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1. Introduction

Computation-intensive design problems are becoming increasingly common in manufacturing
industries. Despite the advances in computer capacity and speed, the enormous computational
cost of complex, high fidelity scientific and engineering simulations makes it impractical to
rely exclusively on simulation for the purpose of design optimization. To cut down the cost,
metamodels, also known as surrogate models, are constructed from and then used in place of
the actual simulation models [1,2,3]. Metamodeling techniques have been widely used for

design evaluation and optimization in many engineering applications.

The primary objectives of metamodeling are to obtain an accurate estimate of the response
and to minimize the required computational effort [2]. This includes minimizing the necessary
number of sample points and utilizing a computationally efficient modelling method which

creates models of high predictive performance.
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Typically, in metamodeling a low-order polynomial model is used — usually a second-
order polynomial [2]. A low-order polynomial has a low number of unknown parameters and
tends to smooth out noise in the data. However, it cannot model highly nonlinear behaviours.
Higher-order polynomials can be used, but instabilities may arise as higher order polynomials
can exhibit erratic behaviour in the sub-domains not covered by the experiments [4,5,6], or it
may be too difficult to take sufficient sample data to estimate all of the parameters in the
polynomial equation, particularly in large dimensions [6].

As a possible remedy for the problem, subset selection techniques [7,8,9] may be used.
They are aimed to identify the best subset of basis functions to include in the regression
model, and to remove the unnecessary ones (e.g., by using the statistical significance tests
[7,8,9] or information-theoretic criteria such as the Akaike’s Information Criterion (AICC)
[10]).

Before the subset selection step one chooses the maximal order, of the resulting
polynomial, in this way creating a fixed finite set of predefined basis functions which will be
used in model building. Then the actual subset selection is performed. The goal is to find a
subset that maximises the predictive performance of the resulting regression model.

In order to find the subset of basis functions, some kind of search must be performed. The
simplest search strategy is the exhaustive search, which evaluates every possible subset.
Although exhaustive search guarantees to find the best subset (according to evaluation
criterion used), it needs exponential runtime and thus is impractical in most cases.

Another class, called heuristic search methods, efficiently traverse the space of subsets, by
adding and deleting the basis functions, and uses an evaluation function that directs the search
into areas of increased performance. The typical examples of heuristic search methods are the
Forward Selection, also known as Sequential Forward Selection (SFS), and the Backward
Elimination, also known as Sequential Backward Selection (SBS) [8]. SFS starts with an
empty set of selected basis functions (or with the intercept term already included) and
iteratively adds the function leading to the highest performance increase to the set of selected
functions, until the performance cannot be enhanced any further by adding a single function.
SBS starts with the complete set of basis functions and iteratively removes the function whose
removal yields the maximal performance increase.

The approach of subset selection assumes that the chosen fixed finite full set of predefined
basis functions contains a subset which is sufficient to describe the target relation sufficiently
well. However, in many cases the necessary maximal order of the resulting polynomial (or set
of basis functions) is not known and needs to be guessed or chosen by experience. In many
cases that means a non-trivial (and long) trial and error process, since it can differ from one
data set to another and would also be, for practical reasons, guided by computational
complexity issues [12].

A more convenient and potentially efficient approach is to let the modelling method itself
construct the basis functions necessary for creating the regression model with adequate
predictive performance. This can be done using the so-called Basis Function Construction
(BFC) approach [12]. The BFC approach does not require the user to worry about choosing
the maximal order (or predefining the set of basis functions). BFC automatically constructs
the necessary basis functions using heuristic search, efficiently trading-off the simplicity and
predictive performance of the models.

In the paper, we consider application of four different polynomial regression modelling
methods to a problem of glass fibre bar stability metamodeling. The four methods include a
simple p-th order polynomial regression (PR), SFS with F-statistic, SFS with AICC, and an
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instance of the BFC approach — a regression modelling method called Sequential Floating
Forward Polynomial Construction (SFFPC) [12].

In the following section, we shortly describe the glass fibre bar stability metamodeling
study. Next, we describe the four applied polynomial regression modelling methods and
shortly discuss their differences and similarities. Finally, we describe the performed
metamodeling experiments, show the results, and draw some conclusions about the used
methods.

