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ABSTRACT 

Electricity markets are an important tool in ensuring efficient operation of the modern 
power systems. They enable market participants to maximize the benefits they can receive from 
trading, at the same time bringing welfare improvements to the market as a whole. However, 
the participants need to optimize their processes to avoid being outcompeted by other traders. 
Furthermore, the efficient operation of the market also depends on bodies organizing and 
regulating it, i.e. market operators, system operators and policy-makers. Often there are 
multiple objectives that the actors involved in electricity market operation have to pursue.  

In this Thesis, the topic of participation in the electricity market and its operation is viewed 
from multiple sides, i.e. decision-making support methods, algorithms and tools are proposed 
for both electricity market participants and policy-makers. The subject matters covered are 
motivated by academic interest, as well as practical necessities expressed by actors within the 
power industry in Latvia. 

Consequently, decision-making methods, algorithms and tools related to large-scale energy 
storage technologies (scheduling, sizing) and cascaded hydropower plants (scheduling, 
hydroelectric set selection), as well as heating demand forecasting, which is a prerequisite for 
efficient combined heat and power plant participation in an electricity market, are developed in 
this Thesis. On the other hand, for the sake of policy-makers, decision-support is realized in the 
form of modelling, assessment and recommendations in regards to the influence of large 
cogeneration plants on the electricity market and, subsequently, the options to change the 
support these plants are subjected to. A common feature of these topics is the aim to increase 
the efficiency of electricity market operation, albeit from different perspectives. 
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ANOTĀCIJA 

Elektroenerģijas tirgi ir nozīmīgs rīks moderno energosistēmu efektīvas darbības 
nodrošināšanā. Tie ļauj tirgus dalībniekiem maksimizēt ieguvumus no tirdzniecības, tanī pat 
laikā palielinot arī kopējo labumu. Tomēr tirgus dalībniekiem nepieciešams optimizēt savus 
procesus, lai nezaudētu konkurences cīņā ar citiem tirgotājiem. Turklāt efektīva tirgus darbība 
ir atkarīga arī no uzņēmumiem un iestādēm, kas organizē un regulē to, t.i., tirgus operatoriem, 
energosistēmas operatoriem un politikas veidotājiem. Nereti elektroenerģijas tirgus darbības 
nodrošināšanā iesaistītajiem ir dažādi mērķi, ko nepieciešams sasniegt. 

Šajā disertācijā dalība elektroenerģijas tirgū un tā darbība ir apskatīta no vairākām pusēm, 
t.i., tiek piedāvātas lēmumu pieņemšanas atbalsta metodes, algoritmi un rīki gan 
elektroenerģijas tirgus dalībniekiem, gan politikas veidotājiem. Apskatītās tēmas motivē gan 
akadēmiska interese, gan praktiskās vajadzības, kuras paudušas Latvijas enerģētikas industrijā 
iesaistītas institūcijas. 

Tādēļ darbā izstrādātas lēmumu pieņemšanas atbalsta metodes, algoritmi un rīki saistībā ar 
liela apjoma enerģijas akumulācijas tehnoloģijām (darbības plānošana, ietilpības izvēle), 
kaskādē esošām hidroelektrostacijām (darbības plānošana, hidroagregātu izvēle) un ar 
siltumenerģijas pieprasījuma prognozēšanu, kas ir priekšnosacījums efektīvai koģenerācijas 
staciju dalībai elektroenerģijas tirgū. No otras puses, politikas veidotāju lēmumu pieņemšanas 
atbalsts realizēts ar modelēšanu, novērtējumu un rekomendācijām saistībā ar lielo koģenerācijas 
staciju ietekmi uz elektroenerģijas tirgu un no tā izrietošām iespējām mainīt šīm stacijām 
piešķirto valsts atbalstu. Šo atšķirīgo jautājumu kopīga pazīme ir mērķis palielināt 
elektroenerģijas tirgus darbības efektivitāti, taču no dažādām perspektīvām. 
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INTRODUCTION 

Topicality of the research 

During the previous decades, power systems all around the world have experienced 
significant transformations, evolving from centrally coordinated monopolies to deregulated 
liberalized markets. Competitiveness-driven wholesale electricity spot markets have led to 
considerable research efforts towards improving the short-term efficiency of individual power 
generators, which is necessary for them to have an edge over the competitors [1]. 

However, nowadays another major transformation is taking place, whereby increasingly 
more renewable energy sources are introduced in the power systems. As many of them (e.g. 
wind, solar) are intermittent in nature, this creates new issues to be solved both from the power 
system operators’ and the electricity market participants’ point of view [2]. On the one hand, 
the uncertainties related to intermittent generation forecasts have a sizable effect on electricity 
prices [3], while, on the other hand, development of these sources opens the door for new 
promising research directions, e.g., in energy storage utilization, generation and demand side 
flexibility, advanced forecasting techniques and improved energy system modelling [4]–[6]. 

Nevertheless, ultimately, the purpose of an electricity market is to provide reliable 
electricity at the least cost to the consumers [7]. To this end, measures can be taken by at least 
three different groups of actors. Firstly, nowadays electricity consumers themselves have 
significantly more power to influence their energy costs through informed selection of 
electricity retailer and tariff plan, energy efficiency measures and even participation in various 
demand response programs. Secondly, operators of power plants and energy storage facilities 
can increase the overall power system and market efficiency by striving to optimize their own 
scheduling techniques. And, finally, even in a deregulated electricity market, power system 
operators and policy-makers have significant impact on the operation of the electricity market 
and they can influence how it affects electricity end-consumers. 

The research work presented in this Thesis concerns two of the groups of actors mentioned 
– generation/storage operators and policy makers.  For the former, methods, algorithms and 
tools to optimize their participation in an electricity spot market have been proposed and tested, 
particularly covering peculiarities related to large-scale energy storage technologies 
(scheduling, sizing) and cascaded hydropower plants (scheduling, hydroelectric set selection), 
as well as heating demand forecasting, which is a prerequisite for efficient combined heat and 
power plant participation in an electricity market. For the latter, i.e., policy-makers, decision-
support is realized in the form of modelling, assessment and recommendations in regards to the 
influence of large cogeneration plants on the electricity market and, subsequently, the options 
to change the support these plants are subjected to. A common feature of these topics is the aim 
to increase the efficiency of electricity market operation, albeit from different perspectives. 

Admittedly, there is also a significant number of other topical research problems relevant 
in light of the ongoing changes in power system and market operation which could and should 
be addressed. Among others, these topics include setting up and optimizing flexibility markets 
for innovative system services (e.g., congestion management), devising and assessing ways for 
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active involvement of electricity consumers and prosumers in system balance provision, 
establishing effective and fair incentives to aid in speedier and sustainable transition towards 
fully renewable energy use etc. Some of these topics have been tackled by the author in other 
research projects the results of which have not been included in this dissertation. However, the 
particular objects of study selected and research tasks undertaken for this Thesis and 
subsequently included in it were motivated by two main factors. Firstly, the author’s personal 
interest in the subject matters, e.g., the work on hydropower plant scheduling is a continuation 
of research started during the development of the Master’s Thesis. Secondly, practical 
considerations, whereby the topics studied were motivated by research projects and contract 
work carried out by the Institute of Power Engineering with active involvement of the author. 
Consequently, the relevance of the tasks undertaken follows from the interest shown by project 
financing bodies and industry.   

This work fits in both the international and national research landscape in terms of the topics 
covered and contributions offered in the overall field of power engineering. Consequently, it 
builds on and is influenced by the work of foreign, as well as Latvian researchers, such as 
B. Zakeri, J. P. S. Catalão, H. Abgottspon, C. Johansson, H. Ferreira, A. Sauhats, O. Linkevics, 
A. Mahnitko, K. Gerhards, R. Petrichenko, and others. 

The hypothesis, objective and tasks of the Thesis 

The hypothesis of the Thesis: application of well-functioning decision-making support 
methods, algorithms and tools by power plant operators and policy-makers can increase the 
benefits from efficient electricity market operation both to individual electricity wholesale 
market participants (e.g., storage and generator operators) and to the end-consumers at large. 

The objective of the Thesis: development, testing and application of decision-making 
support methods, algorithms, and tools capable to bring benefits to electricity wholesale market 
participants and electricity end-consumers. 

The tasks of the Thesis: 
1) To devise and on the basis of case studies test a method and algorithm for the 

optimized scheduling of and decision-support for large-scale energy storage plants 
participating in electricity wholesale market. 

2) To improve and subsequently validate an algorithm and tool for cascaded 
hydropower plant optimized scheduling, including hydroelectric set selection 
subproblem and multi-objective approach. 

3) To devise and apply a method for the assessment of large combined heat and power 
plant impact on the electricity market price and evaluation of options to reduce state 
support received by such plants, in order to support policy-makers’ decision-making 
process. 

4) To devise and test a computationally inexpensive heating demand forecasting 
algorithm to aid the scheduling decision-making of combined heat and power plant 
operators. 
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Research methods and tools 

1. For energy large-scale storage plant modelling and storage optimization, the MATLAB 
scripting environment has been used, in conjunction with its Global Optimization 
Toolbox, and, particularly, the Pattern Search algorithm. 

2. For cascaded hydropower plant modelling, the software tool OPTIBIDUS-HES 
developed by the Institute of Power Engineering of Riga Technical University (with 
participation of the author of this Thesis) has been used. As the tool is implemented in 
the MATLAB environment, advantage of its add-ons, such as the Statistics and Machine 
Learning Toolbox (for artificial neural network implementation) and the Optimization 
Toolbox (for utilization of its linear programming and Quasi-Newton methods) was 
taken. A Dynamic Programming method has also been implemented by the author for 
the last stage of scheduling optimization. 

3. Additionally, for combined heat and power plant as well as electricity market modelling 
purposes, the Microsoft EXCEL software has been used. It was also utilized to carry out 
Pearson’s correlation analysis. 

4. Finally, multiple linear regression method was used in devising an algorithm and tool 
for the forecasting of heating demand. 

Scientific novelty 

The scientific novelty of the research presented in this Thesis can be summarized by the 
following points: 

1. An energy storage scheduling model suitable for a number of applications has been 
devised. Case studies based on data from the Latvian bidding area of the Nord Pool 
market showed that while the price spread there can be efficiently exploited for the 
profitable operation of existing large-scale storage plants, it is unlikely sufficient for the 
construction of new plants for price-arbitrage alone, and additional revenue streams 
would need to be explored (for example, from providing ancillary services to 
transmission system operators). 

2. A multi-stage cascaded hydropower plant scheduling algorithm has been improved with 
an application of dynamic programming for unit selection and multi-objective 
considerations. The overall model and its implementing tool are well suited for further 
research endeavors. 

3. The assessment of electricity market price peculiarities and combined heat and power 
plants’ role in it adds to the literature on state support impact on the electricity market, 
by confirming that, in some instances, such support can be beneficial to electricity 
consumers, but, nevertheless, it can and should be reassessed. 

4. A computationally inexpensive heating demand forecasting algorithm has been 
proposed, well suited for applications where model running time is of essence. 
Furthermore, several parameters of the model have been tested and their usefulness 
assessed. 
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Practical significance of the research 

The work carried out during the development of this Thesis as well as its results have 
contributed to a number of research projects: 

 National research programme project “Energy efficient and low-carbon solutions 
for a secure, sustainable and climate variability reducing energy supply 
(LATENERGI)” (2014–2017); 

 The Latvian Council of Science project “Management and Operation of an 
Intelligent Power System (I-POWER)” (2018–2021); 

 National Research Programme “Energy” project “Innovative smart grid 
technologies and their optimization (INGRIDO)” (2018–2021); 

 National Research Programme “Energy” project “Future-proof development of the 
Latvian power system in an integrated Europe (FutureProof)” (2018–2021); 

 European Union’s Horizon 2020 research and innovation programme project “TSO-

DSO-Consumer INTERFACE aRchitecture to provide innovative grid services for 
an efficient power system (INTERRFACE)” (2019–2022). 

 
Furthermore, author’s contributions to the hydropower plant scheduling model, especially 

in terms of the dynamic programming application, have been implemented in the software tool 
OPTIBIDUS-HES, and a version of the heating demand forecasting algorithm has been 
incorporated in a software tool OPTIBIDUS-TEC, meant to aid in the decision-making process 
of combined heat and power plant operators. These two tools were developed by the Institute 
of Power Engineering of Riga Technical University (with the author’s participation) in a 
contract work for the electricity generation company Latvenergo AS. 

Finally, the results of the electricity market price and cogeneration plant support analysis 
were incorporated by the Ministry of Economics of Latvia in their “Conceptual Report on 
Complex Measures for the Development of the Electricity Market”, whereby the policy-makers 
offered options for reduction of support payments. Following the conceptual report, significant 
changes were made to the capacity payment system in Latvia. 

Author’s personal contribution 

The energy storage optimization model was devised, and the subsequent case studies were 
carried out together with Prof. A. Sauhats, Assoc. Prof. O.Linkevics, R. Petrichenko and 
Z. Broka. The author contributed to all the stages of this work, but particularly in the 
conceptualization of the model and its development into a MATLAB-based software tool. The 
author also interpreted and performed analysis of the case studies’ results. 

Work on the hydropower plant modelling and optimization tool was carried out by a team 
from the Institute of Power Engineering of Riga Technical University led by prof. A. Sauhats. 
The author contributed to the validation of the first stages of the multi-stage approach, as well 
as conceptualized and implemented in the program the last stage, whereby dynamic 
programming is used for hydroelectric set selection. Most of the results presented in the 
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respective chapter were obtained and assessed by the author in close collaboration with 
R. Petrichenko and Z. Broka. 

