
Applied Computer Systems
ISSN 2255-8691 (online)

ISSN 2255-8683 (print)

May 2020, vol. 25, no. 1, pp. 51–56

https://doi.org/10.2478/acss-2020-0006

https://content.sciendo.com

51

©2020 Oksana Nikiforova, Konstantins Gusarovs.

This is an open access article licensed under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), in the manner agreed with Sciendo.

Anemic Domain Model vs Rich Domain Model to

Improve the Two-Hemisphere Model-Driven

Approach

Oksana Nikiforova1, Konstantins Gusarovs2*
1, 2Riga Technical University, Riga, Latvia

Abstract – Evolution of software development process and

increasing complexity of software systems calls for developers to

pay great attention to the evolution of CASE tools for software

development. This, in turn, causes explosion for appearance of a

new wave (or new generation) of such CASE tools. The authors of

the paper have been working on the development of the so-called

two-hemisphere model-driven approach and its supporting

BrainTool for the past 10 years. This paper is a step forward in the

research on the ability to use the two-hemisphere model driven

approach for system modelling at the problem domain level and to

generate UML diagrams and software code from the two-

hemisphere model. The paper discusses the usage of anemic

domain model instead of rich domain model and offers the main

principle of transformation of the two-hemisphere model into the

first one.

Keywords – Anemic domain model, code generation, model

transformation, rich domain model, system modelling, two-

hemisphere model.

I. INTRODUCTION

In general, there are two ways of looking at any software

system. One way is to consider just data, including variables,

arguments, data structures and files where the operations are

examined only within the framework of the data. The other way

of viewing the software system is to consider just the operations

performed on the data where data are of the secondary

importance. According to current trends in software

development, data and operations are viewed at equal

importance, in spite of the fact that sometimes data have to be

stressed and other time operations are more critical. Object-

oriented software development assumes the definition of

system objects according to problem domain as the primary

artefacts, including the information about data and operations

together [1]. Therefore, one of the fundamental tasks is to define

an object structure and to share the responsibilities of object,

i.e., to define the operations for objects to perform. Two-

hemisphere model driven approach [2] shares responsibilities

between objects and serves as a basis for generation UML [3]

diagrams and software code from them.

As far as the two-hemisphere model contains two interrelated

models of problem domain, the approach can produce UML

class and sequence diagrams in correspondence to the so-called

* Corresponding author’s e-mail: konstantins.gusarovs@gmail.com

Rich Domain Model (RDM) [4], where domain objects

representing business entities are also carrying the business

logic and are able to solve the business requirements [5]. While

this approach might seem aligned with the basic principles of

object-oriented software development, it also imposes

limitations on the system code. Several authors are claiming

that storing the logic in the domain model violates the

separation of concern principle by making the domain objects

not only responsible for storing the information, but also

operating it [6]–[8]. These authors are advertising the usage of

the so-called Anemic (or Anaemic) Domain Model (ADM),

which can be best described with a single sentence “data are

data”. One of the main ideas of ADM is the usage of business

entities to solidly store the information. Business logic that is

required for system to meet the actual requirements should in

turn be contained at the business logic level.

The paper is focused on the discussion about advantages of

anemic domain model and usage of the two-hemisphere model

as a basis for such type of domain model generation. The next

section discusses the differences between anemic and rich

domain models. Section 3 describes two-hemisphere model-

driven approach transition to the anemic model and shows the

UML sequence diagrams created according to rich and anemic

domain models. Section 4 offers the list of changes that should

be made in the approach to have all the advantages of the

anemic model. Finally, the last section contains the very brief

conclusions and some of the areas for the future research.

II. ANEMIC VS RICH DOMAIN MODEL

Rich data model is based around the basic principles of an

object-oriented paradigm stating that objects can hold its

properties along with behaviour [4]. It means that any object

can be described with a dual nature – one part of which is data

and the second is methods for working with these data. This

idea is used in the current two-hemisphere model driven

approach, for example, when data from the conceptual model

are combined with the behaviour from the business process

model in order to create classes holding both parts of the system

description [9]. RDM basically says that objects should have

http://creativecommons.org/licenses/by/4.0
mailto:konstantins.gusarovs@gmail.com

Applied Computer Systems

___2020/25

52

this dual nature in order to perform their tasks in the software

system. This gives some advantages in further code editing

during the software system support – in order to change the data

and algorithms that are working with these data; it is usually

necessary to introduce changes only to a single class in a

programming language code – the class that is responsible for

both data storage and processing.

