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1. Introduction

In regression modelling to describe the relation between variables commonly a polynomial
regression model is used. Polynomials are very flexible and often used when there is no
theoretical model available.

To obtain a polynomial regression model, which describes the relations in data sufficiently
well and does not overfit, typically the subset selection approach [1] is used where the goal is
to find the best subset of basis functions which gives the best predictive performance of the
regression model. Before the subset selection step, in order to enrich the candidate model
space, a finite set of predefined basis functions is created and, after that, the subset selection is
performed with the basis functions. The basis functions typically are defined as products of
the original variables each raised to some order (a positive integer).

Thus the goal is to find a subset that maximises the predictive performance of the resulting
regression model. In order to find the subset some kind of search must be performed. The
simplest search strategy is the exhaustive search. Although exhaustive search guarantees to
find the best subset, it needs exponential runtime and thus is impractical in most cases.
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Another class, called heuristic search methods, efficiently traverse the space of subsets, by
adding and deleting the basis functions, and use an evaluation function that directs the search
into areas of increased performance. The typical examples of heuristic search methods are the
Forward Selection (also known as Sequential Forward Selection, SFS) and the Backward
Elimination (also known as Sequential Backward Selection, SBS) [2]. SFS starts with an
empty set of selected basis functions and iteratively adds the function leading to the highest
performance increase to the set of selected functions, until the performance cannot be
enhanced any further by adding a single function. SBS starts with the complete function set
and iteratively removes the function whose removal yields the maximal performance increase.

The approach of subset selection assumes that the chosen fixed full set of predefined basis
functions contains a subset which is sufficient to describe the target relation sufficiently well.
However we argue that in most cases the necessary set of basis functions is not known and
needs to be guessed or chosen by experience (e.g. by specifying the maximal order of the
resulting polynomial). In many cases that means a non-trivial (and long) trial and error
process that may generate sets of functions, working with which, in some problems of
moderate dimensionality, may become computationally too demanding even for the heuristic
search methods (as it will be demonstrated in the empirical experiments of this paper). A
more convenient and efficient way would be to let the modelling method itself construct the
basis functions necessary for creating the regression model with adequate predictive
performance.

In this paper we consider a polynomial regression modelling approach with automatic
construction of basis functions using heuristic search in the resulting infinite candidate model
space. The approach does not require the user to predefine the set of basis functions for model
creation. We also list five of the possible refinement operators, which allow the search to find
better models as well as to do it more efficiently, and introduce an instance of the approach —
a new regression modelling method called Sequential Floating Forward Polynomial
Construction (SFFPC), which is named similarly to the subset selection method Sequential
Floating Forward Selection (SFFS) [3] on which the search strategy of SFFPC is based.

The rather recently proposed method Constrained Induction of Polynomial Equations for
Regression (CIPER) [4] also may be viewed as an instance of the approach. However it has
some drawbacks regarding the set of the refinement operators used, which we tried to
eliminate in our proposed polynomial regression modelling method.

To evaluate the considered approach in form of our proposed polynomial regression
modelling method, SFFPC, we empirically compare it to two well known subset selection
methods SFS and SFFS, as well as to CIPER both on artificial and real world data.

In the following section we shortly describe the subset selection approach and take a look
at the characteristics of a search problem. Next we describe the approach with basis function
construction, describe its relation with the subset selection approach, and discuss the
differences and similarities of the search problem characteristics. After that we list five
possible operators for refinement of polynomial regression models and shortly consider the
applicability of existing search strategies. Then, we shortly describe an existing search
method, CIPER, which may be viewed as an instance of the approach, and indicate its
drawbacks. Finally we propose a new polynomial regression modelling method, SFFPC,
which uses a specific set of model refinement operators to perform the search. An empirical
comparison of the proposed method with the other three existing methods, SFS, SFFS, and
CIPER, is presented in the last part of this paper.
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2. Subset selection in polynomial regression modelling

A polynomial regression model may be defined by a linear summation of basis functions:
A k
y = Zizl aiﬁ (x)
where a; are model’s parameters; & is the number of the used basis functions (equal to the

number of model’s parameters); and f(x) are the basis functions which generally may be
defined as a product of original input variables each raised to some order:

d 7
£ =TT (1)

where d is the number of the original variables; 7;; is the order of the j-th variable in the i-th
basis function (a non-negative integer);. Note that when all 7;’s of a basis function are equal to
0, we have the intercept term. Since polynomial regression models are linear in the parameters,
the usual linear model tools may be applied — the parameters a; of the regression models are
estimated using the ordinary least-squares method, OLS.

