
Applied Computer Systems

©2019 Erika Nazaruka, Jānis Osis, Viktorija Gribermane.
This is an open access article licensed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),

in the manner agreed with Sciendo.

94

ISSN 2255-8691 (online)
ISSN 2255-8683 (print)

December 2019, vol. 24, no. 2, pp. 94–103

https://doi.org/10.2478/acss-2019-0012

https://content.sciendo.com

Extracting TFM Core Elements From Use Case

Scenarios by Processing Structure and Text in

Natural Language

Erika Nazaruka1*, Jānis Osis2, Viktorija Gribermane3
1, 2Department of Applied Computer Science, Riga Technical University, Riga, Latvia

3Institute of Applied Computer Systems, Riga Technical University, Riga, Latvia

Abstract – Extracting core elements of Topological Functioning

Model (TFM) from use case scenarios requires processing of both

structure and natural language constructs in use case step

descriptions. The processing steps are discussed in the present

paper. Analysis of natural language constructs is based on

outcomes provided by Stanford CoreNLP. Stanford CoreNLP is

the Natural Language Processing pipeline that allows analysing

text at paragraph, sentence and word levels. The proposed

technique allows extracting actions, objects, results, preconditions,

post-conditions and executors of the functional features, as well as

cause-effect relations between them. However, accuracy of it is

dependent on the used language constructs and accuracy of

specification of event flows. The analysis of the results allows

concluding that even use case specifications require the use of

rigor, or even uniform, structure of paths and sentences as well as

awareness of the possible parsing errors.

Keywords – Computation independent model, functional

feature, natural language processing, Stanford CoreNLP,

topological functioning model, use case.

I. INTRODUCTION

Model-driven and model-based software development

approaches propose using transformations between models

from different viewpoints in order to get source code. One of

the brightest representatives of the approaches is Model Driven

Architecture (MDA). MDA suggests using a chain of model

transformations, namely, from a Computation Independent

Model (CIM) to a Platform Independent Model (PIM), then to

a Platform Specific Model (PSM) and to source code [1].

Transformation of requirements into analytical and design

models as well as into test cases is one of important questions

in the field of the system analysis and design.

In our vision of topological functioning model driven

software development (Fig. 1), the starting point is exactly text

fragments in a natural language. These fragments represent

either information about the implemented functional

characteristics of the already operating system (both manual

and automated), or desired functional characteristics of the

system to be built. They represent knowledge about the systems

from a computation independent viewpoint. A Topological

Functioning Model (TFM) formalises representation of the

knowledge from the same viewpoint. Moreover, the two types

* Corresponding author’s e-mail: erika.nazaruka@rtu.lv

of knowledge are to be in conformity, i.e., they will have the

common core that consists of functional characteristics that

already exist or are obvious and will be implemented in the

desired system. Generation and refinement of the TFM is an

iterative process. Transition to the platform independent (or

specific) viewpoint is possible using transformation of the TFM

to an analytical or design model, for example, to the following

Topological UML (that is an UML, i.e., Unified Modelling

Language, extension) diagrams: topological class diagrams,

topological use case diagram, communication diagrams, and

object diagrams; state diagrams; component and deployment

diagrams [2]. The final step of the transformations is generation

of source code for selected platforms.

Knowledge frame system

Descriptions about the

already operating system’s

functionality

Descriptions about the

system’s desired

functionality

In conformity with

TFM “AS IS”

(knowledge verification)

TFM “TO BE”

(knowledge verification)

generate generate

conforms to

(continuous mapping)

Analytical &

design models

generate

Problem Domain Solution Domain

C
o

m
p

u
ta

ti
o

n
 I
n

d
e

p
e

n
d

e
n

t

V
ie

w
p

o
in

t
P

la
tf

o
rm

In
d

e
p

e
n

d
e

n
t/

S
p

e
c

if
ic

V
ie

w
p

o
in

t

refine refine

Fig. 1. TFM driven software transformation.

The TFM is embedded into a knowledge frame system [3],

[4] for keeping and managing results of the text processing. The

aim is to gain from an inferring mechanism and flexibility of

the knowledge base as well as to discover conflicts in

knowledge, manage synonyms, and infer new knowledge from

the existing one.

Preparation of textual descriptions and manual knowledge

acquisition from them is resource-consuming [5]. In practice,

there are two ways how to deal with this issue. The wide-used

http://creativecommons.org/licenses/by/4.0
mailto:erika.nazaruka@rtu.lv

Applied Computer Systems

__ 2019/24

95

one is to skip the step of preparation of

descriptions/specifications and to start from human analysis of

the available information. The second one is to automate or

semi-automate this process. We are on the automation way.

Automation of transformation of requirements to models has

one important issue, i.e., a natural language. Requirements can

be expressed using a variety of formats, for example, as a use

case scenario, a user story, a structured text, an explaining

scheme, an explaining case, etc. The more rigor structure a

format has, the easier its automated processing is. However, all

of the formats have one difficulty inherited from a natural

language, i.e., the use of natural language suggests using

multiple possible language constructs for expressing the same

phenomena.

The goal of the research is to get knowledge from use case

scenarios according to all the core elements of the TFM. Since

a use case scenario is a semi-structured specification, it requires

parsing not only the structure but also the text using Natural

Language Processing (NLP) capabilities.

The paper is organised as follows. Section II describes the

core elements of the TFM that need to be extracted and the main

principles of the (NLP. Section III presents the algorithm for

extracting values for the TFM core elements. Section IV

demonstrates the work of the algorithm on an example. The

paper is concluded with discussion on main findings and further

research areas.

II. TFM AND USE CASE SCENARIOS

A. Core Elements of Topological Functioning Model

The TFM is a formal mathematical model proposed by Janis

Osis at Riga Technical University in 1969 for modelling and

analysing functionality of mechanical systems [6]. However,

this model can be applied to systems from business, software,

biological, mechanical or other domains. The TFM represents

modelled functionality as a digraph (X, Θ), where X is a set of

inner functional characteristics (called functional features) of

the system, and Θ is a topology set on these characteristics in a

form of a set of cause-and-effect relations [6].

TFM models can be compared for similarities using a

continuous mapping mechanism [7]. This mechanism is used

for making consistent solution and problem domains (Fig. 1).