It is possible to see that ADM approach is, in turn, aligned

with the Model-View-Controller (MVC) paradigm [10] that

nowadays is widely adopted by multiple frameworks, e.g.,

AngularJS [11]. MVC offers to present the software system as

a set of three components – Model responsible for storing the

information and operating it, View responsible for Model

rendering in a form suitable for the user interaction and a

Controller that interconnects these two components. However,

since being firstly presented MVC paradigm has undergone

several changes. It is possible to see in [11] that the model is

referred to only as data storage, and the business logic that is

responsible for the business requirement implementation is

being stored in services that are representing, cited “reusable

business logic independent of views”. This kind of concern

separation is being sometimes referred to as a Model-View-

Service-Controller (MSVC) model [7] and adds additional

flexibility to the original MVC. MVC offered to split the system

into the three main components to make those pluggable and

replaceable [10], which means that the single Model-Controller

composition can successfully serve several different Views –

for example, one Web Service can be used by both desktop and

a mobile application. Separation of the Model component into

Model and Service with former responsible solely for the

information storage and later – for the business logic provides

another level of flexibility where single View-Controller-

Service composition can use different models (e.g., different

database engines) without the need for the code changes. By

analysing the MSVC principles, it is possible to see that RDM

would not fit inside since it ties both business information and

business logic in a single component. ADM seems to be more

elegant and flexible solution, while it might seem to be violating

some of the OOP principles.

One might argue that MVC/MSVC approach is not “object-

oriented enough”, since it seems that all the parts of this model

are separate blocks that are composed together and do not use

the advantages of the object-oriented paradigm. However, the

authors of this paper claim that OOP principles are still

applied – only on a different level. It is possible to inherit the

Model class and override their data storage behaviour. It is

possible to do the same things on different MVC/MSVC levels

by keeping the same class interfaces but changing what and how

they do. Thus, this means that all the OOP principles are still

being used and provide the same advantages that they do in

RDM. However, in this case, the abstraction level is shifted a

little bit towards higher separation of responsibilities, i.e., data

storage and its processing are separate concepts in the system

that can be changed independently.

III. WORKFLOW GENERATION FROM THE TWO-HEMISPHERE

MODEL

Fig. 1 shows an example of the two-hemisphere model for

the room booking in a hotel. The model is developed by

BrainTool [12] – a tool by this paper authors’ research group,

which gives the ability to create the two-hemisphere model and

to generate the UML class and sequence diagrams from it [13].

The two-hemisphere model contains both the information that

is necessary to work with in this system as well as information

on how the data should be processed. Data are described with

the help of the conceptual model that consists of the concepts

and their attributes. These concepts are then used in the business

process diagram that describes which processes consume what

data, and what data do they produce.

This model describes a booking process in a hotel that starts

with booking inquiry consisting of room details and book dates

(from-to). Next, the system should check the room availability

and decide if it is possible to satisfy the request. In case of a

positive outcome, personal data are requested and booking is

confirmed and stored in the database. Otherwise, booking

request is rejected, and a user is asked to revise booking details.

This process might repeat several times and could end up with

booking cancellation or successful room search followed by

already described personal data request and confirmation. The

model describes processes that are required for the

implementation of this business process as well as data that are

utilised (in form of the conceptual model).

By looking at this example, it is possible to see that the model

itself does not enforce the usage of RDM or ADM – it does not,

for example, define responsibilities for the objects in the

system, nor it defines the objects/classes at all. Thus, the authors

state that it should be possible to transform this model using

both data modelling approaches and yielding results that would

be different from the data processing approach yet should

describe the same business processes that happen in the system.

To demonstrate this approach, the authors have chosen the

UML sequence diagram [3] as a target model of transformation.

The choice of this diagram has several advantages from the

perspective of result demonstration – the UML sequence

diagram shows which objects communicate one with another in

the system, and which data do they pass between during their

communication. The UML sequence diagram should also

preserve the information that is described in the initial business

process model, and it should be possible to trace it back in order

to check the accuracy of the transformation itself.

