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Abstract – Models of open cylindrical multilayer gyroelectric-

anisotropic-gyroelectric waveguides are presented in this paper. 

The influence of density of free carriers, temperature and the 

presence of the external dielectric layer on the wave phase 

characteristics of the models of n-GaAs waveguides has been 

evaluated. Differential Maxwell’s equations, coupled mode and 

partial area methods have been used to obtain complex dispersion 

equation of the models of gyroelectric-anisotropic-gyroelectric 

waveguides with or without the temperature sensitive external 

anisotropic dielectric layer. The analysis has shown that the phase 

characteristics are practically unchanged when the density of 

electrons is equal to N = (1017–5·1018) m–3, d/rs = 0, the changes of 

wave phase coefficients are obtained in the models of waveguides 

with the external anisotropic dielectric layer. The largest 

differences of wave phase coefficient are obtained when the density 

of electrons is N = 1021 m–3. The external dielectric layer improves 

the control of gyroelectric n-GaAs waveguides with temperature. 

 

Keywords – Microwave propagation; Propagation constant; 

Semiconductor waveguides. 

I. INTRODUCTION 

Waveguides are used in many types of microwave devices: 

phase shifters [1], telecommunications [2] and many other [3]. 

Quickly evolving technologies require the development of new 

structures of waveguides and research into new materials, 

which could be used in the production of waveguides.  

For example, [4], [5] use graphene-based waveguides to 

address polarization issues. The model of a planar dielectric 

waveguide with two-dimensional semiconductors is presented 

in [6]. The authors have provided computational illustrations of 

potentially strong effects and considered interesting 

opportunities that may result from integration of 2D 

semiconductors into dielectric waveguides. 

The authors of [7], [8] have used the plasmonic material in 

the investigation of waveguides. Results of [7] have 

demonstrated that the hybrid plasmonics slot THz waveguide 

provides significantly enhanced field confinement in low index 

slot regions: more than five times that of traditional low index 

slot waveguides.  

Modes of dielectric or ferrite gyrotropic slab and circular 

waveguides are investigated using analytical methods based on 

Maxwell’s equations in [9]. The authors have used the 

gyrotropic material of dielectric or ferrite type, where either the 
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permittivity or the permeability tensor is altered by a 

longitudinally applied quasistatic magnetic field. The solution 

of fast phase shifter using ferrite waveguide is presented in [10]. 

The authors have designed waveguide for the ferrite phase 

shifters of reduced diameter. The reduction of cross-sectional 

size of the ferrite phase shifter was achieved by selection of 

ferrite materials with μ2(Br) equal to 0.28 and 0.42 for ferrite 

rod and magnetic cores, respectively. The authors of [11] have 

used the dielectric waveguide for the development of 

continuously tunable w-band phase shifter.  

External layers or shields are another important element of 

waveguides. Semi-shielded dielectric waveguides are 

investigated in [12]. The cylindrical waveguide with an external 

layer of metamaterial is presented and investigated in [13]. The 

authors claim that the surface modes of a metamaterial 

dielectric waveguide with comparable electric and magnetic 

losses can be less lossy than the surface modes of an analogous 

metal-dielectric waveguide with electric losses alone. 

Metamaterial waveguide devices for integrated optics are 

presented in [14]. The usage of different materials in 

waveguides is widely described in many articles [15], [16]. 

The aim of this paper is to investigate wave phase 

characteristics in models of gyroelectric-anisotropic-

gyroelectric n-GaAs waveguides with or without a temperature 

sensitive external anisotropic dielectric layer. It is also intended 

to investigate how phase characteristics depend on the density 

of free carriers and temperature in gyroelectric n-GaAs 

waveguides, when only one temperature sensitive external 

anisotropic dielectric layer is used. 

II. METHODS AND MATERIALS 

A. Methods 

The electrodynamical model of open cylindrical multilayer 

gyroelectric-anisotropic-gyroelectric waveguides is shown in 

Fig. 1. The model consists of several parts: Area 1 is the 

gyroelectric material; Areas 21 and 22 are the external 

anisotropic dielectric layers; Area 3 is a gyroelectric or air 

material. The parameters of these areas are presented in the 

caption of Fig. 1.  

The Maxwell’s complex differential equations, coupled 

mode and boundary conditions methods are used in order to 
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obtain the complex dispersion equation of models of multilayer 

gyroelectric-anisotropic/isotropic-gyroelectric waveguides. 

