
Information Technology and Management Science 
 
 

104 

ISSN 2255-9094 (online) 
ISSN 2255-9086 (print) 

December 2018, vol. 21, pp. 104–110 
doi: 10.7250/itms-2018-0017 

https://itms-journals.rtu.lv 

©2018 Oļegs Užga-Rebrovs, Gaļina Kulešova.  
This is an open access article licensed under the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0). 
 

Specific Features of Descriptive Statistics  
with Fuzzy Random Variables 

Oļegs Užga-Rebrovs1, Gaļina Kulešova2 
1 Rezekne Academy of Technologies, Rezekne, Latvia, 

 2 Riga Technical University, Riga, Latvia 

Abstract – The aim of the paper is to examine procedures of 
descriptive statistics in the case when the values of relevant 
attribute in a sample are set in the form of fuzzy categories. The 
paper provides alternative definitions of a fuzzy random variable, 
and describes corresponding procedures for calculating the 
analogues of location and spread parameters. The paper also 
presents some illustrative examples and analyses the results 
obtained. Based on the result analysis, practical recommendations 
are given on how to use procedures of fuzzy statistics.  
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random variable in Kwakernaak’s sense, fuzzy random variable 
in Puri-Ralescu’s sense, fuzzy variance. 

I. INTRODUCTION 
Classical statistics is a powerful tool for processing a 

different kind of initial data. Based on the descriptive statistical 
procedures, it is possible to calculate parameters of location and 
spread for sample initial data distribution. By means of 
procedures of inference statistics, the obtained results can be 
transferred to the population, and potential errors related to such 
transfer can be evaluated. 

One limitation of classical statistics is that the values of 
relevant attribute in the sample and/or population have to be set 
in the form of real numbers. However, in many practical 
situations, it is impossible to get them. Relevant evaluations can 
only be obtained in uncertain form as intervals or fuzzy 
categories. 

II. ALTERNATIVE DEFINITIONS OF A FUZZY RANDOM 
VARIABLE 

This section introduces two alternative conceptual 
definitions of the notion of a fuzzy random variable. These 
definitions are essential for further analysis and conclusions. 

Let us assume that a sample of individuals is available, whose 
attribute is their age. Initial data are schematically shown in 
Fig. 1. 

Let us also assume that due to some reasons, it is impossible 
to evaluate real values of individual’s age; and these values are 
evaluated using fuzzy categories, whose membership functions 
are shown in Fig. 2. 
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Fig. 1. Schematic representation of individuals’ age in the sample. 
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Fig. 2. Conditional graphs of membership functions for fuzzy categories of age. 
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For illustration purposes, this figure depicts real values of 
individuals age in the sample. But now, the initial data are 
represented as follows: individual x based on his/her age 
belongs to a fuzzy category iX , 1, 2,3, 4i = . 

A variable whose elements are expressed in the form of fuzzy 
categories is called a fuzzy random variable. Note that if the 
sense of fuzzy categories is expressed by means of linguistic 
terms, one can speak about linguistic categories [1]. 

Let us introduce formal concepts and definitions related to 
fuzzy random variables. Historically, the first was a definition 
given in [2], [3]. Let us cite the original definition from [2]. In 
that definition, ( ), ,A PΩ  is a standard definition of the 
probabilistic space, where Ω  is a set of outcomes, A  is σ -
algebra in the set of outcomes and P  is a set of probabilistic 
values. 

The notion of a fuzzy random variable will be introduced as 
follows. Let ( ), ,A PΩ  be a probability triple. Suppose that U  
is a random variable defined on this triple. Assume now that we 
perceive this random variable through a set of windows iW , 
i J∈ , with J – a finite or countable set, each representing an 
interval of the real line, such that i jW W∩ =∅  for i j≠ , and 

ii w R∈∪ = . Perceiving the random variable through these 
windows means that for each ω  we can only establish whether 
( ) iU Wω ∈  for some i J∈ . 

Let us define the function [ ]: 0,1iI R →  as the characteristic 
function of the set iW . Let S  be also the space of all piecewise 

continuous function mapping [ ]0,1R → . We then define the 
perception of the random variable U , as described above, as 
the mapping :X SΩ→  given by 

X Xωω →  

with iX Iω = , if and only if ( ) iU Wω ∈ . This means that we 

associate with each ω∈Ω  not a real number ( )U ω , as in the 
case of an ordinary random variable, but a characteristic 
function Xω , which is an element of Xω . 

