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Introduction

In the problems of computer control and diagnosis of analog technical objects, it is necessary to find their
mathematical models from the experimental measurements of their output signals. For this purpose, there is
a necessary amount of the aprioristic information about the object, gathered during the design and industrial
manufacturing stages of the object. It is represented in the object’s technical documentation, in particular, in
the form of its transfer function. Admissions are specified on its parameters, and that allows creating a set
of operators, suitable for imitation modelling of various operational conditions of the object. On their basis,
a set of the bases of reference models, in which the spectral factors of Fourier transform, can be determined
from the experimental realizations of output signals. Such factors can give the information, suitable for
diagnosing the condition of the object.

With this purpose, various methods of approximation are applied. In particular, as such bases can lead to
solving degenerate systems of equations, orthogonal polynomials are used for the formation of the bases. As
them, in particular, orthogonal Laguerre, Legendre, Chebyshev and other polynomials are used.

It facilitates the inversion of the matrices of equation systems, but their application leads to results with
abstract contents. They do not reflect the physical properties of the identified object and their practical use
is complicated.

Therefore, there is a problem of using non-orthogonal bases that would have the best physical
interpretation. For solving this problem, it is offered to apply non-conventional methods for the inversion of
the matrices of equation systems generated on the basis of polynomial functions of any kind. Inverse
matrices are offered to find in the analytical form, not applying the traditional numerical algorithms. This
problem cannot be solved by the traditional methods. It is offered to be solved on the basis of symbolical
analytical methods with the application of symbolical combinatory models (SC models) [1, 2, 3, 8, 9, 10].
The developed new forms of algorithms should be suitable for their application in computers working in the
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modes of parallel calculations. Therefore, they should have a parallel architecture that could be coordinated
with the parallel architecture of the computer.

Symbolical combinatory model for finding Gramian matrix

The spectrum of the Fourier transform is found as a solution of the system of N conditional equations

F-a=y.
(1)

This is a system of conditional equations, and the number of equations is bigger than the number of
variables. It is folded with the application of the method of the least squares (MLS) into a system of normal
equations with a square Gramian matrix

{F-E:;}:{(FT-F)-E:FT-)/}; a=G"u; )

G =(F"-F) ;u=F""}. &

It is necessary to find the expression of the vector o of factors of Fourier spectrum. In this case, the

experimentally measured signal y(?) can be expressed as a linear combination of the functions of a known
kind

y(x):alfl(x)+0(2f2(x)+---+0{nfn(x). 4)

The vector u (3) represents a projection of experimentally measured signal on the sub-space of the

polynomial functions. It demands the numerical calculation of the values of polynomial functions on a grid

of the argument values of. The problem of finding the inverse matrix G~' = (F TF )_1 in the analytical

form is put forward.

The problem of approximation will be reduced to the representation of the output signal of the object of an
unknown analytical form by a linear combination of the functions of a known kind. As such, the polynomial
functions are considered

fi(x)=a,,+a,x+ alzx2 +4a,x";
fr(x)=a,, +a,x+ a22x2 +-ta, x";

2
fm(x) :anO +amlx+am2x +”.+amnx”'

®)
From them, the Fourier basis is made
fHi(Ax)  fr(Ax) e f,(AX)
o | HCA) LQA) e f,080 |
Si(NAx) - f,(NAx) -~ f, (NAX) ©
We use a uniform step of function quantization. The set of the argument values can be represented by an

interval of the natural series ;(N) = [(IW) - Ax]
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fl(xr)zalo+a11(r-Ax)+a12(r-Ax)2+-~-+a1n(r-Ax)”;
fo(x,) =ay +a21(r-Ax)+a22(r-Ax)2+-~-+a2n(r-x)";

fi(x,)=a +aL1(r'Ax)+aLz(7”'AX)2 +eta,, (r-Ax)".

(7
The matrix F ™" in view of the expressions (2) we shall present as
F . U(an) X A(nxm) . (8)
0 1 2 -1 r 7
xl xl xl ces xln alo azo e amO
0 1 2 n-1
X, X, X, X, ay a4y A
Nx — Nx
U™ =l x' xS A ey ay e a,,
0 1 2 -1
Xy Xy Xy xy" Ay Aoy Ayp- | )
Let’s introduce these designations in (2) and (3) as
G=F" - F=A4"M-4;, 7" =U"-U. (10)
_ _ o B - _
a=H-u; H:[(AT) -M-AIJ; M=Z" u=F".y an

Let’s define the SC model for the formation of the matrix H.

