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Abstract – Artificial neural networks are widely spread models 
that outperform more basic, but explainable machine learning 
models like classification decision tree. However, their lack of 
explainability severely limits their area of application. All mission 
critical areas or law regulated areas (like European GDPR) 
require model to be explained. Explainability allows model 
validation for correctness and lack of bias. Thus, methods for 
knowledge extraction from artificial neural networks have gained 
attention and development efforts. The present paper addresses 
this problem and describes a knowledge extraction methodology 
which can be applied to classification problems. It is based on 
previous research and allows knowledge to be extracted from 
trained fully connected feed-forward artificial neural network, 
from radial basis function neural network and from hyper-
polytope based classifier in the form of binary classification 
decision tree, elliptical rules and If−Then rules. 

 
Keywords – Artificial neural network, feed-forward neural 

networks, knowledge acquisition, knowledge extraction, radial 
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I. INTRODUCTION 
Artificial neural networks are well known to any machine 

learning practitioner. ANNs are used (usually) as a non-linear 
classifier or a regression model. ANNs are widespread and in 
many cases outperform more classical explainable models like 
linear regression or C4.5 decision trees. Due to black-box 
nature of ANNs, their application is limited in mission-critical 
areas, such as healthcare, finance, law, atomic power and 
others. For example, thanks to GDPR law in the EU (effective 
as of 28 May 2018), all life changing decisions (like loan 
rejection) performed by algorithm should be explainable. 
Additionally, an ability to explain how a classification decision 
is made can lead to new insights and generation of deeper 
understanding of the problem under consideration. Figure 1 
lists steps required to perform knowledge extraction.  
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Fig. 1. Knowledge extraction steps. 

The first step is to understand the end goal – the way 
knowledge will be used; based on that and presence or absence 
of the trained model (classifier), the model can be selected or 
appropriate knowledge algorithm can be applied. Next step is 
model training (if needed) and trained ANN pruning (highly 
welcome step, although optional), afterwards knowledge 

extraction algorithms can be applied. The final step is 
knowledge assessment and refinement, where knowledge in the 
form of extracted rules can be assessed and refined. Apart from 
description of algorithms, the current paper presents guidelines 
for knowledge representation schema selection (which is 
correlated to available algorithms), training and extraction and, 
finally knowledge assessment and refinement. All these steps 
are covered in Section V. 

The following paper is organized as follows: Section I 
contains introduction; Section II covers knowledge extraction 
overview and preliminaries, and Section III provides an 
overview of algorithms. Section IV holds methodology 
description for knowledge extraction, and Section V contains 
conclusions about the developed methodology. 

II. KNOWLEDGE EXTRACTION OVERVIEW 

A. Types of Knowledge Extraction Algorithms  
Let us make a review of the knowledge extraction 

algorithms. According to [1], there are three main types of 
algorithms: 

• decompositional; 
• pedagogical; 
• eclectic. 

Decompositional knowledge extraction algorithms are trying 
to extract knowledge using internal structure of the model – 
ANN, SVM or any other black-box model. It means that 
decompositional algorithms designed for knowledge extraction 
from a specific family of ANN are not applicable to other types 
of classifiers. On the other hand, such methods usually have 
higher performance (in terms of accuracy and precision) and 
generally should run faster. 

Pedagogical knowledge extraction approaches do not make 
assumptions in regard to inner structure of the model being 
processed. Usually such algorithms use the trained classifier 
model as a black box to sample input space and get dense 
outputs. This allows the algorithm to build dense representation 
of decision boundary and capture it in the form of M of N rules 
or decision trees. It is easy to note that such algorithms are 
model agnostic, i.e., they can be applied not only to the trained 
ANNs, but to other types of classifiers as well. 

