RIGA TECHNICAL UNIVERSITY

60th International Scientific Conference

MATERIALS SCIENCE AND APPLIED CHEMISTRY

PROGRAMME AND ABSTRACT BOOK

Riga, Latvia 24 October, 2019

http://msac.rtu.lv/

MATERIALS SCIENCE AND APPLIED CHEMISTRY

Riga Technical Uni 60th Internationa Scientific Conference

Amorphous calcium phosphate biomaterials for bone regeneration
Jana Vecstaudža, Riga Technical University, Latvia
From local to general reactogenicity of biphasic calcium phosphate bioceramics after implantation in osteoporotic bone
Aleksandrs Grišuļonoks, Riga Stradins University, Latvi
The histomorphometry of rabbits bone tissue with experimental osteoporosis after implantation of bipho calcium phosphate materials
Vladislavs Anaņjevs, Riga Stradins University, Latvia

THE RESIDENCE OF THE PARTY OF T		CAST DO
SESSION II	ROOM	1. /. L
	K U U IVI	44.0

9.30–10.10	Fluorescent nucleoside analogues with new properties for biophysics Asoc. prof. Byron W. Purse, San Diego State University.
10.15–10.30	New antioxidants containing 1,3-dioxane-4,6-dione molinese Mieriņa, Riga Technical University, Latvia
10.30–10.45	Dithiafulvalene and tetrathiafulvalene donor group containing dyes for organic solar cell application Armands Rudušs, Riga Technical University, Latvia
10.45-11.00	Purine-Azole conjugates as fluorescent materials Armands Sebris, Riga Technical University, Latvia

Purine-Azole Conjugates as Fluorescent Materials

Armands Sebris, Kaspars Traskovskis, Irina Novosjolova, Māris Turks

Faculty of Materials Science and Applied Chemistry, Riga Technical University, Latvia e-mail: armands.sebris_l@rtu.lv

Recently we reported the synthesis, photophysical properties and potential applications of variously substituted 9-alkylpurine derivatives.^{1,2} Here we report the synthesis of 2/6-(1,2,3-triazolyl), 2-imidazolyl, 2-(1,2,4-triazolyl), 2-tetrazolyl and 6-carbazolyl substituted purine derivatives (Figure 1). N(9) position contains a trityl moiety, which enhances amorphous properties3 or a carbazole moiety, which increase hole transfer capabilities. Carbazole moiety also acts as a strong electron donating group, other azoles act as electron withdrawing groups. Target compounds were obtained in 11-54% overall yields. Their fluorescence was studied and the quantum yields in DCM solution reached up to 91% and up to 58% in the films.

Figure 1. Representative target compounds and their absorption-emission spectra in DCM solution (solid lines - absorption spectra, dashed lines - emission spectra).

Acknowledgements

This work is supported by the ERDF 1.1.1.1 activity project Nr. 1.1.1.1/16/A/131 "Design and Investigation of Light Emitting and Solution Processable Organic Molecular Glasses" and Riga Technical University doctoral grant Nr. DOK. MLĶF/18.

- Kovaļovs, A.; Novosjolova, I.; Bizdēna, Ē.; Bižāne, I.; Skardziute, L.; Kazlauskas, K.; Jursenas, S.; Turks, M. Tetrahedron Lett. 2013, 54, 850.
- Šišuļins, A.; Bucevičius, J.; Tseng, Y.-T.; Novosjolova, I.; Traskovskis, K.; Bizdēna, Ē.; Chang, H.-T.; Tumkevičius, S.; Turks, M. Beilstein J. Org. Chem. 2019, 15, 474-489.
- Traskovskis, K.; Mihailovs, I.; Tokmakovs, A.; Kokars, V.; Rutkis, M. Proceedings of SPIE, 2012, 8434: Nonlinear Optics and Applications VI, 1.