


## **Book of Abstracts**





## Contents

| Welcome                      | 2   |
|------------------------------|-----|
| Organization                 | 3   |
| Acknowledgments and Sponsors | 5   |
| General Information          | 9   |
| Social Programme             | 13  |
| Scientific Programme         | 17  |
| Plenary Lectures             | 51  |
| Oral Communications          | 85  |
| Flash Communications         | 137 |
| Poster Communications        | 197 |
| Author Index                 | 393 |
| Participant Index            | 405 |



## Liquid Sulfur Dioxide – Beneficial Solvent for Alkyne Transformations via Vinyl Carbenium Ion Intermediate

Krista Suta, Māris Turks

Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena str. 3, Riga, LV-1048, Latvia

Email: krista.suta\_1@rtu.lv

Sulfur dioxide is not only a useful building block in a synthetic organic chemistry, but due to its high polarity and Lewis acid properties liquid SO<sub>2</sub> can be used as a strongly ionizing solvent, especially, for organic transformations that involve ionic intermediates. Herein we report application of liquid SO<sub>2</sub> as a reaction media for various alkyne transformations via vinyl carbenium ion intermediate that is quenched with nucleophiles like water, halide and triflate. <sup>2</sup>

Firstly, a combination of  $In(OTf)_3$  or  $Hf(OTf)_4$  as a catalyst and liquid  $SO_2$  as a solvent allowed us to develop effective method for the hydration of electron-rich terminal and internal aryl alkynes without the direct addition of Brønsted acid (Scheme 1, **A.**). Catalyst loading can be lowered to less than 1 mol% for alkynes containing strong electron-donating groups. Besides,  $Hf(OTf)_4$  has found an application in this chemical transformation for the first time.

Secondly, by employing simple reagent systems like CsI, KI, NaI, LiBr, or LiCl/ $H_2O$  as well as solo reagents like  $NH_4I$ ,  $MgBr_2\cdot 6H_2O$ , and  $MgCI_2\cdot 6H_2O$ , we have succeeded in the hydrohalogenation of electron-rich aromatic alkynes in liquid  $SO_2$  (Scheme 1, B.). Most of these salts are used as halide sources in alkyne hydrohalogenation for the first time. Moreover, ammonium iodide works as both iodide and proton donor in a reaction mixture without the need for water additive.

Finally, we have found application of liquid  $SO_2$  as a reaction media for *in situ* generation of  $\alpha$ -vinyl triflates from aromatic alkynes by employing TMSOTf as a triflate ion source (Scheme 1, **C.**). The use of this method is demonstrated by two-step one-pot synthesis of  $\alpha$ -CF $_3$  ketones, pyrimidines and Suzuki cross-coupling products.

Scheme 1: Alkyne transformations in liquid SO2 via vinyl carbenium ion intermediate.

Acknowledgements: This work was financed by the Latvian Council of Science Grant LZP-2018/1-0315.

## References:

- a) Posevins, D.; Suta, K.; Turks, M. Eur. J. Org. Chem. 2016, 1414. b) Luginina, J.; Uzulena, J.; Posevins, D.; Turks, M. Eur. J. Org. Chem. 2016, 1760. c) Luginina, J.; Turks, M. Synlett 2017, 28, 939.
- 2. Suta, K.; Turks, M. ACS Omega 2018, 3, 18065.