The longitudinal components of electric and magnetic fields in 

gyrotropic core are 
g1
zE  and g1

zH  respectively. The equations 

of longitudinal components of electric and magnetic fields in 

gyrotropic core are presented in [17]. 
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Fig. 1. The electrodynamical model of the open cylindrical multilayer 

gyroelectric-anisotropic-gyroelectric waveguide, where: g1
rε  is the complex 

permittivity tensor of gyroelectric core; 
g1

r
μ  is the complex permeability of 

gyroelectric core; ad1
r  is the permeability of the first anisotropic dielectric 

layer; ad1
rε  is the complex permittivity tensor of the first anisotropic dielectric 

layer; ad2
r  is the permeability of the second anisotropic dielectric layer; ad2

rε  

is the complex permittivity tensor of the second anisotropic dielectric layer; 

g2
rε  is the complex permittivity tensor of gyroelectric material; 

g2

r
μ  is the 

complex permeability of gyroelectric material; B0  is a vector of magnetic flux 
density; R1 and R2 are the radii of the anisotropic dielectric layers, d1 and d2 are 

widths of the anisotropic dielectric layers and rg is the radius of the gyroelectric 

core. 

The longitudinal components of electric and magnetic fields, 

which satisfy Maxwell’s equations in anisotropic dielectric 

layers (Areas 21 and 22) of the model (Fig. 1), can be presented 

as: 

 
ad, ( ) ad, ad,g g j

1 21 1J ( ) Y ( ) e ;
z

i i i
i m miE A k r A k r 

+ +⊥ ⊥
 = +
  

 (1) 

 
ad, ( ) ad, ad,g g j

1 22 2J ( ) Y ( ) e ,
i i i

z i m i mH      B k r B k r 
+ +⊥ ⊥

 = +
  

 (2) 

where 1 2;i iA A+ +  and 1 2;i iB B+ +  are unknown amplitude 

coefficients for different external dielectric layers; 
ad, g

1, 2J ( )
i

m k r⊥
 is the Bessel function of the first kind of the  

m-th order with the complex arguments 
ad, g

1, 2 ;
i

k r⊥
 

ad, g
1, 2Y ( )

i
m k r⊥  is the Bessel (Neumann) function of the second 

kind of the m-th order with the complex arguments; 
ad,

1, 2
i

k ⊥  are 

numbers of the transversal waves in anisotropic dielectric 

layers; m is the first (azimuthal) index of the hybrid mode, 

which describes the constant component of the longitudinal 

wave by the azimuthal perimeter coordinate φ; j 1= −  is the 

complex number; i is the number of external anisotropic 

dielectric layers (i = 1; 2 (these numbers mean lower index of 

second area of the model)). 

Numbers of transversal waves in the anisotropic (isotropic) 

dielectric layers can be presented as: 

 
ad, ad, 22

1 ;
i i

xxk k ε γ⊥ = −  (3) 

 ( )
ad,

ad, ad, 22
2 ad,

,

i
i izz

xxi
xx

ε
k k ε γ

ε
⊥ = −  (4) 

where γ = h' – jh'' is the complex propagation constant (here  

h' = Re(γ) = 2π / λw is the phase coefficient and λw is the 

wavelength of the waveguide modes; Im( )h = γ   is the 

attenuation coefficient); k = ω/c is the wave number in a 

vacuum; ad, i
xxε  and ad, i

zzε  are diagonal elements of tensors of 

the anisotropic dielectric layers for the different external 

dielectric layers. 

Area 3 of the model (Fig. 1) could be isotropic (for example, 

it could be air), anisotropic or gyroelectric material. The 

longitudinal components of electric and magnetic fields in the 

isotropic material are: 

 
is (2) is g j

7H ( )e ;
z mE A k r 

⊥=  (5) 

 
is (2) is g j

8H ( )e ,
z mH A k r 

⊥=  (6) 

where 7A  and 8A  are unknown amplitude coefficients; 

(2) is gH ( )m k r⊥ is the Bessel (Hankel function of the second kind) 

function of the third kind of the m-th order with the complex 

argument; 
is gk r⊥  is the number of transversal waves in the 

isotropic material. The number of transversal waves in the 

isotropic material can be presented as: 

 
is isis 2
r r

k k ε μ⊥ = −  , (7) 

where is is
r r

,ε  μ  are the complex permittivity and permeability 

of the isotropic material. is is
r r

1ε  μ= =  means that Area 3 of the 

model is air. is is
r r

1, 1ε  μ   means that Area 3 of the model is 

an isotropic material. 

The longitudinal components of electric and magnetic fields 

in the anisotropic material are: 

 
an (2) an g j

7 1H ( )e ;
z mE A k r 

⊥=  (8) 

 
an (2) an g j

7 2H ( )e ,z mH B k r 
⊥=   (9) 

where 7B  is the unknown amplitude coefficient; 
an

1, 2k ⊥  are 

numbers of the transversal waves in anisotropic material. 