Usually in the subset selection approach the basis functions are chosen such that the order
of each possible polynomial model does not exceed a previously chosen highest allowed order

d
<
p, 1.e. each y €101, p} and ZF‘ i =P for all i. Then the number of all defined basis
functions is

p .
m=]] (+d/i) (2)
and the number of all possible subsets, from which we want to find the best, is equal to 2".

Summarizing [5,6,7], in order to characterize a heuristic search problem one must define
the following: 1) initial state of the search; 2) available state-transition operators; 3) search
strategy; 4) termination condition; 5) evaluation measure. Note that in the rest of this paper
instead of the term “state-transition operator” we will use the term “(model) refinement
operator” (as in [4]), which is somewhat more convenient in the context of regression
modelling.

In context of polynomial regression subset selection typically the initial states are empty,
full or randomly chosen subsets of basis functions; the available refinement operators are
addition and deletion of any one basis function; the search strategies are the successive
addition of basis function (as in SFS) or successive removal of them (as in SBS); the
termination corresponds to finding of state in which none of the refinement operators can lead
to a better state.

Concerning the evaluation measure, the evaluation of models corresponding to alternative
subsets of basis functions, also known as model selection problem [8,9,10,11], is most
commonly done in two ways: using complexity penalization criteria or resampling techniques.
The former in contrast to the latter usually does not require high computational resources and
allow one to use all the available data for training. In general one can define such criteria as a
sum of deviance of the model and the complexity penalty: CR = deviance + penalty. In the
least-squares regression problem the deviance term is equal to nlog(SSE/N), where SSE is
Sum of Squared Error in training data. Some of the most widely known and used complexity
penalization criteria are Akaike’s Information Criterion (AIC) [8] (with its small sample
corrected version (AICC) [11]) and the two-stage code Minimum Description Length

criterion (MDL) [10]. The penalty term for AIC is 2k, for AICC is 2K + Ck(k+1))/(n—k—1)
and for MDL is klog(n), where n is the number of data cases in the training data. Note that the
best fitting model is that whose criterion value is the lowest. In this paper we used AICC and
a slightly modified MDL (see Section 3.).
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The typical state space of subset selection is such that each state represents a subset. For m
basis functions there are m bits in each state, each bit indicates whether a function is present
(““17) or absent (“0), and all the states are ordered in such a way that in each successive layer
of state space the states have one included basis function more than in previous layer (see
Figure 1). A search algorithm implements a chosen search strategy and traverses the space
trying to find the state in which the according basis function subset forms the best regression
model. The goal is to find at least a suboptimal model, with as less state transitions as possible,
as each transition requires evaluation of a number of models, what includes OLS parameter
estimation for each model.

The downside of the subset selection approach is that it assumes that the chosen fixed full
set of predefined basis functions contains a subset which is sufficient to describe the target
relation sufficiently well. However we argue that in most cases the necessary set of basis
functions (or previously chosen highest allowed order, p) is not known and needs to be
guessed or maybe chosen by experience as each regression problem may need a different
value. In many cases that means a non-trivial (and long) trial and error process that, as it will
be demonstrated in Section 4, in many problems of moderate dimensionality may even
become computationally too demanding.

A more convenient way would be to let the modelling method itself construct the basis
functions necessary for creating the regression model with adequate predictive performance.
In the next section we will consider exactly such an approach.

1001

0110

Figure 1. A small example of a typical state space in subset selection

3. The approach with basis function construction

To obtain a regression modelling method, which can by itself construct the necessary basis
functions, we replace the standard refinement operators of subset selection with other
operators which not only allow adding or deleting the basis functions but also allow changing
the basis functions themselves. We call this a basis function construction approach.