Eclectic approaches are a combination of both 
decompositional and pedagogical approaches. More detailed 
description of different knowledge extraction algorithms is out 
of scope of the present paper. For examples of decompositional 
algorithms a reader can refer to [2]–[9]; algorithms using a 
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pedagogical approach are described in [10]–[13], and eclectic 
knowledge extraction algorithms are presented in [14]–[18]. As 
a summary of our analysis, we present comparison of different 
rule types in each algorithm class. The estimation is made as a 
result of review of existing publications (see a list of references 
above). Based on the properties that are important for us (three 
first), decompositional algorithms have been selected as the 
most prospective ones. Later on, a pedagogical algorithm for 
elliptic rule extraction has been developed to extend knowledge 
extraction workflow applicability. Accuracy, portability and 
tunability have been selected as the most important properties, 
as a combination of high accuracy and high tunability 
contributes to the most powerful knowledge extraction 
approach giving a user flexibility to extract both precise and 
comprehensible rules. Table I (the higher value is the better) 
contains properties that can help other researchers make their 
choice based on their own prioritization of algorithm class 
properties. 

TABLE I 
COMPARISON OF KNOWLEDGE EXTRACTION ALGORITHM TYPES  

Property 
Algorithm class 

Decompositional Eclectic Pedagogical 

Classification accuracy 4 3 3 

Portability (not specific to 
classifier) 1 2 3 

Tunability 4 3 3 

Algorithm consistency 
(several runs – the same 
result) 

1 3 2 

Speed 1 3 3 

Knowledge representation 
variety 4 3 3 

Scalability (Big data) 3 3 3 

Algorithm complexity 
(computational) 1 3 3 

It is believed that decompositional approaches are able to 
produce most precise knowledge. On the other hand, 
pedagogical methods are model-agnostic ones and can be 
applied to different types of classifiers (hence portable). As 
decompositional methods are accessing inner structure of ANN, 
they have much more power in how precise or comprehensive 
the extracted knowledge will be, and all in all such an algorithm 
can be fine-tuned at a more fine-grained level than a 
pedagogical one, which treats ANN as a black-box / oracle 
predicting class values for given inputs. Algorithm consistency 
– an ability to produce the same result over several runs – is a 
weak point for all algorithms, but currently decompositional 
ones are the weakest algorithms in this regard. Speed of 
execution is somewhat discussible because pedagogical 
algorithms need to generate additional inputs to precise location 
and form of classification hyperplane, but this can be done in 
an intelligent way, while decompositional algorithms will deal 
with full inner complexity (number of trainable parameters – 

weights or neurons) of ANN. Knowledge representation variety 
assessment again is somewhat discussible, but we believe that 
a decompositional approach gives an edge in terms of how easy 
it is to construct an algorithm that will be able to produce one 
or the other type of knowledge. In terms of scalability, all types 
of algorithms are equally parallelizable. As far as algorithm 
complexity is concerned, at present the count of neuron output 
values is what consumes most of the time within 
decompositional approaches. On the other hand, intelligent 
generation of additional input data can lower the amount of 
computations dramatically. Hence, an algorithm will only try to 
generate rules explaining outputs in terms of inputs. Therefore, 
decompositional algorithms are generally assumed to be more 
computationally complex. 

B. Comprehensibility vs Performance Tradeoff 
Another important decision to be made when considering 

knowledge extraction is comprehensibility vs. classification 
accuracy (or any other performance measure) tradeoff. There is 
a direct correlation between accuracy of knowledge and 
complexity. The more accurate knowledge is, the more complex 
it will be; thus, it will be less comprehensible. If knowledge to 
be extracted should be more comprehensible, its complexity 
should be low; hence, accuracy (performance) will be lower (in 
comparison with more complex knowledge). Thus, before 
knowledge extraction a user must prioritize understandability 
and performance. Complex knowledge (hence more accurate) 
can be used for model embedding (i.e., as If-Then rules) into 
some sort of system (embedded systems or, for example, 
DBMS). 

C. Knowledge Representation 
Knowledge representation is next important choice to be 

made. Some knowledge representation schemes are more 
comprehensible at the expense of expressive richness (count of 
rules needed). 