The electricity market and cogeneration plant modelling was carried out together with 
Z. Broka. The author developed the calculation model in Microsoft EXCEL environment and 
ran the necessary experiments. He also partially participated in gathering the necessary input 
data and in the analysis of the simulation results. 

Finally, work on the heating demand forecasting technique was carried out together with 
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Finally, part of the results presented in this Thesis are published in the following online 
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Volume and structure of the Thesis 

The Doctoral Thesis is written in English. It contains four main chapters, 24 second-level 
subchapters, 44 third-level subchapters, conclusions and a bibliography with 149 references. 
The Thesis also contains 62 figures and 19 tables. The volume of the Thesis is 117 pages. 

Chapter 1 is dedicated to large-scale storage modelling. It lays out the case for energy 
storage in Latvia and Lithuania, also describing the currently available large-scale storage 
facilities as well as giving attention to prospective future options. The crux of the chapter 
describes an approach to energy storage plant modelling and assesses the application of energy 
storage in various conditions on case studies basis. 

Chapter 2 deals with hydroelectric power plant modelling. It describes the multi-stage 
scheduling optimization algorithm, its validation and the addition of a dynamic programming-
based unit commitment module. The chapter also contains a case study with a further advanced 
model, whereby multi-objective capability has been implemented. 

Chapter 3 describes CHP plant modelling to assess impact on electricity market prices. It 
contains a thorough discussion and analysis of the factors influencing electricity market price. 
However, the main part of the chapter is devoted to an explanation of the methodology used 
and the results of scenario-based analysis. 

Chapter 4 is dedicated to heating demand forecasting. It contains both the model 
description and the results of various forecasting tests carried out. 

Finally, the overall results of the Thesis are summarized in Conclusions. 
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1. LARGE-SCALE STORAGE MODELLING 

1.1. Motivation for energy storage in Latvia and Lithuania 

Most of the electrical energy produced in Latvia and Lithuania is traded in the Nord Pool 
power market. The latter joined the exchange in 2012, whereas the former – in 2013. Nord Pool 
is the largest electrical energy market in Europe bringing together the producers, traders and 
consumers of the Nordic and Baltic countries [8]. 

In order to account for congestion in the transmission network, the market is separated into 
several bidding areas, each country being its own area. Norway, Denmark and Sweden is an 
exception to this, however, as due to their low population density and large geographic scope 
congestion can happen within the country and thereby they are each divided further into 
multiple bidding areas, as displayed in Fig. 1.1. 

 

Fig. 1.1. The Nordic and Baltic bidding areas of Nord Pool. 

While most of the areas in Nord Pool are well integrated and high price differences caused 
by insufficient transmission capacities are rather the exception than the norm [9], the situation 
in the Latvian and Lithuanian power systems has proven to be different. In Table 1.1, the 
proportion of hours annually when the day-ahead (Elspot) electricity market price in the Latvian 
bidding area equals that of a neighboring bidding area is shown. It can be noticed that only in 
the last four years the differences with the SE4 (South of Sweden) and FI (Finland) areas have 
decreased and the prices have become more often equal than different. Indeed, if, in 2014, only 
for 11.14% of hours the price in LV was equal to the price in SE4, in 2019 it is already 59.19%. 
In fact, the situation was even better in 2017, when for 66.28% of hours the price was the same. 
Similarly, in regards to Finland, the proportion of hours with the same price as in LV has risen 
from 23.70% in 2014 to 82.52% in 2019. The same is true for the EE (Estonia) area – from 
30.39% to 94.21%. The main reason for the increase of price similarity across the areas is 
primarily better network integration. Especially noted should be the commissioning of the 
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NordBalt cable linking LT and SE4 at the end of 2015. Nevertheless, Table 1.1 and Fig. 1.2 
also clearly show that Latvian and Lithuanian price areas have always been very well integrated 
and, within the six years compared, there has never been different price for more than 5.87% 
of hours annually.  

Table 1.1. Proportion of hours with the same day-ahead electricity price as in Latvia 

Year  

Area 
2014 2015 2016 2017 2018 2019 

SE4 11.14% 10.88% 43.69% 66.28% 64.29% 59.19% 

FI 23.70% 26.62% 62.67% 80.90% 69.00% 82.52% 

EE 30.39% 33.95% 70.80% 82.04% 74.01% 94.21% 

LT 99.67% 99.17% 96.51% 94.13% 97.60% 97.10% 

 

 

Fig. 1.2. Annual percentage of hours with day-ahead price equal to LV bidding area. 

In essence, we can conclude that the Latvian and Lithuanian areas have been somewhat 
isolated from the rest of the Nord Pool, but the situation has notably improved with increased 
interconnector development. The same conclusion can be drawn from Fig. 1.3 which is also 
constructed from Nord Pool historical data [9]1.  

 

Fig. 1.3. Day-ahead price monthly averages in select bidding areas. 

Additionally, it shows that the limited access to the Scandinavian markets rich in cheap 
hydropower resources results in the electricity price consistently being higher in Latvia and 
Lithuania than in the other bidding areas. Both countries are net importers of electrical energy, 
especially since the closure of Ignalina nuclear power plant in 2009. Latvia does occasionally 

                                                 
1 Price data was extracted from the corresponding Elspot Prices annual files with hourly resolution. 
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have power to export, but only during the spring flood season or in exceptionally wet years, 
such as 2017, when it was possible to cover 101% of the national demand with local generation 
mainly thanks to the cascaded hydropower plants (HPPs) on the Daugava river [10]. Overall, 
there is a lot of variability in annual production in the hydroelectric plants in Latvia as can be 
seen in Fig. 1.4 [11]2. This can at least partially be explained by the size of the reservoirs of the 
Daugava HPPs because of which they are essentially poundage HPPs, i.e., the storage capacity 
is insufficient for seasonal regulation and is more suitable for one or two week-ahead planning. 

 

Fig. 1.4. Electricity produced annually in Daugava HPPs. 

Furthermore, while the differences between day-ahead prices among various bidding areas 
have notably decreased over the years, this effect relies strongly on the available 
interconnection capacities between bidding areas. When interconnectors are out of service or 
operate at reduced capacity, electricity market prices reflect this in sharp price peaks at times 
of high demand. This is analyzed in detail in Chapter 3.2.  

1.1.1. Renewable energy integration 

The above mentioned reasons illustrate the potential necessity for developing electrical 
energy storage options in the region. While the limited interconnectivity problem might be at 
least partially mitigated as further inclusion of the Baltic power systems into the European grid 
is realized (synchronization with the grid of Continental Europe is planned by 2025 [12]), these 
developments are likely to only increase the value of storage options, especially since the 
European Union is moving towards decarbonizing its economy and significantly increasing the 
share of renewable sources in its energy balance. The previous target of at least 27% share of 
renewable energy in final energy consumption by 2030 was revised to an even more ambitious 
32% target in the revised Renewable Energy directive in 2018 [13]. 

This, however, introduces new issues for power system operators and market participants 
as a significant portion of the renewable energy sources are intermittent in nature, e.g. wind, 
solar and to some extent also run-of-the-river hydropower. Even though the current penetration 
of wind and solar energy in Latvia is small, it has rapidly grown in Lithuania (2.49% of total 
electricity production in 2019 in the former [10] and 42.23% in the latter [14]). There is a trend 

                                                 
2 Fig. 1.4 is constructed using data from the Unaudited Condensed Financial Statements of AS Latvenergo 

available in reference [11]. 
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for the deployment of intermittent renewable energy technologies to increase in the region. 
Fig. 1.5 [15], [16] shows how the installed capacity of wind and solar has grown fivefold from 
127 MW to 695 MW within the last ten years in Latvia and Lithuania. 

 

Fig. 1.5. Installed power of renewable energy sources in Latvia and Lithuania3. 

Nevertheless, there is still a lot of untapped potential. For instance, Wind Europe projects 
in their Central Scenario the installed wind power capacity to reach 0.5 GW in Latvia and 
1.1 GW in Lithuania by 2030 [17]. Furthermore, the theoretically possible wind power 
capacities are even more significantly higher. In a recent, comprehensive study, where 
Enevoldsen et al. [18] examined the wind power potential in Europe based on available 
landmass, they estimated the maximum potential installed onshore capacity to be 288 GW and 
196 GW in Latvia and Lithuania respectively. 

Energy storage technologies have a significant role to play to accommodate and better 
integrate such rapidly developing intermittent energy sources like wind and solar in the power 
system. 

1.2. Currently available large-scale energy storage options in the region 

1.2.1. Pumped storage power plants 

Pumped storage hydroelectric power (PSHP) plants are the oldest and most widely used 
electrical energy storage technology. More than 99% of the storage capacity in the world can 
be attributed to PSHP plants [19]. Their high popularity can be explained by the maturity and 
relative simplicity of the technology – in accumulation mode water is pumped from the lower 
to the upper reservoir, whereas in generation mode it is released and discharged through 
turbines. The most important requirement for pumped storage is the availability of locations 
where sufficiently high elevation between the upper and lower reservoirs can be achieved, 
which is needed for effective water head. PSHP plants can be built as standalone facilities (pure 
pumping) or some pumping capacity can be installed in conventional reservoir hydroelectric 
plants. 

                                                 
3 The data is presented by type of source and the numbers are combined for Latvia and Lithuania. Daugava 

HPPs are excluded from the chart as their sum capacity (1536 MW) far exceed the other sources combined. The 
data for Latvia is extracted from statistical table ENG090. Electrical capacity and produced electricity from 
renewables, but for Lithuania – from Electrical capacity. 
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Currently the only pure pumping plant in the Baltics is located in Lithuania – the Kruonis 
PSHP. It has four reversible pump/turbine units and their total installed capacity constitutes 900 
MW in both pumping and generation mode [20]. Commissioning of a fifth unit is under 
consideration [21]. When the upper reservoir has been filled, the Kruonis PSHP can discharge 
at rated power for about 12 hours. 

From countries participating in the Nord Pool, only Norway, Sweden and Lithuania have 
pumped storage capability [22]. Besides, in Norway, pumps are installed as addition to their 
large conventional reservoir hydroelectric power plants (HPPs) and the pumping/discharging 
cycle is seasonal in nature. However, the Kruonis PSHP in Lithuania is pure pumping type and 
schedules its operation on daily and weekly cycles. 

1.2.2. Reservoir and poundage hydropower plants 

In Latvia, on the other hand, there is significant conventional poundage hydroelectric power 
capacity. The scheme of three hydroelectric power plants on the Daugava River (total capacity 
above 1500 MW) comprises approximately 30 to 50% of the total annual electrical energy 
production in the country, but the exact amount differs each year depending on its wetness (as 
explained in Fig. 1.4). It should be noted that one of the cascaded plants (Plavinas HPP) is one 
of the largest in the European Union by installed capacity [23]. 

While not a storage option in the most traditional sense, reservoir and poundage HPPs 
without pumping capacity can still provide similar services to conventional storage plants by 
increasing or decreasing their production, as when generation is halted, water is accumulated 
in the reservoirs. Granted, there are several constraints that limit the flexibility of poundage 
HPPs compared to reservoir HPPs, namely, the risk of overflowing when inflow is large and, 
conversely, limited production capabilities when inflow is low. This is due to the fact that the 
reservoir size for poundage HPPs only allows regulation and planning with a scope of one to 
several weeks, while large reservoir HPPs have storage capabilities enabling even seasonal 
planning. There have been a number of studies on construction of pumping station in Plavinas 
HPP or building new PSHP on Daugava river [24]. 

There are no other large or medium scale electrical energy storage facilities in either Latvia 
or Lithuania. However, there are some notable options of storing energy in different mediums, 
particularly, underground gas storage (UGS). Currently there is one active UGS site in Latvia 
– Inčukalns UGS which stores natural gas imported from Russia. Thanks to unique geological 
formations – porous sandstone layers – there exist several other sites in Latvia where 
underground storage might prove to be technologically feasible. This is potentially interesting 
not only in terms of natural gas storage, but also in developing power to gas conversion to 
prevent intermittent renewable generation curtailment or investing in compressed air energy 
storage (CAES). 
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1.3. Prospective alternative large-scale energy storage options 

1.3.1. Compressed air energy storage 

The operation of a CAES plant has certain similarities to a conventional gas turbine based 
power plant, the difference being that CAES decouples the compression and expansion cycles 
of a gas turbine into separate processes that occur at different time [25]. Cheap electricity is 
used to compress ambient air. It is then cooled via intercoolers and stored in underground 
caverns. In the generation phase the compressed air is preheated and mixed with natural gas, 
burned in combustion chamber and expanded through a multistage turbine-generator. This 
setup allows a CAES plant to generate three times more electricity than a simple cycle natural 
gas power plant using the same amount of fuel. Until recently, there were only two large-scale 
CAES plants in the world – Huntorf, Germany (290 MW) and McIntosh, USA (110 MW) [26], 
however, since then several other projects have received funding or government approval. 

The necessity to burn fuel in the generation phase is the most obvious deficiency in the 
conventional CAES technology, as this fuel is most often natural gas. There are, however, plans 
to solve this issue by introducing advanced adiabatic compressed air energy storage (AA-
CAES) which strives to eliminate the need for a combustor. This is achieved by storing the heat 
from the compression and using it during the expansion process. The main technical challenges 
in AA-CAES development are designing cost-effective thermal energy storage and high-
pressure compressors capable of handling increased compression temperatures [26]. 
Nevertheless, if the need for fossil fuel combustion is eliminated AA-CAES can be viewed as 
a near closed-loop storage and thus the modeling of its operation becomes similar to other 
storage technologies, especially, pumped storage. 