2. Glass fibre bar stability studies

Whenever a structural member is designed, it is necessary that it satisfies specific strength,
deflection, and stability requirements. Slender or thin-walled structural members that are
subjected to compression are prone to buckling — loss of stability. This possible loss of
stability is often the determining factor in design of such members. Axially compressed
column is the simplest case here, and analytical and numerical buckling analysis is simple
(though it is sufficient for our experimental comparisons of regression modelling methods).
For more complicated structures, analytical prediction of buckling load can be impossible and
numerical solutions can take much time and even be inaccurate, if used improperly [13]. In
this study, axially compressed glass fibre reinforced plastic (GFRP) bar is used. The
geometrical design parameters of the considered bar are given in Fig. 1.

The maximum axial load that a column can support, when it is on the verge of buckling, is
called the critical load, P, (see Fig. 1 (a)). Any additional loading will cause the column to
buckle and therefore deflect laterally as shown in Fig. 1 (b). In 1757, mathematician Leonhard
Euler derived a formula that gives the maximum axial load that a long, slender, ideal column
can carry without buckling. An ideal column is one that is perfectly straight, homogeneous,
and free from initial stress. The Euler formula for columns is

_ 7’El
Tl
where P, is critical force; E is modulus of elasticity of the material; / is minimum area
moment of inertia of the cross-section; L is unsupported length of column; x is column
effective length factor, whose value depends upon the conditions of end support of the
column [14].

In the current study a hollow GFRP column with rectangular cross-section and pinned
supports at the ends is considered. The changing parameters are the following: a, &z, kb, L (see
Fig. 1 (¢)). Analytically P, can be calculated by Euler formula, where ¢ = 1 and I = [, is
calculated as follows:

_ab’ —(a-2t)(b-2t)
min 12 .

For this study, a set of numerically obtained results is used. The numerical calculations
were performed using Finite Element software ANSYS 11.0 [15,16]. A data set of 300
experiment points in four-dimensional space was conducted, which were sampled using
Minimum Square Distance Latin Hypercube [17]. Value intervals of the design parameters
are the following: 0.025<a<0.25m, 7<kt <10, 1<khb<3,1.0<L<6.0m.

I

152



P, P>P,

» t=a/kt

A 4

cr cr

(2) (b) (©)

Figure 1. The axially compressed bar. Geometrical design parameters ((a), (b), (¢)) and the practical
stability test of the bar (d)

3. Polynomial regression modelling methods

In this section, we will describe the four polynomial regression modelling methods used in the
metamodeling experiments. Note that, to be strict, the first method, p-th order polynomial
regression, is generally not a regression modelling method, as there is no model building or
searching performed — there is only one a priori chosen model.

3.1. p-th order polynomial regression

A polynomial regression model of order p can be expressed as:
R d d ~d d )
y=a,+ Zizl a;X; + Zizl Zj>ia!7xix.i + Zizlaﬁxi

d d d d )
D Dt D G5 o ot D iy,

where a; are model’s parameters; d is the number of the original independent variables. The
second order polynomial model is often considered as the synonym of the Response Surface
method (e.g., [18] and many other researchers).

Since polynomial regression models are linear in the parameters, the usual linear model
tools may be applied — the parameters a; of the regression models are estimated using the
ordinary least-squares method, OLS.
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3.2. Sequential Forward Selection with F-statistic

Generally a polynomial regression model may be defined by a linear summation of basis
functions:

~ k
y:Zizlaiﬁ(x)
where k is the number of the used basis functions (equal to the number of model’s

parameters); and f{x) are the basis functions which generally may be defined as a product of
original input variables each raised to some order:

d
£ =TT« (1)
where r; is the order of the j-th variable in the i-th basis function (a non-negative integer).

Note that when all 7;’s of a basis function are equal to 0, we have the intercept term.

Usually in the subset selection the basis functions are chosen such that the order of each
possible polynomial model does not exceed a previously chosen highest allowed order p, i.e.

each r; € {0,L,..., p} and Z; r, < p foralli.

SFS with F-statistic [7,8,9] starts with the simple model with only the intercept term in it
and sequentially adds those basis functions to the model that most significantly improve its fit
to the training data. To avoid overfitting, the significance of the Mean Squared Error
improvement gained by adding the basis function to the current model is tested. The
improvement is significant, if the obtained F value is greater than a predefined significance
threshold value. SFS proceeds with greedy search by choosing the best significant
improvement and stops, if no significant improvement is available.