The result of transformation of this model into the UML

sequence diagram using the algorithm described in [10] is

shown in Fig. 2 and it is based on ADM principles. This

sequence diagram corresponds to the MSVC architecture

having a single controller that communicates with the services

and a user; services in turn communicate with the database;

business entities, however, do not contain any business logic

and are not present there. Fig. 3 provides an example of how the

same process model could be transformed into the UML

sequence diagram using an RDM approach. It is possible to see

that business entities obtain the methods responsible for the

Applied Computer Systems

___2020/25

53

business logic implementation. The authors of this paper claim

that the ability to perform transformation from the two-

hemisphere model to a similar sequence diagram (or even

software code) would benefit the two-hemisphere model driven

approach.

Fig. 1. Two-hemisphere model of room booking developed in BrainTool [12].

Fig. 2. Sequence diagrams for ADM.

sd seq_ADM

Guest

BookingController

(from Class Model)

BookingService

(from Class Model)

Database

(from Class Model)

RoomService

(from Class Model)

loop

alt

[accept]

[reject]

alt

[cancel]

[revise]

opt

roomInfo(): int

confirmBooking(): int

reviseBookingRequest()

personalData(): int

requestPersonalData()

findFreeRoom(): int

cancelBooking(): int

startBookingProcess(): int

notifyRejection()

revisedBookingRequest(): int

saveBooking(): int

Applied Computer Systems

___2020/25

54

Fig. 3. Sequence diagrams for RDM.

By checking both the UML sequence diagrams against the

initial business process model, it is possible to see that all the

processes presented in it were moved to the appropriate

transformation results. Their invocation sequence is also

preserved and still can be traced to the initial data flows. Only

difference between two resulting models is objects that are

performing business logic as well as the data they pass between

them. In case of RDM, data model itself (which is derived from

the initial conceptual model) is responsible for the actions that

take place in the system.

In case of ADM, data become “only data” and are passed

between the classes that are responsible for their processing. In

other words, an approach utilising ADM distinguishes between

what is processed and what is responsible for processing. While

in case of RDM, a booking object itself obtains personal data

from a user; in case of ADM this is the responsibility of

BookingService object. Other classes behave in a similar way.

Thus, the main difference here is which object is responsible for

business logic invocation. Rich Data Model states that objects

can perform these operations, while Anemic Data Model insists

on separation of domain classes and business logic classes, i.e.,

domain objects are used only to describe necessary data

structures, thus becoming “only data”.

To be able to perform such a transformation, the authors

would like to propose several improvements to the

transformation algorithm described in [14] as well as to the two-

hemisphere model itself. Former transformation algorithm is

based on considering the process diagram of the two-

hemisphere model as a Finite State Machine (FSM). This allows

applying to it FSM minimization algorithms, such as state

reduction etc. The resulting minimized FSM, in turn, could be

used for further processing. In [14], the authors proposed to

create the regular expression out of it and later parse it to

produce the resulting artefacts. However, several problems with

such an approach were noted, and in this paper the authors

would like to present a result of further study of such an

approach.

During their research, the authors have defined several

additional algorithms that can be used for FSM that represents

process model processing. Due to the size limitations, those

algorithms are not presented here, however, the next section and

Fig. 4 provide a short insight into the results of its application

to a process model.

IV. LIST OF IMPROVEMENTS TO INTRODUCE IN TWO-

HEMISPHERE MODEL

Fig. 4 shows the so-called workflow model of the appropriate

process diagram. This model contains the information about

process invocation sequence, data these processes receive as

well as data these processes can produce. In the model itself,

processes are not part of classes (they are not appropriate class

methods), which means that it is possible to produce both RDM

and ADM code from this model. This can be achieved via

implementation of the next transformation step that could

analyse processes in this model, their inputs and outputs and

decide which of the classes should own the appropriate business

process as its method. In case of RDM, such transformation is

already present and discussed, for example, in [14] and [15].

sd seq_RDM

Guest

BookingRequest

(from Class Model)

BookingReject

(from Class Model)

Booking

(from Class Model)

Room

(from Class Model)

Database

(from Class Model)

alt

[accept]

[reject]

loop

opt

opt

saveBooking(): int

requestPersonalData(): int

startBookingProcess(): int

findFreeRoom(): int

notifyRejection(): int

cancelBooking()

startBookingProcess(): int

confirmBooking(): int

reviseBookingRequest(): int

findFreeRoom(): int

Applied Computer Systems

___2020/25

55

Fig. 4. Workflow model of the hotel booking process.

