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1. Introduction 

 
Computation-intensive design problems are becoming increasingly common in manufacturing 
industries. Despite the advances in computer capacity and speed, the enormous computational 
cost of complex, high fidelity scientific and engineering simulations makes it impractical to 
rely exclusively on simulation for the purpose of design optimization. To cut down the cost, 
metamodels, also known as surrogate models, are constructed from and then used in place of 
the actual simulation models [1,2,3]. Metamodeling techniques have been widely used for 
design evaluation and optimization in many engineering applications. 

The primary objectives of metamodeling are to obtain an accurate estimate of the response 
and to minimize the required computational effort [2]. This includes minimizing the necessary 
number of sample points and utilizing a computationally efficient modelling method which 
creates models of high predictive performance. 
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Typically, in metamodeling a low-order polynomial model is used – usually a second-
order polynomial [2]. A low-order polynomial has a low number of unknown parameters and 
tends to smooth out noise in the data. However, it cannot model highly nonlinear behaviours. 
Higher-order polynomials can be used, but instabilities may arise as higher order polynomials 
can exhibit erratic behaviour in the sub-domains not covered by the experiments [4,5,6], or it 
may be too difficult to take sufficient sample data to estimate all of the parameters in the 
polynomial equation, particularly in large dimensions [6]. 

As a possible remedy for the problem, subset selection techniques [7,8,9] may be used. 
They are aimed to identify the best subset of basis functions to include in the regression 
model, and to remove the unnecessary ones (e.g., by using the statistical significance tests 
[7,8,9] or information-theoretic criteria such as the Akaike’s Information Criterion (AICC) 
[10]). 

Before the subset selection step one chooses the maximal order, of the resulting 
polynomial, in this way creating a fixed finite set of predefined basis functions which will be 
used in model building. Then the actual subset selection is performed. The goal is to find a 
subset that maximises the predictive performance of the resulting regression model. 

In order to find the subset of basis functions, some kind of search must be performed. The 
simplest search strategy is the exhaustive search, which evaluates every possible subset. 
Although exhaustive search guarantees to find the best subset (according to evaluation 
criterion used), it needs exponential runtime and thus is impractical in most cases. 

Another class, called heuristic search methods, efficiently traverse the space of subsets, by 
adding and deleting the basis functions, and uses an evaluation function that directs the search 
into areas of increased performance. The typical examples of heuristic search methods are the 
Forward Selection, also known as Sequential Forward Selection (SFS), and the Backward 
Elimination, also known as Sequential Backward Selection (SBS) [8]. SFS starts with an 
empty set of selected basis functions (or with the intercept term already included) and 
iteratively adds the function leading to the highest performance increase to the set of selected 
functions, until the performance cannot be enhanced any further by adding a single function. 
SBS starts with the complete set of basis functions and iteratively removes the function whose 
removal yields the maximal performance increase. 

The approach of subset selection assumes that the chosen fixed finite full set of predefined 
basis functions contains a subset which is sufficient to describe the target relation sufficiently 
well. However, in many cases the necessary maximal order of the resulting polynomial (or set 
of basis functions) is not known and needs to be guessed or chosen by experience. In many 
cases that means a non-trivial (and long) trial and error process, since it can differ from one 
data set to another and would also be, for practical reasons, guided by computational 
complexity issues [12]. 

A more convenient and potentially efficient approach is to let the modelling method itself 
construct the basis functions necessary for creating the regression model with adequate 
predictive performance. This can be done using the so-called Basis Function Construction 
(BFC) approach [12]. The BFC approach does not require the user to worry about choosing 
the maximal order (or predefining the set of basis functions). BFC automatically constructs 
the necessary basis functions using heuristic search, efficiently trading-off the simplicity and 
predictive performance of the models. 

In the paper, we consider application of four different polynomial regression modelling 
methods to a problem of glass fibre bar stability metamodeling. The four methods include a 
simple p-th order polynomial regression (PR), SFS with F-statistic, SFS with AICC, and an 
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instance of the BFC approach – a regression modelling method called Sequential Floating 
Forward Polynomial Construction (SFFPC) [12]. 

In the following section, we shortly describe the glass fibre bar stability metamodeling 
study. Next, we describe the four applied polynomial regression modelling methods and 
shortly discuss their differences and similarities. Finally, we describe the performed 
metamodeling experiments, show the results, and draw some conclusions about the used 
methods. 
 