Propositional If−Then / If−Then−Else rules. Rules of this 
type consist of If conditional clause and Then classification 
clause. Optionally, a rule can contain Else classification clause. 
The If condition part of a propositional rule is a boolean 
combination of logical conditions on the input variables. 
Condition part can contain conjunctions, disjunctions and 
negations. An example of such a rule is as follows: 

𝐼𝐼𝐼𝐼 𝑋𝑋 = 𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌 = 𝑦𝑦,𝑇𝑇ℎ𝑒𝑒𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐴𝐴, 

with 𝑿𝑿,𝒀𝒀  being input variables and 𝒙𝒙,𝒚𝒚 – possible values of 
these variables. For continuous input variables, the conditions 
are usually specified in the form of range restrictions on the 
values, e.g.:  

𝑋𝑋 ∈  [𝑐𝑐1 , 𝑐𝑐2 ] 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌 >  𝑐𝑐3 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐1 , 𝑐𝑐2 , 𝑐𝑐3  ∈  𝑅𝑅. 

M-of-N rules. This type of rules is closely related to 
propositional rules. They are expressions of the form: 

If (at least | exactly | at most) M of the N conditions C1, C2, … 
CN are satisfied then Class A1. 
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Equation rules. This type of rules is very similar to oblique 
rules, but defines boundaries using equations of slightly more 
complex hyperplanes, like ellipsoids or parabolas. Example: 

𝐼𝐼𝐼𝐼 �
(𝑥𝑥 − ℎ)2

𝑟𝑟𝑥𝑥2
+

(𝑦𝑦 − ℎ)2

𝑟𝑟𝑦𝑦2
≤ 1�  𝑇𝑇ℎ𝑒𝑒𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐴𝐴  

      𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐵𝐵. 

One major drawback of these rules is that they are more 
difficult to understand and comprehend, especially in the case 
of high dimensional input space. 

Fuzzy rules. Rules of this type are very similar to 
propositional If–Then–Else rules, the only difference is that 
instead of Boolean logic, fuzzy rules are multi-valued. In fuzzy 
rules, the universe of discourse of the variables is a fuzzy set. 
Example of fuzzy classification rule is as follows: 

If (X is Medium) and (Y is High) Then Class = A  
   Else Class = B. 

Here high, medium and low are variables of a fuzzy set. In fuzzy 
sets, each element is associated with the corresponding grade of 
membership. Like propositional rules, fuzzy rules are generally 
easy understandable as they operate with linguistic concepts. 

Strengths and weaknesses of knowledge representation 
schemas are summarised in Table II.  

TABLE II  
COMPARISON OF RULE TYPES  

Criteria If–Then / 
Decision Tree M-of-N Oblique / 

Equational Fuzzy 

Understandability 4 2 1 3 

Compactness 2 1 4 3 

Ease of use 
(embeddability) 4 3 2 1 

Expressive power 3 1 4 2 

Total 13 7 11 9 

If–Then rules and decision trees are most welcome as they 
are easily embeddable, have good comprehensibility and 
acceptable expressiveness and compactness. Each decision tree 
can be easily represented as a set of If-Then rules. They both 
can be easily understood by domain experts and as they have 
“built in” inference engine – they are easily embeddable (for 
example, as a set of If-Then clauses inside regular SQL 
database management system).  

Equational and oblique rules are most expressive while least 
interpretable by human experts. Expressiveness that means 
lower count of rules can be used to describe the same problem 
(in comparison with other rule types). Last two groups – fuzzy 
rules and M-of-N rules – are of less interest as they are bound 
to fuzzy neural networks, which are less common and are not 
easily embeddable (require fuzzy inference engine).  
M-of-N rule understandability is another discussible property. 
We have used a ranked approach making assessment in Table II 

– any single row has unique marks. The higher mark – the 
better. 

Due to its simplicity, ease of use and embedability 
(embedded inference mechanism), If-Then rules (or 
classification decision tree) have been selected as the main 
knowledge schema representation type. To extend applicability 
of the proposed knowledge extraction workflow, elliptical rules 
have been tested to describe radial basis function neural 
networks (RBFNN). Although the algorithm itself is 
pedagogical, it can be applied to any kind of classifier to 
describe it with a set of elliptical rules. 

