
Applied Computer Systems

©2019 Vadim Romanuke.
This is an open access article licensed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),

in the manner agreed with Sciendo.

 150

ISSN 2255-8691 (online)
ISSN 2255-8683 (print)

December 2019, vol. 24, no. 2, pp. 150–160
https://doi.org/10.2478/acss-2019-0019

https://content.sciendo.com

Minimal Total Weighted Tardiness in Tight-Tardy

Single Machine Preemptive Idling-Free Scheduling

Vadim Romanuke*

Polish Naval Academy, Gdynia, Poland

* Corresponding author’s e-mail: romanukevadimv@gmail.com

Abstract – Two possibilities of obtaining the minimal total

weighted tardiness in tight-tardy single machine preemptive

idling-free scheduling are studied. The Boolean linear

programming model, which allows obtaining the exactly minimal

tardiness, becomes too time-consuming as either the number of

jobs or numbers of job parts increase. Therefore, a heuristic

based on remaining available and processing periods is used

instead. The heuristic schedules 2 jobs always with the minimal

tardiness. In scheduling 3 to 7 jobs, the risk of missing the

minimal tardiness is just 1.5 % to 3.2 %. It is expected that

scheduling 12 and more jobs has at the most the same risk or

even lower. In scheduling 10 jobs without a timeout, the heuristic

is almost 1 million times faster than the exact model. The exact

model is still applicable for scheduling 3 to 5 jobs, where the

averaged computation time varies from 0.1 s to 1.02 s. However,

the maximal computation time for 6 jobs is close to 1 minute.

Further increment of jobs may delay obtaining the minimal

tardiness at least for a few minutes, but 7 jobs still can be

scheduled at worst for 7 minutes. When scheduling 8 jobs and

more, the exact model should be substituted with the heuristic.

Keywords – Boolean linear programming model, heuristic, job

scheduling, job preemptions, relative gap, remaining available

period, remaining processing period, single machine scheduling,

total weighted tardiness.

I. INTRODUCTION

In practice, job scheduling strongly relates to planning,

organising, and executing multi-step processes of assembling,

manufacturing, building, dispatching, computing, etc. [1], [2].

Applications of the scheduling theory have a strong industrial

impact [2], [3]. The optimal schedule allows shortening

production and delivery time, reducing costs, relieving from

overcharges/overloads, rationally distributing human and other

resources [4].

The schedule has a few characteristics, among which total

completion time and tardiness are the most important. The

tardiness emerging from that every job is desired to be

completed till a definite time moment is commonly

unavoidable. The time moment is called a due date [3], [5].

Usually, a due date is tightly set after a release date, which

implies a definite time moment when processing of the

respective job can be started. The difference between due and

release dates is not always such that it is sufficient for

completing the job processing. Thus, tardiness emerges and it

is taken into account until job processing is completed. While

it is not completed, tardiness linearly increases [3], [5], [6].

Obviously, greater tardiness leads to greater additional

payments.

When jobs are associated with their priority weights, the

objective is to find such a schedule whose total weighted

tardiness (TWT) would be minimal. Another three options are

attached to this problem: the number of machines, on which the

jobs are processed, allowance of preemptions and idle time

periods [7]. Despite problems of single machine preemptive

scheduling by no idling have been studied thoroughly, a few

open practical questions still are not answered. The most

important one is how to solve scheduling problems of big sizes

[1], [2], [5], [8]. The matter is that the existing models allowing

one to find an exact solution are too time-consuming, and, thus,

a problem of scheduling even a few jobs can be intractable [3],

[9]. On the other hand, a few existing heuristic approaches find

approximate solutions very efficiently. The heuristic efficiency

seems to be tending to 100 % as the number of jobs increases

[4], [9]. Then the approximate solution coincides with the exact

one, ensuring the same minimal TWT. However, scheduling a

few jobs, a heuristic approach may give unacceptable

inaccuracy (e.g., see [3], [6]), despite finding a schedule almost

flash-likely (compared to the exact model). Therefore, it is

necessary to know a point linking a hardly tractable exact

model to an accurate heuristic. This point will direct to a

transfer from the exact model to the heuristic.

II. ANALYSIS OF THE BACKGROUND

As of 2019, the Boolean linear programming model

(BLPM) remains the source for exactly solving a wide variety

of scheduling problems [7], [9]. The objective is to find such a

set of Boolean decision variables whose weighted sum would

be minimal. When preemptions are allowed, a job can be

divided into equal processing periods (i.e., into job parts). The

Boolean decision variable has three indices, indicating at the

job number/tag, its part and time moment currently considered

[6], [9]. To find an optimal solution, the branch-and-bound

approach is effectively used [8], [9]. This is why the model

becomes too time-consuming as either the number of jobs or

numbers of job parts increase. For instance, scheduling even

five jobs divided into four parts each invokes 400 decision

variables, whereas increasing the number of jobs just by 1

invokes 576 variables.

A lot of heuristics help in coping with the intractability of

the BLPM for scheduling larger numbers of jobs [6], [7], [9].

http://creativecommons.org/licenses/by/4.0
mailto:romanukevadimv@gmail.com

Applied Computer Systems

__ 2019/24

151

The heuristics can be divided into two groups. The first group

produces schedules in a few stages. At some stage a schedule

is found ensuring a TWT, but at the next stage this schedule is

partially or entirely changed (or, rather permuted), and a lesser

TWT is obtained [8]. The second group of heuristics produces

a schedule successively, adding a job in each time moment [9].

These are so-called online scheduling algorithms (OSAs) [6],

[10]. It is clear that OSAs are the most effective method owing

to which jobs already scheduled can be accomplished without

regard to whether the schedule is completed or not.

One of the best OSAs is the approach based on using

weighted reciprocals of remaining processing periods (RPPs).