 
2. Glass fibre bar stability studies 

 
Whenever a structural member is designed, it is necessary that it satisfies specific strength, 
deflection, and stability requirements. Slender or thin-walled structural members that are 
subjected to compression are prone to buckling – loss of stability. This possible loss of 
stability is often the determining factor in design of such members. Axially compressed 
column is the simplest case here, and analytical and numerical buckling analysis is simple 
(though it is sufficient for our experimental comparisons of regression modelling methods). 
For more complicated structures, analytical prediction of buckling load can be impossible and 
numerical solutions can take much time and even be inaccurate, if used improperly [13]. In 
this study, axially compressed glass fibre reinforced plastic (GFRP) bar is used. The 
geometrical design parameters of the considered bar are given in Fig. 1. 

The maximum axial load that a column can support, when it is on the verge of buckling, is 
called the critical load, Pcr (see Fig. 1 (a)). Any additional loading will cause the column to 
buckle and therefore deflect laterally as shown in Fig. 1 (b). In 1757, mathematician Leonhard 
Euler derived a formula that gives the maximum axial load that a long, slender, ideal column 
can carry without buckling. An ideal column is one that is perfectly straight, homogeneous, 
and free from initial stress. The Euler formula for columns is 
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where Pcr is critical force; E is modulus of elasticity of the material; I is minimum area 
moment of inertia of the cross-section; L is unsupported length of column; µ is column 
effective length factor, whose value depends upon the conditions of end support of the 
column [14]. 

In the current study a hollow GFRP column with rectangular cross-section and pinned 
supports at the ends is considered. The changing parameters are the following: a, kt, kb, L (see 
Fig. 1 (c)). Analytically Pcr can be calculated by Euler formula, where µ = 1 and I = Imin is 
calculated as follows: 
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For this study, a set of numerically obtained results is used. The numerical calculations 
were performed using Finite Element software ANSYS 11.0 [15,16]. A data set of 300 
experiment points in four-dimensional space was conducted, which were sampled using 
Minimum Square Distance Latin Hypercube [17]. Value intervals of the design parameters 
are the following: 25.0025.0 ≤≤ a m, 107 ≤≤ kt , 31 ≤≤ kb , 0.60.1 ≤≤ L m. 
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Figure 1. The axially compressed bar. Geometrical design parameters ((a), (b), (c)) and the practical 
stability test of the bar (d) 

 
 
 
 
3. Polynomial regression modelling methods 
 
In this section, we will describe the four polynomial regression modelling methods used in the 
metamodeling experiments. Note that, to be strict, the first method, p-th order polynomial 
regression, is generally not a regression modelling method, as there is no model building or 
searching performed – there is only one a priori chosen model. 
 
 
3.1. p-th order polynomial regression 

 
A polynomial regression model of order p can be expressed as: 
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where ai are model’s parameters; d is the number of the original independent variables. The 
second order polynomial model is often considered as the synonym of the Response Surface 
method (e.g., [18] and many other researchers). 

Since polynomial regression models are linear in the parameters, the usual linear model 
tools may be applied – the parameters ai of the regression models are estimated using the 
ordinary least-squares method, OLS. 
 
 
 

(d) 



 154 

3.2. Sequential Forward Selection with F-statistic 

 
Generally a polynomial regression model may be defined by a linear summation of basis 
functions: 

∑ =
=

k

i ii xfay
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where k is the number of the used basis functions (equal to the number of model’s 
parameters); and f(x) are the basis functions which generally may be defined as a product of 
original input variables each raised to some order: 
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where rij is the order of the j-th variable in the i-th basis function (a non-negative integer). 
Note that when all rj’s of a basis function are equal to 0, we have the intercept term. 

Usually in the subset selection the basis functions are chosen such that the order of each 
possible polynomial model does not exceed a previously chosen highest allowed order p, i.e. 

each },...,1,0{ prij ∈  and pr
d

j ij ≤∑ =1
 for all i. 