In Figure 2 there is shown relation between subset selection and function construction.
Subset selection operates with a string of bits where each bit indicates whether a predefined
function is present (“1””) or absent (“0”). Basis function construction approach on the other
hand operates directly with the orders of each variable in each function as well as creates new
functions as necessary. Thus function construction does not operate with the one-dimensional
string of bits. Instead it operates with a matrix of non-negative integers where a cell in i-th
row and j-th column contains a value of rij in equation (2) which is the order of the j-th
variable in the i-th basis function. As it may be noticed, the space of candidate regression
models is now infinite, and we can generate polynomials of arbitrary complexity.
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Figure 2. Relation between subset selection and function construction

In the previous section we listed five basic issues on which one must pay attention when
characterizing a heuristic search problem. Now let us look at the issues in the context of the
basis function construction approach.

As the state space has become infinite a natural initial state of the search is now the state
where the subset of basis functions is empty. Or one may also choose a state which has some
very few simple functions (e.g. just one function which corresponds to the intercept term or
all the functions which correspond to the first order terms). A small set of simple functions
might be also generated randomly.

Some of the possible refinement operators and applicable search strategies are discussed
in Section 3.1. and 3.2. respectively.

The typical termination condition, which is met when the search locates a state in which
none of the refinement operators can lead to a better state, is of course a natural choice also in
the function construction approach.

Concerning the evaluation measure, because of the fact that during the search the orders of
the variables in the basis functions may be changed without changing the actual number of
basis functions, many complexity penalization criteria, such as AIC, AICC, or two-stage
version of MDL may tolerate unnecessary increase of orders in basis functions, as they cannot
detect a change in model’s structure if the number of parameters stayed the same. To deal
with this problem in [4] the authors of CIPER introduced a simple modification of the two-
stage MDL which, instead of penalizing the model by the number of its parameters, penalizes
it by its sum of all orders in all basis functions:

MDL = n log(SSE/n) + [ log(n)

where [ = Z; Z‘j:l r, is the “length” of polynomial.

However, we used AICC criterion and, to preserve its original form, we did not modify it.
Instead we used another approach — additional penalization using Akaike’s weights [8,9] only
in the very moment of comparison. When using a refinement operator which raises the order
of a variable without changing the number of model’s basis functions, we ask the Akaike’s
weight w,.,, of the newly constructed model to be at least 10% higher than that of the “old”
model. In other words, the weight (which may also be directly interpreted as the conditional
probability of the new model being better than the competitor) of the new model should be
>60% instead of >50%:

exp(—0.5AAICC)

w =
"V 7 1+ exp(=0.5AAICC)
where A AICC = AICCey - AICCo4.
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3.1. Refinement operators

Using efficient refinement operators is vital for the search process for the best regression
model to be successful. In this section we discuss some of the possible refinement operators.

Generally there are two different basic ways to refine an existing model: adding/deleting
the basis functions and operating with the orders of variables in an existing basis function (e.g.
increasing or decreasing them).

Here are the five considered refinement operators:

e Operatorl: Increasing of one of the orders in one of the existing basis functions by 1.

e Operator2: Addition of a new basis function with one of the orders set to 1.

e Operator3: Addition of an exact copy of already existing basis function with one of

the orders increased by 1.

e Operator4: Decreasing of one of the orders in one of the existing basis functions by 1.

e Operator5: Deletion of one of the existing basis functions.

We categorize the listed refinement operators as complication operators (the first three)
and simplification operators (the last two). If the search is started from an empty or some
small set of functions, the complication operators do the main job — they “grow” the
regression model. The simplification operators on the other hand work as purifiers — they
decrease the unnecessarily high orders and delete the unnecessary basis functions.

The first two complication operators were already introduced in [4] where they were used
in CIPER. However using only these two operators three issues can arise, all of which can
lead to getting stuck in local minima too early, which in turn can result in poor predictive
performance of the resulting regression model: 1) In the first iterations the branching factor of
the state space may be too low — the search algorithm may have too few choices to be able to
continue the search. 2) Operatorl increases an order in an existing function but does not take
into consideration the possibility that both versions of the basis function may be needed. The
only way to reconstruct the lost function is to start from scratch — by using the Operator2. 3)
Without the use of simplification operators a regression model may contain unnecessarily
high orders and include unnecessary basis functions which may prevent truly necessary
modifications (the so-called nesting effect [3]).