This OSA schedules a job, which has the greatest ratio of its

priority weight to its RPP [9]. The weight-to-RPP heuristic is

very accurate but it fits only to find schedules ensuring the

minimum of total weighted completion time (TWCT).

Nevertheless, the weight-to-RPP heuristic serves as a basis for

scheduling with a minimal TWT. The remaining available

period (RAP) is used for this along with RPP, where the

corresponding OSA schedules a job, which has the greatest

ratio of its priority weight to a maximum of its RPP and RAP

[3]. The weight-to-RPP-or-RAP heuristic is not as accurate as

the weight-to-RPP heuristic inasmuch as the TWT problem is

more complicated as the TWCT problem. This dissimilarity

strengthens when the number of tardy jobs (which cannot be

completed anyhow before or on their due dates) is close to the

number of all jobs.

III. GOAL AND STEPS TO ACHIEVE IT

As a breach exists in knowledge of how the BLPM could be

efficiently substituted by the weight-to-RPP-or-RAP heuristic

as the scheduling problem size increases, the goal is to study

the heuristic’s accuracy and the BLPM’s tractability in order

to “reconcile” them. The jobs scheduled are to be processed on

a single machine. Preemptions are allowed, but idle time

periods are not allowed. To achieve the said goal, the

following items will be fulfilled. First, the job scheduling

problem is stated and its specificity is described. Second, the

BLPM and weight-to-RPP-or-RAP heuristic are stated. Then a

computational study is carried out, in which the inaccuracy of

the heuristics is examined how it varies versus the increasing

complexity of the job scheduling problem. Finally, the

research result is expected to answer the question of when the

heuristic can efficiently substitute the exact model (i. e., when

the lossless transfer to the heuristic can be done).

IV. TIGHT-TARDY SINGLE MACHINE PREEMPTIVE

IDLING-FREE SCHEDULING

Let it be required that N jobs, where  \ 1N , are to be

scheduled, and job n consists of Hn processing periods,

1,n N= . Each processing period has the same duration, and

so Hn is conventionally called the length of job n. The length
is measured in integer units, and thus

  
1

N

n N
H


= H (1)

is a vector of all job lengths to be processed on a single

machine.

The jobs can have different importance, which is indicated

with their priority weights. They can be easily set at natural

values, so

  
1

N

n N
w


= W (2)

is a vector of the priority weights.

Processing of every job can be started only since a certain

time moment that is called a release date. Once again, the job

release dates are conventionally considered as natural values,

and so

  
1

N

n N
r


= R (3)

is a vector of the release dates. If idle time periods are not

allowed, release dates (3) can be set at monotonously

increasing integers, naturally starting from 1:

 nr n= by 1,n N= . (4)

Then, the minimal time interval is set at 1. Moreover, the

schedule starts at the time moment that is 1. The second time

moment of the schedule is 2, and so on. The schedule ends at

the time moment that is

1

N

n

n

T H

=

= . (5)

A vector of due dates

  
1

N

n N
d


= D (6)

is reasonably set in a similar integer-value way of setting job

lengths (1) and release dates (3). Theoretically, due dates (6)

can be set at any integers, but in practice they are linked to the

job release dates whichever they are. Vector (1) of job lengths

also determines due dates (6). If a due date is tightly set after a

release date with respect to the job length, tardiness is

expected to be significantly great. This is a tight-tardy single

machine preemptive idling-free scheduling. In this case, for

example,

 1n n nd H r= + − by 1,n N= . (7)

For the case with monotonously increasing release dates (4),

due dates (7) are re-written as follows:

 1n nd H n= + − by 1,n N= . (8)

In particular, if job 1 is scheduled first with all its 1H periods,

it is completed without tardiness. In general, if job n is

scheduled with all its nH periods starting at time moment n ,

it is completed without tardiness as well. Then, however, the

other jobs become tardy (they cannot be completed without

tardiness). Hence, the tight-tardy single machine preemptive

idling-free scheduling by (1), (4), and (8) is a class of hard

scheduling problems, in which the inaccuracy of finding the

minimal TWT has the strongest negative impact. This is

almost the worst case, whose successful solution would

positively serve just as the principle of minimax guaranteeing

decreasing losses in the worst conditions (the maximum of

unfavourable states) [11], [12].

Applied Computer Systems

__ 2019/24

152

V. EXACTLY MINIMAL TWT

In the simplest terms, tardiness is a difference between the

moment of the job completion and its due date, if the latter is

surpassed by the job completion moment. The TWT takes into

account priority weights (2). If job n is completed after time

moment (); nn H , which is

 ()  ; 1,nn H T  (9)

by schedule’s length (5), the TWT is

 () 
1

max 0, ;

N

n n n

n

w n H d

=

  − . (10)

The schedule should be composed so that sum (10) would be

minimal.
The exactly minimal TWT is found by the BLPM in the

following way. Let
nnh tx be a decision variable about

assigning the hn-th part of job n to time moment t : 1
nnh tx = if

it is assigned; 0
nnh tx = otherwise. This decision variable is

weighted with a non-negative value
nnh t :

 0
nnh t = (11)

by

 1n n n nr h t T H h− + − + 1, 1n nh H = − (12)

and

nnh t =  (13)

by a sufficiently great positive integer  (similar to the

meaning of infinity) when (12) is not true;

 0
nnH t = (14)

by

 1n n nr H t d− + (15)

and

 ()
nnH t n nw t d = − (16)

by

 nd t T (17)

and

nnH t =  (18)

when both (15) and (17) are not true; for instance,

1 1

N T

n

n t

w t

= =

 = (19)

can be used [9]. The goal is to find such a set

   *

1
1

1

n

n

n

T
H

N

nh t
n

h
t

x X
=

=
=

 
 

 
 (20)

of the decision variables, on which the sum

 ()* *

1 1 1

n

n n

n

HN T

nh t nh t

n h t

N x

= = =

 =  (21)

is minimal by constraints constituting a set X of all possible

versions of the decision variables [9]:

 0,1
nnh tx 

 by 1,n N= and 1,n nh H= and 1,t T= , (22)

1

1
n

T

nh t

t

x

=

= by 1,n N= and 1,n nh H= , (23)

1 1

1

n

n

n

HN

nh t

n h

x

= =

= by 1,t T= , (24)

1

1 1

n

n n

n

HT

nh j n nH t n

j t h

x H x H

−

= + =

+

 by 1,n N= and 1, 1t T= − . (25)

Sum (21) is the exactly minimal TWT for those N jobs

scheduled according to solution (20). The respective optimal

job schedule is

* *

1
t

T
s


 =  S by  * 1,ts N for every 1,t T= . (26)

Using this schedule, TWT (21) can also be calculated by

formula (10).