SFS with F-statistic [7,8,9] starts with the simple model with only the intercept term in it 
and sequentially adds those basis functions to the model that most significantly improve its fit 
to the training data. To avoid overfitting, the significance of the Mean Squared Error 
improvement gained by adding the basis function to the current model is tested. The 
improvement is significant, if the obtained F value is greater than a predefined significance 
threshold value. SFS proceeds with greedy search by choosing the best significant 
improvement and stops, if no significant improvement is available. 
 
 
3.3. Sequential Forward Selection with AICC 

 
Another way of performing model evaluation in subset selection is using the complexity 
penalization criteria. In contrast to the F-statistic, complexity penalization criteria do not 
require the compared models to be nested and do not require the user to set the significance 
threshold value. The most widely known and used complexity penalization criterion is the 
Akaike’s Information Criterion (AIC) [10]. In our research we used its small sample corrected 
version (AICC) [11]: 

AICC )1/())1(2(2)log( −−+++= knkkkMSEn  
where MSE is Mean Squared Error in training data; n is the number of data cases in the 
training data. Note that the best fitting model is that whose criterion value is the lowest. 

SFS with AICC works very similarly to SFS with F-statistic except that it sequentially 
adds those basis functions to the model that lower the AICC value the most. The process is 
stopped when no further addition of any basis function can gain decrease of AICC. 
 
 
3.4. Sequential Forward Floating Polynomial Construction 

 
SFFPC [12] is an instance of the BFC approach – it is a regression modelling method that can 
by itself construct the necessary basis functions and generate polynomials of arbitrary 
complexity, efficiently trading-off the simplicity and predictive performance of the models. 

In BFC, the standard model refinement operators of subset selection, namely addition (and 
deletion) of basis functions, are replaced with other operators which not only allow adding or 
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deleting basis functions but also allow changing the basis functions themselves. BFC operates 
directly with the orders of each variable in each function as well as creates new functions as 
necessary. Thus in BFC one operates with a matrix of non-negative integers where a cell in i-
th row and j-th column contains a value of rij in equation (1) which is the order of the j-th 
variable in the i-th basis function. 

In SFFPC, the starting point of the search is the same as in the two subset selection 
methods described above – a model with one function that corresponds to the intercept term 
(this function stays in the model at all times and is not allowed to be modified or deleted). 

SFFPC uses five model refinement operators: 
• Operator1: Increasing of one of the orders in one of the existing basis functions by 1. 
• Operator2: Addition of a new basis function with one of the orders set to 1. 
• Operator3: Addition of an exact copy of already existing basis function with one of 

the orders increased by 1. 
• Operator4: Decreasing of one of the orders in one of the existing basis functions by 1. 
• Operator5: Deletion of one of the existing basis functions. 
The operators are categorized as complication operators (the first three) and simplification 

operators (the last two). In the search process the complication operators do the main job – 
they “grow” the regression model. The simplification operators on the other hand work as 
purifiers – they decrease the unnecessarily high orders and delete the unnecessary basis 
functions. As it may be noticed, the space of candidate regression models is now infinite, and 
we can generate polynomials of arbitrary complexity. 

As a search strategy that of Sequential Floating Forward Selection [19] is used. It consists 
of applying after each forward step a number of backward steps as long as the corresponding 
constructed models are better than the previously evaluated ones. The strategy is effective in 
minimizing the nesting effect and avoiding getting stuck in local minima too early [12,19]. 

When the complication operators cannot give any further improvements, the search 
process is not yet stopped. All the candidate models of the current step are additionally 
modified by using the same refinement operator the second time. If a new better model was 
created, the search process is continued with the five refinement operators as before. 
Otherwise the search process is finally stopped. 

For a more detailed description of the BFC and SFFPC see [12]. 
 
 
4. Metamodeling experiment 
 
We applied the four regression modelling methods to the above described problem of glass 
fibre bar stability metamodeling and compared the results. We estimated predictive error of 
the induced models on unseen data samples using 10-fold Cross Validation (CV) and 
averaged the results. The predictive performance of a model in test data set is measured in 
terms of relative root mean squared error, RRMSE: 

( ) ( ) STDRMSEyyyyRRMSE
i ii ii =−−= ∑∑

22ˆ  

where iŷ  is the corresponding predicted value for the observed value iy ; y  is the mean of 

the observed values. While RMSE (Root Mean Square Error) represents model’s deviation 
from the data, the STD (Standard Deviation) captures how irregular the problem is. The lower 
the value of RRMSE, the more accurate the model. 
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In the experiments, as implementation of PR, SFS with AICC, and SFFPC we used our in-
house software. As implementation of SFS with F-statistic we used the statistical software 
package STATISTICA 7.0 [20] with its default parameters. For SFS with AICC we varied the 
maximal polynomial order, p, in interval 92 ≤≤ p . For PR we varied p in interval 62 ≤≤ p , 
as higher values make the number of model’s parameters exceed the number of data cases. 
For SFS with F-statistic the used software only allowed p = 2. For SFFPC of course there was 
no need to set the maximal order. 
 