The map :X SΩ→  described above characterises a special 
type of fuzzy random variable. The random variable U , of 
which this fuzzy random variable is a perception, is called 
original of the fuzzy random variable. We note that there may 
be many originals that correspond to a given fuzzy random 
variable. 

At this point, we generalize and define a fuzzy random 
variable as a map : Fξ Ω→ , where F  is a set of all fuzzy 
numbers. Let us denote the image of ω  in F  under ξ  as 

( ) ( ), ,R X aω ωξ ω = , with X Sω ∈  and :a R Pω → . The map 
:X SΩ→ , specified by 

X Xωω → , 

is required to be such that for each [ ]0,1µ ∈  both *Uµ  and **Uµ   

( ) ( ){ }* inf /U x R x xµ ωω µ= ∈ ≥ , 

( ) ( ){ }** sup /U x R X xµ ωω µ= ∈ ≥ , 

are finite real-valued random variables defined on ( ), ,A PΩ  
satisfying 

ω∀ ∈Ω , ( )( )*X Uω µ ω µ≥ , ( )( )**X Uω µ ω µ≥ . 

Finally, for each ω∈Ω  and each x R∈  ( )a xω there is the 

statement ( )a xω  = (the original assumes the value x  at the 
point ω ), where we refer to the original random variable of 
which ξ  is a fuzzy perception. 

Kruse and Meyer [4], [5] have supplemented and defined 
Kwakernaak’s definition more precisely; that is why, in the 
literature, the aforementioned fuzzy random variable is 
sometimes called fuzzy random variable in Kwakernaak-Kruse-
Meyer’s sense. In the paper, we will call such a variable fuzzy 
random variable in Kwakernaak’s sense. 

In the context of fuzzy random variables, mapping 
( ): cF RΩ→X means that the set of outcomes is mapped to the 

set of fuzzy categories. For example, a set of individuals is 
mapped into a set of fuzzy categories corresponding to their 
age. 

Another conceptual interpretation of fuzzy random variable 
is given in [6]. Let us cite the corresponding definition from [7]. 

Let ( ), ,A PΩ  be a probability space modelling a random 

experiment. Let ( )pF R  be a class of fuzzy subsets  

[ ]0,1U → , such that ( ){ }:pU x R U xα α= ∈ >   is compact for 

all [ ]0,1α ∈  and U ≠ ∅ . 
Fuzzy random variable in Puri-Ralescu’s sense associated 

with ( ), ,A PΩ  is a map ( ): pF RΩ→X  such that for each 

value (0,1]α ∈ , fuzzy-valued map ( ) ( )( )X X Xα α α
ω ω⊂ =  

for all ω∈Ω  is a random compact set, i.e., Borel-measurable 
map regarding Borel σ -field generated by means of a topology 
associated with Hausdorff metric in the space of non-empty 
compact subsets of pR [3], [7]. 

Unlike Kwakernaak’s interpretation, Puri-Ralescu’s 
interpretation does not provide any real scale, on which fuzzy 
categories of relevant attribute would be defined. Moreover, 
these values can be defined in different spaces of real numbers. 
The map ( ): pF RΩ→X  explicitly demonstrates it. Besides, 
it is not assumed that original random variable exists, on whose 
values the values of the attribute are defined. Instead, attribute 
value evaluation is made directly in terms of fuzzy categories. 

III. CALCULATION OF STATISTICAL PARAMETERS OF A FUZZY 
RANDOM VARIABLE 

As pointed out in [8], probabilistic and statistical studies of 
fuzzy random variables are commonly connected to fuzzy-
valued and real-valued “parameters”. In essence, those 
parameters do not have the same sense as the one that takes 
place in the case of real-valued initial data. In the case of the 
fuzzy-valued initial data, they can be referred to as “aggregate 
evaluations” of fuzzy random sets that are components of a 
fuzzy random variable.  
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Taking into account that elements of a fuzzy random variable 
are fuzzy (linguistic) categories, special calculation expressions 
are needed to calculate its statistical parameters. For that 
purpose, it is necesary to introduce a suitable metric in the space 
of fuzzy numbers. The most proper metric in the space of fuzzy 
initial data would be the metric desribed in [9]. Let us briefly 
outline the metric based on the data provided in [10].  

Rational point behind the distance between fuzzy numbers is, 
on the one hand, that it extends Euclidean space between the 
real-valued values and, on the other hand, it extends the suitable 
distance between intervals at α -levels of fuzzy numbers.  