Obviously, a few optimal schedules (26) ensuring the same

minimal TWT (21) on set X can exist. The eventual selection

of a single schedule of them is a matter of separate research,

although it is not as important as finding TWT (21). For

instance, if there are 4 jobs to be scheduled by the minimal

TWT and

  3 5 2 2=H ,  1 12 6 17=W , (27)

then

  1 2 3 4=R and  3 6 4 5=D (28)

according to tight-tardy schedule concept (8) by monotonously

increasing release dates (4). The BLPM by (9)–(25) finds an

optimal schedule

  * 1 2 3 4 4 3 2 2 2 2 1 1=S (29)

whose TWT using formula (10) is (note that jobs 1, 2, 3, 4 are

completed after time moments 12, 10, 6, 5, respectively)

() () 
4

*

1

4 max 0, ;n n n

n

w n H d

=

 =   − =

   1 max 0,12 3 12 max 0,10 6=  − +  −

   6 max 0, 6 4 17 max 0, 5 5+  − +  − =

 1 9 12 4 6 2 17 0 69=  +  +  +  = . (30)

Applied Computer Systems

__ 2019/24

153

However, another optimal schedule

  * 1 2 2 4 4 2 2 2 3 3 1 1=S (31)

exists herein, in which completion moments of jobs 2 and 3

are changed into 8 and 10, respectively, but the TWT is the

same:

()  * 4 1 9 12 max 0, 8 6 =  +  −

  6 max 0,10 4 17 0 1 9 12 2 6 6 69+  − +  =  +  +  = . (32)

Schedules (29) and (30) differ only at time moments 3, 6, 9,

10, wherein parts of jobs 2 and 3 are interchanged. Although

preemptions are allowed, it is commonly supposed that their

number should be as minimal as possible. The total number of

job shifts (counted as the job tag changes) in schedule (29) is

6, whereas it is 5 in schedule (31). Therefore, the latter is a

more acceptable schedule by an additional criterion of the job

shift minimum. However, other additional criteria may be

applied that can change the schedule preference. For this

instance, already having optimal schedules (29) and (31) for

(27), (28), schedule

  * 1 2 4 4 3 3 2 2 2 2 1 1=S (33)

is optimal also being easily obtained from (29) by just

stitching up the two parts of job 3. The number of job shifts in

schedule (33) is 5, and thus schedules (31) and (33) executable

by the same minimal TWT become indistinguishable.

VI. APPROXIMATE SOLUTION

The weight-to-RPP-or-RAP heuristic is indirectly described

in [3]. This is an OSA, which builds a schedule successively,

moment by moment. After each next time moment, a job part

is added to a current schedule, for all 1,t T= . Let us denote

RPPs at the start by

    
11n NN

q H


= = =Q H . (34)

As time t progresses, vector Q is changed: one element in Q

is decreased at every time moment until this vector contains N

zeros. For every set of available jobs

 ()     1, : and 0 1,i iA t i N r t q N=    (35)

a set of RAPs is calculated:

  max 0, 1i ib d t= − + ()i A t  . (36)

Along with RAP (36) and vector Q of RPPs, paper [3] claims

that the remaining slack

  max 0,i i ib q = − ()i A t  (37)

must also be found, whereupon a set of decisive ratios

()

i

i i i A t

w

q


 
 

+  
 (38)

is calculated. With remaining slack (37), however, it is easy to

see that the ratio in (38) factually is

   max 0, max ,

i i i

i i i i i i i

w w w

q q b q q b
= =

+ + −
 (39)

because the denominator in the central fraction of statement

(39) becomes equal to iq by i ib q and it is ib by i ib q .

Therefore, remaining slack (37) is useless here, and instead of

(38) a set of decisive ratios

 max ,

i

i i

w

q b
 ()i A t  (40)

is considered. The maximal decisive ratio is achieved at

subset

 ()
()  

* argmax
max ,

i

i A t
i i

w
A t

q b
= . (41)

Let us denote by  
1t T

s


=S the whole set of jobs scheduled by

the algorithm, where  1,ts N for every 1,t T= . If

()* 1A t = , where

()   ()  * * 1,A t i A t N=   ,

then

 *

ts i= by * *

(obs)

i i
q q= and * *

(obs) 1
i i

q q= − ; (42)

otherwise the earliest-releasable job is preferred to be

scheduled: if subset (41) is

 ()   ()  * *

1
1,

L

l
l

A t i A t N
=

=   by 1L  , (43)

then

 *

1ts i= by * *
1 1

(obs)

i i
q q= and * *

1 1

(obs) 1
i i

q q= − . (44)

An approximately minimal TWT is calculated successively

for every 1,n N= using (34)–(36), (40)–(44) as follows: if

(); nn h
s n


= 1,n nh H = ,

then job n is completed after time moment (); nn H . Finally,

 () () 
1

max 0, ;

N

n n n

n

N w n H d

=

 =   − (45)

is an approximately minimal TWT corresponding to schedule

 
1t T

s


=S . It is worth noting that this schedule often

coincides with the schedule (or, rather one of the schedules)

produced by exact solution (20). Nevertheless, the weight-to-

RPP-or-RAP heuristic, unlike the BLPM, always returns a

single schedule. In the example with (27), (28), the heuristic

returns schedule (31).