Numbers of the transversal waves in the anisotropic material are 

similar to equations (3) and (4). The main difference is only in 
an
xxε  and 

an
zzε  expressions. Area 3 is the isotropic material and 

numbers of transversal waves are equal (
an an is

1 2k k k⊥ ⊥ ⊥= = ) in 

the anisotropic and isotropic material if the diagonal elements 

of the complex tensor of anisotropic material are equal  

(
an an is

rxx zzε ε ε= = ). 



Electrical, Control and Communication Engineering 

________________________________________________________________________________________2018, vol. 14, no. 2 

136 

The longitudinal components of electric and magnetic fields 

in the gyroelectric material (Area 3) are: 

 
g2 g2 g2g2 g g j

7 71 2H ( ) H ( ) e ;
z

m mE a A k r B k r 
⊥ ⊥

 = +
 

 (10) 

 
g2 g2 g2g2g g j

7 71 2H ( ) H ( ) e ;
z

m mH A k r b B k r 
⊥ ⊥

 = +
 

 (11) 

where 
g2

1, 2k ⊥
 are numbers of the transversal waves of the 

second gyroelectric material; 
g2

a  and 
g2

b are H- and E- waves 

mixing ratio of the hybrid waves. Expressions of 
g2 g2g2 g2

1 2; ; ;a   b  k  k⊥ ⊥
 are presented in [17]. The gyroelectric 

material transforms into the isotropic material if the magnetic 

flux density is equal to 0 (B0 = 0 T)  because elements of the 

complex tensors are equal 
g2 g2 is

rxx zzε ε ε= =  and g2
0.xyε =  Area 3 

of the model could be the anisotropic material as well, when 
g2 an
xx xxε ε= , 

g2 an
zz zzε ε=  and g2

0.xyε =  In this case, numbers of the 

transversal waves in the second gyroelectric material will be the 

same as in the anisotropic material
g2 an

11 k  = k ⊥⊥
 and 

g2 an
22 , k k ⊥⊥ = in other words, the main equations of the 

longitudinal components of electric and magnetic fields in Area 

3 are (10) and (11). 

The azimuthal components of electric 
g1,ad, ( ), is, an, g2i

E  and 

magnetic 
g1,ad, ( ), is, an, g2i

H   fields in different materials (areas 

of the model Figure 1) could be obtained from longitudinal 

components 
g1,ad, ( ),is, an, g2i
zE  and 

g1,ad, ( ),is, an, g2
.

i
zH  Certain 

part of these azimuthal comments was presented in [17].  

The complex dispersion equation is obtained by using 

boundary conditions. The complex dispersion equation of the 

model of multilayer gyroelectric-anisotropic-gyroelectric 

waveguides (Fig. 1) is the 12-th order determinant (see Fig. 2) 

expression = det[ ] = 0,jkD a  where j is a column and k is a 

row index of determinant and jka  are complex elements of 

determinant.  

The determinant consists of four parts: the part, which is 

noted by “g1”, includes elements of determinant, which indicate 

the EM wave propagation in gyroelectric core; the part, which 

is noted by “ad1”, includes elements of determinant, which 

indicate the EM wave propagation in the first anisotropic 

dielectric layer; the part, which is noted by “ad2”, includes 

elements of determinant, which indicate the EM wave 

propagation in the second anisotropic dielectric layer, and the 

last part, which is noted by “g2”, includes elements of 

determinant, which indicate the EM wave propagation in the 

gyroelectric material. 
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Fig. 2. The complex dispersion equation of models of multilayer gyroelectric-

anisotropic-gyroelectric waveguides. 

The boundaries between the four areas are noted by  

“g1- ad1”, “ad1-ad2” and “ad2-g2”. “g1-ad1” is the boundary 

between the gyroelectric core and the first anisotropic dielectric 

layer. “ad1-ad2” is the boundary between the first anisotropic 

dielectric layer and the second anisotropic dielectric layer. 

“ad2-g2” is the boundary between the second anisotropic 

dielectric layer and the gyroelectric material.  

The analysis of the presented model shows that the developed 

model is more universal than presented in other works [17], 

[18].  