Table 1. The results for the metamodeling problem. 
Average RRMSE error (%), its standard deviation (%), and model complexity k 

Method RRMSE StdDev k 

PR, p = 2 88.44 37.55 15 
PR, p = 3 72.09 32.02 35 
PR, p = 4 48.02 25.40 70 
PR, p = 5 25.97 12.50 126 
PR, p = 6 19.33 14.88 210 
SFS with F-statistic, p = 2 87.31 36.93 10 
SFS with AICC, p = 2 87.88 36.27 10 
SFS with AICC, p = 3 76.33 32.48 19 
SFS with AICC, p = 4 46.45 22.31 34 
SFS with AICC, p = 5 30.75 13.49 49 
SFS with AICC, p = 6 16.12 4.96 70 
SFS with AICC, p = 7 11.69 5.19 86 
SFS with AICC, p = 8 9.02 4.47 102 
SFS with AICC, p = 9 11.72 12.38 113 
SFFPC 3.46 0.50 99 

 
Table 1 presents the results of the experiment on the metamodeling problem with the four 

regression modelling methods. It was observed that in this metamodeling problem the highest 
predictive performance is the property of the high-order polynomials, i.e., the order of the best 
model obtained using the SFS is eight. In relation to the full polynomials (PR), it was not 
possible to set such high order as it would make the number of models’ parameters exceed the 
number of data cases. This resulted in underfitting. Moreover the high number of parameters 
in PR resulted in high standard deviation comparing to the standard deviation of the models 
built by SFS of the same order. 

Overall the instance of the basis function construction approach, SFFPC, here is clearly 
superior to all the others – it was able to find models with the best predictive performance – 
the lowest average RRMSE with the lowest standard deviation. 

Additionally three-dimensional graphical validations of the obtained regression models 
for critical load Pcr versus bar length L and bar width a, with fixed kt = 8 and kb = 2, were 
carried out as presented in Fig. 2. By graphical validation one can easily identify that the best 
regression models of PR and SFS are not well behaved. On the other hand, the regression 
model obtained by SFFPC gives the best overall perspective of structural behaviour – its 
surface looks most alike to the surface obtained by the analytical formula, including also the 
plateau type region. 
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Figure 2. Graphical validation of the best found regression models for the first CV fold. Analytical 
solution (a), PR with p = 6 (b), SFS with p = 8 (c), and SFFPC (d) 

 
 
5. Conclusion 
 
It was concluded that in metamodeling of buckling behaviour of structures the basis function 
construction approach appears to have a potential to efficiently construct regression models of 
relatively high predictive performance. The obtained models, by their precision, are capable 
of serving in the development process for design guidelines of new structures. 

Moreover the approach does not require the user to guess the maximal order of the models 
(or predefine the full set of basis functions) as in most other polynomial regression modelling 
methods. The modelling method itself constructs the basis functions necessary for creating the 
regression model with adequate predictive performance. This can considerably speed-up the 
modelling process in practical applications. 

Directions of future research include applying the adaptive basis function construction 
approach also in other types of metamodeling applications to evaluate the proposed approach 
more generally. The built models also will be used for further (cost/weight) design 
optimisation studies together with structural sizing studies and parametric sensitivity analysis. 
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Jēkabsons G., Kalniņš K., Eglītis E. Polinomi stiklšķiedras stieņu stabilitātes metamodelēšanā 
Metamodelēšanā tipiski tiek izmantots zemas pakāpes polinoms – parasti otrās pakāpes polinoms. Tomēr tas 

nespēj modelēt augstas nelinearitātes uzvedības. Var tikt izmantoti augstākas kārtas polinomi, taču tas var 