Applied Computer Systems

__ 2019/24

154

VII. RELATIVE GAPS

In optimal schedule (26), if ()* ; nn H is a time moment

after which job n is completed, i.e.

()*

*

; nn h
s n


= 1,n nh H = ,

then exactly minimal TWT is

 () () * *

1

max 0, ;

N

n n n

n

N w n H d

=

 =   − . (46)

Even if schedules  
1t T

s


=S and * *

1
t

T
s


 =  S do not coincide,

TWTs (45) and (46) can be equal. If they are different, then,

obviously,

 () ()*N N   . (47)

To compare the heuristic TWT to the exactly minimal TWT,

the relative error percentage or the so-called gap is

calculated:

 ()
() ()

()

*

*

*
100

N N
N

N

 −
 = 


. (48)

It is obvious that, theoretically, gap (48) is always non-

negative. However, if searching for a solution by the BLPM is

stopped prematurely, its resulting TWT may be not minimal,

and then the factual (“premature”) gap may be negative. If 

is a time period (e.g., in minutes) given to the BLPM to find

the minimum, then let ()* N be a TWT after the period

elapses (this is called the timeout). The respective timeout gap

is

 ()
() ()

()

*

*
100

N N
N

N







 −
 = 


. (49)

Note that the case when

 () ()* *N N =  (50)

is not excluded. If the BLPM is stopped due to the solution is

found, then let ()* N be the non-timeout minimal TWT.

The respective non-timeout (“regular”) gap is

 ()
() ()

()

*

*

*
100

N N
N

N







 −
 = 


 (51)

where, obviously, always

() ()* *N N = 

and

() ()* *N N =  .

An aggregate of premature gap (49) and regular gap (51) can

also be defined as a “common” gap, which is

 ()
() ()

()
100

N N
N

N

 −
 = 


, (52)

where ()N is a TWT returned by the BLPM regardless of

whether it a timeout or a non-timeout value. In common gap

(52), it is either

() ()*N N = 

or

() ()*N N =  .

Hereinafter, when corresponding gaps (49), (51), and (52) are

averaged, they will be referred to simply as premature gap

(49), regular gap (51), and common gap (52), respectively.

VIII. GENERATION OF RANDOM INSTANCES

To generate random instances of the tight-tardy single

machine preemptive idling-free scheduling by (4) and (8), two

independent generators for job lengths (1) and priority weights

(2) are constructed. Let job lengths (1) be

   ()()
1

4 1, 2 ,n N
H N


= =  +HH (53)

where operator ()1, NH returns a pseudorandom 1 N

vector whose entries are drawn from the standard uniform

distribution on the open interval ()0; 1 , and function () 

returns the integer part of number  (e. g., see [9], [11]).

Statement (53) implies that job lengths are randomly generated

within an integer interval from 2 to 5. Let priority weights (2)

be

   ()()
1

100 1, 1 ,n N
w N


= =  +WW (54)

where operator ()1, NW runs and returns outputs identically

to operator ()1, NH but they are independent of each other.

Statement (54) implies that priority weights are randomly

generated within an integer interval from 1 to 100.

IX. COMPUTATION TIME RATIO

Before starting the computational study, it is important to

know how the computation times of the BLPM and heuristic

are compared. Inasmuch as computation time ()N of the

heuristic is always far less than computation time ()* N of

achieving minimum (21) by (22)–(25), then it is suitable to use

a computation time ratio (CTR)

 ()
()
()

*

*

1000

N
N

N


 =


. (55)

Applied Computer Systems

__ 2019/24

155

CTR (55) is purely theoretical because the minimum is not

always achievable in a given time period. Therefore, CTRs

corresponding to premature gap (49), regular gap (51), and

common gap (52) should be defined based on timeout

computation time ()* ,N =  regular computation time

()* N , and common computation time ()N , respectively:

 ()
()1000

N
N




 =

 
, (56)

 ()
()

()

*

*

1000

N
N

N






 =


, (57)

 ()
()

()1000

N
N

N


 =

 
. (58)

Again, when corresponding CTRs (56), (57), and (58) are

averaged, they will be referred to simply as premature CTR

(56), regular CTR (57), and common CTR (58), respectively.

X. COMPUTATIONAL STUDY

Let 400 instances be generated for each 2, 10N = by job

lengths (53), priority weights (54), release dates (4), and due

dates (8). A reasonable time period, through which a schedule

is expected to be found, is 30 minutes. Thus, 3600 job

scheduling problems have been generated, each of which has

its own TWT, the respective gap (Fig. 1) and CTR. Timeouts

have been registered only in scheduling 8, 9, and 10 jobs

(Fig. 2). The number of timeouts abruptly increases after 9

jobs. At 10 jobs, 38.5 % of the generated instances (154 of

400) are timeouts (the premature gap is mostly negative).

Fig. 1. Common gap (52), where negative gaps are barred with a lighter colour. The heuristic has returned each of 400 schedules of 2 jobs with the respective

minimal TWT. While scheduling 3 and 4 jobs, the heuristic “erred” only two times (the gaps in 5.13 % and 3.63 %) and once (the gap in 2.33 %), respectively. In

scheduling 5 jobs, seven instances have been generated in a row (128, 130, 132, 133, 135, 137, 138) with the gap in 12.57 %. It is a pseudorandomness artefact.

N

()N

Applied Computer Systems

__ 2019/24

 156

Regular gap (51) is shown in Fig. 3. This saw-like polyline

has a positive linear trend. Thus, it is plausible that the peak at

8 jobs may be not the highest one if to extend the study over

11 jobs and more. The regular gap in 0.12 % in scheduling 10

jobs is statistically valid [12] because 246 of 400 instances are

not timeouts (61.5 % instances have regular gaps).