Based on the above requirements, a metric in [9] is defined 
at these assumptions: 

- W  is a normalizing weighted value in the measurable 
space [ ] [ ]( )0,10,1 B , which is formalised as the 

probabilistic value related to the non-degenerate 
distribution, 

- ϕ  is another normalizing probabilistic value in the 

measurable space [ ] [ ]( )0,10,1 B , which is formalised as 

the probabilistic value related to absolute continuous 
distribution function that is increasing exactly on 
(0,1] . 

Using the introduced concepts, we can determine the ( ),W ϕ
distance as follows [10]: 

( ) ( ) ( )
2

(0,1]
, ,WD U V dW U V dϕ

α α ϕ α =  ∫    ,  (1) 

where 

( ) [ ] [ ] ( )
(0,1]

, t tdW U V U V dW tα α α α
 = − ∫    ,   (2) 

and 
[ ] ( )sup 1 inftU t U t Uα α α= ∗ + − ∗   . 

If fuzzy random variable X  is defined in Kwakernaak’s 
sense, its distribution parameters are treated as extensions of the 
corresponding parameters of the original underlying real-
valued random variable. Then fuzzy perception of the mean 
value ( )E X  in common case can be formally represented as 
follows: 

 

( )( ) ( ) ( ) ( ) ( )( )
0 0 0,sup infX Orig E X tE t Xω ω ω∈Ω∈ == XX X

(3) 
This is valid for [ ]0,1α∀ ∈  

( ) ( ) ( )inf , supE E X E Xα αα
=   X  .    (4) 

If fuzzy variable X  is defined in Puri-Ralescu’s sense, its 
fuzzy mean value can be expressed in common case as follows: 

( ) ( ) ( )( )2arg min ,
i c iF RE E ρ∈= XX X X ,     (5) 

where 2ρ  – suitable metric in the set of fuzzy sets (numbers).  
If metric (1) is used, we get  

( ) ( ) ( )( )( )2
arg min ,

i c W iF RE E Dϕ
∈= XX X X .   (6) 

A fuzzy mean value defined this way is Aumann-type mean. 
This mean optimises convex combination of WDϕ - distances to 
components of fuzzy random variable X .  

At any definition of a fuzzy random variable and any 
definition of metric in the set of fuzzy random sets, the mean of 
a fuzzy random variable is calculated by (4).  

As regards variance of a fuzzy random variable, which is 
defined in Kwakernaak’s sense, a fuzzy value of its variation is 
calculated as follows: 

( ) ( ) ( )inf ,supVar X Var X Var X
α α α

 =   ,       (7) 

where values ( )inf Var X
α  are calculated as follows: 

( )
( ) 2

1
inf inf

inf

n

i
i

E X X
Var X

n

αα

α
=

 − 
=
∑

,    (8) 

but values ( )supVar X
α  are calculated as follows: 

( )
( )

1
sup sup

sup

n

i
i

E X X
Var X

n

αα

α
=

 − 
=
∑

 ,   (9) 

where n denotes the number of assigned α -levels.  
If a fuzzy random variable is defined in Puri-Ralescu’s sense, 

the deterministic value of its variance can be calculated using 
one of these expressions [2, 3, 4]: 

( )
( )( )

( )( )

2

2
1

n i

i
i

midE X midX
Var X

W sprE X sprX

αα

α

αα
=

 − +
 =  + −  

∑ ,   (10) 

where ( )midE X
α  – the centre of radius of fuzzy mean value 

( )E X at level α ; imidX α , 1,...,i n= , – the centre of radius of 

fuzzy category iX  at level α ; ( )sprE X
α  – radius of a fuzzy 

mean value ( )E X  at level α ; isprX α , 1,...,i n= , – radius of 
a fuzzy category iX at level α ; (0,1]W ∈  – a parameter that 

evaluates the extent of difference ( )sprU sprVα α−
contribution to the general evaluation of the distance.  
 

( )
( )

( )

2

21

1 inf inf
2

1 sup sup
2

in

i
i

E X X
Var X

E X X

αα

α

αα
=

  − +  
=  

  + −   

∑  ,   (11) 

where ( )inf E X
α  – the lower bound of the interval of possible 

values of a fuzzy mean value ( )E X  at level α ; inf iX α , 
1,...,i n= , – the lower bound of the interval of possible values 

of a fuzzy category  iX  at level α ; ( )sup E X
α  – the upper 

bound of the interval of possible values of a fuzzy mean value 
( )E X  at level α ; sup iX α , 1,...,i n= , – the upper bound of 

the interval of possible values of a fuzzy category iX  at 
level α . 