1.3.2. Hydrogen storage 

The idea of using hydrogen gas as a storage medium has gained a lot of attention lately in 
context of accommodating renewable energy. Hydrogen can be produced in the electrolysis 
process using either cheap off-peak electricity or excess power produced by intermittent 
sources. 

Hydrogen can afterwards be stored in various forms, e.g., as a gas, liquid or within metal 
hydrides. It can be injected into the natural gas grid or contained in tanks for small- and 
medium-scale and underground for large-scale storage. The latter is especially interesting for 
the Latvian case as there exist several unique geological locations (Fig. 1.6 [27]) where gas 
storage might be possible in porous sandstone layers. One of these sites, Incukalns UGS, is 
currently being used for natural gas storage while other sites have been or are being investigated 
for the same purpose. 

Stored hydrogen can later be used in industry, transport or converted back to electricity 
employing either fuel cells or gas turbines. In this study, we consider a hypothetical power-to-
gas-to-power plant which uses electrolysis for hydrogen production and gas turbines for re-
electrification. 
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Fig. 1.6. Potential underground gas storage sites (in red) in Latvia. 

1.4. Large-scale storage optimization methodology 

1.4.1. Storage optimization in scientific literature 

One of the most important input parameters when estimating the feasibility of a storage 
plant is its ability to provide positive cash flow when operating in electricity market. In this 
study we assume that the owners of storage plants strive to increase their profit and thereby try 
to optimize their operation. There are several approaches in scientific literature to solving the 
task of storage plant scheduling optimization. 

For instance, the authors of [28] deal with the problem of devising optimal bidding 
strategy for a multi-unit pumped storage plant. They propose a solution employing evolutionary 
tristate particle swarm optimization. The same authors have also proposed a multi-looping 
sequential optimization approach using mixed integer programming [29]. 

The participation of battery energy storage in day-ahead electricity market is studied in 
[30]. The task is divided in two subtasks where the first finds optimum bidding/offering 
schedule using stochastic mixed integer linear programming while the second simulates market 
clearing procedures. 

Another model similarly employing stochastic mixed integer linear programming is 
proposed in [31]. The electricity market price is forecasted using ARMA and ARIMA time 
series models. 

Ref. [32] introduces biogas plants as energy storage options that are capable to provide 
demand-based renewable energy. The authors found that by utilizing a market-based 
optimization model a biogas power plant is capable of achieving more profit when operating 
on direct marketing (optimization based on price signals) as opposed to relaying on feed-in 
tariffs (optimization to maintain high efficiency). 

In this study, we consider two storage power plant operational strategies – firstly, a stand-
alone storage plant benefiting solely from price differences in the day-ahead market (arbitrage) 
and, secondly, cooperation between intermittent energy producers (particularly, wind farms) 
and storage in order to balance discrepancies between the planned and actual generation from 
renewable energy. 
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1.4.2. Price arbitrage in the day-ahead market 

The feasibility of exploiting price differences to gain profit in day-ahead markets largely 
depends on price dynamics in the particular market. For instance, researchers in [33] found that 
although a hypothetical PSHP could generate positive operational profits in all regions of Italy 
(MGP market), the net present value (NPV) of the future cash flows at the end of the project’s 
lifetime was nevertheless negative in all cases. The authors explained it by the fact that even 
though peak prices in the MGP market are high compared to other European markets, the off-
peak prices are comparatively high as well, resulting in an insufficient price spread. 

The day-ahead market in the Netherlands (APX) is analyzed in [34]. The authors there have 
devised a strategy of using two different time horizons in storage self-scheduling – 24 hours for 
weekdays and 72 hours for weekends to account for the possibility of severely decreased prices 
during weekends. In the study the results of which are presented in the subsequent subchapters, 
the potential effect of weekends is also covered by extending the scheduling horizon to two 
weeks (336 hours) and using the results from the first 24 hours to submit bids to the market. 

In [6], storage operation in price arbitrage mode is found to be profitable. The authors have 
also found a noteworthy peculiarity – the profits increase in correspondence to increased storage 
size (discharge duration), however, this effect stabilizes and eventually stops for discharge 
durations of about 24–26 hours. This conclusion holds true for all storage technologies 
(described by round-trip efficiencies) the authors considered. 

The authors of [35] have assessed two different potential value streams for storage plants in 
Finland – price arbitrage in the Nord Pool Elspot market and participation in the balancing 
market. The authors identified that the electricity price was more volatile in the Finnish bidding 
area than in other Nordic countries sans Denmark. Nevertheless, [35] found the balancing 
market to be 3–6 times more profitable than the day-ahead market, depending on the storage 
technology. 

In most of the studies, self-scheduling is implemented by means of linear programming 
(e.g., CPLEX linear solver [33]). In [29], [30] bilevel mixed integer linear programming models 
are devised. One drawback of the mixed integer approach is that charging and discharging at 
each hour has to be done either at full power or not at all, which does not allow for variability 
and thus limits the flexibility of operation. 

Some other notable optimization methods used for storage power plant scheduling are 
dynamic programming [36] and evolutionary tristate particle swarm optimization [28]. 

A factor commonly found important is the effect stochastic parameters have on the optimal 
operation of storage plants, e.g., electricity market price when planning the day-ahead operation 
of a plant that aims to benefit from price arbitrage. In [31], AR, MA and ARIMA models are 
used for price forecasting and scenario generation. In [34], artificial neural networks (ANN) are 
used for this purpose. 

In the large-scale energy storage optimization study presented here, the optimization 
problem of a closed-loop storage plant operating on price arbitrage is described by a nonlinear 
objective function (1.1)–(1.2) and constraints (1.3)–(1.6). The studied power producer is 
assumed to be a price-taker and the price is exogenous to the optimization model, meaning that, 
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in general, it can be provided by either of the previously mentioned forecasting tools or even 
from the actual price statistics, depending on the purpose of optimization. 

The objective function is formulated as profit maximization as follows: 
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where ΔL – change in the amount of stored energy (MWh);  
 Pt – power at hour t (MW);  
 cm,t – electricity market price at hour t for forecast realization m (€/MWh);  
 M – number of forecast realizations;  
 T – length of the optimization horizon in hours;  
 omvar.– variable operation and maintenance (O&M) costs; 
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where  0L , TL  – initial and final storage level;  

 L , L  – bounds on storage capacity;  

 S T  – variable to enforce storage capacity bounds;  

 disch.P , disch.P  – lower and upper limit on power in discharging mode;  

 charg.P , charg.P – lower and upper limit on power in charging mode (negative); 
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The equality constraint defined in Eq. (1.3) ensures that the model reaches a certain 
previously set level of its storage medium at the end of the optimization horizon. On the other 
hand, constraints (1.4) and (1.5) ensure that at no point in the horizon the bounds on the storage 
level are violated. 

The model is implemented in MATLAB scripting environment which provides useful tools 
for solving various types of optimization problems. As Eq. (1.2) introduces non-smoothness in 
the objective function, gradient methods would not guarantee a correct solution. So instead the 
pattern search algorithm [37]  from Global Optimization Toolbox, which is able to handle non-
smooth and discontinuous functions, is used. 

1.4.3. Cooperation with wind farms 

Some previous notable studies in the field of co-optimized wind and storage scheduling are 
found in [38]–[40]. Ref. [38] offers methodology to determine the optimal storage capacity to 
be added to wind farms. They conclude that the storage system rated power should be at least 
20% of the wind farm power and the optimal charge/discharge duration for a 100 MW farm 
constitutes 4 hours.  

In [39], particular focus is given to various hydrogen storage technologies that could be 
integrated with wind power in micro-grid applications. Methodologies to optimize the sizing, 
design and operation of storage to accommodate intermittent wind power are devised in both 
[39] and [40].  

In the work presented here, the potential benefits of a storage plant operation based on 
balancing the discrepancies of the power sold in the day-ahead market and the actual wind 
power generation are assessed here. 

In Latvia, support for renewable generation sources is implemented through mandatory 
procurement, which means that all the wind power produced in plants that receive support is 
procured by a specially-created company (public trader), which in turn sells this energy in the 
day-ahead market. In practice, it means that any deviations from the energy offered in the day-
ahead market are handled not by the owners or operators of the wind farms but by the public 
trader instead. 

Let us assume that the hourly income the public trader receives from selling the wind power 
can be expressed as follows: 
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where real.twp – actual produced wind power (MWh);  

 pred.twp – forecasted wind power (MWh) that was offered in the day-ahead market;  

twp – difference between the forecasted and actual wind power (MWh);  
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 tcb – negative imbalance price (€/MWh);  

 tcb – positive imbalance price (€/MWh). 

 
Essentially, this means that in the case when the actual generation is lower than the planned 

generation, the trader receives less revenue than planned and additionally has to purchase the 
balancing power from the TSO (i.e., perform imbalance settlement). In the reverse scenario, the 
trader sells its overproduction to the TSO at a price which is usually lower than the day-ahead 
market price. 

If, however, the trader also has energy storage options, these negative effects can be 
alleviated: 

  1, 24 ,t t tP wp p t       

subject to constraints (1.3)–(1.6), where tp  are the final deviations from the day-ahead 

generation plan that emerge if the storage constraints would otherwise be violated. 
 

In this operational strategy, the storage plant does not aim to exploit the day-ahead price 
arbitrage; it does, however, have to periodically purchase or sell energy in the market when the 
wind power forecasting errors have been largely one-sided in order to restore the state of storage 
to approximately 50%. This ought to be done each day (d) by registering the offset in storage 
level by the end of the previous day (d – 1) and bidding this amount in the next day (d + 1) 
market. 

1.5. Results and discussion 

The results described in this subchapter where originally presented in the 10th International 
Renewable Energy Storage Conference (IRES 2016) and the 16th IEEE International 
Conference on Environment and Electrical Engineering, both in 2016. The corresponding 
publications can be found in [41] and [42]. 

1.5.1. Case study: pumped hydro scheduling for price arbitrage 

The model described in Section 1.4 is applied to Kruonis PSHP in Lithuania (Table 1.2). 
Several assumptions have been made: the storage plant aims to operate on price arbitrage, price 
is exogenous and the duration of charging/discharging cycles is only constrained by upper 
reservoir capacity. Operating costs are assumed to be 1 €/MWh. 
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Table 1.2. Technical parameters of Kruonis PSHP 

 Pump mode Turbine mode 

Capacity 900 MW 900 MW 

Efficiency 0.8 0.9 

Discharge (one unit) 226 m3/s 189 m3/s 

Life storage 41 million m3 

Maximum water level 153.5 m 

Minimum water level 140 m 

 
The price profile for one week (Nord Pool statistics in the Latvian/Lithuanian price areas 

from August 10 to 16, 2015 [9]4) is used to carry out the optimization of Kruonis PSHP 
scheduling. During this week, the ratio between minimum and maximum price was 0.117. It 
proved to be sufficient for feasible operation resulting in 696 119 € profit (Fig. 1.7). 

In order to assess the effect price spread can have on PSHP scheduling, the optimization 
procedure was repeated using price curves that have been smoothened to achieve 0.4 and 0.65 
ratio between minimum and maximum prices. Decreasing the price spread significantly reduced 
the number of hours of PSHP operation. For instance, in the last case the plant would only work 
for 7 hours in the 168-hour period (one week). Furthermore, as can be assessed from the data 
in Fig. 1.7, the reduced price spread notably diminishes the operational profit obtainable. 

 

Fig. 1.7. Optimized Kruonis PSHP operation considering different price scenarios. 

The results from performing Kruonis PSHP scheduling optimization show that price 
profiles in the Latvian and Lithuanian price areas in the Nord Pool can have sufficient spread 
to motivate active storage plant operation. The model developed during this study should be 
expanded to include additional value streams a storage plant can access, for instance, providing 
reserves and various grid services. 

                                                 
4 Data extracted from file elspot-prices_2015_hourly_eur.xls. 
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1.5.2. Case study: compressed air storage sizing 

As described in Section 1.3, there are geographical sites in Latvia where compressed air 
storage might be technologically feasible. In order to estimate the potential economic 
performance of an AA-CAES plant, the same model is applied, but with varied input parameters 
like efficiency and storage capacity. Nominal power of 200 MW is assumed. The results are 
summarized in Table 1.3. 

Table 1.3. Profit obtained by a generic AA-CAES plant in a 168-hour timespan 

  Discharge duration 

  4 h 8 h 12 h 

F
u

ll 
cy

cl
e 

ef
fi

ci
en

cy
 0.65 106 550 € 111 790 € 111 790 € 

0.70 123 080 € 134 170 € 134 730 € 

0.75 141 270 € 157 090 € 159 870 € 

 
If the efficiency is lower (0.65), increasing the storage capacity has little effect on the 

schedule and by extension – on the profit. Doubling the storage capacity from 4 to 8 hours only 
increased profit by 4.92%. Further increases in the storage size had no impact as already in the 
8 hour discharge duration scenario the storage site did not reach full capacity within the week. 

In case the full cycle efficiency is higher, the benefit from increasing storage size also 
becomes more evident. If we increase the capacity from 4 to 8 hours then profit increases by 
9.01% for a 0.70 round trip efficiency plant and by 11.20% for a 0.75 efficiency plant. Again, 
however, further increases had little effect, i.e. 0.42% and 1.77%. 