In case of ADM, however, such methods should be

developed and are one of the directions for the future research

in the area of two-hemisphere model-based approach.

However, such methods are not only direction for further

studies. By inspecting this model, it is possible to see that it

contains all the processes in a correct order grouped under loops

and possible disjoints. However, further inspection of the

workflow model will allow identifying some additional

problems that should be solved in order to improve the

transformation techniques and make the two-hemisphere model

driven approach ADM-capable.

Additional limitations that can be noted on the workflow

model presented in Fig. 4 are the following.

• Processes 4 and 5 should only be invoked if the room was

not found, i.e., process 2 invocation resulted in rejection. There

is no such information in the initial two-hemisphere model and,

thus, this information is not represented in the workflow model.

• Process 5 should not consume any data flows since it does

not require any additional data. In this case, it is possible to see

that process 5 is actually similar to the external process – it only

provides the information but does not consume anything.

Current model notation does not allow for such cases to appear.

• Process 8 should be invoked only as a result of the

invocation of process 5, if a user chooses to cancel booking.

Again, it should not consume any data flows.

• Processes 3 and 6 can be invoked in a parallel.

To successfully resolve these problems, the authors propose

the following changes to the two-hemisphere model.

• It should be possible for a single data flow to carry more

than one concept. In the presented model, this is not required,

however, in other cases this might be necessary.

• It should be possible for a data flow to have an execution

condition, i.e., guard. This will allow for further analysis of the

generated workflow to produce more accurate artefacts, such as

UML sequence diagrams or the actual code of the system.

• It is also possible that process or even a sequence of

processes might have an execution condition – again, in real life

branches in the program source code usually consists of more

than one operation. Even if data flow is executed, it should not

mean that the process it is directed into should be executed as

well.

• The given example contains a single use case and all the

necessary actions can be put in a single service. However, in

real life one system might be described with multiple process

diagrams and some of these might contain the same processes.

Using this information, it should be possible to define common

service signatures.

• It is necessary to introduce a new element to the two-

hemisphere model – control flow. Control flow is like the

existing data flow; however, it should not carry any data. It

should only be responsible for the definition of actual process

invocation sequence.

V. CONCLUSION AND FUTURE WORK

In this paper, the authors describe several limitations that are

currently present in the two-hemisphere model driven

approach, analyse those and offer several improvements to both

the initial model being used by the method and the algorithms

involved in the approach. These improvements are offered

based on the previous work in the same area as well as the

analysis of artefacts being produced by the approach at the

current moment. The authors plan to introduce these

improvements to the method soon and analyse how these will

affect the resulting artefacts.

The paper also discusses different ways of modelling the data

in the software systems – the so-called Rich and Anemic data

models that are widely used and differ in the ways how the static

part of an object-oriented system (i.e., data structures) and its

dynamic part (i.e., algorithms for the appropriate data

processing) are represented in the resulting source code. In this

paper, the authors show that the same two-hemisphere model

might be used to produce UML sequence models that support

one or another approach.

From the authors’ point of view, it is important to have all the

transformation techniques for the two-hemisphere model

flexible enough, since it might be required to produce both

ADM and RDM based code. Therefore, when working on the

improvements to the method, the authors also plan to analyse

the best way to achieve this.

(booking_request) = 1. start_booking_process();

repeat: {

 (room_info, reject) = 2. find_free_room(booking_request, revised_request);

 (reject) = 4. notify_rejection(reject);

 (revised_request, reject) = 5. revise_booking_request(reject);

}

disj{

 case1: {

 8. cancel_booking(reject);

 }

 case2: {

 (booking) = 3. request_personal_data(room_info);

 (booking) = 6. confirm_booking(booking);

 7. save_booking(booking);

 }

}

Applied Computer Systems

___2020/25

56

REFERENCES

[1] L. Leimane, O. Nikiforova, “Mapping of Activities for Object-Oriented

System Analysis”, Applied Computer Systems, 2018, vol. 23, no. 1, pp. 5–
11. https://doi.org/10.2478/acss-2018-0001

[2] O. Nikiforova, “System Modeling in UML with Two-Hemisphere Model

Driven Approach”, Applied computer systems, 2010, vol. 41, no. 1, pp.
37–44. https://doi.org/10.2478/v10143-010-0022-x