III. ALGORITHMS 
The following algorithms have been developed and used in 

the presented knowledge extraction methodology:  
• As the first step – an algorithm for neuron pruning is 

presented [19], [20]. 
• Algorithm for binary classification decision tree 

extraction from the trained multilayered fully 
connected artificial neural network [21]. 

• Algorithms for extraction of elliptical rules from the 
trained radial basis function neural network [22], [23] 
and algorithm for If–Then rule extraction from 
piecewise linear classifier [24], [25] are covered. 

Let us describe all three proposed algorithms. We will start 
with a decision tree extraction algorithm that occupies a central 
part (due to its general applicability) in the methodology.  

A. Decision Tree Extraction 
The developed algorithm allows extracting a classification 

tree from the trained ANN. This algorithm assumes a 
multilayered feed-forward fully connected neural network with 
sigmoidal activation functions (although we do not see any 
problems in applying this algorithm to RBF neurons).  

Decision tree extraction highly welcomes ANN pruning, 
optional neuron output discretization and mandatory neuron 
output clusterization steps before the final decision tree 
extraction step. Overall binary decision tree extraction 
algorithm is depicted in Fig. 2. 

As we can see, the first step (after training) is pruning. It is a 
highly desirable step applied before knowledge extraction. It 
not only raises generalization abilities of the trained ANN, but 
also reduces the number of neurons, hence, lowers 
computational requirements and complexity of knowledge, 
which will be extracted. Thus, by controlling the 
“aggressiveness level” of pruning procedure, one can control 
extracted rule complexity/comprehensibility. 

Selection of the most appropriate pruning algorithm is a 
complex task. It highly depends on context. In Table III, a 
reader can find justification of choice of a sensitivity-based 
pruning approach. 

According to the criteria listed, a sensitivity-based pruning 
approach has been selected as it represents compromise 
between factors specified as important. The aim is to select an 
efficient and easily implementable method, which could be 
used as the first step in knowledge extraction pipeline. 
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Fig. 2. Decision tree extraction algorithm. 

TABLE III 
COMPARISON OF PRUNING ALGORITHMS  
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Simplicity 4 1 5 2 3 1 2 

Execution time 0 1 3 2 3 1 1 

Memory footprint 3 0 3 3 1 2 2 

No special training 
procedure 2 1 2 0 2 2 2 

Classification 
precision / generalization 3 2 0 n/a n/a 3 n/a 

Pruned neuron / weight 
count 3 3 0 n/a n/a 4 n/a 

Applicability to RBFNN 2 1 1 2 0 2 n/a 

Total score 17 9 14 9 9 15 7 

Sensitivity-based method is coupled with retraining, fail-
retry mechanism, which will not stop an algorithm until specific 
count of subsequent failed pruning iterations is encountered 
(thus allowing it to escape local minimums), and memory 
pocket, which allows storing last best known neural network 
structure that showed best performance. Another feature is an 
error-rise tolerance parameter, which allows accepting a 
classification error decrease to a certain degree over the course 
of pruning. Table IV depicts conceptual parts of existing 
sensitivity-based pruning algorithms and highlights the 
proposed improvements. 

TABLE IV 
COMPARISON OF THE PROPOSED PRUNING ALGORITHM  

WITH THE CLOSEST RIVALS 

Pruning algorithm 
specific N2FPA N2PS Proposed 

Neuron/weight pruning 
approach Sensitivity Magnitude Sensitivity 

Pruned network error-
rise threshold usage + + + 
Saving pre-pruned 

network state − + + 
Pruning retry 
mechanism − − + 

The developed pruning approach allows both node and 
weight pruning. In sets of experiments it was shown [19] that 
weight pruning could produce ANN with higher accuracy, but 
at the cost of longer computation. But overall node pruning is a 
default option to be used as difference is rather small. For 
details of algorithm implementation and experimental results, 
as well as an extensive list of pruning algorithms please refer to 
[19], [20]. 

