Book of Abstracts ## Contents | Welcome | 2 | |------------------------------|-----| | Organization | 3 | | Acknowledgments and Sponsors | 5 | | General Information | 9 | | Social Programme | 13 | | Scientific Programme | 17 | | Plenary Lectures | 51 | | Oral Communications | 85 | | Flash Communications | 137 | | Poster Communications | 197 | | Author Index | 393 | | Participant Index | 405 | ## Liquid Sulfur Dioxide – Beneficial Solvent for Alkyne Transformations via Vinyl Carbenium Ion Intermediate Krista Suta, Māris Turks Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena str. 3, Riga, LV-1048, Latvia Email: krista.suta_1@rtu.lv Sulfur dioxide is not only a useful building block in a synthetic organic chemistry, but due to its high polarity and Lewis acid properties liquid SO₂ can be used as a strongly ionizing solvent, especially, for organic transformations that involve ionic intermediates. Herein we report application of liquid SO₂ as a reaction media for various alkyne transformations via vinyl carbenium ion intermediate that is quenched with nucleophiles like water, halide and triflate. ² Firstly, a combination of $In(OTf)_3$ or $Hf(OTf)_4$ as a catalyst and liquid SO_2 as a solvent allowed us to develop effective method for the hydration of electron-rich terminal and internal aryl alkynes without the direct addition of Brønsted acid (Scheme 1, **A.**). Catalyst loading can be lowered to less than 1 mol% for alkynes containing strong electron-donating groups. Besides, $Hf(OTf)_4$ has found an application in this chemical transformation for the first time. Secondly, by employing simple reagent systems like CsI, KI, NaI, LiBr, or LiCl/ H_2O as well as solo reagents like NH_4I , $MgBr_2\cdot 6H_2O$, and $MgCI_2\cdot 6H_2O$, we have succeeded in the hydrohalogenation of electron-rich aromatic alkynes in liquid SO_2 (Scheme 1, B.). Most of these salts are used as halide sources in alkyne hydrohalogenation for the first time. Moreover, ammonium iodide works as both iodide and proton donor in a reaction mixture without the need for water additive. Finally, we have found application of liquid SO_2 as a reaction media for *in situ* generation of α -vinyl triflates from aromatic alkynes by employing TMSOTf as a triflate ion source (Scheme 1, **C.**). The use of this method is demonstrated by two-step one-pot synthesis of α -CF $_3$ ketones, pyrimidines and Suzuki cross-coupling products. Scheme 1: Alkyne transformations in liquid SO2 via vinyl carbenium ion intermediate. Acknowledgements: This work was financed by the Latvian Council of Science Grant LZP-2018/1-0315. ## References: - a) Posevins, D.; Suta, K.; Turks, M. Eur. J. Org. Chem. 2016, 1414. b) Luginina, J.; Uzulena, J.; Posevins, D.; Turks, M. Eur. J. Org. Chem. 2016, 1760. c) Luginina, J.; Turks, M. Synlett 2017, 28, 939. - 2. Suta, K.; Turks, M. ACS Omega 2018, 3, 18065.