1.5.3. Case study: comparison of pumped vs hydrogen storage for price arbitrage 

The model presented in Eq. (1.1)–(1.6) is used once more. This time, to optimize the 
operation of storage plants of two different technologies (Table 1.4) – pumped storage again 
modeled using the characteristics of Kruonis PSHP plant and a hypothetical power-to-gas-to-
power scheme that uses underground hydrogen storage as means of energy accumulation and 
realizes re-electrification with gas turbines (GT). The parameters of the second plant are 
assumptions based on general characteristics of polymer electrolyte membrane (PEM) 
electrolysis and GT equipment. 

Table 1.4. Parameters of the PSHP and H2 plants 

Technology  

 Parameters 

PSHP (large-scale 

storage) 

Hydrogen (medium-

scale storage) 

Nominal input and output power (MW) 900 25 

Accumulation/ 

generation efficiency 

0.8 (pump)/ 

0.9 (turbine) 

0.7 (PEM electrolysis)/ 

0.6 (GT) 

Storage capacity 10800 MWh 600 MWh 

Variable O&M costs 0.22 €/MWh [43] 1.7 €/MWh 
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The day-ahead electricity market price for the case study (Fig. 1.8) is taken from the 
Nord Pool statistics for the Latvian bidding area, particularly, two weeks from September 21 to 
October 4, 2015 [9]. The results of the simulations are illustrated in Fig. 1.9 and Fig. 1.10. 

 

Fig. 1.8. Day-ahead electricity market price (Sept. 21–Oct. 4, 2015)5. 

 

Fig. 1.9. Optimal schedule of the PSHP plant. 

 

Fig. 1.10. Optimal schedule of the hydrogen (electrolysis/GT) facility. 

During the selected time horizon both stations manage to operate profitably. For the large-
scale PSHP, the income from the sold electricity exceeds expenditure for the purchased power 
and variable O&M costs by 2.281 million €, whereas for the medium-scale hydrogen scheme 
this difference constitutes 20 869 €. The revenue is understandably smaller due to the smaller 
size of the proposed GT facility. 

                                                 
5 Data extracted from file elspot-prices_2015_hourly_eur.xls. 
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From Fig. 1.10 it can be concluded that the selected storage capacity of the hydrogen 
scheme is larger than necessary, as during the optimization horizon the volume of the stored 
energy never exceeds even 60% of the total capacity. Thus, the proposed model is indeed useful 
in assessing the feasibility of various storage sizes for a storage plant. Such application of the 
model was tested in the previous case study on compressed air energy storage sizing. 

1.5.4. Case study: energy storage cooperation with wind farms 

In order to assess the coordinated wind farm and storage operation scheme described in 
Section 1.4, we use statistics (Fig. 1.11 [9]6, Fig. 1.12 [44]7) from the same time period as in 
the previous example. 

 

Fig. 1.11. Planned and actual wind energy generation (Sept. 21–Oct. 4, 2015). 

 

Fig. 1.12. Negative imbalance8 price set by the Latvian TSO (Sept. 21–Oct. 4, 2015). 

If the forecasted wind energy production (blue line in Fig. 1.11) were accurate, the trader 
would receive 123 825 € revenue from the day-ahead market during the two-week period under 
study. However, due to inaccurate forecasts, the trader receives 89 183 € and has to pay 
29 419 € for up-regulation, but it also earns 10 840 € for overproduced power netting 70 604 € 
in total revenue. 

                                                 
6 Data extracted from files wind-power-lv_2015_hourly.xls and wind-power-lv-prognosis_2015_hourly.xls. 
7 Data extracted from files Balans_Cenas_2015_09_LAT.xlsx and Balans_Cenas_2015_10_LAT.xlsx 
8 The positive imbalance (when the TSO buys the excess energy from a BRP) price is not displayed in this 

figure, but, in this time period, it consistently was at about 94.1–94.2% of the negative imbalance (when a BRP 
buys lacking energy from the TSO) price [44]. 
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Now, let us consider a hydrogen storage plant as described in Table 1.4 operating in 
coordination with the wind farm. Fig. 1.13 illustrates the amount of energy the storage plant 
stores from excess wind generation and supplies to the market to balance insufficient wind 
generation, whereas Fig. 1.14 shows the additional activities in the day-ahead market to 
maintain the state of charge at about 50%. 

 

Fig. 1.13. Storage plant operations caused by wind generation imbalances. 

 

Fig. 1.14. Storage plant operations in the day-ahead market to maintain charge. 

As a result of coordination, the wind and storage operation receives 122 630 € from bidding 
the forecasted wind generation in the day-ahead market; however, 27 750 € are spent to 
maintain adequate energy levels in the storage, additional 216 € are necessary to provide some 
minor imbalance settlement at times when the storage was insufficient and 2 262 € are received 
for selling unaccommodated wind energy production with the imbalance settlement 
mechanism, finally, 4 197 € are costs associated with storage O&M. In total, the net revenue 
constitutes 92 729 €. Compared to the wind farm operation without storage, this results in an 
income increase of 22 125 €. 

As established in the previous subsection, the opportunity cost of the hydrogen storage plant 
operating independently based on the day-ahead price arbitrage was 20 869 €, meaning that 
cooperation with wind farms might be capable of providing a slightly better value. However, 
further studies should be conducted incorporating larger time frames to establish the potential 
benefits of such synergy throughout the lifetime of the power plants. Another area of future 
research is incorporating other generation sources in the coordinated dispatch. 
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1.6. Chapter conclusions 

While electrical energy storage options already established in the Latvian and Lithuanian 
region, particularly, Kruonis PSHP, can effectively exploit the price spread observable in the 
corresponding Nord Pool price area, the construction of new large-scale projects is hindered by 
high capital costs, specific location requirements and historically limited share of intermittent 
renewable generation sources. The deployment of wind generation, however, is projected to 
increase steadily, amplifying volatility in the electricity markets. This factor in combination 
with better access to Nordic power systems signifies renewed interest in the development of 
electrical energy storage in the region. 

Advanced adiabatic compressed air energy storage is particularly interesting in the Latvian 
case, as among all the unconventional storage technologies AA-CAES has the best efficiency 
and its technological and economic parameters are similar to PSHP plants. The presence of 
several locations in Latvia suited for underground gas storage opens the possibility of utilizing 
these sites for CAES, but further research in this direction is necessary to quantify the storage 
potential this technology might bring to the Latvian and Lithuanian power systems. 

The simulations carried out using the proposed optimization model did confirm that the 
day-ahead price profile in Latvia is sufficient for price arbitrage to provide a positive 
operational cash flow (i.e., excluding capital expenditure). This holds true for all the considered 
technologies, including hydrogen storage. The results this model provides could potentially be 
used as input data when evaluating the feasibility of a current storage project’s future operations 
or when assessing capital expenditure ceiling to achieve break-even for a prospective new 
storage project. An evolved version of this approach has been applied by the author in the 
optimal investment and operational planning methodology devised by Sauhats et al. in [45]. 

In terms of the hydrogen storage modelling results presented in Section 1.5, the initially 
assumed hydrogen storage size corresponding to a 24-hour discharge duration proved to be 
unnecessarily large for operation in the day-ahead price arbitrage mode as within the studied 
time period the state of charge did not exceed even 60% of the available storage capacity.  

Finally, the coordinated participation of the wind power and storage plants in the day-ahead 
market was found to be beneficial for both the wind power traders and storage operators. In the 
time period considered this cooperation proved to provide slightly better net revenue than if the 
storage plant had operated independently. Furthermore, it offers additional environmental and 
societal benefits by avoiding wind power curtailment and making a maximum use of the 
available renewable energy. 
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2. HYDROELECTRIC POWER PLANT MODELLING 

2.1. Motivation for hydroelectric power plant optimization 

Nowadays, the power systems of most countries have moved away from vertical integration 
and regulation. Instead, they rely on market forces to achieve improved operational efficiency, 
cost-effective resource allocation and, ultimately, more transparent prices and reliable services 
for the consumers brought by enhanced competition. The latter has an effect on the overall 
performance of the national economy by easing the cost burden on energy-intensive enterprises. 
However, achieving these benefits is not as straightforward as it may initially seem since it 
requires market participants to adapt to the new conditions, act rationally and make the best 
decisions under imperfect information. 

Decision making problems and optimization tasks in power system operation range from 
power flow analysis and reconfiguration of electric distribution networks to unit commitment 
and scheduling [46]. Solving power system optimization problems is an important issue for 
various stakeholders, i.e., system operators, wholesalers and power generating companies 
(GENCO). Depending on the specifics of the interested party, it may have different objectives 
such as maximization of reliability or social welfare; minimization of production cost, 
emissions etc.  

This chapter is focused particularly on hydropower scheduling in the short-term. It is a large, 
time-coupled, stochastic, space-coupled and nonlinear optimization problem [47]. While in the 
previous structure of power system asset ownership, a vertically integrated utility managed all 
the main supply-side components of the power system – transmission network, distribution 
network and generating units – then under the conditions of deregulation these entities are 
legally separated. That is, the transmission system operators (TSO) and distribution system 
operators (DSO) must be independent from power producers, who, in turn, have to compete 
against one another in electricity markets. This change is of particular importance in regards to 
hydropower scheduling optimization. Previously it was performed by the TSO with the goal 
mostly being provision of peaking power, but now this task falls on the owners of hydropower 
plants themselves. Furthermore, the objective function has changed to profit maximization [48]. 

The scheduling of an HPP production while participating in an electricity market is a 
complex task due to the many uncertainties involved, especially water inflow and electricity 
price. Recent challenges have caused a lot of new research aimed at improving unit commitment 
(UC) algorithms and tools and tackle the uncertainties by implementing stochastic methods. 
While there are well-developed traditional applications of stochastic programming in power 
systems applications, they are mostly used for long-term planning. The most promising 
directions of current studies are focused on the implementation of stochastic approaches for 
short-term planning within the new environment of decentralized operation, deregulated 
markets, and competition [49]. 

This chapter lays out the development of a mathematical model which would allow the 
owner of several hydraulically linked HPPs to optimize their operation and subsequently 
achieve increased profitability from the participation in day-ahead electricity markets. While 
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there are several vastly different mathematical models of HPP operation offered in literature, a 
sizeable portion of them do not yet follow the observed switch to profit-based scheduling. Some 
notable exceptions, however, are [50] where the authors perform self-scheduling of HPPs by 
nonlinear complementarity method; [51] where the authors additionally consider head-
dependency of the power produced and solve their model by a mixed integer quadratic 
programming approach; and [52] which considers a multi-criterial problem statement by co-
optimizing HPPs and thermal power plants with the additional objective of emission 
minimization. 

A crucial factor that must not be forgotten when developing mathematical optimization 
models, however, is their ease of implementation and peculiarities caused by application to a 
particular HPP system. In other words, to have a practical purpose the mathematical model has 
to be implemented in an actual software tool which can be deployed on an operator's 
workstation and would allow the GENCO to utilize it. However, the complexity of this task 
increases furthermore when the requirement to abide by environmental constraints is 
prescribed. These limitations cannot be relaxed, thereby some other assumptions have to be 
made for the optimization procedure to be computationally feasible and efficient for daily 
application in the GENCO scheduling efforts.   

The most suitable mathematical description of the optimization problem and the procedure 
of finding its solution ought to best be selected based on the distinctive features of the HPP 
system where the tool is meant to be utilized. The case study in this chapter is devised in 
accordance to the parameters of the three HPPs on the river Daugava, Latvia. The following 
assumptions are made accordingly.  

Firstly, it is presumed that the power system where the plants operate is well interconnected 
to its neighbors and the producer under consideration provides relatively minor part of the total 
energy traded in the market exchange. Consequently, it does not have significant impact on the 
market clearing price and the GENCO is a price-taker. As the GENCO likely operates not only 
hydroelectric power plants, but thermoelectric plants as well, normally it would have been 
required to optimize their hydro-thermal dispatch. The previous decision to assume electricity 
market prices as exogenous variables, however, allows hydroelectric power cascade to be 
optimized independently from other types of generation. 

Another step to simplify the optimization procedure is the decomposition of the task. There 
have been many methodologies proposed on how to decompose the problem of water utilization 
optimization in hydroelectric power plants. For instance, [53] studies the use of search 
procedures like progressive optimality algorithm to decompose the problem into multiple two 
stage decision tasks. References [54] and [55] offer techniques on how to separate the complex 
task into parts where the master problem can be solved using linear programming, but the 
secondary tasks – dynamic programming (DP).  

The proposal laid out in this chapter is specifically aimed at cascaded hydropower plants 
with medium-sized reservoirs (also often called poundage HPPs), i.e., they are not large enough 
for seasonal planning, causing the necessity for weekly scheduling. The task originally was 
motivated by interest of the owners and operators of the Daugava HPPs to better optimize the 
market-based scheduling of these particular power plants, but has since evolved further fueled 
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by purely academic research interests as well. Work on the cascaded HPP optimization model 
and software was performed by a research team led by Professor A. Sauhats. Parts of the model 
itself and experimental results obtained by it have been presented in a number of scientific 
articles. However, this chapter only includes results with the most direct contributions by the 
author, including some that have been presented in the 56th International Scientific Conference 
on Power and Electrical Engineering of Riga Technical University (RTUCON) in 2015 [56] 
and the Power Systems Computation Conference (PSCC) in 2016 [57], as well as some yet 
unpublished results. 