Since the 1990s, the TFM has been elaborated for software

development [8] starting from principles of object-oriented

system analysis and design and ending with principles of the

MDA.

The TFM has topological and functioning properties [6]. The

topological properties take their origin in topological algebra.

They are connectedness, neighbourhood, closure and

continuous mapping. Connectedness ensures that all functional

characteristics of the system are dependent of each other work

in a direct or an indirect way. Neighbourhoods are sets, where

each set is a functional characteristic of the system together with

all its direct (with the step equal to 1) predecessors and

followers. A mathematical operation of union of all

neighbourhoods of the system inner functional characteristics is

called “closure”. The closure is used to define the border of the

system in a mathematical way. Since any TFM is a topological

space, they can be compared for similarity or either refined or

simplified. Thanks to continuous mapping between topological

spaces, the initial structure of the topological models is

preserved during modifications.

The functioning properties take their origin in the system

theory. They are cause-effect relations, cycle structures, inputs

and outputs. The cause-effect relations are those dependencies

between functional characteristics of the system that allow the

system to function. The end of execution of one functional

characteristic triggers initiation of other depending functional

characteristics. Since we talk about the system that is running

(or functioning), these dependencies form a cycle (or cycles) of

functionality. Behaviour of the system depends on input signals

from the external environment as well as on output signals of

the system (reaction) to the external environment.

The composition of the TFM is presented in [6]. Rules of

composition and derivation of the TFM from the textual system

description within TFM4MDA (TFM for Model Driven

Architecture) are provided by examples and described in detail

in several publications [9]–[11]. The TFM can be manually

created in the TFM Editor or can also be generated

automatically from the business use case descriptions in the

IDM toolset [12].

The main TFM concept is a functional feature (FFi) that

represents a system functional characteristic, e.g., a business

process, a task, an action, or an activity [6]. It can be specified

by a unique tuple (1).

FFi = <A, R, O, PrCond, PostCond, Pr, Ex>, (1)

where [6]:

• A is an object action;

• R is a set of results of the object action (it is an optional

element);

• O is an object that gets the result of the action or a set of

objects that are used in this action;

• PrCond is a set of preconditions or atomic business rules;

• PostCond is a set of post-conditions or atomic business

rules;

• Pr is a set of providers of the feature, i.e., entities (systems

or sub-systems) that provide or suggest an action with a set

of certain objects;

• Ex is a set of executors (direct performers) of the

functional feature, i.e., a set of entities (systems or sub-

systems) that enact a concrete action.

The second TFM concept is a cause-effect relation between

functional features. It defines a cause from which triggering of

an effect occurs.

Formal definitions of cause-effect relations and their

combinations are given in [2], [13]. The main definition states

that a cause-effect relation is a binary relation that links a cause

functional feature to an effect functional feature. In fact, this

relation indicates control flow transition in the system.

Cause-effect relations (and their combinations) may be

joined by logical operators, namely, conjunction (AND),

disjunction (OR), or exclusive disjunction (XOR). The logic of

the combination of cause-effect relations denotes system

Applied Computer Systems

__ 2019/24

96

behaviour and execution (e.g., decision making, parallel or

sequential actions).

Thus, the elements of the functional features and the cause-

effect relations between them must be identified in the text.

B. Structure of Use Case Scenarios

Use cases can be expressed in both informal and structured

manners. The informal one is just a sequence of steps written in

a free manner in a natural language. More formal specifications

are the ones that have a flow or flows of numbered steps, steps

of interaction between an actor and a system in a table form, or

both supported by an UML sequence or activity diagrams.

In the research, we deal with the numbered step format. Use

case scenario structures that have a flow or flows of numbered

steps may have different forms. For example, one of more

completed forms is presented by Winters and Schneider [14],

where it has the following parts:

• a use case name in the form “Do [preposition] What”;

• a brief description usually a paragraph or less that may

include the priority and status of the use case;

• a context diagram that is part of the entire use case

diagram;

• preconditions of a use case that must be true before the

use case starts;

• a flow of events (basic and alternatives);

• post-conditions of a use case that must be true when the

use case ends independently of the flow executed;

• a subordinate use case diagram;

• subordinate use cases with their own flows of events;

• an activity diagram for the flow of events;

• a view of participating classes in a form of a class

diagram;

• sequence diagrams;

• a user interface;

• business rules in the form of a list that this use case

implements;

• special requirements that pertain to this certain use case,

e.g., timing, sizing, or usability;

• other artefacts such as references to the subsystems,

analysis models, etc.;

• outstanding issues, i.e., a list of questions that need to be

answered.

A context diagram, a subordinate use case diagram, an

activity diagram, a view of participating classes, sequence

diagrams, and a user interface contain graphical schemes.

The numbered steps format of a use case scenario usually has

predefined keywords, for example:

• “the use case begins when” is used for an entry point into

the use case;

• “the use case ends” is used for an exit point form the use

case;

• “for each… end loop” is used for iterations;

• “basic path” is used as a title of the section of the normal

flow of steps;

• “alternative paths” is used as a title for the section of

branches in the execution logic;

• “Alternative <number>: <explanation>” is used as a title

of a branch in the execution logic;

• “special requirements” is used as a title of the section for

non-functional requirements; etc.

Used keywords are not specified in the format itself. They

are discussable and conventional within a certain developer

team or a project.

C. Existing Mappings Between TFM Elements and Use Cases

Application of NLP to use case scenarios is partially

implemented in the IDM (Integrated Domain Modelling)

toolset, where processing of a use case scenario is performed

using the Stanford Parser Java Library for identifying the

executors Ex and describing the functional feature D that is the

verb phrase VP from the text of a step in a scenario [15], [16].

The prerequisite for parsing is that sentences of use case steps

must be in the simple form to answer the question “Who does

what?”, e.g., “Librarian checks out the book”. This structure of

a sentence is a recommended one for use case steps [14], [17].

Parsing in the IDM is performed according to these steps:

• Identify coordinating conjunctions to split a sentence into

several clauses, and, thus, several functional features;

• Identify the verb phrase in a clause that is considered a

union of action A, object O and result R (if it is indicated)

and constitutes the so-called description of the functional

feature D;

• Identify the noun phrase that is marked as executor Exi if

it meets the same noun in the list of actors for the use case;

• Pre-conditions and post-conditions are taken directly from

the corresponding preceding step in the use case (if they

are specified);

• Topological relations are equal to the sequence of use case

steps.