B. Materials 

Only one temperature sensitive external anisotropic 

dielectric layer was selected in this investigation case. The 

thickness of the external anisotropic dielectric layer was equal 

to d1/rs + d2/rs  = d/rs = 0.3 (here d1/rs = d2/rs  = 0.15), where rs is 

the semiconductor (gyroelectric) core, rs = 1 mm. The 

temperature sensitive external anisotropic dielectric layer 

consists of TM-15 and non-magnetic Rb1−x(ND4)D2PO4 

ferroelectric dielectrics both of which are mixed by using 

(Maxwell’s-Garnet’s) material mixing expressions [19], [20]. 

The filling ratio of permittivities of dielectrics – Nd is 0.75 [19], 

[20]. 

The permittivity of TM-15 dielectric is 
d 15.rε =  The 

permittivity of non-magnetic Rb1−x(ND4)D2PO4 ferroelectric 

depends on temperature, the dielectric properties of 

Rb1−x(ND4)D2PO4 were investigated in paper [21].  

In this investigation case, Area 3 of the electrodynamical 

model of open cylindrical multilayer gyroelectric-anisotropic-

gyroelectric waveguides (Fig. 1) is air and its permittivity and 

permeability are equal to 1. 
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III.  RESULTS 

The models of n-GaAs gyroelectric waveguides were 

analyzed when the mobility of electrons varied depending on 

the temperature [22]:  

 µn = 0.94(300 / T) m2 V–1 s–1 , (12) 

where T is the absolute temperature of the semiconductors. 

The dielectric constant of n-GaAs semiconductors was equal 

to εr = 13.1 and effective mass was equal to m* = 0.067me, 

where me is the rest mass of electrons. 

The phase characteristics are presented for the main type 

HE11 and the first higher type EH11 waves. Other higher type 

waves are parasitic and have not been explored. The phase 

characteristics of the models of the gyroelectric waveguides are 

presented as dependencies of the normalized phase  

coefficient – h'rs on the normalized frequency – frs. 

 These phase characteristics were received, when the 

polarization of the electromagnetic waves is left-hand 

exp(+jmφ), where m is the first azimuthal index of hybrid 

waves, m = 1. 

The phase characteristics of the models of the gyroelectric, 

semiconductor and semiconductor-dielectric n-GaAs 

waveguides with different densities of electrons N = 1017; 

5·1018; 5·1019; 1020; 1021 m–3 and temperatures T = 125; 150; 

175; 200 K are presented in Figs 3–11.  

Wave phase characteristics of n-GaAs semiconductor-

dielectric devices when the density of electrons is equal to  

N = 1017; 5·1018 m–3 are presented in Figs 3 and 4. These 

characteristics are almost the same in both figures. 

The phase characteristics are shifted to the lower frequencies 

when temperature T increases, but the variation of wave phase 

coefficient remains the same within the operating frequency 

range. Therefore, the usage of n-GaAs is not useful in phase 

shifters as it reduces the limits of the phase shifter. 

The phase characteristics of the semiconductor and 

semiconductor-dielectric waveguides when the density of 

electrons is equal to N = 5·1019 m–3 are presented in Figs 6  

and 7. 
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Fig. 3. Wave phase characteristics of models of gyroelectric n-GaAs 

semiconductor waveguides, when B0 = 1 T; N = (1017–5·1018) m–3. 
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Fig. 4. Wave phase characteristics of models of gyroelectric n-GaAs 

semiconductor-dielectric waveguides, when d/rs = 0.3; B0 = 1 T; N = 1017 m–3. 
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Fig. 5. Wave phase characteristics of models of gyroelectric n-GaAs 

semiconductor-dielectric waveguides, when d/rs = 0.3; B0 = 1 T;  

N = 5·1018 m–3. 

The insignificantly bigger phase shift to the lower 

frequencies side appears when temperature T is changing in the 

models of the waveguides without an external anisotropic 

dielectric d/rs = 0 layer compared with the characteristics, 

which are given in Fig. 4. 
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Fig. 6. Wave phase characteristics of models of gyroelectric n-GaAs 

semiconductor waveguides, when d/rs = 0; B0 = 1 T; N = 5·1019 m–3. 

The significantly larger change of the phase coefficient of the 

main type HE11 wave is obtained by using an external dielectric 

layer Rb1−x(ND4)D2PO4. The phase characteristics of the 

semiconductor-dielectric waveguides with the external 

dielectric layer are presented in Fig. 7. It could be seen that 

wave phase characteristics are shifted to the lower frequencies 

when the external anisotropic dielectric layer is used. 

The bigger phase shift is obtained in the models of waveguides 

with the external anisotropic dielectric layer because the 

relative dielectric permittivity of one of the external dielectric 

layers depends on the temperature and frequency.  
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Waves phase characteristics when the density of electrons is 

equal to N = 1020 m–3 are presented in Figs 8 and 9. The 

comparison of Figs 3, 6 and 8 shows that the biggest phase shift 

in waveguides without the external anisotropic dielectric layer 

d/rs = 0 is obtained when the density of electrons is equal to 

N = 1020 m–3 (Fig. 8).  