The main idea of the model proposed is to solve the scheduling problem in three stages, the 
first two of which are performed before submitting bids to the exchange. Firstly, a simplified 
linear deterministic water utilization problem is solved for the medium-term (two weeks) to 
find the optimum reservoir level at the end of the first day. Secondly, the result from the 
simplified optimization is introduced as a constraint in the more detailed stochastic nonlinear 
model which determines the optimum hourly power generation schedule for the day-ahead 
horizon. Finally, after market clearing when the prices are known, dynamic programming is 
performed to allocate the sold power between the generating units of the hydropower cascade. 
The software solution carrying out the model is comprised of the multi-stage optimization 
program as well as an artificial neural network based forecasting model for the day-ahead 
electricity prices and river inflow. 

2.2. HPP optimization model 

2.2.1. Main assumptions 

The electricity market where the model is used is assumed to be organized according to the 
day-ahead trading rules as they are implemented in the Elspot market of the Nord Pool (NP) 
power exchange, which is one of the largest electrical power exchanges in Europe. As the 
purpose of the study is to present a model to build and execute the generation bids of medium-
sized cascaded HPPs, the profit maximization problem is formulated from a price-taker's 
perspective, e.g., market price is an exogenous variable that has to be forecasted and is not 
dependent of the GENCO's price and volume bids. This assumption is justified when the 
producer under consideration indeed operates only a small part of the pool capacity. 

The peculiarity of medium-sized reservoirs causes an important distinction to large HPPs 
the models of which traditionally do not consider the constraints of maximum and minimum 
water levels in the short-term planning. Moreover, these constraints cannot be violated as it 
would result in environmental damage and subsequent penalties to the GENCO. In this case, 
both upstream and downstream limits have to be taken into account. Consequently, in a general 
case, the fluctuations of water level affect the effective head available for power production.  

The hydraulically linked HPPs are assumed to be connected in one series with no off-
branches. Furthermore, only the most upstream reservoir receives sizable natural inflow; the 
lateral inflows in the downstream reservoirs are assumed to be constant in time and miniscule 
compared to the main flow. 
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Another point that should be brought up when describing power plant modeling is the 
approach taken to variable operation and maintenance (O&M) cost modelling. Generally, the 
profit of a GENCO operating more than one HPP unit can be expressed as: 

 ,
1 1

( )
T I

t i i t
t i

PF c om p
 

    

where  t, T – time step index and set (hour); 
 i, I – generation unit (hydroelectric set) index and set; 
 ct – electricity market price (€/MWh); 
 pi,t – energy generated by unit i at time step t (MWh)9; 
 omi – operation and maintenance cost of unit i (€/MWh). 
 

The last component is the variable expense caused by the operation of a generating unit, 
i.e., the more energy the GENCO generates the larger is this expense position. However, the 
comparatively negligible size of the variable O&M cost of HPPs [58] allows it to be disregarded 
without significantly affecting the optimality of the solutions found. 

2.2.2. Overall algorithm of optimization 

The HPP scheduling problem is decomposed into several sub-problems. In the first stage, a 
simplified deterministic linear optimization is carried out for dispatch of the water resources 
over a 14-day long planning horizon. This step is needed to obtain the water reservoir level at 
the end of the first day, which is then used as input in the second stage – a stochastic nonlinear 
optimization based on Equations (2.2)–(2.6). The Quasi-Newton method of solving nonlinear 
programming problems is selected to handle nonlinearities. The result is the GENCO’s bidding 
strategy for the next day. The bids would normally be submitted to the market operator, but, for 
the purposes of this study, the market clearing is simulated so that the third and final 
optimization stage can be validated as well. The overall algorithm is illustrated in Fig. 2.1. 

For the purposes of this study, it is assumed that the GENCO will submit its bid with three 
price steps. Subsequently, the first two steps of the decomposed optimization problem are 
repeated three times for three different price scenarios – normal (forecasted) price, low price 
and high price. The last two scenarios have the same price profile as the normal price, but are 
additionally rescaled according to user input. Here the low price scenario is selected to be 75% 
and the high price – 125% of the initially forecasted ‘normal’ price. Once the three-level bids 
are submitted, the market clears and returns the hourly schedule the GENCO has to follow. 

Consequently, the company can decide on its UC schedule after the market has cleared and 
the amount of power to be sold at each hour is known. Optimal UC and dispatch schedule 
comprises the last step of the optimization procedure for which deterministic dynamic 
programming (DP) is employed. 

                                                 
9 The resolution (time step) of the model is one hour. Thereby, for practical purposes, it can be assumed that 

each unit runs at constant power throughout any particular hour. 
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Fig. 2.1. Structure of the overall optimization tool. 

The optimization problem is subject to several technical, environmental and safety 
constraints, such as the minimum and maximum power generation and ramping rate of the 
hydro units, minimum and maximum water head of the plant, water level of reservoirs and 
permissible rate of water level changes. Besides that, the allowable operation zones and 
efficiency curves of the hydro units, which are subject to the previously mentioned variables – 
power generated, water head and water discharge through the turbines – need to be considered 
in the calculations. 

There is a nonlinear dependency between the power generated by the HPP and several 
uncertain random variables (e.g., inflow) and, additionally, the profit of GENCO is subject to 
the market price of electricity having a stochastic nature. The formulation of the optimization 
problem (2.2)–(2.6) and uncertainty tackling approach described in the next sections allows 
consideration of the random nature of the problem with an acceptable computation time. 

2.2.3. Objective function 

For the medium-sized multi-reservoir cascaded HPPs operation, the objective function for 
stochastic nonlinear optimization of daily bidding strategy is the daily profit expectation 
expressed as 
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For 1n  : 
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where  n, N – index of HPP in the cascade; 
 r, R – price or water discharge forecast realization; 
 g – gravitational acceleration (9.81 m/s2); 

 turb.η n – mechanical efficiency; 

 gen.η n – electrical efficiency; 

 Sn – surface area of the reservoir of the n HPP (m2); 

 τn – experimental constant linking water discharge and reservoir level (1/s); 

 lateralwn – lateral inflow in downstream reservoirs10 (m3/h); 

 k n – coefficient linking water inflow and reservoir level (s/m2); 

 bn – coefficient linking discharge in upstream and water level in downstream reservoirs; 

 , ,n r tH – water head (m); 

 ,n tv  – water discharge (m3/s); 

 , ,n r tw – water inflow in the most upstream reservoir (m3/s); 

 up
, ,n r tL , down

, ,n r tL – water levels in upstream/ downstream reservoirs at beginning of hour (m); 

 up
nL , up

nL , down
nL , down

nL – upper and lower limits of water level in upstream and 

downstream reservoirs (m); 

 ,Δ n tL – change in upstream reservoir due to power generation (m); 

 Δ nL – the maximum decrease of water level within one hour (m); 

 ,24-h maxΔ nL – the maximum decrease of water level within 24 hours. 

                                                 
10 Assumed to be miniscule and constant. 
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The nonlinearity here is introduced in order to account for head-dependency of the power 

output of an HPP unit, expressed by the term , ,n r tH . The reservoirs at this stage, however, are 

modelled linearly as in Eq. (2.4). A more accurate representation of the reservoirs is used in the 
final modelling stage. 

Equations (2.7) and (2.8) represent the upper and lower constraints on reservoir water level 
that are usually determined in the environmental permits issued to a particular HPP operator. 
Eq. (2.9) signifies the maximum permissible change in water level within one hour and (10) – 
the maximum permissible change in water level within 24 hours. 

The term nf  in (2.2) and (2.3) denotes the sum of the profit obtained in HPP n in all the 

price forecast realizations. To find the mathematical expectation, this variable is divided by the 
total number of realizations R. 

The optimization variable is the change of water level in each reservoir, tnL , . The output 

of the optimization procedure provides the GENCO with the day-ahead bidding strategy which 
includes the total hourly power generation for a certain bidding price for the HPP cascade to 
maximize its profit. 

2.2.4. Forecasting module 

This section describes the forecasting of electricity market price and water inflow and the 

subsequent sampling of numerous forecast realizations ,r tc  and , ,n r tw  which are used as input 

data for the optimization procedure. 
Ref. [59] indicates that the approaches most often used for electricity spot price modeling 

are statistical time series and computational intelligence models (e.g., artificial neural networks 
(ANN)) . The same study also concludes that statistical methods for market price forecasting 
perform poorly in the presence of spikes, whereas computational intelligence models are 
flexible and can handle complexity and non-linearity which makes them promising for short-
term forecasts. However, the ability to adapt to non-linear, spiky behaviors may not necessarily 
result in better point projections.  ANNs are also the method of choice for electricity spot price 
forecasting in [60], [61] and more recently – [62]. 

Various models of water inflow projection are compared in [63] where it is concluded that 
a dynamic autoregressive ANN model with sigmoid activity function is superior to the 
autoregressive moving average (ARMA) and autoregressive integrated moving average 
(ARIMA) models, especially at peak points. 

We have incorporated in our software tool a three-layer ANN which is being trained on 
historical data of market prices, water inflow and ambient temperature. Furthermore, selection 
of the most suitable ANN parameters for a particular task is an endeavor on its own and the 
state of the art in this field suggests employing an experimental approach in obtaining them 
[62], [64]. Among the design parameters of an ANN's structure is the number of neurons in the 
hidden layer, size of the training data set, input and feedback delays. In our implementation, 
these properties are adjusted each day anew to suit the best forecast performance in the previous 
forecasting horizon. The adaptation procedure is described in more detail in our paper [65]. The 
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output of the ANN is smoothed in order to filter out unreasonable outliers in the forecasted 

series [66]. Let us assume that 𝑦ො௧ is an element of the forecasted time series, then 
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The output of the ANN module provides point forecasts of the hourly day-ahead electricity 
price and water inflow. To consider uncertainties, historical residuals are used to generate 
additional realizations of the forecast. By assuming that the errors retain generally the same 
characteristics in the medium-term, the forecasting module uses the hourly relative errors from 
the forecasts of the previous 10 days. Each new realization is obtained by adding or subtracting 
the historical error to the new forecast at the respective hour. In such a way, the 10-day old 
historical data provides 20 new time series in addition to the one initial forecast. It is then 
assumed that all the forecasts have equal realization probabilities. Consequently, for the 

optimization, 21 electricity market price time series, ,r tc , and water inflow time series, , ,n r tw , are 

used as input data. 
By this simplified approach, we can consider the uncertainty of electricity prices and water 

inflow while not increasing computational burden too much for a practical application in 
GENCO’s daily operation optimization. 

2.2.5. Handling of unit and reservoir characteristics in the unit commitment model 

After the market is cleared and the hourly amount of power generation for the next day has 
been determined, it is necessary to establish the optimal dispatch schedule of the HPPs' 
generating units.  

At this stage, the characteristic of each hydro unit has to be modelled. These characteristics 
illustrate the relationship between effective water head, power and water discharge through the 
hydro unit.  

To enable using these relationship curves in calculations, they have to be described 
mathematically. In general, the water discharge through a particular hydroelectric set is a 
function of its power and effective water head: 

  , ,i i nv f p H  

 2 2
1 2 3 4 5 0.i i n i n i nv a p a H a p H a p a H a             

where  iv – water discharge rate of unit i (m3/s); 

 ip – power of unit i (MW); 

 0a , 1a , 2a , 3a – polynomial coefficients. 
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In this study, the characteristics are approximated by a third-order polynomial such that, for 

every value of water head ( nH ) of HPP n, the water discharge through a particular hydroelectric 

set i can be expressed as: 

 3 2
1 2 3 0.i i i iv a p a p a p a        

For instance, if the characteristic is defined by water head values in the interval from 33 to 
40 meters and the chosen step is 0.1 meters, then we have to interpolate 71 functions. This can 
be easily done by creating a looping script in any scripting environment. 

By increasing the rank of the polynomial (2.14), we could achieve greater precision of 
interpolation. Precision can be evaluated by comparing the curves obtained in the interpolation 
to the source data. However, the third-order expressions used in this study were deemed 
sufficiently accurate as the largest error value calculated among the points of the characteristics 
was 3.59%. 

On the other hand, the effective water head at each time step of this optimization stage is 
found as the difference between the upstream and downstream reservoir levels: 

 up down
, , , ,n t n t n tH L L   

where the upstream and downstream water levels can be calculated utilizing the relationship 
curves of water storage versus forebay elevation for the first and tailwater elevation versus 
outflow release for the second. 
 

Thus it can be concluded that change in upstream level is a function of inflow and outflow 
(2.16)–(2.17), whereas downstream level is a function of outflow (2.18). 

  up
, , ,Δ n t n t n tL f q v   

 up up up
, , 1 ,Δn t n t n tL L L   

  down
, ,n t n tL f v  

where  ,n tq  is the sum rate of inflow in the upper reservoir (m3/s), this includes the time-delayed 

discharge from the upstream HPP, the natural main and/or lateral inflow (or whichever of these 
are applicable for a particular HPP). 

 
These functions are nonlinear because of the relatively small size and irregular form of the 

reservoirs, but they provide better reservoir level accuracy compared to the linearized reservoir 
models used in the first two stages of the overall optimization process (expressed by Equations 
(2.4)–(2.6)). 
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2.2.6. Solving unit commitment with dynamic programming 

Evidently, the objective function (2.19) of the UC sub-task is additive in nature. It provides 
the option to solve the problem by using DP as opposed to performing full exhaustive 
enumeration. 