As a result, the elements A, R, O are implicitly located in the

description of functional feature D, and each step has a single

executor Exi.

III. EXTRACTING TFM CORE ELEMENTS

A. Tags and Denotations Used in the Algorithm

Before discussion of the algorithm, the notation and

abbreviations used must be explained. The algorithm uses the

Stanford CoreNLP toolkit [18] that contains components that

deal with the following NLP tasks: tokenization, sentence

splitting, POS tagging, morphological analysis (identification

of base forms), NER, syntactical parsing, co-reference

resolution and other annotations such as gender and sentiment

analysis. The syntactical parsing uses constituent and

dependency representations. Discovering basic dependencies

can help in identification of actions and corresponding objects,

results, modes (that can serve for identification of causal

dependencies) and initiators.

In the present research, we use Stanford CoreNLP version

3.9.2 that for POS tagging uses tags listed in Penn Treebank II

[19]. In the research, the following tags are used: S – simple

declarative clause, NN – noun, single, NNS – noun, plural,

NP – noun phrase, PRP – preposition, VBZ – verb, 3rd person

Applied Computer Systems

__ 2019/24

97

singular present, VBP – verb, non-3rd person singular present,

VBD – verb, past tense, VBG – verb, gerund or present

participle, VBN – verb, past participle, VB – base form, VP –

verb phrase, IN – preposition or subordinating conjunction,

RP – particle.

The following denotations are used for dependencies: dobj –

a direct object, compound – a complex noun that consists of

several words, prt – a particle, nsubj – a nominal subject.

A direction of a dependency is denoted by the arrow symbol

“→”. Alternative tags in a pattern are separated with the symbol

“|”. Optional elements are located in the square brackets “[]”.

B. Processing Structure and Text in Natural Language

Thus, analysis of a use case starts from parsing the structure

using the keywords predefined for section titles and then

analysing the corresponding description of execution paths

(Fig. 2).

The use case itself forms one functional feature (ff). This

functional feature can be expanded into a set of specialised

functional features specialized_ff. The set is obtained during the

analysis of paths in a use case itself and in subordinated use

cases. This set is linked with the functional feature ff.

The cause-effect relations from all the scenarios are kept in

the collection cause_effect_rels.

Therefore, by analysing a use case and its scenarios it is

possible to extract a functional feature at the level two of

abstraction. If a scenario invokes an included use case or an

extending use case, it is not expanded but forms a separate

specialised functional feature. However, further, after analysis

of its own specification, it will have its own sets of specialised

functional features. Hence, the multiple layers of abstraction

could be formed. It means that the TFM preserves its abilities

to be simplified and refined, while keeping its structure.

Text in the use case specification is analysed in several

blocks. The reason is that each sentence can contain one or

several actions and, therefore, potential functional features.

NLP tasks are executed for a collection of sentences from the

blocks. Thus, the text for NL analysis is formed from a use case

name, a basic path and alternative paths, subordinate use case

names, subordinate use case basic paths and alternative paths.

The text is sent to NLP tool as a whole in order to reduce time

of processing. The obtained result is then processed using the

following patterns [20] and rules.

Rule 1. Identify action A. Action A is presented by the

infinitive of verb vi that fits the pattern S(VP(VBZ | VBP | VBD

| VBN | VBG | VB vi [→ compound:prt → RP particle]) →

dobj → NP(NN| NNS| PRP n1)).

Rule 2. Identify domain objects R and O. If vi is found, then

get n1 from the same structure that matches the pattern.

Rule 2.1. If VP(vi) is not linked by nmod: but nmod:agent

with another noun NN|NNS|PRP nj, then the following is true:

a) If NP(n1 → compound → n2) AND VP(NP(n1) →

nmod:poss | of | to | into | from | for → NP(n2)), then the

object Oi is equal to n1 and the result Ri is left empty.

Otherwise, if one of such links does exist, the object Oi

is equal to n2.

Use Case Specification in text

format

Create new empty functional feature ff;

Get use_case_name from Use Case Name ;

Get action A and domain objects O, R from

use_case_name;

Add action A and objects O, R to ff;

Get preconditions from Preconditions ;

Add preconditions to ff;

Get postconditions from Postconditions ;

Add postconditions to ff;

Create a collection of specialized functional features

ff_subset_main_and_alt;

Add a set of specialized functional features to

ff_subset_main_and_alt by analyzing the use case basic

path and alternative paths;

Remove duplicates;

Create a collection of specialized functional features

ff_subset_subordinate;

Add a set of specialized functional features to

ff_subset_subordinate by analyzing each subordinate use

case basic path and alternative paths;

Remove duplicates;

Create a collection of cause-effect relations

cause_effect_rels;

Add relations to cause_effect_rels by analyzing each

subordinate use case basic path and alternative paths;

Add relations to cause_effect_rels by analyzing each

subordinate use case basic path and alternative paths;

Specification of a functional feature, a list of specialized

functional features.

Specification of a list of cause-effect relations.

Join collections of specialized functional features and

remove duplicates; the result collection is specialized_ff;

Join collections of cause-effect relations and remove

duplicates; the result collection is cause_effect_rels;

Executors Ex of ff is a set of unique elements from the

collection specialized_ff.Ex;

Fig. 2. The steps of processing the structure and scenarios in a use case.

Applied Computer Systems

__ 2019/24

98

b) If NP(n1 → compound → n2), then Ri is equal to the

NP(n1)+” of”. The object Oi is equal to n2.

c) If VP(NP(n1) → nmod:poss | of | to | into | from | for →

NP(n2)), then Ri is equal to the NP(n1) → [NP(n2) →]

case → IN preposition. The object Oi is equal to n2.

Rule 2.2. If VP(vi) is linked with another NN | NNS | PRP n2

by nmod: but nmod:agent , then the following is true:

a) The object Oi is equal to n2 from PP(NP(n2)).

b) The result Ri is equal to NP(n1) + IN preposition, where

preposition is in the PP(NP(n2)).