3.3. Sequential Forward Selection with AICC

Another way of performing model evaluation in subset selection is using the complexity
penalization criteria. In contrast to the F-statistic, complexity penalization criteria do not
require the compared models to be nested and do not require the user to set the significance
threshold value. The most widely known and used complexity penalization criterion is the
Akaike’s Information Criterion (AIC) [10]. In our research we used its small sample corrected
version (AICC) [11]:
AICC =nlog(MSE) +2k + 2k(k +1))/(n—k 1)

where MSE is Mean Squared Error in training data; n is the number of data cases in the
training data. Note that the best fitting model is that whose criterion value is the lowest.

SFS with AICC works very similarly to SFS with F-statistic except that it sequentially
adds those basis functions to the model that lower the AICC value the most. The process is
stopped when no further addition of any basis function can gain decrease of AICC.

3.4. Sequential Forward Floating Polynomial Construction

SFFPC [12] is an instance of the BFC approach — it is a regression modelling method that can
by itself construct the necessary basis functions and generate polynomials of arbitrary
complexity, efficiently trading-off the simplicity and predictive performance of the models.

In BFC, the standard model refinement operators of subset selection, namely addition (and
deletion) of basis functions, are replaced with other operators which not only allow adding or
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deleting basis functions but also allow changing the basis functions themselves. BFC operates
directly with the orders of each variable in each function as well as creates new functions as
necessary. Thus in BFC one operates with a matrix of non-negative integers where a cell in i-
th row and j-th column contains a value of 7; in equation (1) which is the order of the j-th
variable in the i-th basis function.

In SFFPC, the starting point of the search is the same as in the two subset selection
methods described above — a model with one function that corresponds to the intercept term
(this function stays in the model at all times and is not allowed to be modified or deleted).

SFFPC uses five model refinement operators:

e Operatorl: Increasing of one of the orders in one of the existing basis functions by 1.

e Operator2: Addition of a new basis function with one of the orders set to 1.

e Operator3: Addition of an exact copy of already existing basis function with one of

the orders increased by 1.

e Operator4: Decreasing of one of the orders in one of the existing basis functions by 1.

e Operator5: Deletion of one of the existing basis functions.

The operators are categorized as complication operators (the first three) and simplification
operators (the last two). In the search process the complication operators do the main job —
they “grow” the regression model. The simplification operators on the other hand work as
purifiers — they decrease the unnecessarily high orders and delete the unnecessary basis
functions. As it may be noticed, the space of candidate regression models is now infinite, and
we can generate polynomials of arbitrary complexity.

As a search strategy that of Sequential Floating Forward Selection [19] is used. It consists
of applying after each forward step a number of backward steps as long as the corresponding
constructed models are better than the previously evaluated ones. The strategy is effective in
minimizing the nesting effect and avoiding getting stuck in local minima too early [12,19].

When the complication operators cannot give any further improvements, the search
process is not yet stopped. All the candidate models of the current step are additionally
modified by using the same refinement operator the second time. If a new better model was
created, the search process is continued with the five refinement operators as before.
Otherwise the search process is finally stopped.

For a more detailed description of the BFC and SFFPC see [12].

4. Metamodeling experiment

We applied the four regression modelling methods to the above described problem of glass
fibre bar stability metamodeling and compared the results. We estimated predictive error of
the induced models on unseen data samples using 10-fold Cross Validation (CV) and
averaged the results. The predictive performance of a model in test data set is measured in
terms of relative root mean squared error, RRMSE:

RRMSE:\/zi(yi _)A}i)z /\/Z[(yi _J_})z =RA/ISE/STD

where . is the corresponding predicted value for the observed value y,; y is the mean of

the observed values. While RMSE (Root Mean Square Error) represents model’s deviation
from the data, the STD (Standard Deviation) captures how irregular the problem is. The lower
the value of RRMSE, the more accurate the model.

155



In the experiments, as implementation of PR, SFS with AICC, and SFFPC we used our in-
house software. As implementation of SFS with F-statistic we used the statistical software
package STATISTICA 7.0 [20] with its default parameters. For SFS with AICC we varied the
maximal polynomial order, p, in interval 2 < p <9. For PR we varied p in interval 2< p <6,
as higher values make the number of model’s parameters exceed the number of data cases.
For SFS with F-statistic the used software only allowed p = 2. For SFFPC of course there was
no need to set the maximal order.

