01.172

[22] A. Bondarenko and A. Borisovs, “The Extraction of Elliptical Rules from
the Trained Radial Basis Function Neural Network,” Information
Technology and Management Science, vol. 15, pp. 161–165, 2012.
https://doi.org/doi:10.2478/v10313-012-0027-2

[23] A. Bondarenko and A. Borisovs, “Elliptical Rule Extraction from a
Trained Radial Basis Function Neural Network,” in The 6th Int. Conf.
Applied Information and Communication Technology, Jelgava, Latvia,
Apr. 25–26, 2013. ISSN 2255-8586.

[24] A. Bondarenko and V. Jumutcs, “Extraction of interpretable rules from
piecewise-linear approximation of a nonlinear classifier using clustering-
based decomposition,” in Proceedings of 10th WSEAS Int. Conf. Artificial
Intelligence,Knowledge Engineering and Data Bases (AIKED 2011),
Cambridge, UK, Feb. 22, 2011, pp. 145–149, 2011.

[25] A. Bondarenko and A. Borisov, “Knowledge extraction from piecewise-
linear approximation of multi-surface classifier,” in Int. Conf.
Information Intelligent Systems, Kharkiv, Ukraine, April 17−19, 2012,
pp. 5–6, 2012.

Andrey Bondarenko received BsCompSc degree (2004) at the University of
Latvia, Mg. sc. ing. degree (2006) at the Transport and Telecommunication
Institute in Riga. At present, he is pursuing PhD degree at Riga Technical
University.
He works as a Data Scientist at CTCO in the area of document, image analysis
and introduction of machine and deep learning to enterprise systems. He has
more than ten years of experience in enterprise-grade IT system development.
Research interests include machine learning, deep learning, and intelligent
systems of information processing under conditions of a priori uncertainty and
incompleteness.
Email: andrejs.bondarenko@gmail.com
ORCID iD: https://orcid.org/0000-0002-4103-6814

Ludmila Aleksejeva is a Professor of the Faculty of Computer Science and
Information Technology at Riga Technical University (Latvia). She received
her Dr. sc. ing. degree from Riga Technical University in 1998.
Current research interests include decision-making techniques using different
types of information, intelligent decision support systems, data mining and
decision support methods collaboration.
Email: ludmila.aleksejeva@rtu.lv
ORCID iD: https://orcid.org/0000-0003-0900-3868

https://doi.org/10.1016/B978-1-55860-307-3.50016-2
https://doi.org/10.17770/etr2015vol3.166
https://doi.org/doi:10.1515/itms-2014-0020
https://doi.org/10.1016/j.procs.2017.01.172
https://doi.org/doi:10.2478/v10313-012-0027-2
mailto:andrejs.bondarenko@gmail.com
https://orcid.org/0000-0002-4103-6814
mailto:ludmila.aleksejeva@rtu.lv
https://orcid.org/0000-0003-0900-3868

	A. Types of Knowledge Extraction Algorithms
	B. Comprehensibility vs Performance Tradeoff
	C. Knowledge Representation
	A. Decision Tree Extraction
	B. Elliptical Rule Extraction from RBFNN and If-Then Rule Extraction from Piecewise Linear Approximation
	A. Knowledge Representation Schema Selection
	B. Model Training and Pruning
	C. Knowledge Extraction
	D. Knowledge Assessment and Refinement