Table V describes the influence of the proposed pruning 
algorithm parameters on the end goal. In addition, it highlights 
differences between pruning of different entities – neurons and 
weights.  

There are two critical parameters that provide a user with an 
ability to influence pruning aggressiveness. These parameters 
are as follows:  

• error rise threshold (an error rise level after which 
neuron removal is rolled back) and  

• pruning retry count (when neuron/weight removal is 
cancelled – we need to stop or will retry pruning).  

Error rise threshold ideally should allow for a small growth 
in an error, if precision is less important than 
comprehensiveness, then it can be set even higher. In our 
experiments, 5 % threshold value has been used. 

Last pruning parameter is retraining epoch count – the 
number of retrain epochs after neuron/weight removal. 
Choosing a retrain epoch count value to be too high will waste 
computational resources, while choosing it to be too small can 
trap algorithm in local minimum. 

The proposed sensitivity-based neuron pruning [20] will 
result in a faster pruning procedure than weight pruning. There 
is a chance that weight pruning will produce ANN with higher 
accuracy and generalization abilities, but a pruning procedure 
will run longer (as there is a much higher count of weights than 
neurons). Large retrain epoch count will allow pruning to run 
longer. Large error rise tolerance threshold will allow pruning 
more neurons and hence will produce smaller ANN with less 
neurons, which will result in smaller decision tree and more 
understandable knowledge. If more precise knowledge is 
required, an error rise threshold should be as small as possible. 
Small retraining epoch count alone can speed up pruning, but 
can lead to situations when a network will not be able to fully 
restore its accuracy after pruning; hence, a classification error 
will rise too much and a pruning procedure will stop. 
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TABLE V 
INFLUENCE OF PRUNING PARAMETERS ON PRUNING SPEED,  

EXTRACTED KNOWLEDGE ACCURACY 

Requirement Solution Consequences 

Faster 
pruning 

Set a small 
retrain epoch 
count 

Pruning can be trapped in local 
minimum  

Apply neuron 
pruning 

Results should be as good as for 
weight pruning, but there is a 
change that weight pruning would 
be better 

Set a small error 
rise tolerance 
threshold (fast 
stopping) 

Few (if any) pruned nodes – 
complex and precise decision tree 

Set a small failed 
pruning retry 
count 

Faster pruning, but early pruning 
stopping can occur 

Smaller 
decision tree 
(more pruned 
neurons) 

Set a large retrain 
epoch count 

Less chance for pruning to get 
into local minimum 

Set a larger error 
rise tolerance 
threshold 

Will prune neurons/weights even 
if they are somewhat important 

Set a large failed 
pruning retry 
count 

Longer pruning, but less chance of 
getting into local minimum 

More precise 
knowledge 
(less pruned 
neurons) 

Set a large retrain 
epoch count 

Less chance for pruning to get 
into local minimum 

Set a small error 
rise tolerance 
threshold 

Less pruned neurons or weights 

Better 
classifier 
generalization  

Set a large failed 
pruning retry 
count 

Longer pruning, but less chance of 
getting into local minimum 

Apply weight 
pruning 

Longer pruning, not always, but 
can get better results than neuron 
pruning 

Fully connected neural network layers are widespread and 
used not only to build fully connected ANNs classifiers, but 
also as a part of many deep learning architectures, be it long-
short term memory (LSTM) or convolutional NN. 

In addition, a binary classification decision tree is easily  
understandable knowledge format. Finally, a decision tree can 
be easily translated into a set of If-Then rules. The first step for 
knowledge extraction (which is optional, but highly welcome) 
is neuron output value discretization and clusterization. Neuron 
output value discretization algorithm proposed by Rudy Setiono 
in [2] is shown in Fig. 3.  

Neuron output value discretization is highly recommended in 
cases when one has a large dataset because in the next step 
(neuron output value clusterization) a high number of unique 
neuron output values within each separate neuron to be 
clustered will worsen computation time.  

End

d=0

For each neuron in 
every layer (starting 

from output)

Start

Round neuron 
neuron 

output to d digits 
after comma

Classification 
error rises?

d=d+1
Yes

No

No

All neurons 
processed?