Common deterministic value of variance ( )Var X  can be 

calculated by averaging values of ( )Var X
α  at all α - levels. 
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More details regarding different issues related to statistical 
parameters of fuzzy random variables can be found in  
[11]–[14]. 

IV. ILLUSTRATIVE EXAMPLES OF CALCULATION OF 
STATISTICAL PARAMETERS OF A FUZZY RANDOM VARIABLE 
Example 1. Let there be set a fuzzy random variable X  with 

the following fuzzy categories: ( )1 1,1,3,5 ,=X     

( )2 4,5,7,10 ,=X ( )3 9,14,17,19 .=X  A random experiment 
has been conducted, in which a fuzzy category 1X  has 
appeared four times, fuzzy category 2X  has appeared eight 
times and random category 3X  has appeared eight times. It is 

necessary to determine the fuzzy mean value ( )E X and fuzzy 

value of variance ( )Var X .  
Let us calculate appearance frequencies of fuzzy categories 

in the experiment.  

( )1 1
4 0.2

20
f f= = =X ,  ( )2 2

8 0.4
20

f f= = =X ,

( )3 3
8 0.4
20

f f= = =X . 

Let us determine fuzzy numbers: 
( ) ( )*

1 1 1 0.2 1,1,3,5 0.20,0.20,0.60,1.00f= ∗ = ∗ =X X

( ) ( )*
2 2 2 0.4 4,5,7,10 1.60,2.00,2.80,4.00f= ∗ = ∗ =X X

( ) ( )*
3 3 3 0.4 9,14,17,19 3.60,5.60,6.80,7.60f= ∗ = ∗ =X X . 

Graphs of membership functions for fuzzy numbers *
1X , *

2X
and *

3X  are shown in Fig 3. Using (4), let us calculate boundary 

values ( )inf E X
α and ( )sup E X

α  of a fuzzy mean value

( )E X . 
Initial data and calculation results are given in Table I.  

 

TABLE I 

BOUNDARY VALUES OF INTERVALS OF  α -CUTS OF FUZZY CATEGORIES *
1X , *

2X , *
3X  

AND BOUNDARY VALUES OF INTERVALS OFα -CUTS OF FUZZY MEAN VALUE  

( )E X IN EXAMPLE 1 

 
α  

*
1X  *

2X  *
3X  ( )E X  

*
1inf X α  *

1sup X α  *
2inf X α  *

2sup X α  *
3inf X α  *

3sup X α  ( )inf E X
α  ( )sup E X

α  
0 0.20 1.00 1.60 4.00 3.60 7.60 1.80 4.20 

0.1 0.20 0.96 1.64 3.88 3.80 7.52 1.88 4.12 
0.2 0.20 0.92 1.68 3.76 4.00 7.44 1.96 4.04 
0.3 0.20 0.88 1.72 3.64 4.20 7.36 2.04 3.96 
0.4 0.20 0.84 1.76 3.52 4.40 7.28 2.12 3.88 
0.5 0.20 0.80 1.80 3.40 4.60 7.20 2.20 3.80 
0.6 0.20 0.76 1.84 3.28 4.80 7.12 2.28 3.72 
0.7 0.20 0.72 1.88 3.16 5.00 7.04 2.36 3.64 
0.8 0.20 0.68 1.92 3.04 5.20 6.96 2.44 3.56 
0.9 0.20 0.64 1.96 2.92 5.40 6.88 2.52 3.48 
1 0.20 0.60 2.00 2.80 5.60 6.80 2.60 3.40 

 

TABLE II 

CALCULATION RESULTS FOR VALUES ( )inf Var X AND ( )supVar X IN EXAMPLE 2 

α  
( )

inf
E X

α

 *
1

inf
X α

 *
2

inf
X α

 *
3

inf
X α

 ( )
sup
E Xα

 *
1

sup
X α

 *
2

sup
X α

 *
3

sup
X α

 
( )

inf
Var X

α

 ( )
sup
Var X

α

 