Fig. 2. The number of 30-minute timeouts distributed among 3600 generated

instances. Despite the huge number of timeouts at 10 jobs, it is 38.5 % of the
generated instances (154 of 400), so it does not break the statistical validity.

Fig. 3. Regular gap (51) averaged over 400 instances for the number of jobs
from 2 to 7, and averaged over 394, 368, and 246 instances of scheduling 8, 9,

and 10 jobs, respectively. The peaks may indicate that the number of instances
per number of jobs is not sufficiently great. On the other hand, the regular gap

itself is very small (although it is not insignificant here) and thus such peaks

are unavoidable. After the two sharp peaks, a peak at 11 jobs is likely.

Because of the abruptly increasing number of timeouts,

premature gap (49), defined only at scheduling 8, 9, and 10

jobs, is decreasing (Fig. 4). In each of the six timeout instances

at scheduling 8 jobs the premature gap is 0, although it does

not mean that the minimal TWT is found. Eventually, the

premature gap drops so that it seems to be “more exact” than

the exact BLPM by almost 1 %. This drop is distinctly seen in

common gap (52) shown in Fig. 5. This type of gap is

conditionally useful being “distorted” by timeouts.

Fig. 4. Premature gap (49) averaged only 6, 32, and 154 instances of

scheduling 8, 9, and 10 jobs, respectively. The drop is seemingly almost linear.

Fig. 5. Common gap (52) averaged over 400 instances for each number of jobs.

It coincides with the regular gap from 2 to 7 jobs. Then, from 8 to 10 jobs,

timeouts start influencing and the common gap drops similarly as in Fig. 4.

Whichever the averaged gap is, the worst cases must be

studied as well. Thus, the maximal gap denoted by ()max N is

shown in Fig. 6. It has three distinctive peaks seen in Fig. 3
and, less prominently, in Fig. 5. Now, this saw-like polyline
still has a positive linear trend, but, if to approximate it with a
parabolic curve, the top peak at 5 jobs (a result of the
pseudorandomness artefact) may be the highest one if to
extend the study over 11 jobs and more. The peak at 8 jobs is

9.82 %, and the maximal gap seems to slowly decrease since
then. However, the gap in 6.92 % at 10 jobs may be
intolerable in a lot of application domains.

In addition to the worst cases, it is necessary to learn a ratio
of non-timeout instances, in which the heuristic gives the
minimal total weighted tardiness, to the total number of non-

timeout instances. It is a fraction of cases when the exact
BLPM is factually needless. Let us denote this ratio by

()0 .N= Figure 7 shows the ratio, which is no less than

0.9289 (the minimum is at 8 jobs). Consequently, the BLPM is
needless in no less than 92.89 % of the cases generated by (53)
and (54).

2 3 4 5 6 7 8 9 10

-0.3
-0.28
-0.26
-0.24
-0.22

-0.2
-0.18
-0.16
-0.14
-0.12

-0.1
-0.08
-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2
0.22
0.24

N

()N

2 3 4 5 6 7 8 9 10
-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

N

()30 N

N2 3 4 5 6 7 8 9 10
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19

0.2
0.21
0.22
0.23
0.24

()*

30 N

2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

N

Number of
30-minute timeouts

Applied Computer Systems

__ 2019/24

157

Fig. 6. The common gap maximum taken over 400 instances for each number

of jobs. The top peak at 5 jobs is a result of the pseudorandomness artefact

viewed and mentioned above (Fig. 1). The gap slowly decreases since 8 jobs.

Fig. 7. The ratio of non-timeout instances, in which the heuristic gives the
minimal TWT, to the total number of non-timeout instances. It is strictly 1 in

scheduling just 2 jobs, independent of the number of processing periods they
are divided. The ratio is decreasing till 8 jobs. The minimum of the ratio is at

8 jobs, where 92.89 % of the non-timeout instances have been scheduled by

the heuristic as optimally as the BLPM has scheduled them. Thus, the
heuristic can efficiently substitute the BLPM at least in 92.89 % of the cases.

A very strong argument for the heuristic is the CTR by (55).

Regular and common CTRs (57) and (58) shown in Fig. 8

resemble an exponential growth. In scheduling 10 jobs without

a timeout, the heuristic is almost 1 million times faster than

the BLPM. If timeouts are admitted, the heuristic acquires

roughly the same rapidness in scheduling 9 jobs. Premature

CTR (56) here is even more persuasive (3 to almost 4 million

times) but it is so huge because the BLPM is prematurely

stopped.

Fig. 8. The exponentially increasing CTRs (57) and (58). CTR (56) put within

the same axes is “broken” because of the abrupt intensification of timeouts.

If 11 jobs are scheduled, it turns out that the 30-minute time

period is too short for the timeout. Indeed, after increasing the

timeout period to 120 minutes (2 hours) for scheduling 11

jobs, the timeouts have been registered in 47 of 100 instances.

The number of 120-minute timeouts in scheduling 12 jobs

expectedly increases: the BLPM has been prematurely stopped

in 81 of 100 instances. Henceforward, the BLPM becomes

practically intractable since scheduling more than 10 jobs

whose lengths vary from 2 to 5.