The first two issues are addressed by the Operator3. The last one issue is addressed by the
two simplification operators.

In Figure 3 there is shown a small example of a state space if we use all except the third
refinement operator. Each state represents a set of basis functions which are included in the
regression model — a matrix which corresponds to the columns named “Order” in Figure 2.
Connections created by the Operator3 are not shown as they would be cross-layer connections
between the states.
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1,0,0 2,00 F——3,0,0
0,1.0 0.1.0 \ 0,1.0
2,0,0 11,0 \\ 2.1,0

1.0.0 1,1,0 0.1.0 \ 0.1,0
1,0,0 1,0.1 \\ 2,0,1

274

0,0.1 0,1,0 0,1,0
0.1,0 0,2,0 1,00 2.0,0
1,01 1.1.0 Y 1,10
0,0,1 0.1.0 1,00 2,0,0
0.0.1 0.2,0 0.2,0
0,0,2

0.1.1

Figure 3. A small example of a state space in function construction.
For simplicity the function with all 0’s and connections of Operator3 are omitted

3.2. Search strategies

Most search strategies that are applicable to subset selection also can be used in function
construction. One exception is the strategies that start their search from the full subset (e.g.
SBS). As in function construction approach there exists no full subset, the only way to make
these strategies work would be to define the full subset to be some sufficiently large set of
functions, definition of which mostly would have no special reason, and moreover, it
generally would bring us back to the approach of subset selection. Another exception is the
strategies that require the state-representing data structures to be of constant length and are
not generally biased towards simpler models (e.g. the strings of bits in most Genetic
Algorithms). However with appropriate modifications they might become applicable.

In this paper we will consider only the directly applicable search strategies the simplest of
which is the SFS. However SFS moves only forward, in direction of more complex models,
so it would use only the complication operators and, because of the resulting low branching
factor and the nesting effect, frequently would stuck in local minima too early. Two of the
possible remedies for this problem are Beam Search strategy [6] and the SFFS strategy [3].
The former is used in CIPER (see next section for a brief summary on this method) while the
latter is used in our introduced method which we discuss in the Section 3.4.

3.3. Constrained Induction of Polynomial Equations for Regression

CIPER [4] was developed in the context of inductive databases and constraint-based data
mining. As already said, CIPER uses only the first two complication operators and, as well as
SFS, only searches forward, however, as a compensation for the low branching factor, Beam
Search strategy is used.

Here is an overview of CIPER’s settings: Initial state: the state with one function that
corresponds to the intercept term (this function stays in the model at all times and is not
allowed to be modified or deleted). Refinement operators: the first two complication operators
listed in Section 3.1. Search strategy: Beam Search (with default beam width equal to 16).
Termination condition: when no further improvements are possible. Evaluation measure: the
modified two-stage MDL (see Section 3).

We already discussed CIPER’s drawbacks related to the used refinement operators in
Section 3.1. In the next section we will introduce a new basis function construction method
which tries to avoid these drawbacks.
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3.4. Sequential Floating Forward Polynomial Construction

In this section we introduce a new method for polynomial regression modelling which is
another instance of the function construction approach — SFFPC. It uses all five refinement
operators listed in Section 3.1. However, because of the resulting higher branching factor, in
problems of moderate and high dimensionality using of the Beam Search strategy would have
very high relative time-complexity. Moreover, because of the larger forward steps of the
Operator3 and backward steps of both simplification operators, the Beam Search strategy
would have to either periodically re-evaluate already evaluated states or maintain a
sufficiently large tabu list of the evaluated states to avoid the re-evaluation. Therefore, to
maintain simplicity and efficiency, as the search strategy we use the floating search method
SFFS — hence the similar name of the SFFPC.

Here is an overview of SFFPC’s settings: Initial state: the state with one function that
corresponds to the intercept term (this function stays in the model at all times and is not
allowed to be modified or deleted). Refinement operators: all five listed in Section 3.1. Search
strategy: SFFS. Termination condition: when no further improvements are possible.
Evaluation measure: all refinement operators are used with AICC except the first where
Akaike’s weights with w,,,,>0.6 is used (see Section 3).