Table 1. The results for the metamodeling problem.
Average RRMSE error (%), its standard deviation (%), and model complexity k

Method RRMSE StdDev k
PR,p=2 88.44 37.55 15
PR,p=3 72.09 32.02 35
PR,p=4 48.02 25.40 70
PR,p=5 25.97 12.50 126
PR,p=6 19.33 14.88 210
SFS with F-statistic, p =2 87.31 36.93 10
SFS with AICC, p =2 87.88 36.27 10
SFS with AICC, p=3 76.33 32.48 19
SFS with AICC, p =4 46.45 22.31 34
SFS with AICC, p=35 30.75 13.49 49
SFS with AICC, p=6 16.12 4.96 70
SFS with AICC, p=7 11.69 5.19 86
SFS with AICC, p =8 9.02 4.47 102
SFS with AICC, p=9 11.72 12.38 113
SFFPC 3.46 0.50 99

Table 1 presents the results of the experiment on the metamodeling problem with the four
regression modelling methods. It was observed that in this metamodeling problem the highest
predictive performance is the property of the high-order polynomials, i.e., the order of the best
model obtained using the SFS is eight. In relation to the full polynomials (PR), it was not
possible to set such high order as it would make the number of models’ parameters exceed the
number of data cases. This resulted in underfitting. Moreover the high number of parameters
in PR resulted in high standard deviation comparing to the standard deviation of the models
built by SFS of the same order.

Overall the instance of the basis function construction approach, SFFPC, here is clearly
superior to all the others — it was able to find models with the best predictive performance —
the lowest average RRMSE with the lowest standard deviation.

Additionally three-dimensional graphical validations of the obtained regression models
for critical load P, versus bar length L and bar width a, with fixed kit = 8 and kb = 2, were
carried out as presented in Fig. 2. By graphical validation one can easily identify that the best
regression models of PR and SFS are not well behaved. On the other hand, the regression
model obtained by SFFPC gives the best overall perspective of structural behaviour — its
surface looks most alike to the surface obtained by the analytical formula, including also the
plateau type region.
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Figure 2. Graphical validation of the best found regression models for the first CV fold. Analytical
solution (a), PR with p = 6 (b), SFS with p = 8 (¢), and SFFPC (d)

5. Conclusion

It was concluded that in metamodeling of buckling behaviour of structures the basis function
construction approach appears to have a potential to efficiently construct regression models of
relatively high predictive performance. The obtained models, by their precision, are capable
of serving in the development process for design guidelines of new structures.

Moreover the approach does not require the user to guess the maximal order of the models
(or predefine the full set of basis functions) as in most other polynomial regression modelling
methods. The modelling method itself constructs the basis functions necessary for creating the
regression model with adequate predictive performance. This can considerably speed-up the
modelling process in practical applications.

Directions of future research include applying the adaptive basis function construction
approach also in other types of metamodeling applications to evaluate the proposed approach
more generally. The built models also will be used for further (cost/weight) design
optimisation studies together with structural sizing studies and parametric sensitivity analysis.
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Jékabsons G., Kalnin$ K., Eglitis E. Polinomi stiklSkiedras stienu stabilitates metamodeléSana
Metamodelésana tipiski tiek izmantots zemas pakapes polinoms — parasti otras pakapes polinoms. Tomér tas
nespej modelét augstas nelinearitates uzvedibas. Var tikt izmantoti augstakas kartas polinomi, tacu tas var
izraisit aproksimanta nestabilitati. Ka sis problémas pretlidzekli var izmantot apakskopu izveles metodes. Tacu
tajas tiek pienemts, ka izvéletd fikséta pilna ieprieks izvéléto bazes funkciju kopa satur apakskopu, kas ir pilnigi
pietiekosa sakaribu pietiekosi labai aprakstiSanai. Cita pieeja ir Jaut modelésanas metodei pasai konstruét tadas
bazes funkcijas, kas ir nepieciesamas adekvdtas paredzésanas spéjas regresijas modela izveidoSanai. To ir
iespéjams veikt izmantojot ta saucamo bazes funkciju konstruésanas pieeju (Basis Function Construction, BFC).
Izmantojot BFC, lietotajam nav jaizvélas modela maksimala pakape (vai jadefiné bdzes funkciju kopa). BFC
automatiski konstrué nepiecieSamas bazes funkcijas, pielietojot heiristisku parmeklésanu, efektivi atrodot
kompromisu starp modela vienkarsibu un paredzésanas spéju. Raksta praktiska stikiskiedras stiena stabilitates
metamodelesanas problema tiek salidzinatas Ccetras dazadas polinomu regresijas modelesanas metodes:
vienkarsa p-tas kartas polinomu regresija, uz prieksu vérsta izvéle ar statistisko méru F, uz prieksu vérsta izvele
ar AICC, ka ari BFC pieejas instance. Rezultati uzrada BFC pieejas parakumu.