Yes

 

Fig. 3. Neuron output value discretization. 

Neuron output value discretization is a simple approach to 
round up and lower amount of data points to be processed. Next 
step is neuron output value clusterization (see Fig. 4). 

Input data 
vectors left?

Yes

Record 
output values of all 
neurons for passed 
in input data vector

No

Start: pruned 
ANN

More 
layers 
left?

Neurons in 
layer left?

Clusterize neuron 
output values  to find 

cluster boundaries where 
ANN classification 
decision changes.

Pick next neuron in 
current layer

Pick next layer 
(starting from 

Output)
Yes

No

Yes

End: All neuron output value 
clusters found 

No

 

Fig. 4. Neuron output value clusterization. 

Neuron output value clusterization algorithm brakes non-
linear nature of ANN classifier by substitution of all neuron 
output values belonging to a single cluster with cluster mid-
point – mean output value of the cluster. As clusters are formed 
with constraints on classification accuracy worsening – such an 
operation should not lower ANN performance. Doing this 
operation sequentially neuron by neuron (in random order), 
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layer by layer starting from output layers allows clusterizing all 
neurons down to an input layer. 

Finally, when the number of neuron outputs is sufficiently 
small (due to output clusterization) it is possible to describe 
each layer outputs in terms of its inputs using If-Then rules. 
In his NeuroRule [2], Rudy Setiono proposes such an 
algorithm. The shortcoming of the method is a necessity to 
merge sets of rules describing different layers. Such sets of rules 
must be clustered, pruned and merged.  

In contrast, Fig. 5 shows a modified decision tree extraction 
algorithm, which allows skipping rule generation for each layer 
and directly generating decision tree using cluster boundaries of 
input layer output values. A detailed algorithm description and 
experimental results can be found in [21]. This algorithm is 
better than NeuroRule algorithm [2], but uses a classical 
decision tree algorithm applied to inter-cluster boundary points 
of output values of input layer neurons to build a classification 
decision tree. Only these cluster boundaries of output values (or 
midpoints that can serve as a border between two nearby 
clusters), i.e., input neuron output values that influence a 
classification decision, i.e., if a neuron output value moves over 
such a point, the classification decision made by the whole 
network can change, are allowed to be used as splitting points 
of input space for decision tree construction. 

Neuron 
output value 
clusters in all 

neurons

Start: pruned 
ANN

Select neuron 
output value cluster 

boundaries in input layer

End: 
Classification 
Decision Tree

Use standard decision tree 
pruning mechanisms if 

needed

Points left 
not covered by

d.tree?
No

Find best split based on input 
layer neuron 

output value cluster boundaries 
as only possible split points 

(use real input data points for 
GINI or Information Gain 

calculation)

Yes

Add split to 
decision tree

 

Fig. 5. The proposed decision tree extraction algorithm. 

This algorithm is not prone to curse of dimensionality, and is 
able to produce a classification decision tree for multiple 
classes. 

B. Elliptical Rule Extraction from RBFNN and If-Then Rule 
Extraction from Piecewise Linear Approximation 

The idea behind both algorithms is quite simple. First of all, 
both of them are optimization-based approaches, which 
somehow limits them as makes them prone to curse of 
dimensionality, but in return for If-Then rules in case they are 
extracted from piecewise linear classifier because of convex 
optimization problem – global optimum will always be found. 
In regard to RBFNN, elliptical rules are much more expressive 
than If-Then rules and only few such rules can describe a 
complex classification decision boundary, which has a large 

number of If-Then rules. General idea is to recursively search 
for inscribed ellipsoid or hyper-polytope into the RBFNN 
classification boundary or piecewise linear classification. First 
iteration is straightforward, subsequent ellipsoids/hyper-
polytopes should be searched with slight modifications in 
regard to constraints. Experimental evaluation and further 
algorithm details of elliptical rule extraction from RBFNN can 
be found in [22], [23]. Details of If-Then rule extraction from 
piecewise linear classifier can be found in [24], [25]. 