A promising fact is that the common gap maximum taken

over 100 instances for 11 jobs is 6.44 %, which is slightly less

than that for 10 jobs (see Fig. 6). Furthermore, for 12 jobs this

maximum is already 2.49 %, which may be tolerable in some

application domains. It is noticeable that neither the gap

maximum in 6.44 % nor the gap maximum in 2.49 % belongs

to the regular gaps. Moreover, among those 53 non-timeout

instances of 11 jobs, there are only two identical instances (it

is another pseudorandomness artefact similar to that in Fig. 1)

whose regular gap is 2.16 %. The remaining 51 non-timeout

instances are scheduled by the heuristic with the exactly

minimal TWT. Nevertheless, there are 12 pseudorandomness

artefacts among those 51 instances (see their job lengths and

weights in Fig. 9), so just 39 of them are unique. Among those

19 non-timeout instances of 12 jobs, there are 13 unique

instances (Fig. 10), but they all are scheduled by the heuristic

with the exactly minimal TWT. Consequently, the ratio of

non-timeout instances, in which the heuristic gives the

minimal TWT, to the total number of non-timeout instances is

promisingly greater than that at 10 jobs (see Fig. 7). It is

96.23 % in scheduling 11 jobs (as 49 out of 51 non-timeout

instances, without considering the artefacts, are scheduled

with the exactly minimal TWT). It is remarkable that in

scheduling 12 jobs, where all 19 non-timeout instances are

scheduled with the exactly minimal TWT, this ratio is 100 %.

Thus, the minimum at 8 jobs (Fig. 7) is expected to be global.

2 3 4 5 6 7 8 9 10
0.928

0.93

0.932

0.934

0.936

0.938

0.94

0.942

0.944

0.946

0.948

0.95

0.952

0.954

0.956

0.958

0.96

0.962

0.964

0.966

0.968

0.97

0.972

0.974

0.976

0.978

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

N

()0 N= 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

N

()*

30 N

()N

8 9 10
3120
3140
3160
3180
3200
3220
3240
3260
3280
3300
3320
3340
3360
3380
3400
3420
3440
3460
3480
3500
3520
3540
3560
3580
3600
3620
3640
3660
3680
3700
3720
3740
3760
3780
3800
3820
3840
3860
3880
3900
3920

()30 N

2 3 4 5 6 7 8 9 10
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

8.5
9

9.5
10

10.5
11

11.5
12

12.5
13

N

()max N

Applied Computer Systems

__ 2019/24

 158

Fig. 9. Job lengths and weights generated for 100 instances of scheduling 11 jobs, where 67 instances are unique. The 53 non-timeout instances are barred with a

lighter colour. The 39 non-timeout instances are unique. Such a violation of the pseudorandomness is a consequence of parallelising generations (53) and (54).

It is worth noting that the pseudorandomness artefacts

revealed and shown in Fig. 1 (although not clearly seen in

Figs. 9 and 10) are caused by the same peculiarities of

parallelisation on CPU cores, which have caused so many

repetitions of instances in scheduling 11 and 12 jobs. All these

artefacts are a consequence of simultaneously generating a few

series of integers, either (53) or (54). Surely, this effect may

seem negative as those repetitions decrease statistical validity.

However, repetitions of schedules are not excluded in

common practice. For example, scheduling arrivals and

departures at airports (where tardiness often occurs) is tried to

be as constant as possible. Similar examples can be stated for

railway stations, but the cost of tardiness for them is lesser.

Therefore, the pseudorandomness artefacts have been stored

and subsequently exposed. They are part of reality and so they

should be in the model of computations.

Fig. 10. Job lengths and weights generated for 100 instances of scheduling 12 jobs, where 58 instances are unique (even less than that in the case of scheduling 11
jobs). The 19 non-timeout instances are barred with a lighter colour. The 13 non-timeout instances are unique. Despite one job longer series of integers generated

by (53) and (54) is returned concurrently on each of two CPU cores (first, a pair of vectors of job lengths is generated, and then a pair of vectors of priority

weights is generated on the cores), the pseudorandomness here has been violated severer than that in generating 100 instances of 11 jobs. It is an artefact.

The timeout instances normally are of jobs having greater

processing periods. An example is the instance of 11 jobs

scheduled by BLPM in less than 17 seconds. Job lengths in

this instance are

  2 2 2 2 5 2 5 3 2 2 2=H , (59)

its priority weights are

 23 55 82 6 41 49 12 97 53 35 100=W , (60)

and its due dates are

  2 3 4 5 9 7 11 10 10 11 12=D , (61)

where the release dates are successively set at 1 to 11

according to (4). An optimal schedule for (59)–(61) is

N

nH

nw

N

N

nH

nw

N

Applied Computer Systems

__ 2019/24

 159

 * *

1 29
1 2 2 3 3 6 6 8 8 8 11 11 9 9 1 10 10 5 5 5 5 5 4 4 7 7 7 7 7ts


 = = S (62)

and its length (5) is 29. TWT of schedule (62) is 1666, whereas TWT of the 47 timeout instances of 11 jobs varies from 3389 to

7954. The timeout instance of 11 jobs with the minimal TWT is:

 5 4 2 2 2 4 2 3 3 2 4=H , (63)

 28 75 37 25 45 29 94 48 57 50 40=W , (64)

 5 5 4 5 6 9 8 10 11 11 14=D . (65)

Eventually, the BLPM fails to find an optimal schedule for (63)–(65) as the schedule

  
1 33

1 2 2 2 2 5 7 7 5 10 10 9 9 9 3 3 8 8 8 4ts 
= =S

4 11 11 11 11 6 6 6 6 1 1 1 1 (66)

found by the heuristic has lesser TWT: it is 3386, which is

slightly better (by 0.0886 %) than the BLPM schedule found

in 2 hours. Nonetheless, it is unknown whether schedule (66)

is optimal. It is remarkable that the length of schedule (66) is

just about 13.8 % greater that the length of schedule (62),

whereas TWT of schedule (66) is more than twice worse.

XI. INSTANCES OF STRONGER DISCREPANCY

All the timeout instances at 8, 9, and 10 jobs are scheduled

by the heuristic with the same TWT returned by the BLPM. A

stronger discrepancy between the heuristic and BLPM appears

at 11 jobs, although for them the timeout period is four times

greater. Thus, 42 of 47 timeout instances have schedules

whose TWTs do not coincide with TWTs returned by the

heuristic for these instances. Only in two instances of those 42

ones the BLPM returns lesser TWTs (by 6.44 % and 0.25 %).