Formation of Gramian matrix of system of Fourier decomposition
We use the ordered numerical sequences from [1, 6, 7]. They will be used as coordinate systems for

allocation of sub-matrixes and argument sets of operators. Such sequences are formed on the basis of
positional Kronecker product of m sets with power n as

@ITr(m) * (1.n) = R(m,n).

(12)

It can be represented as decomposition R(m, n)

R(m,n—-m+1)= z Y(v,n—-m+1)* Arang{(pPerm *[ @Part(v)* m ]};

= (13)

¥ (v, k) = pKC(v) ¥k (14)

Y(m,n) = R(m,n—-m+1)® (0.m—-1). (15)
The following relation is observed:

W(m,n) = gKC(m)*(0.k); k=n+m—1. (16
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For the formation of the attached matrix of arbitrary order we use the system

Ims(m,n) = VY (m,n)x¥Y(m,n).

17)
This system is used as an argument set for the operator of formation positional graph structure [S5]. It
applied to find the algebraic complements of the matrix 4 on the basis of the operator @pDpv(arg)[10].

oG (¥ m,m)| x[¥(m,n) , |= pDpv[¥m,m)| x[¥mm) , [+ 4. as)

The systems of coordinates are defined in the form of lexicographic Kronecker products in the form of
vectors and matrixes. In them, the indices of rows r and columns L of the extracted sub-matrix are
specified:

Ims = RxoK; [E]i:ri [E]j3Lj- 19)
In the given problem the relation | 77| = ‘ L ‘ = m 1is observed. The components of numerical sequences (16)
are used as arguments of the operators. In particular, they can be used in operators of mapping into the
index spaces a * pAdres[¥ (m,n),|= h ,

Using (9), we shall find the Gramian matrix G (10) of the Fourier decomposition. We take into account that
the elements of the matrix Z can be represented in the form:

% (1 N %
2],,= @Sum* (LN)* drang(r + L). (20)

The SC model of positional Kronecker product of m elements (1.V) is determined taking into account

e flokco) TN =]
R(m,N) = pPerm {Z {* Arang(@Perm *[Part(v) * m]}} ‘

v=l

ey

For a uniform step Ax, the values (20) are determined from the product of polynomials. As the factors,
their values are used:

f r(n)(k AX) — @gum*|:o [ari (kAX)’]:|,

fﬁ“(k-Ax):waSum*{L"J la.. -(k-Ax)"]}

(22)
Their products we shall represent using the sequence (13).
(V) —(N) < . ) —
Z,=f,(x ) - filx )= U(Axed)- f(Ax-Dl;x o =[(LN)-Ax].
= (23)
From here we have
Z,, = gSum*|f.(AN)® f,(AN) |k e 1N ; 24)
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w, (x=1-Ax)=f(x=i-Ax)- fi(x=i-Ax).

(25)
The equation (24) is possible to represent as.
N
Z,, =) w, (A w (A= f, ((-Ax)- f, (- A).
= (26)
In it, the values of coefficients of polynomial are used:
N
ZrL = z [arO +ar1(i.A‘x)+ar2(i.Ax)2 +'“+arn(i.A‘x)n]X
i=1
N
x[ay, +a,(i-Ax)+a,(i-Ax) +-+a,,(i-A)" 1= D w,, (i-Ax).
= (27)
In (27), the sums can be extracted as
k S
q =M By ﬁk:zi .
= (28)
In view of it, the equation (27) is possible to write down as
2n m _
Z,, =, C(rL),-B,(a)'5 Cr,L), = f(Jay).
i=0 Jj=1 (29)

SC model of vector of spectral coefficients

The sequences W(m,n) are used in coordinate systems at the formation of algebraic complements of the
elements of matrices. Applying the operator @Dpv there is decomposition [5, 6, 8, 9]

i=1

k
@Dpv(arg)* R(m,N) = @Perm* {qupv(arg) * U 0 ,1;

0 .€ pKC(m) *(I.N); k= ‘5‘- (30)

The distribution of degrees over the discrete poles for a fixed component of indices of columns is done by
the rule

(oDvp{((oPerm xp " ) xL" }* ™ =g * Arang [((pDvp +p " )@ " 1)
31

Using the properties of @Dpv(arg)[1], we have
pDvp(arg)* [G(m, n) ] = @pDvp(arg) * [goPerm *W(m, n)] . (32)

The coordinate vectors are used as arguments of the operators corresponding to the extracted sub-matrix
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(onv(;x o L)*0 = [5 * Arang((oPerm *;)J ollr* lg * Arang(Z)J.