In Figure 4 there is shown the pseudocode of SFFPC’s search procedure. Before the search
starts, the BestModel is initialized with the simplest model — the model with one function
which corresponds to the intercept term. The model is then evaluated (parameter estimation
using OLS and AICC value calculation). Each iteration consists of two phases — forward and
backward. In the first phase the complication operators are used. All possible models which
result from the usage of the three operators on BestModel are generated and evaluated. Next,
the one best new model, which has the most improved performance over the BestModel, is
found (with additional comparison of Akaike’s weights, if the model was generated using the
Operatorl). If a better model was found, it becomes the new BestModel, otherwise search
procedure ends (BestModel now holds the best found model). In the second phase the
simplification operators are used. The second phase works basically the same as the first
except that it ends only when it is impossible to generate a model which is better than the
BestModel. At the end of the second phase the search always proceeds to the next iteration.
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BestModel := {the one function which correspond to the intercept term (with ry;:= 0, j = 1..d)}
BestModel. AICC := Evaluate(BestModel)
repeat
//forward phase
NEWMODELS = {all models which result from the complication operators on BestModel }
CurrBestModel := BestModel
foreach TestModel € NEWMODELS do
TestModel AICC := Evaluate(TestModel)
if TestModel AICC < CurrBestModel AICC and
( TestModel was not generated using the Operatorl or
CalculateAkaike’sWeight(7TestModel AICC, BestModel. AICC) > 0.6 ) then
CurrBestModel := TestModel
endfor
BestModel := CurrBestModel
if BestModel did not change then
exit
//backward phase
repeat
NEWMODELS = {all models which result from the simplification operators on BestModel }
foreach TestModel € NEWMODELS do
TestModel AICC := Evaluate(TestModel)
if TestModel AICC < BestModel. AICC then
BestModel := TestModel
endfor
until BestModel did not change
until forever

Figure 4. Pseudocode of SFFPC’s search procedure

4. Empirical experiments

The main goal of the performed experiments is to compare the two instances of the basis
function construction approach, SFFPC and CIPER, with the two popular instances of subset
selection approach, SFS and SFFS, in terms of both, predictive performance of the induced
regression models as well as necessary computational resources. We also compared SFFPC
and CIPER and ascertain the advantages and disadvantages of SFFPC’s ability to use the
additional refinement operators versus CIPER’s beam search strategy. The performance of the
methods is evaluated on three artificial problem data sets and three data sets from the WEKA
project website (http://www.cs.waikato.ac.nz/ml/weka/).

All the experiments were performed on Pentium 4 2.4GHz computer with Hyper
Threading turned on. Note that the time consumption presented in the tables is only a rough
measurement as the methods are implemented in different software and with different levels
of optimization of calculations. In the experiments we used our in-house software with
implementations of SFS, SFFS, SFFPC, as well as a version of CIPER where instead of the
MDL we used AICC criterion (exactly like the SFFPC uses it). This allowed us to compare
the use of refinement operators and search strategies without any hindrance because of the
different criteria. As an implementation of the original CIPER we used the original software
which is publicly available at http://ai.ijs.si/pljubic/ciper/ciper.html, kindly provided by the
authors of the method. In both versions of CIPER we used the default beam width, 16.

In experiments with the artificial problem data sets we randomly generated training data
set with 150 cases with all the input variables uniformly distributed over the interval [0,1],
and tested the induced regression models on unseen test data set of 10000 randomly generated
cases. We repeated the process for 10 different training data sets and averaged the results. In
all the other experiments we estimated predictive error of the induced models on unseen data
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samples using 10-fold Cross Validation (CV) and averaged the results. The predictive
performance of a model is measured in terms of relative root mean squared error, RRMSE,
defined as model’s root mean squared error divided by standard deviation of the dependent
variable y, both calculated using the unseen examples of the test set.