Traditionally, when DP is applied for optimization of HPP operation, it is done for longer 
planning horizons and decisions are made at different time stages as, for instance, in [67] and 
[68]. Here, however, it is employed within each hour solving a UC problem static in time. 
Solution is obtained by choosing the optimal outflow through each hydroelectric unit in regards 
to other units as well as deciding on whether a certain unit should be connected at all. 

Fig. 2.2 explains the application of the DP approach to the selection of hydroelectric units. 
In the example, each blue line corresponds to a different combination of units (block), whereby 
each block essentially has its own efficiency curve.  It is evident from the figure that to generate 
the same sum amount of power in an HPP it can take varying amounts of water discharge, 
depending on what combination of units has been selected. 

 

Fig. 2.2. Example of block characteristics of units. 

However, there are two ways how to employ DP to find the optimal HPP unit dispatch 
schedule. If the input variable for each hour is the total amount of water to be discharged 
through the particular HPP, then DP solves the problem of power generation maximization. On 
the other hand, if the input variable for each hour is the total power generated by the HPP, water 
discharge minimization is performed instead. Both approaches essentially strive to increase the 
efficiency of operation and, consequently, higher water value, but the hourly water discharge 
minimization is selected as the objective function of DP: 
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where  tv  – the sum discharge rate of all the hydroelectric units (m3/s) during time step t; 

 tp  – the sum power of all the hydroelectric units (MW) during time step t; 

 ip , ip – the lower and upper bounds on the power of hydroelectric unit i (MW). 

 
Eq. (2.20) is not an equality because of the fact that at this stage the hydroelectric units are 

modelled with greater accuracy and the result of the previous stage might not be feasible in 
terms of the operational zones of the individual units. Thereby, the sum power to be produced 
in a particular HPP can be decreased to respect all power constraints. 

Eq. (2.21) shows that the power of each particular hydroelectric unit has to either fall within 
its operational zone defined by an upper and lower constraint, or the unit should not be in 
operation at all, i.e., have power equal to zero. 

Furthermore, at the last stage of optimization, previously described constraints (2.7)–(2.10) 
also must be respected to follow the environmental limitations of each HPP and their reservoirs. 

For the DP, a recursive equation is formulated to describe the total discharge of the HPP 
depending on the power of unit i and the units optimized before it: 

       1maxk k i k k ikrec p rec p p v p    

Recursion is used to obtain intermediate results which are stored in an array with dimensions 
k × I, where k is the number of steps (value of the constraint (2.20) divided by the increment 
between the steps)11. Once the array is filled, trace-back procedure is initialized starting from 
the last entry (Fig. 2.3). The optimal trajectory is thereby acquired, which, in this instance, is a 
vector containing the water discharge through each hydroelectric unit and, consequently, the 
power generated by it. 

 

Fig. 2.3. Application of dynamic programming in solving the UC problem. 

                                                 
11 Given that there are 23 units in the Daugava river HPP cascade, the total amount of information that needs 

to be stored during calculations can be quite taxing. For instance, if in a given hour Kegums HPP is supposed to 
have a discharge of 1000 m3/s and the calculations are done in increments of 5 m3/s, then the array where 
intermediate results are written will have dimensions of 200x7.  Though still time consuming, this approach, 
however, is more effective than evaluating every possible combination. 
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Along with the hourly power schedule of each of the hydroelectric units in the cascade, the 
DP module also outputs refined values of changes in the level of all the water reservoirs during 
the day. This is thanks to the fact that, at this stage, a more accurate mathematical representation 
is used for both the hydroelectric units and reservoirs – the actual water head, discharge and 
power characteristics of the former and level versus discharge relationship curves for the latter. 
This crucial input data has to be prepared by the HPP operators, but normally it can be 
ascertained from their statistical databases. 

The DP approach described in this section, however, does not address issues of uniform and 
even operations. This is rectified by introducing a priority list for each hour. If there are several 
units with the same or very similar characteristics in an HPP and either of them is chosen to be 
operational by DP, then it can be replaced according to this preset list. If a turbine’s id is omitted 
from the list, it is not considered in the calculations. That allows to set the state of a certain 
hydroelectric unit as unavailable for production because of maintenance or any other reasons. 

Alternatively, decision on which turbines from a set of equal units should be generating can 
ultimately be made by the operators.  For this purpose they must be presented with all the viable 
combinations of generator loading that offer maximum value of the target function. 

2.3. Object of optimization 

The proposed model has been thoroughly tested and validated on the parameters of a real 
HPP cascade operating in a liberalized electricity market. Thereby the model is adjusted 
according to the parameters of the cascade of HPPs on the river Daugava, Latvia.  

As explained before, the studied power plants are Plavinas HPP, Kegums HPP and Riga 
HPP (Fig. 2.4 [57]). Their installed active power is 893.5 MW, 264 MW and 402 MW 
respectively. Due to the limited natural inflow, these power plants can utilize their full capacity 
only during the spring flood season which is rarely longer than a month. For the rest of the year 
water resources are scarce and the necessity to manage them becomes evident. Indeed, unlike 
in [54], the comparatively smaller reservoir volumes create circumstances where changes in 
water level are more immediate and have bigger effect on efficiency of water turbines. 
Therefore, if the goal is HPP short-term operation planning to build hourly generation bids for 
day-ahead trading, it is crucial to calculate water head changes within the planning interval for 
each power plant. The most important parameters and constraints are summarized in Table 2.1. 

 

Fig. 2.4. The cascade of HPPs on the river Daugava. 
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Table 2.1. Technical parameters and environmental constraints of the Daugava HPPs 

Type of Constraint 

Power plant 

Plavinas 
HPP [69] 

Kegums 
HPP [70] 

Riga 
HPP [71] 

Installed capacity (MW) 893.5 266 402 

Surface area of the reservoir (km2) 35.0 24.9 35.8 

Useful volume of the reservoir (mill. m3) 143 37.5 34.6 

Permissible upstream level (m) 69–72 30.4–32.0 17.0–18.0 

Permissible downstream level (m) 30.5–35.9 17–18.5 –1.5–3.9 

Permissible hourly decrease in reservoir level (m/h) 0.30 0.30 0.20–0.30 

Permissible daily decrease in reservoir level 

(m/day), depends on the season 
0.75–1.5 0.75–1.60 0.75–1.00 

 
Furthermore, only Plavinas reservoir is filled by natural inflow in Daugava, the lateral 

inflow in the other two stations is negligible. This means that water level in Kegums and Riga 
reservoirs rises only when the water discharged by upstream HPP reaches them. Techniques on 
how to calculate the time it takes for discharged water to travel to and have an impact on a 
downstream reservoir are offered in [55]. In order to simplify the mathematical model, it is 
assumed in this study that the travel time of water between two Daugava HPPs is equal to 1 
hour and is not dependent on any other variables, such as elevation of tailwater or volume of 
discharge. 

2.4. Validation of characteristic approximation 

The hydroelectric set and reservoir characteristics normally are defined as data tables, 
obtained either during routine operation of the power plants or in specially organized 
experiments by the HPP operators. The most appropriate form in which to express them 
afterwards depends on the intended application. For the purposes of developing this water 
resource management and schedule optimization tool, they were expressed as a series of 3rd 
order polynomials. By comparing values obtained by the polynomials (2.14) to the original data 
tables, it was found that the maximum error value for a single discharge curve data point reached 
3.59% [56], which is deemed acceptable. 

On the other hand, there is no direct way to validate the performance of approximated 
reservoir curves. Instead we can try and verify the hydraulic model as a whole. To achieve this, 
the historical data on the power production in each of the HPPs and the registered natural inflow 
at the most upstream point in the cascade is used as input. The model is then used to calculate 
the corresponding water level in each reservoir with hourly resolution, which can then be 
compared to the actual registered level12.  

The resulting comparisons are summarized in Figures 2.5–2.10. 

                                                 
12 Data of the actual produced energy in each HPP, the inflow in the most upstream reservoir and the actual 

registered water levels in each reservoir – courtesy of the plant operator Latvenergo AS. 
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Fig. 2.5. Model accuracy test on data from February 25, 2015 for Plavinas HPP. 

 

Fig. 2.6. Model accuracy test on data from February 25, 2015 for Kegums HPP. 

 

Fig. 2.7. Model accuracy test on data from February 25, 2015 for Riga HPP. 

Model performance tests were carried out on data from two seasonally distinct days – 
February 25, 2015 (average inflow 428 m3/s) and September 25, 2015 (average inflow 
105 m3/s). In the first case the deviation of the modelled water level from the actual historical 
one was –0.04 m, 0.01 m and 0.04 m at the end of the day in each of the reservoirs. In the 
second case, they were –0.04 m, –0.01 m and 0.02 m. These errors are a compound of the initial 
accuracy and reliability of the relationship curves and their approximation and implementation 
in the software. 
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Fig. 2.8. Model accuracy test on data from September 25, 2015 for Plavinas HPP. 

 

Fig. 2.9. Model accuracy test on data from September 25, 2015 for Kegums HPP. 

 

Fig. 2.10. Model accuracy test on data from September 25, 2015 for Riga HPP. 

A closer inspection of the figures reveals that the overall modelled trajectory of changes in 
water level in the Plavinas HPP follows the registered data closely, whereas in Kegums HPP 
and Riga HPP the modelled trajectory is noticeably smoother than the historical data suggests. 
This implies there are factors yet unaccounted for in the downstream reservoir models. One 
possible explanation might be disturbances (e.g., waves) caused by the discharge in upstream 
HPPs as in the current implementation the discharge is modelled as uniform, dependent on 
power generation and water head. Another possible explanation might be the assumption on the 
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constant nature of lateral inflow and the assumed 1 hour time delay for water traveling between 
two Daugava HPPs. However, further dedicated studies would be necessary to sufficiently 
explain this phenomenon. 

2.5. Validation of the dynamic programming approach 

After it has been established that the reservoir model and approximations of unit 
characteristics are accurate enough to be used in calculations it is also necessary to test the 
dynamic programming approach discussed in Section 2.2. 

As was previously described, there are two ways how to employ DP to determine which 
units in an HPP should be operational and what their power should be within a given hour. If 
the input variable for each hour is the total amount of water to be used in the particular HPP, 
then DP solves a power maximization task. On the other hand, if the input variable for each 
hour is the desired sum of all units’ generation, a discharge minimization is performed. Both 
approaches essentially strive to increase efficiency of operation and thus higher water value. 

The following calculations are based on data from June 1, 201513. 

2.5.1. Power (and by extension – revenue) maximization 

 

Fig. 2.11. Comparison of power generation with and without UC optimization. 

Input data is hourly discharge which is obtained by calculations using the reservoir and 
hydroelectric unit characteristics and afterwards set as constraints analogous to (2.20) . For this 
example, optimization is performed on Plavinas HPP for each of the 24 hours. Results are 
compared to the actual statistics in Fig. 2.11. 

The UC subtask solution offers to produce more electrical energy using the same amount 
of water. The improvement constitutes 45.6 MWh which is a 1.49% increase. Taking market 
prices into account it can be concluded that revenue from Plavinas HPP would thus increase by 
2758.24 €, if the plant operators managed to sell this additional energy in the market. 

                                                 
13 Data on the actual generated power and water levels – courtesy of the HPP operator, Latvenergo AS. 
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2.5.2. Discharge minimization 

On the other hand, here the input constraint is hourly power generation. The objective is to 
find such a combination of units that produces the same power, but uses less water in doing so. 

 

Fig. 2.12. Comparison of water discharge with and without UC optimization. 

The solver achieves the given desired Plavinas HPP hourly power schedule by finding the 
most effective combinations of units. In this case those turn out to be units 5, 7 and 8.  The 
differences in hourly discharge before and after solving the minimization task are displayed in 
Fig. 2.12. The saved water resources amount to 1.09 mill.m3 which constitutes a 3.47% 
reduction, showing the importance of choosing the most effective units for any given time. 

With the comparisons in Fig. 2.11 and Fig. 2.12, it can be concluded that the DP-based unit 
selection module proposed does provide beneficial results, thereby it can be included in the 
overall mathematical model and the main three-stage optimization tool. The following chapter 
analyses the performance of the full process as explained in Fig. 2.1. 

2.6. Optimization results 

2.6.1. Linear optimization 

The performance of the developed model for the optimization of cascaded HPPs with 
medium-sized reservoirs was analyzed by carrying out a full run through all the modules of the 
tool based on the initial reservoir levels of September 25, 2015 and prior price and inflow data. 
The first step is price and inflow forecasting, which is followed by operator’s decision on 
minimum and maximum price limits for the day-ahead (first 24 hours) horizon. Here we assume 
the limits to be 75% and 125% from the forecasted price respectively. 

Figures 2.13–2.15 illustrate the distribution of water resources in each of the HPP for every 
of the three price scenarios. The water resource management is considered in terms of upstream 
reservoir level with hourly time resolution and two-week look-ahead horizon. Of course, as 
explained in model description in Section 2.2, we are interested in the water level at the end of 
the first 24 hours as those are used as constraints in the nonlinear stochastic optimization for 
the day-ahead horizon. The corresponding values along with the initial reservoir level are 
highlighted in the charts. 
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Fig. 2.13. Hourly water level in Plavinas HPP upstream reservoir in three price scenarios14. 

 

Fig. 2.14. Hourly water level in Kegums HPP upstream reservoir in three price scenarios. 

 

Fig. 2.15. Hourly water level in Riga HPP upstream reservoir in three price scenarios. 

The visualization of the results of linear optimization allows noticing some peculiarities. 
Firstly, the Plavinas HPP has already achieved its daily discharge constraint (1 m) in the 
Forecasted price scenario at the end of the day-ahead horizon of first 24 hours. Hence, the HPP 
cannot produce more power in the High price scenario and both trajectories are the same. 