Rule 3. Identify executors Ex. A noun ni that matches the

pattern S(VP(VBZ | VBP | VBD | VBN | VBG | VB vi [+ →

compound:prt → RP particle]) → nsubj → NP(NN | NNS |

PRP ni)).

Rule 4. Identify providers Pr. Nevertheless, providers Pr fit

the same pattern as the executors, they must be acquired by a

developer.

Rule 5. Identify pre-conditions PrCond. Search for patterns

“IF/WHEN<condition> THEN: step(s)”, “For each <element>

… end loop”, “While <action|event|condition>… end loop”.

The <condition>, “For each <element>”,

“While<action|event|condition>” are a precondition to the

defined specialised functional feature that contains the first

action in the sentence. Sometimes, the text may contain

additional functional characteristic and form a separate

functional feature. If the pattern follows the construct “The use

case begins”, then the precondition is related to the first

functional feature of this use case.

Rule 6. Identify post-conditions PrCond. At this point of

the research, post-conditions can be identified only if they are

explicitly marked as post-conditions.

Rule 7. Identify a cause-effect relation T in the simple

form. The simple form of a cause-effect relation is presented as

a tuple <cause-ff, effect-ff>. The topology is determined

according to the sequences of sentences in the block. The

following sub-rules are applied:

• Rule 7.1. Search for a sequence of steps. Successful

termination of each preceding step initiates its direct

subsequent step. Thus, T = <a functional feature with the

previous step action, a functional feature with the current

step action>;

• Rule 7.2. Search for redirection to the indicated step.

The redirection may be expressed either using some pre-

defined phrases, e.g., “the use case continues at <flow>

step <number>”, or another phrase with similar meaning.

These phrases must be known. T = <a functional feature

with the current action, a functional feature with the first

action from the redirected sentence>;

• Rule 7.3. Search for redirection to an alternative flow.

If an alternative flow takes only a few sentences, it can be

located directly within the flow-of-events section. In this

case, Rule 7.1 is applied. Otherwise, Rule 7.2 is applied;

• Rule 7.4. Search for redirection from an alternative

flow. Sometimes, a basic flow contains only the “typical”

sequence of steps without any redirection to alternative

flows. Then a point, where the alternative starts, is

indicated in the alternative itself using phrases like “In step

<number>, <precondition>, <step/event>”. In this case, T

= <the functional feature with the first action from the

indicated sentence, the functional feature with the first

action of the current sentence>;

• Rule 7.5. Search for redirection to a subordinated use

case. A subordinate use case has its own name that is used

as a marker with a keyword “subordinate use cases” to

express a transition to it;

• Rule 7.6. Search for invocation of an included use case.

An included use case is invoked using the keyword

“Include” and a name of the use case. Thus, T = <the

functional feature with the current action, the functional

feature formed by the name of the included use case>;

• Rule 7.7. Search for invocation of an extending use

case. An extending use case is invoked using the keyword

“Extends” and a name of the use case. An extending use

case is invoked using its name as a marker at the certain

extension point either in a flow of events or in a special

section of extension points. A precondition must also be

indicated. Thus, T = <the functional feature with the

current action, the functional feature formed by the name

of the extending use case>;

• Rule 7.8. Cycle constructs. In order to indicate iterative

sequences, constructs For each <element> … end loop

and While <action/event>… end loop are used. Here, T =

“functional feature of the last action in the block,

functional feature of the first action in the block>;

• Rule 7.9. Search for the functional feature in the pre-

condition. If a pre-condition contains a functional feature,

then T = <the functional feature from the pre-condition,

the functional feature with the current action>.

Analysis of cause-effect relations in a use case specification

is easier thanks to causality explicitly indicated in most cases.

However, steps may contain short discourses that must be

analysed in the same way as text in prose.

IV. ILLUSTRATIVE EXAMPLE

A. Use Case Scenario

Let us consider a use case “Search for borrowed book” from

a library system. The use case scenario uses the template

presented in Section II but skips parts with graphical

information as well as use case description, business rules and

special requirements.

Use Case Name: Search for borrowed book.

Brief Description: This use case describes the process for

finding a particular borrowed book in the system.

Preconditions: The user is logged in.

Flow of Events:

Basic Path:

1. The use case begins when the Find Book screen is

displayed.

2. The user enters a borrowed book ID or client ID.

3. The user selects Search.

4. The system requires the database to get the borrowed

books requested (subordinate use case: Get Borrowed

Book List, Get Borrowed Book).

Applied Computer Systems

__ 2019/24

99

5. If the user enters a client ID, then
a. the system displays a list of borrowed books

for that client, including at least a borrowed
book ID and a date of borrowing a book.

b. the user selects one borrowed book.

End if

6. The system returns the selected borrowed book and

the use case ends.

Alternative Paths:

• In Step 4, borrowed book ID is not found in system, the

system displays an error message.

• In Step 4, there is no such a client, the system displays

an error message.

• In Step 4, a database is not available, the system displays

an error message.

Post-conditions: none.

Subordinate Use Cases:

Subordinate Use Case Name: Get Borrowed Book List

Basic Path:

1. The use case begins when a request for a borrowed

book list is received.

2. The system sends the client ID to the borrowed book

database with a query for all borrowed books for this

client.

3. The database returns a list of all records found that

match the client ID submitted. The list must include

at least a borrowed book ID and the date the book

was borrowed for each borrowed book in the list.

4. The user case ends.

Subordinate Use Case Name: Get Borrowed Book

Basic Path:

1. The use case begins when a request for a borrowed

book is received.

2. The system sends the borrowed book ID to the

borrowed book database with a query for the borrowed

book matching the identifier.

3. The database returns zero or one borrowed book

matching the identifier.

4. The use case ends.

B. Processing Use Case Scenarios

According to the scheme presented in Fig. 2, at the beginning

the first functional feature linked with the use case itself is

created.

1. Create an empty functional feature ff =<A, R, O, PrCond,

PostCond, Ex, Pr>.

2. The found use_case_name = “Search for borrowed book”.

Action a = “search”, objects O and R fits the pattern from Rule

2.1-a. It means O = “book”, result R is empty. Thus, ff =<A =

“search”, R = “”, O = “book”, PrCond, PostCond, Ex, Pr>.