(33)
As the indices of the degrees, the elements of coordinate components are used
(ﬁ\/)* Arang(St); St = rx oZ; re Y(k,n); Le Y(k,n). (34)
The coordinate components we shall represent as decompositions of regular fragments
r= gPart(1.5)*7" = | J z @ (Lk).
= (35)

Then the algebraic complements of Z are determined with the help of the operators @F] g(U m ;) [2,3].In

the given problem, such algorithm is realized on the basis of the operator @Dpv(arg)applied to the
components of the set

@Dpv(arg) * G(m,n +m —1) = pDpv(arg) * ||¢Perm *W(m, n)|| =

= @Perm* [(onv(arg) *W(m, n)} (36)

For the SC models of the inverse matrix, the operator @Fg(m,,m,) Y (v,,m), e ¥ (m—v,,m) =n is
used. Therefore, it is possible to use the following forms of operators:

oPart()*n =) (i.n-1) (ng{L"J (i.n—l)}*[‘P(i,n)@‘{’(n—i,n)].

i=0 i=0

(37)
The operators are applied to every component 0 e Y(n,N)
pFg(ims)* 0 = pllr - *lpllr*(0 * Arang(z))) FG@ )} 6 & ¥(m,N): 8)
@Dpv * [GN * Arang (pPrm *7_”)] = @Sum * {[(ng *W(v,, n)]@
RpFg*¥(n—-v,,n)|®86.}. (39)
This decomposition can be realized with the help of graph structures [5]
PGr(k, K, )G = |pDvp(rx o L) * ¥ (k,,m)| @
®lpDvp(rxo ) * Py n):  k +ky =n. w0
In view of the use of the positional principle, we shall get
goDvp{(goPerm x " ) xL" }* R(m,n) =
= Sum* {U Y(m,n) * (pArang[(pPerm T )]}.
" (41)

The SC model for the algebraic complement (» L) of the element Gramian matrix G (3) we shall determine
using the algorithm [1]
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Jo=u,Zuy; 42)

1 = oDpo(Fmm), [ 475 = pDp|(F(m,m), [* 4; @)

M = Dpv{( () <o Fmm) | 2). (#4)

The vector of spectral coefficients a= f (Z)) is a function of the values of the matrix (42). Its multipliers
are determined by the abovementioned algorithms

1@

o= gsum(ictm)*|| w @c |OM |ie=[u, u, - u,lu.

H,®c
) } (43)
Here the summation of the elements by the columns is done. From here follows, that the algorithm for
finding the vector of spectral coefficients has the form of a decomposition. Therefore, it has a parallel
structure and can be used in computers working in the modes of parallel calculation.

Conclusions

In the derived analytical expression for the inverse matrix of the equation system, the vector of the degrees
of the argument step is allocated in the direct form. This vector can be allocated and calculated
independently, so it is expedient for not entering into the overall computing process. Such approach can be
used as a regularization method for maintaining the numerical stability of the algorithm and preventing the
degenerate situations.

The application of the method of SC models allows developing the algorithms of polynomial approximation
in the form of decomposition. It allows applying them in computers working in the modes of parallel
calculations.

The obtained algorithm possesses the properties of recursivity and it allows applying economic methods of
programming. Efficiency of the received algorithms has been verified up by a numerical experiment for the
case of polynomial approximation using Hilbert matrix, which is the standard of bad conditionality. It is
believed, that finding the inverse matrix, with order greater than 10™, is impossible. The developed results
have allowed finding the 20" order inverse matrix with the 100% accuracy.
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G. Burovs. Skaitliski stabils simbolisks kombinatoriskais polinomialas aproksimacijas modelis identifikacijas
un imitacijas modelésanas probléemam