For 12 jobs, these things are not any better: 63 of 81 timeout

instances have schedules whose TWTs do not coincide with

the heuristic TWTs; occasionally, in seven instances of those

63 ones the BLPM returns lesser TWTs (by up to 2.49 %).

The timeout instance of 11 jobs with the maximal TWT

(which is 7954 as mentioned above) is scheduled by the

heuristic in 0.58 milliseconds. This instance is:

 3 3 5 4 5 5 4 5 5 2 2=H , (67)

 92 27 51 52 93 100 78 79 42 34 83=W , (68)

 3 4 7 7 9 10 10 12 13 11 12=D . (69)

Eventually, the BLPM fails to find an optimal schedule for (67)–(69) as the schedule

  
1 43

1 1 1 4 5 5 5 5 5 6 11 11 6 6 6 6 7 7 7 7ts 
= =S

4 4 4 10 10 8 8 8 8 8 3 3 3 3 3 2 2 2 9 9 9 9 9 (70)

found by the heuristic has lesser TWT: it is 7716, which is 2.99 % better than the BLPM schedule found in 2 hours. The

strongest discrepancy at 11 jobs has been registered in 5.93 %, where the heuristic finds schedule

  
1 42

1 2 2 4 4 3 3 3 3 3 10 10 10 7 7 7 7 5 5 5ts 
= =S

5 8 8 8 8 1 1 1 9 9 9 9 6 6 6 6 6 11 11 11 11 11 . (71)

TWT of schedule (71) found in 0.48 milliseconds is 6933,

whereas the BLPM in 2 hours returns a schedule whose TWT

is 7370. If the timeout period was 30 minutes, the resulting

TWT and the discrepancy would be likely far worse.

Moreover, the strongest discrepancy at 12 jobs is almost twice

greater: it is 11.11 %, where the heuristic finds a schedule

whose TWT is 8227, whereas the BLPM in 2 hours returns a

schedule whose TWT is 9255. Therefore, the timeout period in

2 hours is short for scheduling more than 10 jobs. This is

another evidence of practical intractability of the BLPM for

scheduling more than 10 jobs whose lengths vary from 2 to 5.

Obviously, scheduling (longer) jobs having more processing

periods cannot be even thought of. The heuristic then remains

the means to do that.

XII. DISCUSSION

The polyline in Fig. 7 seems to be very promising.

Indeed, if the heuristic returns the exact solution in at least

92.89 % of the cases, where 3 to 10 jobs are scheduled (2 jobs

are always scheduled with the minimal TWT), it is a quite

high rate. However, the polyline in Fig. 6 disappoints: the

heuristic fails to schedule 5 jobs with the minimal TWT in

about 2 cases out of 100 (more precisely, ()0 5 0.9825= =

and so ()01 5 0.0175=− =), but the gap in more than 12 % is

quite intolerable. Furthermore, even the least non-zero gap at 4

jobs (Fig. 6), which is 2.33 %, is not tolerable everywhere

(e. g., it may rather be at an airport, but not at a railway

station).

Applied Computer Systems

__ 2019/24

160

When more than 7 jobs are scheduled, the risk of a heuristic

fail increases (Fig. 7) with the simultaneously increasing risk

of a BLPM fail (Fig. 2). At the same time, the gap maximum

does not decrease much (Fig. 6) being still intolerable at 10

jobs. Hence, the risk of obtaining a fast and inexact schedule

of 3 to 10 jobs cannot be removed. This risk achieves its top at

7.11 % (Fig. 7) when 30-minute timeouts start. Scheduling 11

jobs is less risky (no more than 4 % risk of the heuristic fails),

though. Moreover, the expectance of obtaining a fast and exact

schedule of 12 jobs is higher. Empirically, based on the 13

unique non-timeout instances, it approximates to 100 % (the

zero risk). Nevertheless, it cannot be proved theoretically,

these are just estimations. As the job length varies from 2 to 5,

which is not much for up to 10 jobs (because in this case

instances generated for a fixed number of jobs roughly

“resemble” each other), even studying a few instances can be

considered as not a small statistical sample [12]. So, the

estimations are statistically reliable.

In some application domains like airports, for which the

BLPM is too slow, the risk of obtaining a fast but inexact

schedule is acceptable. “Risky” schedules yielding lesser

profits because of non-minimised tardiness are certainly

undesirable, but waiting for a schedule during 30 minutes for

any airport is inadmissibly long. In other, less intensive

domains, such as railway stations, river ports, building,

manufacturing, etc., where schedules are stable, minimal TWT

can be ensured by the BLPM.

In the case of equal-length jobs, the scheduling problem of

minimising TWT by (4) and (8) is solved trivially. An optimal

schedule in this case is composed successively starting from the

first job, i.e., it is job 1 (as a whole, with all its processing

periods), job 2 (as a whole), job 3 (as a whole), and so on. It is

easy to show that such a schedule is not single. Thus, neither the

BLPM nor the heuristic is needed for the case of equal-length

jobs. This is why the case is not considered during the study.

XIII. CONCLUSION

Based on the carried out experiments, the minimal TWT in

tight-tardy single machine preemptive idling-free scheduling is

achieved by the weight-to-RPP-or-RAP heuristic in about

92 % of the cases and more. The risk of a significant gap is not

excluded. The risk slightly decreases as the complexity of the

job scheduling problem is increased. At the same time, the

BLPM can lose its practical tractability at scheduling 8 jobs, at

which the gap maximum is still intolerably great.

Consequently, the heuristic can efficiently substitute the

BLPM in scheduling 3 to 7 jobs with the risk of 1.5 % to

3.2 %. It is expected that scheduling 12 and more jobs has at

the most the same risk or even lower.