0 1.80 0.20 1.60 3.60 4.20 1.00 4.00 7.60 1.95 7.28 
0.1 1.88 0.20 1.64 3.80 4.12 0.96 3.88 7.52 2.19 7.20 
0.2 1.96 0.20 1.68 4.00 4.04 0.92 3.76 7.44 2.45 7.12 
0.3 2.04 0.20 1.72 4.20 3.96 0.88 3.64 7.36 2.72 7.05 
0.4 2.12 0.20 1.76 4.40 3.88 0.84 3.52 7.28 3.01 6.98 
0.5 2.20 0.20 1.80 4.60 3.80 0.80 3.40 7.20 3.31 6.91 
0.6 2.28 0.20 1.84 4.80 3.72 0.76 3.28 7.12 3.62 6.84 
0.7 2.36 0.20 1.88 5.00 3.64 0.72 3.16 7.04 3.96 6.77 
0.8 2.44 0.20 1.92 5.20 3.56 0.68 3.04 6.96 4.30 6.71 
0.9 2.52 0.20 1.96 5.40 3.48 0.64 2.92 6.88 4.66 6.66 
1 2.60 0.20 2.00 5.60 3.40 0.60 2.80 6.80 5.04 6.59 
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The graph of membership function of fuzzy mean value ( )E X

can be seen in Fig. 3. 
Example 2. Fuzzy value of variance ( )Var X  has to be 

calculated at initial data of Example 1. Let us make calculations 
using (7, 8, 9). Initial data and calculation results are given in 
Table II.  

The graph of membership function of fuzzy variance 
( )Var X  is shown in Fig. 3.  

Example 3. Using initial data of Example 1, it is necessary to 
calculate a deterministic value of dispersion ( )Var X   
by (11). 

 
 
 
 

Initial data and calculation results are given in Table III. 
By averaging last column values in Table III, we obtain 

( ) 3.92Var =X . 

V. RESULT ANALYSIS 
As regards a fuzzy mean value of a fuzzy random variable, it 

is calculated by (4) not taking into account in what sense that 
variable has been defined. If a relevant fuzzy random variable 
is defined in Kwakernaak’ sense, the variance of this variable 
has to be evaluated in the fuzzy form  
(see Example 2). This directly follows from the fact that such a 
fuzzy random variable is defined as a fuzzy perception of 
underlying it real random variable.  

 

1 2 3 4 5 6 7 8 9 10 11 12

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

(.)µ
*
1X *

2X *
3X( )Var X( )E X

 
Fig. 3. Graphs of membership functions for fuzzy numbers *

1X , *
2X , *

3X  in Example 1,  

fuzzy mean value ( )E X  (Example 1) and fuzzy variance ( )Var X  (Example 2). 

TABLE III 

CALCULATION RESULTS FOR VALUES ( )Var X
α

 IN EXAMPLE 3 

α  
( )

inf
E X

α

 *
1

inf
X α

 *
2

inf
X α

 *
3

inf
X α

 ( )
sup
E Xα

 *
1

sup
X α

 *
2

sup
X α

 *
3

sup
X α

 ( )Var X
α

 

0 1.80 0.20 1.60 3.60 4.20 1.00 4.00 7.60 3.72 
0.1 1.88 0.20 1.64 3.80 4.12 0.96 3.88 7.52 3.75 
0.2 1.96 0.20 1.68 4.00 4.04 0.92 3.76 7.44 3.79 
0.3 2.04 0.20 1.72 4.20 3.96 0.88 3.64 7.36 3.83 
0.4 2.12 0.20 1.76 4.40 3.88 0.84 3.52 7.28 3.87 
0.5 2.20 0.20 1.80 4.60 3.80 0.80 3.40 7.20 3.91 
0.6 2.28 0.20 1.84 4.80 3.72 0.76 3.28 7.12 3.96 
0.7 2.36 0.20 1.88 5.00 3.64 0.72 3.16 7.04 4.01 
0.8 2.44 0.20 1.92 5.20 3.56 0.68 3.04 6.96 4.06 
0.9 2.52 0.20 1.96 5.40 3.48 0.64 2.92 6.88 4.11 
1 2.60 0.20 2.00 5.60 3.40 0.60 2.80 6.80 4.16 
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This, in its turn, assumes that the parameters of such a variable 
are defined as fuzzy perceptions of the parameters of the 
original random variable. 