Jekabsons G., Kalnins K., Eglitis E. Polynomials in metamodeling of glass fibre bar stability

Typically, in metamodeling a low-order polynomial model is used — usually a second-order polynomial.
However it cannot model highly nonlinear behaviours. Higher-order polynomials can be used, but instabilities
may arise. As a possible remedy for the problem, subset selection techniques may be used. However they assume
that the chosen fixed full set of predefined basis functions contains a subset which is sufficient to describe the
target relation sufficiently well. Another approach is to let the modelling method itself construct the basis
functions necessary for creating the regression model with adequate predictive performance. This can be done
using the so-called Basis Function Construction approach (BFC). With BFC the user does not need to choose
the maximal orvder of the models (or predefine the set of basis functions). BFC automatically constructs the
necessary basis functions using heuristic search, efficiently trading-off the simplicity and predictive performance
of the models. In the paper, in a practical glass fibre bar stability metamodeling problem, we compare four
different polynomial regression modelling methods: a simple p-th order polynomial regression, Forward
Selection with F-statistic, Forward Selection with AICC, as well as an instance of the BFC approach. The results
show superiority of BFC approach.

Exao6con I'., Kaaubiabm K., raurtuc E. IloimHOMBI B MeTaMOAeTUPOBAHUM YCTOHYNBOCTH
CTEKJIOBOJIOKOHHBIX CTePKHeit

B memamoodenuposanuu, kax npaguno, UCNOIb3YEMcsi NOAUHOM HUSKOU CMeNneHu — OObIYHO NOIUHOM GMOPOU
cmenenu. OQouaxo, makou NOOX00 He obecneuusaem MoOeIUPOBAHUE NOBEOCHUS Npoyeccod ¢ boavulell
cmenenvio Henuneunocmu. [Ipumenenue nOIUHOMO8 60/ee BbLCOKOU CMENeHU NPUBOOUm K HEyCmOUYU8oCmu
anprocumanma. s peuwienus 3moti npoobrembl MONCHO UCNOTb308AMb MenoObl 8bl60PA NOOMHONICECMS.
Oonaxko, npu 3mom 0b6bIYHO NPeOnoNa2aemcs, Ymo onpeoeleHHoe MHONCECME0 3apaHee 8blOPAHHBIX OA3UCHBIX
dyHryull  codepoicum NOOMHOICECMBO (DYHKYUL, KOmMopvle ¢ OOCMAMOYHOU CMENeHvblo 00CHO8ePHOCHU
onucwiearom npoyecc. Jpy2oti 603MON*CHbIU NOOX00 npeOnoaazdem KOHCMpPYUposaHue nOOMHONCeCEa QYHKYULL
camum memooom mooenuposanus. 1100xo00 peanusyem xoncmpyupogarue 6aszuchwlx @ynkyuil (Basis Function
Construction, BFC). Ilpumensisi BFC, nonv3oeamenio Hem HeoOX00UMOCmU 8blOUPAmMb MAKCUMATbHYIO CHEeNneHb
MoOenu (unu onpedenams MHOX’Cecmeo Oasuchvlx gyurxyuil). BFC agmomamuuecku omvickugaem Heobxooumvie
basucHvle QYHKYULL, NPUMEHSISL 26PUCTIULECKUE MEMOObL NPOCMOMPA NPOCMPAHCIBA NOJOJHCEHUU, IPPEKMUEHO
8b10UPAsT KOMAPOMUCC MeHCOy RPOCHMOMOU MOOeIU U CHOCOOHOCMbIO NpedsudeHus mooenu. B cmamve, na
npuMepe MemamoOeIuposanHus YCMoOudU8OCmu CMeKI0B0JI0KOHHO20 CMEPICHS, CPAGHUBAIOMCS Yemblpe
Memooa MOOeAUPOBaAHUsL ROJUHOMUATILHOLL pecpeccuu: NPOCmasi ROIUHOMUATbHASL PE2PecCUsl CMenenu p, enepeo
Hanpaenennas évlbopka co cmamucmuyeckou mepou F, eneped nanpasnennas evioopka ¢ kpumepuem AICC u
BFC nooxoo. Pesynbmamul noxasvigarom npeumyubecmeo BFC nooxooa.
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