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Abstract 

This paper deals with a logistic system consisting of a wholesale store, a retail store and automobiles that are taking part in goods 
delivery from a wholesale store to a retail store. Assuming random and coming at random time moments demands, we construct a 
stochastic model for this transport logistic scheme and derive Gaussian approximation for transport and stock level of goods 
dynamics.   
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1. Introduction 

In the last years, research interest in transport logistics has increasingly focused on dynamical theory approach 
(see [1,5,6,7,8] and references there) for quantitative and qualitative analysis of system behavior.  Even for most 
simple logistic dynamical system consisting of a wholesale store of capacity A, a retail store of capacity R and 
automobiles which are taking part in goods delivery from a wholesale store to a retail store the author of paper [1] by 
means of imitation modeling succeeded in finding such a complex mode of the operation as limit cycles and other 
irregular attractors.  But in reality any transport logistics model is dependent at random demand and operates at 
random environment. Besides, a time moment for restocking of goods also is a random value. This means that for 
quantitative analysis for goods growth we have to calculate not only given by deterministic dynamical system stock 
level of goods bet also to estimate possible random deviations on these idealized representations.  To do this in our 
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paper we consider some complicate proposed in [1] deterministic model assuming that the demand be random and 
coming at random time moments. The expressed in paper [1] mathematical model for dynamical analysis of the 
above transport logistics scheme is system of three-dimensional ordinary differential equations. 
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with right part, that dependent on the number of involving in goods delivery transport ( )x t  and stock levels of  

goods ( )y t and ( )z t in the corresponding stores. This model constructed under assumption that for any 0t  :

 The increments ( ) : ( ) ( )x t x t x t     of involving  in goods delivery number of trucks are proportional to 
  multiplied by  to stock ( )z t  at wholesale store and  a number of vacancies  R ( )y t  at retail store 

 The increments ( ) : ( ) ( )y t y t y t     of stock levels of  goods are proportional to   multiplied by 
involving  in goods delivery number of trucks ( )x t ,  a number of vacancies  R ( )y t  at retail store, after 
deduction of  ordering for goods ( )by t 

 The increments ( ) : ( ) ( )z t z t z t     of stock levels of  goods are proportional to   multiplied by ( )x t ,
a number of vacancies  A ( )z t  at wholesale store, after deduction of  goods transportable from wholesale 
store to retail store. 

To take into account random properties of demand for goods we have to model a demand at the time interval  
[ , )t t    as a random variable that can arrive or not with dependent on interval length probability. That is why we 
propose for dynamical analysis of the above logistic transportation scheme a stochastic model given by following 
finite-difference approximation: 
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 where ,kt k k N   ,  is a small positive parameter, and ( )y kt  is a random sequence defined by dependent 

on two identically independent distributed (i.i.d.) independent uniform R(0,1) distributed series  { , }k k N   and 

exponentially distributed with parameter 1    series { , }k k N   as follows: 
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This means that there are  random time moments { , }k k N   when the trajectory for stock levels of  goods ( )y t

has small jumps ( ) ( )k kb y t   bet these jumps occur very close: 1N : E{ }k kk       . The  sample 
trajectories for equations (2) - (3) with parameters 0.01, 0.001, 1, 1, 10,c 1,k h R         and trajectories 

for solutions  of equitation (1) with initial conditions (0) (0) 2, (0) (0) 2, (0) (0) 2x x y y z z        are 
shown at the  Fig. 1.  As  we  can  see most dependent on random demand are dynamics for stock levels of goods

( )y t .  At the next sections applying the stochastic averaging method [3] we derive approximate solution for  (2) -
(3) as a three dimensional Gaussian process and discuss a behaviour of mean value and variances for stock levels of  
goods { ( ), ( ), ( )}z t y t z t   .

Fig. 1.Sample trajectory for (1) (unbroken line) and corresponding solutions of  (2) - (3) (broken lines).  

2. Diffusion approximation procedure 

The defined in previous section stochastic dynamical system in more general form has been analysed in our 
previous paper [2]. The corresponding to finite-difference equation (2) - (3) random process possess Markov 
property and may be analysed through intermediary of generator [3]: 
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where ( , , )v x y z  is an arbitrary sufficiently smooth bounded function . Now we have to derive a limit 
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and
1

0

( )b b u du  . The operator (5) can be interpreted as an infinitesimal operator [9] for defined by system (1) 

continuous semigroup.  

Therefore [2] for sufficiently small 0   sample trajectories of  defined by finite-difference equation (2) - (3) 
random dynamical system we can approximate by corresponding solutions of equation (1), that is, if 
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As it has been proven in [2] the deviations of solutions (2) - (3) on corresponding solutions of (1) have an order 
  and we may analyse these deviations applying diffusion approximation procedure to no homogeneous three 

dimensional Markov process: 
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with zero initial conditions. The same as before we should derive a generator for (7): 
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and
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2 2

0

( )b u du   . This operator can be interpreted [3] as a generator for no homogeneous Markov process

{ ( ), ( ), ( ), 0}X t Y t Z t t   which satisfies to  systems of two ordinary equations and one stochastic Ito equation: 

with initial conditions { (0) 0, (0) 0, (0) 0}X Y Z   . As it has been proved in [2] finite dimensional 

distributions of the defined by equations (2) - (3) Markov process  { ( ), ( ), ( )}x t y t z t    may be approximated by 
corresponding finite dimensional distributions of the process  
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Unfortunately, we cannot analyse variance separately approximation for stock levels of goods given by equation 
(10). We have to derive and solve the system of differential equations for all elements of a covariance matrix for the 
three dimensional Gaussian random vector { ( ), ( ), ( )}X t Y t Z t :
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with zero initial conditions. Applying the Runge-Kutta method for solution of equations (13) we  can calculate 
approximation for covariance matrix  for  stock levels  of   goods for 100, ( ) 2A b u bu  ,

0.01, 1, 10,c 1, 5h R a        with the same parameters in (1)-(2)-(3) and initial values as for the  Fig.1.  

3. Conclusion 

 The proposed stochastic model for transport logistics in a form of nonlinear difference-differential equations with 
stochastic Poisson type increments in tandem with stochastic approximation procedure permits to take into account 
random character of demand for freight services and to supplement the classical deterministic analysis with 
Gaussian approximation for possible random deviations. 
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