[3] OMG, UML Unified Modeling Language Specification. Available at

http://www.omg.org
[4] K. Cemus, T. Cerny, L. Matl, and M. J. Donahoo, “Aspect, Rich and

Anemic Domain Models in Enterprise Information Systems,” 42nd

International Conference on Current Trends in Theory and Practice of
Computer Science, 2016. https://doi.org/10.1007/978-3-662-49192-8_36

[5] K. Gusarovs, O. Ņikiforova, “Workflow Generation from the Two-

Hemisphere Model”, Applied Computer Systems, 2017, vol. 22, pp. 36–
46. https://doi.org/10.1515/acss-2017-0016

[6] L. Marques, “A defense of so-called anemic domain models”. Slides of

D-Lang-Silicon-Valley Meetup @ January 28, 2016. Available at
http://files.meetup.com/18234529/luis_marques_anemic_domain_model

s.pdf

[7] E. Evans, Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional, 2004.

[8] M. Fowler, “Anaemic Domain Model.” Available at

http://www.martinfowler.com/bliki/AnemicDomainModel.html
[9] N. El Marzouki, Y. Lakhrissi, O. Nikiforova, M. El Mohajir, “The

application of an automatic model composition prototype on the-Two

hemisphere model driven approach,” 2017 International Conference on
Wireless Technologies, Embedded and Intelligent Systems, WITS, 2017.

https://doi.org/10.1109/WITS.2017.7934673

[10] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view
controller user interface paradigm in Smalltalk-80”, Journal of Object-

Oriented Programming, 1988, vol. 1, no. 3, pp. 26–49.

[11] AngularJS, Developer Guide: Conceptual Overview. Available at

https://docs.angularjs.org/guide/concepts

[12] O. Nikiforova, L. Kozacenko, D. Ungurs, D. Ahilcenoka, A. Bajovs, N.

Skindere, K. Gusarovs, M. Jukss, “BrainTool v2.0 for Software Modeling
in UML”, Applied Computer Systems, 2014, vol. 16. no. 1, pp. 33–42.

https://doi.org/10.1515/acss-2014-0011

[13] O. Nikiforova, K. Gusarovs, “Comparison of BrainTool to Other UML
Modeling and Model Transformation Tools,” AIP Conference

Proceedings, vol. 1863, 2017. https://doi.org/10.1063/1.4992503

[14] O. Nikiforova, K. Gusarovs, A. Ressin, “An Approach to Generation of

the UML Sequence Diagram from the Two-Hemisphere Model”,
Proceedings of the Eleventh International Conference on Software

Engineering Advances, 2016.

K. Gusarovs, O. Nikiforova, A. Giurca, “Simplified Lisp Code Generation
from the Two-hemisphere Model,” Procedia Computer Science, 2016,

vol. 104, pp. 329–337. https://doi.org/10.1016/j.procs.2017.01.142

Oksana Nikiforova received the Doctoral

degree in information technologies (system

analysis, modelling and design) from Riga
Technical University, Latvia, in 2001.

She is presently a Professor at the Department

of Applied Computer Science, Riga
Technical University, where she has been on

the faculty since 1997. Her current research

interests include object-oriented system

analysis, design and modelling, especially the

issues related to Model Driven Software

Development.
E-mail: oksana.nikiforova@rtu.lv

ORCID iD: https://orcid.org/0000-0001-

7983-3088

Konstantins Gusarovs received the Master
degree in computer systems from Riga

Technical University, Latvia, in 2012. He is

presently the fourth year Ph. D. Student and
Researcher at the Department of Applied

Computer Science, Riga Technical

University, as well as Java Developer at
C.T.Co Ltd. His current research interests

include object-oriented software

development and automatic acquisition of

program code.

E-mail: konstantins.gusarovs@gmail.com

https://doi.org/10.2478/acss-2018-0001
https://doi.org/10.2478/v10143-010-0022-x
https://doi.org/10.1007/978-3-662-49192-8_36
https://doi.org/10.1515/acss-2017-0016
https://doi.org/10.1109/WITS.2017.7934673
https://doi.org/10.1515/acss-2014-0011
https://doi.org/10.1063/1.4992503
https://doi.org/10.1016/j.procs.2017.01.142
mailto:oksana.nikiforova@rtu.lv
https://orcid.org/0000-0001-7983-3088
https://orcid.org/0000-0001-7983-3088
mailto:konstantins.gusarovs@gmail.com