3. Pre-conditions ff.PrCond = “The user is logged in”.

4. Post-conditions ff.PostCond = “”.

5. Initialisation of specialised functional feature collection

ff_subset_main_and_alt. After the analysis, the resulting

functional features are presented in Table I.

TABLE I

THE COLLECTION FF_SUBSET_MAIN_AND_ALT

ID A R O Precond Ex

The use case begins when the Find Book screen is displayed (skipped)

The user enters a borrowed book ID or client ID

sff_1 enter ID of book when the

Find Book

screen is
displayed

the user

sff_2 enter ID of client when the

Find Book

screen is
displayed

the user

The user selects Search

sff_3 select Search the user

The system requires the database to get the borrowed books requested
(subordinate use case: Get Borrowed Book List, Get Borrowed Book).

sff_4 require database the system

sff_5 get list of book

sff_6 get book

If the user enters a client ID, then

a. the system displays a list of borrowed books for that client, including at

least a borrowed book ID and date of borrowing a book.

b. the user selects one borrowed book.

End if

sff_7 display list of books the user

enters a
client ID

(sff_2)

the system

sff_8 select book the user

The system returns the selected borrowed book and the use case ends.

sff_9 return book the system

• In Step 4, borrowed book ID is not found in the system, the system
displays an error message.

• In Step 4, there is no such a client, the system displays an error
message.

• In Step 4, a database is not available, the system displays an error

message.

sff_10 display message

of

error borrowed

book ID is

not found in
the system

the system

sff_11 display message

of

error no such a

client

the system

sff_12 display message
of

error database is
not available

the system

6. Initialisation of cause-effect relation collection

cause_effect_rels.

7. The collection cause_effect_rels contains the results

presented in Table II.

8. Initialisation of specialised functional feature collection

ff_subset_subordinate. After the analysis, the resulting

functional features are presented in Table III. The sentence “The

database returns a list of all records found that match the client

ID submitted” did not match the verb pattern, since the noun “a

list” was not recognised as a direct object (Fig. 3).

Applied Computer Systems

__ 2019/24

100

TABLE II

THE COLLECTION CAUSE_EFFECT_RELS IN STEP 7

Cause ID Effect ID Rule No.

sff_1 sff_3 Rule 7.1

sff_2 sff_3 Rule 7.1

sff_3 sff_4 Rule 7.1

sff_4 sff_5 Rule 7.5

sff_4 sff_6 Rule 7.5

sff_5 sff_10 Rule 7.1

sff_5 sff_11 Rule 7.1

sff_5 sff_12 Rule 7.1

sff_6 sff_10 Rule 7.1

sff_6 sff_11 Rule 7.1

sff_6 sff_12 Rule 7.1

sff_2 sff_7 Rule 7.9

sff_7 sff_8 Rule 7.1

sff_8 sff_9 Rule 7.1

TABLE III

THE COLLECTION FF_SUBSET_SUBORDINATE

ID A R O Precond Ex

Specialised functional features for sff_5 Get List of Book

The use case begins when a request for a borrowed book list is received.

The system sends the client ID to the borrowed book database with a query

for all borrowed books for this client.

sff_13 send ID of client when a

request for a

borrowed
book list is
received

the system

The database returns a list of all records found that match the client ID

submitted. The list must include at least a borrowed book ID and the date
the book was borrowed for each borrowed book in the list.

sff_14 include ID of book the list

sff_15 include date the list

The user case ends. (skipped)

Specialised functional features for sff_6 Get Book

The use case begins when a request for a borrowed book is received.

The system sends the borrowed book ID to the borrowed book database

with a query for the borrowed book matching the identifier.

sff_16 send ID of book when a

request for a

borrowed
book is
received

the system

The database returns zero or one borrowed book matching the identifier.

sff_17 return book the
database

The use case ends. (skipped)

9. The set of cause-effect relations presented in Table IV is

added to the cause_effect_rels.

Fig. 3. Enhanced dependencies of the sentence “The database returns a list of

all records found that match the client ID submitted”.

TABLE IV

ADDITION TO THE COLLECTION CAUSE_EFFECT_REL

Cause ID Effect ID Rule No. Expands

sff_4 sff_13 Rule 7.5 sff_5

sff_13 sff_14 Rule 7.1 sff_5

sff_13 sff_15 Rule 7.1 sff_5

sff_4 sff_16 Rule 7.5 sff_6

sff_16 sff_17 Rule 7.1 sff_6

10. Initialisation of the collection specialized_ff. The result

collection that is a union of ff_subset_main_and_alt and

ff_subset_subordinate.

11. Executors of the functional feature ff, i.e., ff.Ex =

specialized_ff.Ex() -> getUnique() = {“the user”, “the system”,

“the database”, “the list”}.

C. Discovered Issues and Their Causes

The proposed technique suggests using processing of

structure and text in use case specifications. Text processing is

based on matching the patterns for sentences in the active voice.

The main objective of it is to obtain a set of functional

characteristics (features) of the system.

The suggested technique has met several issues:

1. Sentence expressions lack either the initiator of the step,

or a direct object. In the former case, a reason is the use of the

passive voice in the sentence without indicating by whom the

action is done. In the latter case, a reason is that a direct object

is expressed using clauses that play a role of adjectives or long

explanatory phrases.

2. Pre-conditions with the same meaning are expressed using

different phrases. Therefore, their analysis can lead to

duplications in functional features or different and redundant

cause-effect relations.

3. The indicated paths in event flows may have conditional

sequences that are related to subordinated use cases, but the

type of the relation can be not clear, namely, where they start

and end as well what step is next. It is demonstrated in this

example, in Steps 4 and 5 of the main use case.

Applied Computer Systems

__ 2019/24

101

4. The use case scenario may have different levels of

detalisation. It requires a structure that keeps

abstraction/detalisation relations.

5. In some cases, a statement in the active voice used for

some additional explanation is ambiguous. For example,

specialised functional features sff_14 and sff_15 have “the list”

as an executor. However, “the list” is a domain object. In this

case, two concerns are mixed. The first one, where a use case

specification must be, is a viewpoint on the interaction between

an actor and a system. The second one, which is indicated in the

sentence, is a viewpoint on the application inner logic.

6. Stanford CoreNLP does not take into account that some

titles (or names of the domain objects) may be expressed using

verb phrases. It leads to the incorrect determination of

dependencies between parts of the sentence.