It could be seen from Figs 8, 9 and Table I that the widest 

working frequency range in the models of the waveguides 

without the external dielectric layer is obtained when the 

temperature is equal to T = 200 K. The widest working 

frequency range in the models of the waveguides with the 

external anisotropic dielectric layer is obtained when the 

temperature is equal to T = 175 K. Working frequencies range 

of the models of the waveguides with the external anisotropic 

dielectric layer becomes wider as the temperature rises until  

175 K. The widest working frequency range is equal to 

Δfrs = 0.0284 GHz·m, at T = 175 K. The working frequency 

range begins to narrow at higher than 175 K temperatures. Such 

variation of working frequency range is related to the properties 

of n-GaAs semiconductor and Rb1−x(ND4)D2PO4 ferroelectric.  
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Fig. 7. Wave phase characteristics of models of gyroelectric n-GaAs 

semiconductor-dielectric waveguides, when d/rs = 0.3; B0 = 1 T;  

N = 5·1019 m–3. 
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Fig. 8. Wave phase characteristics of models of gyroelectric n-GaAs 

semiconductor waveguides, when d/rs = 0; B0 = 1 T; N = 1020 m–3. 
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Fig. 9. Wave phase characteristics of models of gyroelectric n-GaAs 

semiconductor-dielectric waveguides, when d/rs = 0.3; B0 = 1 T; N =1020 m–3. 

The working frequency range of models of n-GaAs 

waveguides with and without the external dielectric layer when 

the density of the electrons is constant N = 1020 m–3 at different 

temperatures are presented in Table I.   

TABLE I  

WORKING FREQUENCY RANGES OF N-GAAS SEMICONDUCTOR AND 

SEMICONDUCTOR-DIELECTRIC WAVEGUIDES WHEN N = 1020
 M

–3  

T, K 125 150 175 200 

Δf, GHz 
d/rs = 0 23.0 24.1 24.1 24.4 

d/rs = 0.3  19.9 22.0 28.4 19.6 

 

It can be also noticed that the values of tensor of the relative 

dielectric permittivity significantly increase to thousands when 

the density of electrons in models of n-GaAs semiconductor and 

semiconductor-dielectric waveguides is increased till 

N = 1021 m–3. Such increase of the values of tensor of the 

relative dielectric permittivity causes distortions in phase 

characteristics of the waves. The obtained wave phase 

characteristics are presented in Figs 10 and 11. These 

characteristics are significantly shifted to the side of higher 

frequencies. 

It is difficult to determine working frequency range Δfrs of 

the models of semiconductor and semiconductor-dielectric 

waveguides with such phase characteristics. Phase shifters 

would not be able to work with such variation of characteristics, 

because the gyroelectric phase shifters must operate in a 

specific working frequency range. 
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Fig. 10. Wave phase characteristics of models of gyroelectric n-GaAs 

semiconductor waveguides, when d/rs = 0; B0 = 1 T; N = 1021 m3. 
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Fig. 11. Wave phase characteristics of models of gyroelectric n-GaAs 

semiconductor-dielectric waveguides, when d/rs = 0.3; B0 = 1 T; N = 1021 m–3. 

It is possible to use models of n-GaAs semiconductor and 

semiconductor-dielectric waveguides in the manufacture of 

phase shifters when the density of electrons is equal to   

5·1018 m–3 and 1020 m–3. 
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IV. CONCLUSIONS  

The phase characteristics are practically unchanged in the 

models of n-GaAs semiconductor waveguides when the 

temperature varies from 125 K to 200 K and the density of 

electrons is equal to N = (1017–5·1018) m–3. Changes in wave 

phase coefficients are obtained in the models of waveguides 

with the external anisotropic dielectric layer. 

The largest differences of wave phase coefficient on 

temperature are obtained in the models of n-GaAs gyroelectric 

waveguides when the density of electrons is increased till 

N = 1021 m–3. 

Control using temperature is more effective in the models of 

n-GaAs semiconductor-dielectric waveguides in comparison 

with the models of n-GaAs semiconductor waveguides, because 

the external anisotropic dielectric layer consists of 

Rb1−x(ND4)D2PO4 ferroelectric, whose dielectric permittivity 

depends on temperature T. Therefore, this external anisotropic 

dielectric layer improves the control of thermal gyroelectric 

waveguides and models of phase shifters. 
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