                                                 
14 The Forecasted price scenario and High price scenario produce the same water level change trajectory for 

Plavinas HPP in the case study under consideration. Thereby, the red line corresponding to the Forecasted price 
scenario is not visible in Fig. 2.13. 
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Secondly, the trajectories for Forecasted and High price cases converge for the other two HPPs 
as well, but it happens noticeably later in the two-week period and the results for the first 24 
hours differ. 

Another peculiarity is that while in the High price scenario in Kegums HPP the reservoir is 
emptied more than in the normal price case (30.65 m vs 30.98 m level at the end of the day-
ahead horizon), the opposite is true for the Riga HPP (respectively 17.19 m vs 17.00 m). This 
effect is explained by the inflow caused by discharge in the upstream reservoirs which raises 
the level in downstream reservoir with a slight delay. 

As can be observed from Figures 2.13–2.15, the optimized reservoir levels correspond to 
the minimum and maximum level constraints. It can be seen that neither Plavinas nor Kegums 
HPP reach either of the constraints within the two-week period. However, in Riga HPP, which 
has the smallest operating range in terms of reservoir level variability, both upper and lower 
constraints are activated. It is important to notice this also happens in the Forecasted price 
scenario at the end of the day-ahead horizon when the reservoir level reaches its minimum 
17 m. Thereby, it will be important to see how this constraint impacts the results when the more 
precise nonlinear model is employed. 

The amount of power generated in each HPP within the day-ahead horizon in each scenario 
is summarized in Table 2.2. Since the linear optimization is expected to be more imprecise, 
these are indicative results and not yet the final values. 

Table 2.2. Total produced energy in each HPP in the day-ahead horizon (linear model) 

 Plavinas HPP Kegums HPP Riga HPP 

Low price (75%) scenario 446.75 MWh 133.00 MWh 201.00 MWh 

Forecasted price (100%) scenario 4098.53 MWh 1609.62 MWh 1467.02 MWh 

High price (125%) scenario 4098.53 MWh 2368.00 MWh 1969.29 MWh 

2.6.2. Nonlinear optimization 

The next stage in the optimization tool envisions stochastic nonlinear optimization 
according to Eq. (2.2)–(2.10) and, additionally, using the water reservoir values at the end of 
the first 24 hours of the linear model run (highlighted in Figures 2.13–2.15) as constraints. 
Fig. 2.16 displays the forecasted day-ahead electricity price for September 25, 2015 along with 
the additional realizations obtained according to Section 2.2 and the actual historical market 
clearing price that day in the Latvian bidding area of the Nord Pool [9]15. 

According to Fig. 2.16, the main one-point forecast obtained by the ANN has managed to 
capture two price peaks during the day (at 15 and 21 PM) and the low prices at night (from 1 
to 5 AM). However, it has failed to correctly predict the first and largest peak at 7 and 8 AM. 
Fortunately, the additional price forecast realizations obtained by considering past residuals do 
include this peak within their distribution. Thereby, it remains to be seen if after simulated 
market clearing these points will be successfully taken advantage of. 

                                                 
15 Data extracted from file elspot-prices_2015_hourly_eur.xls. 
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Fig. 2.16. Price forecasts and actual price on Sept. 25, 2015, LV price area in Nord Pool. 

The results of nonlinear optimization for the Low, Forecasted and High price scenarios are 
summarized in Table 2.3. 

Table 2.3. Summary of the results of nonlinear optimization 

 Produced energy (MWh) Reservoir level at the end of 24 hours (m) 

 
Plavinas 

HPP 

Kegums 

HPP 

Riga 

HPP 

Plavinas 

HPP 

Kegums 

HPP 

Riga  

HPP 

Low price  

(75%) scenario 
364.00 95.00 255.00 71.56 30.96 17.39 

Forecasted price 

(100%) scenario 
3780.00 1065.50 2055.00 70.39 31.07 17.03 

High price  

(125%) scenario 
3870.00 1357.50 2253.00 70.35 30.70 17.16 

 
Contrary to previous concerns, the final reservoir levels have been successfully carried over 

from the linear to nonlinear models. Deviations of the nonlinear programming outcome from 
the output of the previous stage range from –0.07 m to 0.06 m. The total power produced, 
however, differs noticeably in both models, signifying that the power production estimated by 
the linear model has meaning in terms of its profile, but not in absolute value, because, clearly, 
the nonlinearities of the HPP plants and their reservoirs evidently play a significant role. 

2.6.3. Unit commitment and dispatch 

At last, bids at different price levels are obtained and the last stage of the model can be 
deployed. If normally the bids would be submitted to a power exchange, here this step is 
simulated by invoking the previous assumption – the price-taker nature of Daugava HPP plants 
– and using the historical price as the supposed price signal from the market. The total hourly 
power bids and the resulting (accepted) profile is displayed in Fig. 2.17. 

The accepted bids are filled in black. No offers created by the Low price scenario have been 
accepted, but ten bids from the Forecasted and one from the High price scenarios have been 
accepted. In total, the market price cleared for 15 hours in the Forecasted and 9 hours in the 
High price scenario.  

–20

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
ri

ce
 (

€/
M

W
h)

Time (hours)

Additional price forecasts Single-point price forecast Actual market price



57 
 

Evidently, during the first price peak, which was not forecasted (Fig. 2.16), only very minor 
bids were made and subsequently realized. The likelihood of a spike here was underestimated, 
however, the following peaks were successfully utilized. 

 

Fig. 2.17. The bids and accepted generation schedule. 

Table 2.4. The hourly schedules of particular hydroelectric sets in the Daugava cascade 

  Energy production (MWh/h) 

 Plavinas HPP   Kegums HPP  Riga HPP 

t P1 P2 P3 P4 P5 P6 P7 P8 P9 P10  K1 K2 K3 K4 K5 K6 K7  R1 R2 R3 R4 R5 R6 

1 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0  0 0 0 0 57 57 0  0 0 0 0 0 0 

10 0 91 0 0 91 89 91 91 89 89  0 0 0 19 57 57 0  50 50 50 50 50 50 

11 0 91 0 0 91 89 91 91 89 89  0 0 17 17 56 56 0  50 50 50 50 50 50 

12 0 91 0 0 91 89 91 91 89 89  0 0 17 17 54 54 0  50 50 50 50 50 50 

13 0 0 0 0 0 0 0 0 0 0  0 0 17 17 54 54 0  0 0 0 0 51 51 

14 0 91 0 0 91 90 91 91 90 89  0 0 17 17 54 54 0  50 50 50 50 50 50 

15 0 91 0 0 91 90 91 91 90 89  0 0 17 17 54 54 0  50 50 50 50 50 50 

16 0 0 0 0 0 0 0 0 0 0  0 0 0 17 57 57 0  0 0 0 0 51 51 

17 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 0  0 0 0 19 0 0 0  0 0 0 0 0 0 

21 0 90 0 0 90 90 90 90 90 90  0 0 0 0 0 55 0  51 50 50 51 50 50 

22 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 0 0 0 51 

23 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 0 0 0 0 

24 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 0 0 0 0 
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The output of the unit commitment subtask is summarized in Table 2.4. It displays the 
hourly power generation of each of the 23 hydroelectric sets in the cascaded HPPs on the 
Daugava river. The operation of units is generally uniform, which is beneficial for the durability 
of equipment as frequent start-ups and shut-downs are detrimental to the equipment and cause 
a necessity for more frequent maintenance [72]. Only at 13 PM some units have an hour-long 
disconnection and at 21 PM – a single consecutive hour in operation. The latter is justified by 
following the last price peak, which enables gaining additional profit as opposed to a situation 
if the operation of the units was entirely uniform throughout the day. 

2.7. Discussion regarding the model 

Overall, the model performance can be considered to be satisfactory. It managed to abide 
by environmental constraints and produced reasonable generation schedules. Most importantly, 
it operates within acceptable timeframes. While generally the exact amount of time a full model 
run takes depends on the user and the machine where it is deployed, the timeframe registered 
in this experiment (below 10 minutes) allows to deem it suitable for use by actual HPP operators 
in preparing and processing bids to a power exchange. The time an optimization model takes 
to reach a solution is not of much concern for academic endeavors, but it is of paramount 
importance when adapting or developing models for practical applications. The novelty of the 
decomposition approach described in this study allows decreased computational time without 
sacrificing accuracy or abidance to environmental constraints. Furthermore, unlike in [53], the 
necessity to aggregate similar units into a united generator is evaded, instead modeling each of 
them individually at the last stage of the proposed approach. This enables both more detailed 
characterization of every hydroelectric set and easier model recalibration in case some units 
have undergone reconstruction. 

While the model was tested on a case study basis, particularly, on the parameters of Daugava 
HPPs in Latvia and the corresponding environmental and electricity market data, the 
mathematical description can be adjusted to change the hydraulic scheme of reservoirs. Thus, 
by supplying the model with the characteristics of different HPPs and their reservoirs, the tool 
can easily be repurposed for a different case study or practical application. 

There are, however, certain limitations currently in the proposed model. Firstly, as the 
results of the case study suggested, the forecasting procedure can fail to predict some price 
peaks, despite the fact that it employs ANN. While this can fully be explained by influences on 
the power market that cannot be identified by this particular implementation of ANN (e.g., 
disconnection of large generating units, transmission congestion etc.), a dedicated electricity 
market simulator [73] might be better suited for more accurate price forecasts. On the other 
hand, the ANN module can be enhanced further by incorporating seasonal variations, as in [74]. 

Secondly, the application of this model for other cascaded HPP systems might be hindered 
if sufficiently trustworthy data for the construction and validation of relationship curves is not 
available. Hence, close corporation between researchers and industry is necessary for 
meaningful testing and successful adaptation of any mathematical models and tools aimed at 
improving power plant scheduling. 



59 
 

Nevertheless, the model described in Section 2.2 and the subsequent case study confirms 
the feasibility of its use in practical power system application. It also opens the door for further 
studies. Two areas where this tool could be further refined is incorporation with the models of 
thermal plants for co-optimized hydro-thermal scheduling and, subsequently, detailed 
modelling of thermal and hydroelectric unit start-ups and associated costs. However, already at 
the current state the model can be and has been used for research purposes, such as evaluating 
the ability and costs of reserve provision [75], estimating the lost profit incurred due to 
environmental constraints [76] and generating HPP production time series data to be used in 
overall power system economic and reliability models. 

2.8. Multi-objective approach 

Most of the real-world problems involve several objectives (often conflicting) that need to 
be considered, thus leading to multi-objective optimization. For example, a generating company 
interested in maximizing its profit might also want to minimize the amount of emissions (called 
economic emission load dispatch [77] or economic environmental dispatch [78]) or, in another 
case, minimize risk and maximize reliability at the same time. In such a case, the solution should 
be provided as a set of optimal solutions instead of one optimum, because no single solution 
can be considered to be better than any others with respect to all objective functions [78]. A 
feasible solution to a multi-objective problem is efficient (also called non-inferior or Pareto 
optimal) if it is not possible to improve one of the objectives without depraving the others. The 
efficient set (also known as Pareto front or trade-off curve) represents the values of the 
objectives for efficient solutions [79]. 

One of the most widely used methods for generating efficient solutions is the weighted-
sums approach [79], where the trade-off curve is obtained by changing the weight contribution 
of each single objective to the general objective. The weight factors can be adjusted depending 
on the importance of each objective [80]. For example, [77] proposes weighted minimax 
method and employs a stochastic approach (treating uncertainties as random variables) for 
economic emission load dispatch. In [78], solution for a similar problem in a hydrothermal 
system is presented by using multi-objective differential evolution. DP is employed in [79], 
whereby the multi-objective problem is formulated as weighted sum of objectives. 

A GENCO operating HPPs aims to reduce the number of startups since it involves various 
costs due to loss of water during startup, wear and tear of equipment (generator windings as 
well as mechanical equipment), possible malfunctions of the control equipment during the 
startup and the resulting need of maintenance and loss of water during the maintenance [81]. It 
is even more important when operating cascade HPPs, since malfunction of control equipment 
in one of the plants can require rescheduling of the entire cascade and decrease energy 
production of the cascade. Minimization of the number of startups is also considered in [82] by 
employing a two-step genetic algorithm. The first objective considered in [82] is the 
maximization of hourly plant efficiency according to efficiency curves of each hydro unit. 

In the following subchapters, the previously described cascaded HPP three-stage 
optimization tool (Section 2.2) is supplemented with additional functionality by the inclusion 
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of an additional sub-objective, namely, the minimization of the number of startups and 
shutdowns. Solution of the multi-objective problem is provided as a Pareto optimal set, leaving 
the final choice up to the power plant operator. 

In the overall model, the minimization of startups is assessed by constraining the minimum 
operating time of the units to respectively one, two and three hours, whereby the dispatch of 
hydro units is rescheduled retaining the objective of profit maximization. The HPP operators 
can thereby choose from a set of Pareto optimal solutions a strategy which either maximizes its 
profit in the short-term or allows more cost-effective scheduling of the hydro units in the longer 
term. 

2.8.1. Case study: multi-objective optimization 

For the purposes of testing the added multi-objective functionality of the overall 
optimization model, the case study will be based on one HPP, namely, the Plavinas HPP. In 
Figures 2.18–2.20, the schedule of the power plant is presented in both aggregated and per-unit 
basis, in order to illustrate the effect of the added constraint. 