IV. METHODOLOGY OF KNOWLEDGE EXTRACTION 
Based on the presented algorithms [19]–[25], the 

methodology of knowledge extraction from several classifier 
models has been developed. According to Fig. 1, the 
methodology consists of the four steps:  

• model and knowledge representation schema 
selection; 

• model training and pruning; 
• knowledge extraction; 
• knowledge assessment and refinement. 

Let us take a closer look at each of the steps listed above. 

A. Knowledge Representation Schema Selection 
User can already have a pre-trained neural network, and in 

this case he will choose a knowledge representation schema 
supported by knowledge extraction algorithms that are capable 
of processing ANN he has. If this is not the case, then as it has 
been noted, the methodology incorporates three algorithms for 
knowledge extraction (If-Then rules, decision tree, and 
elliptical rules). In addition, a user is provided with pros and 
cons of other types of rules using Table II. Another important 
factor to bear in mind is limitations of the developed knowledge 
extraction algorithms summarized in Table VI. At this point, 
using pros and cons of the presented knowledge representation 
schemas (in regard to decision tree, elliptical rules, and If-Then 
rules) one can make a selection of classifier + knowledge 
extraction algorithm + knowledge representation triplet 
selection. 

TABLE VI 
MODEL AND KNOWLEDGE SCHEME SELECTION BASED ON FEATURE  

AND CLASS NUMBER 

Given Attributes 
Number 

Given Classes 
Number 

Selected  
Model 

Any Any MLP + Decision tree 

Less than 4 Any RBF + Elliptical rules 

Less than 11 2 Polytopes + If–Then 
rules 

During initial classifier model selection, dimensionality of 
dataset to be classified should be considered. Datasets of small 
dimensionality can be processed by RFBNN. For cases of ten 
or less input dimensions, it is feasible to build linear convex 
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polytope classifier (or multi-surface-method tree based 
classifier) and apply the developed optimization-based If–Then 
rule extraction method. Finally, a binary classification decision 
tree can be extracted from feed-forward ANN regardless of 
input dimension count. In addition, there are no theoretical 
limitations for application of a decision tree extraction 
algorithm to RBFNN. But, in any case, according to “No Free 
Lunch” theorem, there could be no single classification model 
performing equally well on all kinds of datasets. Therefore, 
feed-forward ANN could not be the best classifier in all cases; 
hence, RBFNN and Polytope classifiers can be used. It is 
possible to combine several algorithms covering specific input 
space sub-space regions. 

B. Model Training and Pruning 
Model training is out of scope of the present paper, but model 

pruning has been developed in scope of decision tree extraction 
from multilayered fully connected ANN (see Fig. 6). 
Nevertheless, RBFNN networks (in elliptical rule extraction 
pathway) can be pruned using the developed algorithm. Model 
pruning is the first step, at which complexity of extracted 
knowledge can be controlled. The more aggressive pruning will 
be used, the smaller decision tree will be extracted. Less 
complex rules / knowledge mean more comprehensibility and 
less accuracy – depending on a knowledge usage scenario, 
aggressive pruning can be desirable or not.  

C. Knowledge Extraction 
When model training (and if required pruning) has taken 

place, knowledge extraction step can take place. Multilayered 
feed-forward ANN can be represented as a binary classification 
decision tree (which can be translated into If-Then rules), and 
RBFNN classifier can be translated into elliptical rules (in 
addition, there are no theoretical limitations to apply a decision 

tree extraction algorithm, but no experiments have been 
conducted yet). Finally, If-Then rules can be extracted from 
piecewise linear classifier. 

D. Knowledge Assessment and Refinement 
Final step, which should be performed, is the assessment of 

extracted knowledge and mitigation of potential problems. This 
is the rightmost largest block of Fig. 6. 