Inasmuch as the studied tight-tardy scheduling is the worst

case, the losses caused by non-minimal TWT will be lesser for

other cases, where the tight tardiness is relaxed. The risk

estimations may be roughly the same, but they cannot be

predicted certainly. Anyway, where possible, it is strongly

recommended to schedule just 2 jobs, which is almost

instantaneously executed by the heuristic always with minimum

TWT. Otherwise, if there are multiple jobs consisting of

multiple processing periods, it is recommended to artificially

divide jobs so that the resulting number of jobs is 12 or greater.

Then the heuristic will return amounts of TWT, which are either

sufficiently close to the minimum or achieve the minimum.

The BLPM is applicable for scheduling 3 to 5 jobs, where

the averaged computation time varies from 0.1 s to 1.02 s. The

maximal computation time for 6 jobs is close to 1 minute.

Further increment of jobs may delay obtaining the minimal

TWT at least for a few minutes, but 7 jobs can still be

scheduled at worst for 7 minutes. When scheduling 8 jobs and

more, the BLPM should be substituted with the heuristic.

REFERENCES

[1] A. S. Uyar, E. Ozcan, and N. Urquhart, Eds. Automated Scheduling and

Planning: From Theory to Practice. Springer-Verlag Berlin Heidelberg,

2013. https://doi.org/10.1007/978-3-642-39304-4
[2] J. M. Framinan, R. Leisten, and R. R. García, Manufacturing Scheduling

Systems: An Integrated View on Models, Methods and Tools. Springer-

Verlag London, 2014. https://doi.org/10.1007/978-1-4471-6272-8
[3] F. Jaramillo and M. Erkoc, “Minimizing Total Weighted Tardiness and

Overtime Costs for Single Machine Preemptive Scheduling,” Computers
& Industrial Engineering, vol. 107, pp. 109–119, May 2017.

https://doi.org/10.1016/j.cie.2017.03.012

[4] B. Yang, J. Geunes, and W. J. O’Brien, “A Heuristic Approach for
Minimizing Weighted Tardiness and Overtime Costs in Single

Resource Scheduling,” Computers and Operations Research, vol. 31,
pp. 1273–1301, Jul. 2004. https://doi.org/10.1016/S0305-0548(03)

00080-7

[5] J. M. van den Akker, G. Diepen, and J. A. Hoogeveen, “Minimizing
Total Weighted Tardiness on a Single Machine With Release Dates

and Equal-Length Jobs,” Journal of Scheduling, vol. 13, iss. 6,

pp. 561–576, Dec. 2010. https://doi.org/10.1007/s10951-010-0181-1

[6] R. Panneerselvam, “Simple Heuristic to Minimize Total Tardiness in a

Single Machine Scheduling Problem,” The International Journal of
Advanced Manufacturing Technology, vol. 30, iss. 7–8, pp. 722–726,

Oct. 2006. https://doi.org/10.1007/s00170-005-0102-1

[7] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems. Springer
Inter. Publishing, 2016. https://doi.org/10.1007/978-3-319-26580-3

[8] P. Brucker, Scheduling Algorithms. Springer-Verlag Berlin Heidelberg,
2007. https://doi.org/10.1007/978-3-540-69516-5

[9] V. V. Romanuke, “Accuracy of a Heuristic for Total Weighted

Completion Time Minimization in Preemptive Single Machine
Scheduling Problem by no Idle Time Intervals,” KPI Science News, no.

3, pp. 52–62, 2019. https://doi.org/10.20535/kpi-sn.2019.3.164804
[10] S. Haruhiko and S. Hiroaki, Online Scheduling in Manufacturing: A

Cumulative Delay Approach. Springer-Verlag London, 2013.

https://doi.org/10.1007/978-1-4471-4561-5
[11] V. V. Romanuke, “Decision Making Criteria Hybridization for Finding

Optimal Decisions’ Subset Regarding Changes of the Decision Function,”
Journal of Uncertain Systems, vol. 12, no. 4, pp. 279–291, 2018.

[12] J. O. Berger, Ed. Statistical Decision Theory and Bayesian Analysis.

New York: Springer, 1985. https://doi.org/10.1007/978-1-4757-4286-2

Vadim V. Romanuke was born in 1979. He graduated from the

Technological University of Podillya in 2001. The higher education was
received in 2001. In 2006, he received the Degree of Candidate of Technical

Sciences in Mathematical Modelling and Computational Methods. The degree

of Doctor of Technical Sciences in Mathematical Modelling and
Computational Methods was received in 2014. In 2016, Vadim Romanuke

received the academic status of Full Professor.
He is a Professor of the Faculty of Mechanical and Electrical Engineering at

the Polish Naval Academy. His current research interests concern decision

making, game theory, statistical approximation, and control engineering based
on statistical correspondence. He has 347 published scientific articles, one

monograph, one tutorial, methodical guidelines in functional analysis,

mathematical and computer modelling, guidelines for the development of

Master Thesis, and guidelines for conflict-controlled systems. Since 2019,

Vadim Romanuke has been participating as a scientific collaborator in two
budget grant works concerning automation in navigation.

Address for correspondence: 69 Śmidowicza Street, Gdynia, Poland, 81–127.
E-mail: romanukevadimv@gmail.com

ORCID iD: https://orcid.org/0000-0003-3543-3087

https://doi.org/10.1007/978-3-642-39304-4
https://doi.org/10.1007/978-1-4471-6272-8
https://doi.org/10.1016/j.cie.2017.03.012
https://doi.org/10.1016/S0305-0548(03)00080-7
https://doi.org/10.1016/S0305-0548(03)00080-7
https://doi.org/10.1007/s10951-010-0181-1
https://doi.org/10.1007/s00170-005-0102-1
https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1007/978-3-540-69516-5
https://doi.org/10.20535/kpi-sn.2019.3.164804
https://doi.org/10.1007/978-1-4471-4561-5
https://doi.org/10.1007/978-1-4757-4286-2
mailto:romanukevadimv@gmail.com
https://orcid.org/0000-0003-3543-3087