izraisīt aproksimanta nestabilitāti. Kā šīs problēmas pretlīdzekli var izmantot apakškopu izvēles metodes. Taču 

tajās tiek pieņemts, ka izvēlētā fiksētā pilnā iepriekš izvēlēto bāzes funkciju kopa satur apakškopu, kas ir pilnīgi 

pietiekoša sakarību pietiekoši labai aprakstīšanai. Cita pieeja ir ļaut modelēšanas metodei pašai konstruēt tādas 

bāzes funkcijas, kas ir nepieciešamas adekvātas paredzēšanas spējas regresijas modeļa izveidošanai. To ir 

iespējams veikt izmantojot tā saucamo bāzes funkciju konstruēšanas pieeju (Basis Function Construction, BFC). 

Izmantojot BFC, lietotājam nav jāizvēlas modeļa maksimālā pakāpe (vai jādefinē bāzes funkciju kopa). BFC 

automātiski konstruē nepieciešamās bāzes funkcijas, pielietojot heiristisku pārmeklēšanu, efektīvi atrodot 

kompromisu starp modeļa vienkāršību un paredzēšanas spēju. Rakstā praktiskā stiklšķiedras stieņa stabilitātes 

metamodelēšanas problēmā tiek salīdzinātas četras dažādas polinomu regresijas modelēšanas metodes: 

vienkāršā p-tās kārtas polinomu regresija, uz priekšu vērsta izvēle ar statistisko mēru F, uz priekšu vērstā izvēle 

ar AICC, kā arī BFC pieejas instance. Rezultāti uzrāda BFC pieejas pārākumu. 

 
Jekabsons G., Kalnins K., Eglitis E. Polynomials in metamodeling of glass fibre bar stability 
Typically, in metamodeling a low-order polynomial model is used – usually a second-order polynomial. 

However it cannot model highly nonlinear behaviours. Higher-order polynomials can be used, but instabilities 

may arise. As a possible remedy for the problem, subset selection techniques may be used. However they assume 

that the chosen fixed full set of predefined basis functions contains a subset which is sufficient to describe the 

target relation sufficiently well. Another approach is to let the modelling method itself construct the basis 

functions necessary for creating the regression model with adequate predictive performance. This can be done 

using the so-called Basis Function Construction approach (BFC). With BFC the user does not need to choose 

the maximal order of the models (or predefine the set of basis functions). BFC automatically constructs the 

necessary basis functions using heuristic search, efficiently trading-off the simplicity and predictive performance 

of the models. In the paper, in a practical glass fibre bar stability metamodeling problem, we compare four 

different polynomial regression modelling methods: a simple p-th order polynomial regression, Forward 

Selection with F-statistic, Forward Selection with AICC, as well as an instance of the BFC approach. The results 

show superiority of BFC approach. 

 
Екабсон Г., Калныньш К., Эглитис Е. Полиномы в метамоделировании устойчивости  
стекловолоконных стержней 
В метамоделировании, как правило, используется полином низкой степени – обычно полином второй 

степени. Однако, такой подход не обеспечивает моделирование поведения процессов с большей 

степенью нелинейности. Применение полиномов более высокой степени приводит к неустойчивости 

апркосиманта. Для решения этой проблемы можно использовать методы выбора подмножеств. 

Однако, при этом обычно предполагается, что определенное множество заранее выбранных базисных 

функций содержит подмножество функций, которые с достаточной степенью достоверности 

описывают процесс. Другой возможный подход предполагает конструирование подмножества функций 

самим методом моделирования. Подход реализует конструирование базисных функций (Basis Function 

Construction, BFC). Применяя  BFC, пользователю нет необходимости выбирать максимальную степень 

модели (или определять множество базисных функций). BFC автоматически отыскивает необходимые 

базисные функции, применяя эвристические методы просмотра пространства положений, эффективно 

выбирая компромисс между простотой модели и способностью предвидения модели. В статье, на 

примере метамоделирования устойчивости стекловолоконного стержня, сравниваются четыре 

метода моделирования полиномиальной регрессии: простая полиномиальная регрессия степени p, вперед 

направленная выборка со статистической мерой F, вперед направленная выборка с критерием AICC и 

BFC подход. Результаты показывают преимущ6ество BFC подхода. 