The three artificial problem data sets were generated with the following functions:

AL 1 e
AT+ T T e

F, =sin(7x, / 2)sin(x, ) cos(x; ) cos(x, ) + sin(zx, / 2)sin(x, ) cos(x, ) cos(xy) + &
where ¢ is a normal noise with mean equal to zero and standard deviation o =0.001 for the
first two functions and o =0.01 for F3. If the function which generated the data is unknown,
regression modelling with subset selection approach with the F; and F, data sets is
impractical. With F) high predictive performance can be reached only by defining the
maximal order of polynomials to be at least p = 7 (this of course would need to be guessed or
obtained by experimenting) creating m = 43758 basis functions (according to equation (2))

which leads us to a state space with number of states equal to 2*"* ~3-10"'. With F; it

would be 2" ~1.5-10**"" as the maximal order must be at least p = 8.

Table 1 presents the results of experiments with the four regression modelling methods
used on the artificial problem data sets. Here the methods of basis function construction are
clearly superior — they were able to relatively quickly find models with high predictive
performance. With F2 both versions of CIPER did not perform so well — by using only the
first two refinement operators they could not construct the third basis function which is an
exact copy of the second basis function having the order of x10 increased by 1. As the third
basis function would need to be constructed from scratch, the problem is that, even if the
method would not stuck in local minima, at some iteration there may exist two exact copies of
one basis function, which is of course not allowed. The SFFPC on the other hand manages
very well — after creation of the second basis function it just uses the third refinement operator
to create a copy of it with the order of the 10th variable increased by 1.

It should be noted that with the first two artificial problems the models found by SFFPC
contain slightly more basis functions than necessary. This is explainable by the fact that the
AICC criterion does not assume the true model to be among the candidates and may give
preference to more complex models [9,11].

The three data sets from the WEKA project website are the following: “autoMpg” (392
data cases, 7 input variables, “bodyfat” (252 data cases, 14 input variables), and “housing”
(506 data cases, 13 input variables). Before dividing the data sets into CV folds, the order of
the cases was randomized.

The results, presented in the Table 2, confirm that the function construction methods can
have the same or better predictive performance as the subset selection methods, without the
necessity to choose the maximal order. They also show that, in common with the subset
selection methods, when the goal quantity of the basis functions in the model is relatively low
(as with “autoMpg” and “bodyfat” data sets), the needed computational resources are much
lower.
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Table 1. Results for the artificial problems. Average RRMSE error (%), AICC, elapsed time (s), and &

Method RRMSE  AICC Time/k | RRMSE AICC Time/k | RRMSE AICC Time / k
SES,p=2 71.82  -1238.7 1.8/28 7427 -1100.8 0.8/18 14.84  -1037.4 0.8/29
SFS,p=3 64.60 -1410.8 39747 65.66 -1302.6 39/48 8.62 -1263.2 13/42
SES,p=4 5455 -16473  320/62 58.61 -1560.2  419/69 831 -13372 70/ 47
SES,p=5 4042  -1946.3 2251/78 4393  -1811.6  2074/77 7.07  -13822  212/47
SFFS,p=2 73.05 -1229.5 1.4/19 74.50 -1101.6 1.1/15 1490 -1039.3 1.5/29
SFES,p=3 66.03  -1431.6 35/36 68.42  -1302.7 29 /34 847 -1289.9 19/39
SFFS,p=4 57.64 -1698.6  416/58 58.56  -1577.8  391/55 6.93 -1351.2 51/35
SFES,p=5 4141  -2041.7 2842/75 4243  -1877.4 1831/64 8.05 -1407.9  245/42
CIPER+MDL 0.75 - 1.5/4 11.63 - 29/5 11.44 - 12/.15
CIPER+AICC 3.94  -2146.5 80/17 9.69 -2106.1 150/20 11.57  -1327.7 186 /27
SFFPC 233 -20954 1.3/9 1.95 -2086.7 14/9 6.59 -1418.8 34 /32