Figure 6 uses wording like “accuracy too low”, “knowledge 
too complex” – we must stop here and describe roots of such 
informal description. As a usual end goal drives process, in 
knowledge extraction if model understanding is required (for 
example, how exactly a specific classifier makes a decision 
about loan rejection) one can assume that getting smaller 
number of rules is of higher importance; thus, model accuracy 
drop is acceptable. The extent of accuracy drop that is 
acceptable is again a case specific value. In one scenario, drop 
of classification accuracy of 10 % is acceptable, in others a 2 % 
drop is not an option. The same applies to knowledge 
complexity – is it complex or does not depend on domain 
experts’ subjective judgment.  

The first step of assessment and refinement is classification 
performance check. If classification performance is too low, 
several options exist. First, (Fig. 6 – arrow 1), knowledge 
extraction parameters can be adjusted; this is applicable to  
If–Then rule extraction routine as it has a recursion depth 
threshold and applied to elliptical rule extraction routine as it 
can have a threshold for count of extracted ellipsoids. 

Both thresholds can be increased to get more coarse-grained 
rules. If this is not the case, then (Fig. 6 – arrow 2) pruning 
parameters can be relaxed and pruning repeated (with 
subsequent knowledge extraction). 
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Fig. 6. Methodology for knowledge extraction. 
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If a pruning procedure is excessive, model accuracy is 
lowered too much. Finally, if the previous steps do not help, the 
model itself should be retrained (Fig. 6 – arrow 2), but only if 
we see that the difference between accuracy of classifier and 
knowledge accuracy is small, hence by getting a better 
performing classifier we can obtain better performing 
knowledge (in terms of classification). In cases, when 
knowledge performance is good, but knowledge is not 
comprehensible, i.e., too complex – several options exist. First, 
(Fig. 6 – arrow 4) knowledge pruning can be performed. In case 
of a classification decision tree, standard existing decision tree 
pruning approaches can be applied. In case of If–Then or 
elliptical rules, manual selection of least important rules should 
be performed with subsequent elimination. Most obvious 
criteria for least important rule can be either count of training 
data samples covered, size of area covered by rule or mixture of 
both. 

If such knowledge pruning fails, then either knowledge 
extraction parameters should be changed to be more strict 
(Fig. 6 – arrow 5), or pruning itself has to be tuned 
(Fig. 6 – arrow 6) for removal of larger count of neurons (or 
acquisition of smaller number of polytopes). Finally, if nothing 
helps, the model itself should be retrained; of course, it should 
be made simpler so that we will extract less complex 
knowledge. 

Alternative course of actions should be performed in case 
when the previous steps returned no results. The alternative 
(Fig. 6 – arrow 3) is the assessment of model performance in 
regard to input data. If there is only a specific small region of 
input data space that is poorly classified, then for only that 
specific region another classifier can be trained and knowledge 
for that data subset extracted. If this is not the case, then the 
whole classifier should be discarded and a new cycle of model 
training, pruning, knowledge extraction and assessment 
performed. 

V. CONCLUSION 
The present paper covers the developed methodology of 

knowledge extraction from trained ANN classifiers, 
specifically: 

• highlights comprehensibility vs accuracy trade-off; 
• gives recommendations for model and knowledge 

representation schema selection; 
• for decision tree extraction methodology utilizes ANN 

pruning algorithm as a knowledge complexity control 
method; 

• algorithms for elliptical and If-Then rule extraction are 
presented; 

• strengths and weaknesses of all algorithms are listed 
and recommendations are given for selection of one 
over the other; 

• presents an overall workflow combining the above-
mentioned algorithms; 

• presents a workflow for extracted knowledge 
extraction and assessment. 

Contribution of the present paper is the following: an 
overview of algorithms capable of knowledge extraction along 

with their brief description; an overview of the types of 
knowledge representation schemas, summarization of their 
strengths and weaknesses; presentation of the developed 
methodology with guidelines for selection of algorithms and 
rule representation schemas.  

The methodology highlights decisions a user should pay 
attention to and provides guidelines for extracted knowledge 
assessment and refinement. The methodology presents a 
“checklist” for mitigation of problems with extracted 
knowledge highlighting steps necessary to achieve the end goal. 
It is specifically underlined that end goals are contradictory in 
nature – rule understandability vs rule classification 
performance. 
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