The enumerated issues lead to the understanding that

processing of the use case specifications, which allows using

not only simple sentences in the form “Who does what”, is the

same complex as processing of the text in the formal written

style.

V. RELATED WORK

Reducing time for analysis using knowledge extraction from

different types of input data and representing them as a model

is also discussed in other authors’ work.

The first type of input data is a textual document. The target

is models and UML diagrams, for instance, creation of use case

diagrams [21] and UML Activity Diagrams using identification

of simple verbal sentences [22] from textual requirements in

Arabic. UML class diagrams from textual requirements [23],

and from use case descriptions [24] are created in English.

Researchers also analyse textual user requirements in natural

language and requirements used by engineering diagrams to

create the Use Case Path model, the Hybrid Activity Diagram

model and the Domain model [25]. In research [25], the authors

applied syntax analysis by MBT tagger, semantics analysis to

discover roles of words in the sentence (subject, predicate and

object) and connections among them and then created a

semantic network for text models. At the final step, the authors

transformed this semantic network to one of the target models

using patterns. Automated composition of conceptual diagrams

can be performed by using the natural language analysis [26].

However, the authors have noted a need for human participation

in the natural language analysis since the result can be affected

by several issues of natural language itself, i.e., sentence

structures may have different forms that are not completely

predictable, syntactical correctness of sentences, as well as

ambiguity in determining attributes as aggregations and in

generalization.

The overview of existing solutions in the field of UML model

creation from textual requirements and business process model

creation from textual documents [27] showed that existing

means allowed creating class diagrams, object diagrams, use

case diagrams, and several of them provide composition of

sequence, collaboration and activity diagrams. However, all the

solutions have certain limitations, for example, some require

user intervention, some cannot perform analysis of irrelevant

classes, some require structuring a text in a certain form before

processing, and some cannot correctly determine several

structural relationships between classes. The only approach

mentioned by the authors [27] that allows deriving a complete

business process model is presented by Friedrich, Mendling and

Puhlmann [28].

Some approaches use ontologies predefined by experts in the

field and self-developed knowledge acquisition rules in order to

extract knowledge on necessary properties or elements and their

values from text documents [29], [30].

Some approaches for analysis scenarios and data in textual

use cases use NLP. The purpose is scenarios for test cases [31]–

[34] and behavioural models. Use cases itself can be

transformed to test case scenarios. For example, generation of

system test cases from uses cases “in the use case modelling

language USL” [31], [34]. In this approach the authors

transform a use case to test cases using predefined mappings

between their metamodels and domain concepts of the system

captures in an UML class diagram. Besides that, a USL model

is ought to be created manually. Therefore, the authors use

already pre-processed specifications in such a way dealing with

texts in the natural language. More interesting are two

approaches that use NLP for requirements transformation to test

scenarios [32] and behavioural models [33], [35]. The same as

the previous authors, Sarmiento et.al. [32] use a specific

language, RNL, that restricts the vocabulary used to write

scenarios to unambiguous declarative and imperative sentences.

Wang et.al. [33] use a similar approach. They suggest using of

Restricted Use Case Modeling (RUCM). Preconditions and

postconditions are reformulated by a software developer as

OCL (Object Constraint Language) constraints. Generation of

scenarios for Petri Net-Based behavioural models from textual

use cases [35] uses similar restrictions to the source text.

However, here the authors analyse also a limited set linguistical

patterns of sentences. As mentioned, all of these mentioned

approaches try to restrict templates and languages of use cases,

while our proposed idea is an attempt to proceed unrestricted

textual descriptions.

VI. CONCLUSION

The paper presents a discussion on extracting core TFM

elements from the use case specifications. The presented

specification has a complex structure and allows using normal,

not simplified sentences.

During the research, issues related to processing of the

natural language as well as to the structure are determined.

Issues that originate from the natural language are related to

different language constructs used for expressing direct objects,

initiators of actions, conditions, titles/names of the domain

objects and the voice used. Issues related to the specification

structure mostly originate from the flexibility of path

descriptions. Sometimes, branching conditions and flow return

places are ambiguously indicated, if indicated at all.

It is possible to conclude that although the benefit of use case

specifications is that information is structured in the predefined

format, the permitted flexibility in expressions and language

Applied Computer Systems

__ 2019/24

102

constructions has a high risk of low accuracy in automated

processing of use cases.

The future research area is related to more accurate analysis

of the constructs expressed in the natural language.

REFERENCES

[1] J. Miller and J. Mukerji, “Model Driven Architecture (MDA),” 2001.

[2] J. Osis and U. Donins, “Topological UML Modeling”, in Computer
Science Reviews and Trends, Elsevier, pp. 133–151, 2017.

https://doi.org/10.1016/B978-0-12-805476-5.00005-8

[3] V. Nazaruks and J. Osis, “Joint Usage of Frames and the Topological
Functioning Model for Domain Knowledge Presentation and Analysis,”

in Proceedings of the 12th International Conference on Evaluation of

Novel Approaches to Software Engineering - Volume 1: MDI4SE, 2017,

pp. 379–390. https://doi.org/10.5220/0006388903790390

[4] V. Nazaruks and J. Osis, “Verification of Causality in the Frame System

based on the Topological Functioning Modelling,” in Proceedings of the
13th International Conference on Evaluation of Novel Approaches to

Software Engineering, Portugal, Funchal, Madeira, 23-24 March, 2018,

2018, pp. 513–521. https://doi.org/10.5220/0006817905130521
[5] M. Elstermann and T. Heuser, “Automatic Tool Support Possibilities for

the Text-Based S-BPM Process Modelling Methodology,” in Proceedings

of the 8th International Conference on Subject-oriented Business Process
Management - S-BPM ’16, 2016, pp. 1–8.

https://doi.org/10.1145/2882879.2882882

[6] J. Osis and E. Asnina, “Topological Modeling for Model-Driven Domain
Analysis and Software Development : Functions and Architectures,” in

Model-Driven Domain Analysis and Software Development:

Architectures and Functions, Hershey, PA: IGI Global, 2011, pp. 15–39.
https://doi.org/10.4018/978-1-61692-874-2.ch002

[7] E. Asnina and J. Osis, “Computation Independent Models: Bridging

Problem and Solution Domains,” in Proceedings of the 2nd International
Workshop on Model-Driven Architecture and Modeling Theory-Driven

Development, 2010, pp. 23–32.

https://doi.org/10.5220/0003043200230032
[8] J. Osis, E. Asnina, and A. Grave, “Computation Independent

Representation of the Problem Domain in MDA,” e-Informatica Softw.