Table 2. Results for the WEKA data se

ts. Average RRMSE error (%), AICC, elapsed time (s), and &

autoMpg bodyfat housing
Method RRMSE  AICC Time/k | RRMSE AICC Time/k | RRMSE AICC Time / k
SES,p=2 36.77 719.1 02/11 15.30 -44.7 1.1/13 41.72 1018.1 29/48
SES,p=3 37.28 691.1 3.1/18 14.14 -130.5 11/13 38.52 809.6  997/83
SFES,p=4 37.82 664.7 28726 14.87 -109.1 157/16 53.63 711.3 7600 /97
SES,p=5 36.21 674.7 59/20 37.72 -147.4 1902 /17 - - -
SFFS,p=2 36.56 711.2 03/9 16.10 -33.4 14/11 42.16 1011.7 31/32
SFES,p=3 36.84 687.2 2.7/14 14.14 -91.7 11/11 41.88 795.8  615/54
SFES,p=4 37.93 658.4 17/16 15.85 -90.4 147/12 39.02 7274 3636/57
SFES,p=5 36.57 670.9 41/16 14.81 -143.9 1727/12 - - -
CIPER+MDL 38.31 - 1.2/7 14.71 - 12/6 45.21 - 23/14
CIPER+AICC 38.03 656.3 37/14 14.46 -171.7 58/12 46.34 783.0 2850/33
SFFPC 37.06 678.0 29/13 12.81 -186.7 24/11 36.91 683.6 1059/53

CIPER, in contrast to SFFPC, can not delete basis functions which have become obsolete,

which seems to be the main reason for SFFPC superiority over CIPER+AICC. Comparing the
CIPER+AICC and CIPER+MDL, it can be observed that MDL forces the CIPER to construct
much simpler models, on the one hand making the method much faster and more robust to
overfitting, but on the other hand making the method to underfit.

An additional observation is that, using the AICC, SFFS in comparison with SFS much
often overfits the data, however we think that in function construction using the SFFS search
strategy is preferable to SFS as the overall branching factor is much lower than that in subset
selection.

5. Conclusion

In this paper we considered a basis function construction approach in polynomial regression
modelling. The approach is different from the standard subset selection approach which
assumes that the predefined fixed full set of basis functions contains a subset which is
sufficient to describe the target relation sufficiently well. The function construction approach
on the other hand offers an automatic construction of basis functions using heuristic search.
Consequently the user does not need to predefine the set of basis functions for model creation.
We also introduced an instance of the approach — a new regression modelling method. The
performed empirical experiments showed that the method has a potential to efficiently
construct regression models of relatively high predictive performance.

Directions of future research include considering also other types of refinement operators
or search strategies which may lower the probability of getting stuck in local minima, as well
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as considering other model evaluation methods which are more robust to overfitting than the
used criteria.
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W

Jékabsons G., Lavendels J. Polinomu regresijas modeléSanas pieeja pielietojot bazes funkciju
konstruésanu

Polinomu regresijas modeléSand parasti tiek izmantota apakskopas izvéles pieeja. Saja pieeja tiek pienemts, ka
izveleta fikseta ieprieks definéto bazes funkciju kopa satur apakskopu, ar kuru pietiek, lai pietiekosi labi
aprakstitu mérka sakaribu. Tacu més uzskatam, ka nepieciesamo bazes funkciju kopa visbiezak nav zinama un to
ir jacenSas uzminét vai izvéleties, izmantojot pieredzi. Daudzos gadijumos tas nozimé sarezgitu (un ilgu)
megindjumu un kjiidu procesu, kas var generét funkciju kopas, ar kuram, pat izmantojot heiristiskas
parmekléSanas metodes, stradat ir nepraktiski pat problemas ar mérenu sarezgitibu. Ertaks veids biitu [aut
modelésanas metodei pasai konstruét bazes funkcijas, kas tai ir nepieciesamas regresijas modelu izveidei ar
pietiekamu paredzésSanas spéju. Raksta tiek apskatita polinomu regresijas modelésanas pieeja ar automatisku
bazes funkciju konstruésanu, izmantojot heiristisku parmeklésanu. LietotGjam modelu izveidei nav ieprieks
jadefiné bazes funkciju kopa. Pétijumu rezultata tika izstradata apskatitas pieejas instance — jauna regresijas
modelésanas metode, kas spej generet jebkuras sarezgitibas polinomus. Lai novértétu piedavato metodi, ta tiek
salidzinata ar divam labi zinamam un bieZi lietotam apakSkopas izvéles metodém, izmantojot ka maksligus ta ari
realds pasaules datus.
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Jekabsons G., Lavendels J. An approach for polynomial regression modelling using construction of basis
functions