To analyse the deterministic variance, let us consider an 
example that follows. Let there be a hypothetical system of 
pattern recognition that, based on certain features, 
automatically ascribes it to one of the fuzzy categories of age. 
Having this kind of system, random experiment is as follows: 
out of a population of individuals, a subset of inividuals is 
randomly chosen (a sample of individuals is created). Each 
individual in the sample is assigned a fuzzy category of age by 
evaluating the age not numerically but just by the features 
observed. Since this fuzzy random variable is explicitly defined 
in Puri-Ralescu’s sense, its variance has to be calculated as 
deterministic number. 

A detailed analysis of both kinds of variance is provided in 
[11]–[14]. The deterministic value of variance is only 
determined by the form of membership function of fuzzy 
categories and “the distance” between fuzzy categories on the 
relevant attribute measurement scale. As is figuratively pointed 
in [12], scalar variance measures the variability of membership 
functions, but not the variability of the underlying fixed-point 
number. The main contribution to the deterministic value of 
variation is made by “the distance” between relevant fuzzy 
categories. The spread of values within each fuzzy category and 
within fuzzy mean value only slightly contributes to the overall 
variance evaluation. 

As a positive feature of deterministic values of variance, just 
their deterministic nature can be considered. If there are two 
fuzzy random variables, and the values of their variance are 
represented in the deterministic form, one can easily compare, 
if necessary also numerically, the extent of spread of fuzzy 
components of both variables. It is evident that the result of such 
a comparison will be correct under the condition that the same 
metric was used for calculating both values. 

One shortcoming of deterministic evaluation of variation is 
that the evaluated variance value depends on the metric on 
whose basis that value was calculated.  

The calculation of fuzzy values of variance requires a 
considerable volume of calculations, especially in the case of a 
large number of components of relevant fuzzy random variable.  

The advantage of the approach is a common procedure for 
calculating the fuzzy value of variation that is based on a simple 
metric in the set of real numbers. However, if for two fuzzy 
random variables fuzzy variance values are calculated, 
comparison and analysis of the results can cause difficulties. At 
best, we can only make a conclusion that the extent of spread of 
components of one fuzzy random variable is greater (or smaller) 
than the spread of components of other fuzzy random variable, 
without numerical result of such a comparison.  

Another specific feature of fuzzy evaluation of variance is 
that we cannot obtain interval values at all α -levels that are 
interesting to us. This can be an advantage, especially in the 
case, when membership functions of the initial categories and 
membership function of the fuzzy mean value have a 
complicated form. 

In common case, it is impossible to give preference to either 
of the considered techniques of calculating variance values for 
fuzzy random variables. As stated in [11], those techniques 
either serve to different purposes or represent different models 
of the phenomenon under consideration, as well as different 
observation environments. 

VI. CONCLUSION 
Over the past decades, an intensive development of methods 

offering successful processing of uncertain initial data, namely, 
interval and fuzzy data, has been seen. The most common type 
of initial data uncertainty is observed when these methods are 
represented in the fuzzy form. Here, two types of uncertainty, 
randomness and fuzziness operate at the same time. Formal 
expression of this kind of combination is associated with the 
concept of a fuzzy random variable. The situation becomes 
more complicated due to the fact that in real-world practice two 
conceptual interpretations of such variables are widely used, 
i.e., Kwakernaak’s interpretation and Puri-Ralescu’s 
interpretation. Those different interpretations cause the need to 
develop specific calculation algorithms for determining 
statistical parameters of intial fuzzy random variables.  

Other points should also be mentioned that make the initial 
acquiantance with fuzzy random variables difficult: the lack of 
united system of basic concepts and denotations, a large number 
of complicated theoretical works and essential shortage of 
works oriented towards an ordinary user. 

From the theoretical point of view, no preference can be 
given to either alternative definition of a fuzzy random variable. 
Both definitions are correct; the difference between them is 
only related to conceptual bases of each definition. From the 
practical point of view, the choice between the alternatives is 
determined by the essence of the task to be solved and 
required/desirable representation of the results. If the initial data 
are apriori represented in the form of fuzzy categories, the Puri-
Ralescu’s approach should be used. Whereas, if it is necessary 
to analyse the character of variance changes by α -levels, 
Kwakernaak’s approach is preferable. Anyway, the choice of 
either approach has to be based on the essence of the task being 
solved, as well as its purpose and type of initial data. 

Further theoretical and practical works in this field should be 
directed towards the development of methods of correct 
dissemination of the results obtained in a sample, to the 
corresponding population. This is the most topical task of 
statistics with fuzzy initial data. 
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