Eng. J., vol. 2, no. 1, pp. 29–46, 2008.
[9] E. Asnina, “The Computation Independent Viewpoint: a Formal Method

of Topological Functioning Model Constructing,” Appl. Comput. Syst.,

vol. 26, pp. 21–32, 2006.
[10] J. Osis, E. Asnina, and A. Grave, “MDA oriented computation

independent modeling of the problem domain,” in Proceedings of the 2nd

International Conference on Evaluation of Novel Approaches to Software
Engineering, 2007, pp. 66–71. https://doi.org/10.1109/SwSTE.2007.20

[11] J. Osis, E. Asnina, and A. Grave, “Formal Problem Domain Modeling

within MDA,” in Software and Data Technologies: Second International
Conference, ICSOFT/ENASE 2007, Barcelona, Spain, July 22-25, 2007,

Revised Selected Papers, J. Filipe, B. Shishkov, M. Helfert, and L. A.

Maciaszek, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 387–398. https://doi.org/10.1007/978-3-540-88655-6_29

[12] A. Šlihte and J. Osis, “The Integrated Domain Modeling: A Case Study,”

in Databases and Information Systems: Proceedings of the 11th
International Baltic Conference (DB&IS 2014), 2014, pp. 465–470.

[13] E. Asnina and V. Ovchinnikova, “Specification of decision-making and
control flow branching in Topological Functioning Models of systems,”

in ENASE 2015 - Proceedings of the 10th International Conference on

Evaluation of Novel Approaches to Software Engineering, 2015.
https://doi.org/10.5220/0005479903640373

[14] G. Schneider and J. P. Winters, Applying Use Cases: A practical Guide,

2nd ed. Pearson Education, Inc., 2001.
[15] J. Osis and A. Slihte, “Transforming Textual Use Cases to a Computation

Independent Model,” in Model-Driven Architecture and Modeling-Driven

Software Development: ENASE 2010, 2ndMDA&MTDD Whs., 2010, pp.
33–42. https://doi.org/10.5220/0003043300330042

[16] A. Slihte, J. Osis, and U. Donins, “Knowledge Integration for Domain

Modeling,” in Model-Driven Architecture and Modeling-Driven Software
Development: ENASE 2011, 3rd Whs. MDA&MDSD, 2011, pp. 46–56.

[17] D. Leffingwell and D. Widrig, Managing Softqare Requirements: a Use

Case Approach, 2nd ed. Addison-Wesley, 2003.

[18] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D.

Mcclosky, “The Stanford CoreNLP Natural Language Processing
Toolkit,” in Proceedings of the 52nd Annual Meeting of the Association

for Computational Linguistics: System Demonstrations, 2014, pp. 55–60.

https://doi.org/10.3115/v1/P14-5010
[19] A. Bies et al., “Bracketing Guidelines for Treebank II Style,” 1995.

[20] E. Nazaruka, “Processing Use Case Scenarios and Text in a Formal Style

as Inputs for TFM-based Transformations,” Balt. J. Mod. Comput., p.
submitted, 2019.

[21] S. Jabbarin and N. Arman, “Constructing use case models from Arabic

user requirements in a semi-automated approach,” in 2014 World
Congress on Computer Applications and Information Systems, WCCAIS

2014, 2014, pp. 1–4. https://doi.org/10.1109/WCCAIS.2014.6916558

[22] I. N. Nassar and F. T. Khamayseh, “Constructing Activity Diagrams from
Arabic User Requirements using Natural Language Processing Tool,” in

2015 6th International Conference on Information and Communication

Systems (ICICS), 2015, pp. 50–54.

https://doi.org/10.1109/IACS.2015.7103200

[23] H. Krishnan and P. Samuel, “Relative Extraction Methodology for class

diagram generation using dependency graph,” in 2010 International
Conference On Communication Control And Computing Technologies,

2010, pp. 815–820. https://doi.org/10.1109/ICCCCT.2010.5670730

[24] M. Elbendak, P. Vickers, and N. Rossiter, “Parsed use case descriptions
as a basis for object-oriented class model generation,” J. Syst. Softw., vol.

84, no. 7, pp. 1209–1223, Jul. 2011.
https://doi.org/10.1016/j.jss.2011.02.025

[25] M. G. Ilieva and O. Ormandjieva, “Models Derived from Automatically

Analyzed Textual User Requirements,” in Fourth International
Conference on Software Engineering Research, Management and

Applications (SERA’06), 2006, pp. 13–21.

https://doi.org/10.1109/SERA.2006.51
[26] V. Bhala, R. Vidya Sagar, and S. Abirami, “Conceptual modeling of

natural language functional requirements,” J. Syst. Softw., vol. 88, pp. 25–

41, 2014. https://doi.org/10.1016/j.jss.2013.08.036

[27] C.-C. Osman and P.-G. Zalhan, “From Natural Language Text to Visual

Models: A survey of Issues and Approaches,” Inform. Econ., vol. 20, no.

4, pp. 44–61, Dec. 2016.
https://doi.org/10.12948/issn14531305/20.4.2016.05

[28] F. Friedrich, J. Mendling, and F. Puhlmann, “Process Model Generation

from Natural Language Text,” in Proceedings of the 23rd International
Conference on Advanced Information Systems Engineering (CAiSE

2011), 2011, pp. 482–496. https://doi.org/10.1007/978-3-642-21640-

4_36
[29] F. Amardeilh, P. Laublet, and J.-L. Minel, “Document annotation and

ontology population from linguistic extractions,” in Proceedings of the

3rd international conference on Knowledge capture - K-CAP ’05, 2005,
pp. 161–168. https://doi.org/10.1145/1088622.1088651

[30] D. E. Jones, S. Igo, J. Hurdle, and J. C. Facelli, “Automatic Extraction of

Nanoparticle Properties Using Natural Language Processing: NanoSifter
an Application to Acquire PAMAM Dendrimer Properties,” PLoS One,

vol. 9, no. 1, p. e83932, Jan. 2014.

https://doi.org/10.1371/journal.pone.0083932
[31] C. T. M. Hue, D.-H. Dang, N. N. Binh, and A.-H. Truong, “USLTG: Test

Case Automatic Generation by Transforming Use Cases,” Int. J. Softw.