Raksta apskatita analogo tehnisko objektu identifikacijai izmantoto eksperimentalo datu aproksimdcija izmantojot
patvaligas formas polinomialas funkcijas. Simbolisko kombinatorisko modelu izmantosana [ava analitiska forma iegiit
algoritmu vienddojumu sistéemu matricu, kas veidotas no Sadam funkcijam, invertésanai. Tas Jauj izmantot
netradicionalds algoritmu regularizdcijas metodes un palielindt to noturibu pret troksnu iedarbibu. legiiti teorétiskie
rezultati, kas Jauj tiesa veida izdalit faktorus, kas noved pie degenerétu situdaciju rasanos. Tas lauj skaitjoSanas
procesu padarit novérojamu un korigét ta ipasibas. Probléma tika risindta nemot véra algoritmu izmantoSanu
modernajos datoros, kas darbojas paralélos skaitlosanas rezimos. Algoritma darbiba tika parbaudita ar skaitlisku
eksperimentu, kas pieradija ta efektivitati. Ar 100% precizitati tika aprékinata 20.kartas inversa Hilberta matrica,
izmantojot to polinomialai aproksimdcijai. Tiek uzskatits, ka iegiit Sadu rezultatu matricam ar kartu lielaku par 10 nav
iespejams.

G. Burov. Numerically stable symbolical combinatory model of polynomial approximation for problems of
identification and imitation modelling

The problem of the approximation of experimental data for identification of analog objects with the help of polynomial
functions of any kind is considered. The application of symbolical combinatory models has allowed creating an
algorithm for inverting the matrices of the equation systems made of such functions, in the analytical form. It allows to
apply non-conventional methods of algorithm regularization and to increase their noise tolerance. The theoretical
results, allowing allocating, in the direct form, the factors leading to degenerate situations, are developed. It allows to
make computing process observable and to correct its properties. The problem was solved, taking into account the
application of algorithms in modern computers working in the modes of parallel calculation. The validity of the
algorithm has been verified by a numerical experiment and its efficiency is proved. Hilbert’s inverse 20™ order matrix,
used for polynomial approximations has been calculated with the 100% accuracy. It is believed, that obtaining such
result for the matrices with the order greater than 10" is impossible.
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I'. BypoB. UncieHnHasi ycTOYMBOCTH CHMBOJIbHON KOMOMHATOPHOI MO/IeJIM OJTUHOMHUATILHOM
AMMPOKCUMAHH IS 3271249 WICHTH(UKATHA 1 MMHTAIIMOHHOTO MO/IeITMPOBAHUS

Pewena 3a0aua annpoxcumayuy 5KCNEPUMEHMATLHBIX OAHHBIX UOEHMUDUKAYUU AHATO208bIX 0OBEKMOE ¢ NOMOWbIO
NONUHOMUATLHBIX QYHKYUL NPOU38OIbHO20 6udd. [Ipumenenue CUMBONbHLIX KOMOUHAMOPHBIX MOOENel NO360AUL0
ROIYUUMb AI2OPUMM 0OPAWEHUs MAPUY CUCMEM YPAGHEHUL, COCAGIEHHbIX U3 MAKUX QYHKYUll, 8 GopmyrbHOM
sude. Dmo no3eonsiem NPUMEHUMb HEMPAOUYUOHHbIE MEMOObl PeyIapu3ayuu  al2opummos U HOGbICUNb UX
nomexoycmouuugocms k wiymam. Ilonyuensl meopemuyeckue pe3yibmantvl, HO360IIOUUE 6 ABHOM BUOE BbIOCIUMD
Gakmopul, npueoosuUe K 8bIPOIHCOCHHBIM CUMYAYUIM. MO NO36051€N CONAMb GbIYUCIUMENbHII NPOYECC COelamsb
HaOI00aeMbIM U KOPPEKMUPOBAMb €20 CGOUCMSEA. 3a0ayd pewanace u3 Ycioguil NPUMEHEHUs an20pUmmos Ons
pewienusi 8 cogpemennvix OBM, pabomarowux 6 pedcumax napaiienvHvlx eviyucienuid. Pabomocnocobnocmo
aneopumma OvLIA NPOEEPeHa YUCTEHHbIM IKCNEPUMEHMOM U 00KA3aHa e2o 3¢ gekmuenocmy. bvina paccuumana co
100% mounocmoro obpamnas mampuya lunvbepma 20 nopsadka, npumensemas Oasi NOJUHOMUATLHOU
annpokcumayuu. Cuumaemcs, 4mo ROAYHUMb MAKOU pe3yTbmam OAsi Mampuy, umerowux nopsoox eviute 10 -2o
HeB03MOICHO.
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