In polynomial regression modelling typically the subset selection approach is used. This approach assumes that
the chosen fixed full set of predefined basis functions contains a subset which is sufficient to describe the target
relation sufficiently well. However we argue that in most cases the necessary set of basis functions is not known
and needs to be guessed or chosen by experience. In many cases that means a non-trivial (and long) trial and
error process that may generate sets of functions, working with which, in many problems of moderate
dimensionality, may become computationally too demanding even for the heuristic search methods. A more
convenient way would be to let the modelling method itself construct the basis functions necessary for creating
the regression model with adequate predictive performance. In this paper we consider a polynomial regression
modelling approach with automatic construction of basis functions using heuristic search. The user does not
need to predefine the set of basis functions for model creation. As a result we introduce an instance of the
approach — a new regression modelling method that can generate polynomials of arbitrary complexity. To
evaluate the proposed method we compare it to two well known and widely used subset selection methods both
on artificial and real world data.

Exaocon T'., JlaBenagea 10. Ioaxox MoaeaupoBaHHsi MOJTUHOMHUAIBLHOW perpeccu ¢ HMCHOJIb30BAHHEM
KOHCTPYHPOBAHUS 0A3UCHBIX (PyHKIMI

B npoyecce moodenuposanus noauHOMUAnbHOU  pezpeccuu  0ObIYHO  UCHONB3YEMCs N00X00  8blbopa
noomuoosicecmea. Ilpu smom nooxode npuHuMAaemcs, 4mo QUKCUPOBAHHOE MHOICECMBO OA3UCHBIX DYHKYULL
cooepacum u NOOMHONCECMBO OA3UCHBIX QYHKYULL, KOMOPoe ¢ HeoOXO00UMOU CMEeNneHbi0 MOYHOCMU ONUCbIBAem
uccnedyemylo 63aumocesizb. Ilo nauwiemy ybedlcOeHuto MHONCeCmE0 OA3UCHbIX QYHKYUL HeU3geCmHo U e2o0
nPUXooUmcst 8blOUPAmMb HA OCHOGE UMEIOULe20Csk ONbIMA Ui NPOCmo yeadvleamv. Bo mmozux ciyuyasx smo
nPUEOOUmM K ONUMELbHOMY U CONCHOMY NPOYECCYy ONbIMOEG U OWUOOK 2enepayuu MHoxcecms Gynxyui. Paboma
¢ maxumu GONbUUMU MHOICECMEAMU HENPAKMUYHA, 0AACe UCNONb3YSL IPUCIUYECKIE AN20pumMbl OJis Rpodiem
cpeoneii cnoocnocmu. bBoaee yoobno npudamv memody MOOEIUPOSaAHUs CEOUCMBA 2ceHepayuu O6a3ucHvlx
@yHKYyul, Komopvle HeoOX00UMbl Ol NOCMPOEHUS PEecPeCCUOHHOU MOOelu ¢ HeOOX0OUMOU CMeneHvio
npeosudenusi. B cmamve paccmompen nooxo0 mMoO0enuposanusi NOAUHOMUATLHOU pecpeccuul ¢ UCHONb308AHUEM
2eHepayuu 6a3UCHbIX QYHKYull U 98pucmuueckozo nepebopa. Ilonvzosamento, npu 3mom, Hem Heo0OXOOUMOCHMU
3apanee onpeodeiums MHONCECMBO 0a3ucHvlx @yHkyul. B pesyrbmame ucciedosanutl npeodiodceH Memoo,
KOMOpbill NO360JIAEM 2eHEPUPOBAMb NOIUHOMbL TI0DOU CLOICHOCMU 6 3a0aYax MOOEIUPOBAHUS PeSPECCUOHHBIX
3asucumocmeii. J[ia oyeHuBanus Kawecmeda NpeonioNHCeHHO20 Memoodd, OH CPABHUBAEMCs ¢ O08YMs OpyUMu
PACAPOCMPAHEHHLIMU  MEMOOAMU, UCHOAb3YSL KAK UCKYCCMBEHHble OaHHble, MAK U OAHHble NOJYYEeHHble
IKCHEPUMEHMANLHO.
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