Eng. Knowl. Eng., vol. 29, no. 09, pp. 1313–1345, Sep. 2019.
https://doi.org/10.1142/S0218194019500414

[32] E. Sarmiento, J. C. S. P. Leite, E. Almentero, and G. Sotomayor

Alzamora, “Test Scenario Generation from Natural Language
Requirements Descriptions based on Petri-Nets,” Electron. Notes Theor.

Comput. Sci., vol. 329, pp. 123–148, Dec. 2016.

https://doi.org/10.1016/j.entcs.2016.12.008
[33] C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Iqbal, “Automatic

generation of system test cases from use case specifications,” in

Proceedings of the 2015 International Symposium on Software Testing
and Analysis - ISSTA 2015, 2015, pp. 385–396.

https://doi.org/10.1145/2771783.2771812

[34] C. T. M. Hue, D. D. Hanh, and N. N. Binh, “A Transformation-Based
Method for Test Case Automatic Generation from Use Cases,” in 2018

10th International Conference on Knowledge and Systems Engineering

(KSE), 2018, pp. 252–257. https://doi.org/10.1109/kse.2018.8573372
[35] Z. Ding, M. Jiang, and M. Zhou, “Generating Petri Net-Based Behavioral

Models From Textual Use Cases and Application in Railway Networks,”

IEEE Trans. Intell. Transp. Syst., vol. 17, no. 12, pp. 3330–3343, Dec.
2016. https://doi.org/10.1109/TITS.2016.2518745

https://doi.org/10.1016/B978-0-12-805476-5.00005-8
https://doi.org/10.5220/0006388903790390
https://doi.org/10.5220/0006817905130521
https://doi.org/10.1145/2882879.2882882
https://doi.org/10.4018/978-1-61692-874-2.ch002
https://doi.org/10.5220/0003043200230032
https://doi.org/10.1109/SwSTE.2007.20
https://doi.org/10.1007/978-3-540-88655-6_29
https://doi.org/10.5220/0005479903640373
https://doi.org/10.5220/0003043300330042
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.1109/WCCAIS.2014.6916558
https://doi.org/10.1109/IACS.2015.7103200
https://doi.org/10.1109/ICCCCT.2010.5670730
https://doi.org/10.1016/j.jss.2011.02.025
https://doi.org/10.1109/SERA.2006.51
https://doi.org/10.1016/j.jss.2013.08.036
https://doi.org/10.12948/issn14531305/20.4.2016.05
https://doi.org/10.1007/978-3-642-21640-4_36
https://doi.org/10.1007/978-3-642-21640-4_36
https://doi.org/10.1145/1088622.1088651
https://doi.org/10.1371/journal.pone.0083932
https://doi.org/10.1142/S0218194019500414
https://doi.org/10.1016/j.entcs.2016.12.008
https://doi.org/10.1145/2771783.2771812
https://doi.org/10.1109/kse.2018.8573372
https://doi.org/10.1109/TITS.2016.2518745

Applied Computer Systems

__ 2019/24

103

Erika Nazaruka received M. sc. in computer systems in 2003 and Doctoral

degree (Dr. sc. ing.) in information technology with specialisation in system
analysis, modelling and design from Riga Technical University in 2006.

She has been an Associate Professor at the Department of Applied Computer

Science of Riga Technical University since 2013. She has also worked 4 years
as a Software Developer. She is the author of 60 conference papers, 4 book

chapters and 1 book. Her research interests include topological functioning

modelling, software quality assurance, model-driven and object-oriented
software development, and natural language processing.

The Latvian Academy of Sciences has awarded her and her co-author, Jānis

Osis, for the book “Model-Driven Software Development: Architectures and
Functions”, which was recognised as one of the most significant theoretical

achievements of the Latvian science in 2011.

Contact address is the Department of Applied Computer Science, Riga
Technical University, Sētas Str. 1, Riga, LV-1048, Latvia.

E-mail: erika.nazaruka@rtu.lv

OIRCID iD: https://orcid.org/0000-0002-1731-989X

Jānis Osis is a Professor at the Faculty of Computer Science and Information

Technology, Riga Technical University, Latvia. He holds Dr. habil. sc. ing.
degree and is an honorary member of the Latvian Academy of Sciences. The

list of publications contains more than 250 titles, including 16 books. During

many years, his main research interest was topological modelling of complex
systems. Recent fields of interest have been object-oriented system

development, formal methods of software engineering, software development

within the framework of MDA by means of topological functioning model
support.

The Latvian Academy of Sciences has awarded him and his co-author, Erika

Nazaruka, for the book “Model-Driven Software Development: Architectures
and Functions”, which was recognised as one of the most significant theoretical

achievements of the Latvian science in 2011.

Contact address is the Department of Applied Computer Science, Riga
Technical University, Sētas Str. 1, Riga, LV-1048, Latvia.

E-mail: janis.osis@rtu.lv

ORCID iD: https://orcid.org/0000-0003-3774-4233

Viktorija Gribermane received M. sc. in computer systems in 2015 from Riga

Technical University, Latvia.
Currently she is a Doctoral student and Researcher at the Institute of Applied

Computer Systems of Riga Technical University. She is the author of ten

conference and journal papers.
Her current research interests include topological functioning modelling,

model-driven software development, and natural language processing.
Contact address is the Department of Applied Computer Science, Riga

Technical University, Sētas Str. 1, Riga, LV-1048, Latvia.

E-mail: viktorija.gribermane@rtu.lv
ORCID iD: https://orcid.org/0000-0002-8368-9362

mailto:erika.nazaruka@rtu.lv
https://orcid.org/0000-0002-1731-989X
mailto:janis.osis@rtu.lv
https://orcid.org/0000-0003-3774-4233
mailto:viktorija.gribermane@rtu.lv
https://orcid.org/0000-0002-8368-9362