The charts on the left present the hourly power generation and cumulative profit, while the 
charts on the right indicate which units are online at each hour (marked by X). Evidently, the 
hydro units are operating only a part of the day given the amount of water available. 

 

Fig. 2.18. Dispatch schedule of the HPP with 1-hour constraint (A). 

 

Fig. 2.19. Dispatch schedule of the HPP with 2-hour constraint (B). 
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Fig. 2.20. Dispatch schedule of the HPP with 3-hour constraint (C). 

Comparing all the three dispatch schedules, the maximum difference of the profit is about 
7 000 €, while the number of startups varies from 10 to 16. The given results allow construction 
of a Pareto front (Fig. 2.21). Points A and B represent the non-dominant solutions and belong 
to the Pareto front since none of them is better than the other one with respect to both objective 
functions. However, point C is not on the Pareto front because it is entirely dominated by B in 
regard to both the profit and the number of startups. 

 

Fig. 2.21. Pareto optimal set of solutions for the case study. 

The set of Pareto optimal solutions allows the HPP operator to make the final decision on 
the operating strategy to maximize its profit by also considering the number of startups. 

2.9. Chapter conclusions 

This chapter presented a practical stochastic modelling tool for obtaining the optimum 
profit-based daily and hourly schedules of cascaded hydropower plants, whereby the final 
model outcome is the generation schedule for each particular hydroelectric set. The 
optimization problem is stated and solved in accordance to a competition-driven electricity 
market structure, as opposed to vertically integrated power system. Additionally, the model is 
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especially suited for HPPs with medium-sized reservoirs, i.e., poundage power plants that are 
not strictly run-of-river, but cannot provide seasonal regulation either. Hence, the first stage of 
the optimization problem is solved for a two-week horizon, increasing the complexity of the 
problem statement and model accuracy with each consecutive stage. 

The stochastic nature of electricity price and water inflow is considered by using a self-
adaptive ANN. All the modules of the tool, both forecasting and optimization models, were 
developed in the MATLAB scripting environment utilizing its toolboxes where possible. The 
mathematical model for the first two optimization stages was created by the team from RTU 
Institute of Power Engineering led by Professor A. Sauhats, whereby the software 
implementation was mainly carried out by Dr. sc. ing. R. Petrichenko. The author has 
contributed to all the development phases of the model, but especially so in regards to the final 
optimization stage – the unit commitment using dynamic programming, both in terms of the 
theoretical model definition and its integration in the overall software tool, as well as the 
incorporation of detailed reservoir and unit characteristics within the model. All the case study 
results presented throughout this chapter where obtained by the author. 

Furthermore, the functionality of the HPP scheduling optimization tool has been further 
appended to allow for multi-objective approach. In the particular implementation, an ability to 
also consider the number of unit start-ups alongside the main objective (profit maximization) 
was tested. Various solutions and their adherence to multi-objective criteria can be well 
summarized by employing visualizations of the Pareto optimal set of solutions. 

Apart from practical application by HPP operators, the model can also be further used for 
research purposes by incorporating it in larger power system models or, with some 
modifications, more directly in the assessment of reserve provision, wind power balancing or 
water value. 
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3. CHP PLANT MODELLING TO ASSESS IMPACT ON 
ELECTRICITY MARKET PRICE 

3.1. Motivation for CHP and electricity market modelling 

Several European countries have established support mechanisms for certain categories of 
electricity producers. There are primarily two reasons for this – increasing the share of 
renewable generation in the national portfolio and ensuring generation adequacy.  

The latter is of particular importance in power systems that operate under energy-only 
electricity markets. Large power plants necessary for system reliability are often incapable of 
recouping their investments as the market price does not cover all of their marginal and fixed 
costs. It both puts the continued operation of current peak plants at risk and hinders investments 
in new reliable and flexible capacities which are necessary as backup generation to renewables 
[83]–[85].  

On the one hand, capacity payments have been identified as an effective way to promote 
new gas-fired generators and prevent the mothballing of existing ones [86]. Furthermore, they 
have also been linked to electricity price spike reduction [84], [87]. On the other hand, capacity 
mechanisms are also viewed as problematic due to the risk of market distortions [88]. 
Consequently, the European Parliament has expressed in 2015 that “national capacity 
mechanisms should only be used as a last resort, once all other options have been considered” 
[89]. 

Support schemes for renewables and cogeneration in Latvia have been implemented since 
the mid-1990s and continued with several amendments until 2012 after which no new 
beneficiaries are accepted in the scheme [90]. However, support granted to the power plants 
before the moratorium is continued for up to 20 years depending on the generation technology. 
E.g., the large cogeneration plants studied in this chapter have been granted the support for 
15 years since commissioning. It is estimated that the total support costs for all types of power 
plants under the scheme in place on 2017 would comprise around 4 billion € up to 2037 [90]. 

The support for renewables and cogeneration is largely covered by all electricity end-users 
in Latvia as a levy on their energy bills. By 2017, it formed a relatively large cost burden to 
customers [91], particularly to energy-intensive industries, and resulted in a noncompetitive 
final price of electricity compared to other European countries in the region [92]. This, along 
with the huge pressure from society, forced the responsible authority, the Ministry of 
Economics of Latvia, to reconsider the amount of support and this served as the main motivation 
for the study presented in this chapter of the Thesis. The work laid out here was carried out in 
the first half of 2017 and originally presented to the Ministry and wider public in the report 
“Price of Electricity and Its Influencing Factors” [93] and, subsequently, to the academic 
community in an article [94] presented at the 15th International Conference on the European 
Energy Market (EEM 2018). It should thereby be noted that input data, forecasts and 
assumptions utilized in this chapter are based on information and data available in the first half 
of 2017. 
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Similarly to other Northern European countries, there is a significant presence of district 
heating (DH) networks in Latvia. Meanwhile, support to cogeneration plants amounted to a 
significant part of the national support scheme. Consequently, as a first remedy to reducing the 
support payments, two high-efficiency combined heat and power (CHP) plants in Riga were 
considered – CHP-1 (with installed power of 144 MWel) and CHP-2 (881 MWel). These plants 
comprise about 35% of the total installed generation capacity in Latvia [95] and were first 
awarded state support in 2007. The support continues until 2021 for CHP-1 and until 2028 for 
CHP-2. 

The Latvian transmission system operator (TSO) had already acknowledged the reliability 
and self-sufficiency value these plants bring [95]. Thus, the objective for this research was 
twofold: to assess the impact of the two CHP plants on the electricity wholesale price formation 
in Latvia through long-term modelling up to 2030 and to evaluate if support can be reduced 
without the risk of mothballing the power plants. A hypothesis was put forward that these plants 
are fundamental in restricting excessive price rise in the Latvian bidding area of Nord Pool. It 
was then verified through electricity market price simulations and techno-economic assessment 
of the feasibility of CHP operation with support payments reduced to a varying degree. The 
research presented in this chapter was carried out by the author of this Thesis in cooperation 
with Zane Broka under the supervision of Prof. Antans Sauhats. The main contribution of the 
author consists of the conceptualization and implementation of the simulation model as well as 
analysis and assessment of its results. 

3.2. Factors influencing the electricity market price 

3.2.1. Characterization of the Nord Pool market 

As already described previously in Chapter 1.1, electricity wholesale trading in Latvia is 
carried out in the Nord Pool exchange. The Latvian bidding area there was opened on June 3, 
2013, for day-ahead trading (Elspot) and on December 10, 2013, for intraday trading (Elbas) 
[96]. However, since nearly all of the electricity trades in the Latvian bidding area are 
performed in the day-ahead market16, the subsequent considerations and analysis are focused 
on Elspot. 

In terms of the volumes traded, Nord Pool is one of the largest electricity exchanges in 
Europe and it is operating in a number of countries, but most notably in Northern Europe 
(Norway, Denmark, Sweden, Finland) and the Baltic states (Estonia, Latvia, Lithuania). The 
large number of participants ensure high market liquidity and thereby also conceivably the 
lowest costs for electricity wholesale purchase. 

The electricity market clearing price, called Nord Pool system price, is found at the 
intersection of the supply and demand curves (Fig. 3.1 [97]17). This point represents the market 
equilibrium. For the day-ahead market these curves are constructed in the previous day by 

                                                 
16 For instance, 99.8% of the electricity bought and 98.1% of the electricity sold in Latvia in 2016 [9]. Data 

assessed using Nord Pool database categories Consumption, Production and Elspot volumes.  
17 Data extracted from file mcp_data_report_27-12-2016-00_00_00.xls 
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aggregating for each particular hour the supply and demand bids according to their price and 
volume. The merit order list is obtained by ranking the bids according to their price. The bid 
price limits in Nord Pool are set equal to -500 €/MWh and 3 000 €/MWh as the lower and upper 
constraint respectively. 

 

Fig. 3.1. Example of Nord Pool supply and demand curves (27.12.2016 at 10–11 AM CET). 

The full price setting algorithm, however, is more complex as there are also other order 
types and not only single hourly orders. In the case of Nord Pool, there are also block orders 
(consisting of a number of consecutive hours), exclusive groups (a cluster of blocks whereby 
only one of them can be activated) and flexi orders (a block order where the time of activation 
is determined by the clearing algorithm). Nevertheless, “the largest share of the day-ahead 
trading is matched on single hourly orders” [98]. The peculiarities involved with the alternative 
order types introduce significant complexity to the market clearing process [99]. However, 
these issues are handled by the common European electricity market clearing algorithm 
EUPHEMIA [100]. Furthermore, the final system price also depends on the electricity market 
coupling flows to other bidding areas neighboring the Nord Pool region. 

The main principle of electricity market clearing is maximization of the social welfare18 [7]. 
In practice, this means that the electricity demand is covered by the least expansive generation 
units capable of covering the demand. Under conditions of perfect plant availability and 
divisibility with no transmission constraints (i.e., perfect competition), the equilibrium in 
energy-only markets is found at a price equal to the short run marginal costs of the most 
expensive accepted generating unit [101]. These marginal costs are mostly composed of the 
fuel, CO2 emission and other operational & maintenance (O&M) costs per unit of energy 
produced. 

                                                 
18 The social welfare is the sum of the consumer surplus, the supplier surplus and the congestion rent [100] 
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The system price resulting from the market clearing process serves as a reference for futures 
and forwards trades in electricity. However, to obtain the actual market clearing price in each 
of the Nord Pool bidding areas (as illustrated previously in Fig. 1.1), it is necessary to take into 
account the transmission constraints in all the interconnections. If a transmission constraint is 
violated in the market clearing process, a more expensive marginal offer has to be accepted in 
the area in direction to which transmission is congested, until the constraint is satisfied. 
Thereby, the clearing price in the deficit area increases and price differences between bidding 
areas arise. 

As was already established in Chapter 1.1 and Table 1.1, the area prices in Latvia and 
Lithuania have consistently been very similar, in fact, equal for the vast majority of hours. This 
allows them to be considered, in essence, as the same price area for modelling purposes. 
However, in regards to Estonia, price equality is rarer, with the price normally being higher in 
Latvia whenever congestions on the Estonia-Latvia interconnector emerge. The trend did 
change notably in 201619 with the launch of the new 700 MW interconnector NordBalt20 
between Sweden (SE4) and Lithuania [102]. Previously, electricity imports from Scandinavia 
reached Latvia only through the interconnection with Estonia (via Finland), but the launch of 
NordBalt allowed for electricity to be imported to the Latvian/Lithuanian area directly from 
Sweden. 

3.2.2. Characterization of the Latvian and Lithuanian power systems 

Nearly 88% of the installed power in Latvia is operated by one producer’s – Latvenergo 
AS21 – five power plants: 

 Daugava HPP cascade (1 536 MW) – Pļaviņas, Rīga and Ķegums HPP; 

 Riga CHP-1 (144 MW); 

 Riga CHP-2 (881 MW). 
 
However, the production of the HPPs is to some degree influenced by weather conditions 

(i.e., natural inflow), whereas the CHP plants are also providing heating energy to the district 
heating network of the right bank of Riga. 

The rest of the production sources can be separated in six groups [103]: 

 small natural gas CHP plants (172 MW); 

 wind power plants (71 MW); 

 biogas power plants (66 MW); 

 biomass power plants (58 MW); 

 small HPP plants (29 MW); 

 solar power plants (0.4 MW). 

                                                 
19 Price between the Estonian and Latvian bidding areas differed for 69.6% of hours in 2014, 66.1% in 2015, 

but only 29.2% of hours in 2016 [9]. 
20 This HVDC cable became available for trading in the middle of February, 2016. 
21 Here and elsewhere in this subchapter the power systems are described as they were during the time of 

carrying out the modelling work, i.e., in the first half of 2017. 
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On the other hand, the total installed capacity of the Lithuanian power system at the 
beginning of 2017 was 3 558 MW. However, due to the high marginal costs and low 
competitiveness of the thermal plants, it is generally more cost-effective to mostly import 
electricity and start-up the more expensive plants only during cases of such necessity (i.e., 
scarcity). When that happens, it is sharply reflected in the electricity price spikes. Most of the 
installed power comes from cogeneration plants Lietuvos elektrinė (1 045 MW), Vilnius 3 
(360 MW), Kaunas (170 MW) and producers at manufacturing facilities (292 MW) [104]. 
Water resources are significantly less developed than in Latvia (Kaunas HPP – 101 MW; small 
HPPs – 27 MW), however, the Kruonis pumped storage plant (900 MW) is significant. The 
total capacity of biomass, biogas and waste power plants constituted 108 MW and solar – 
73 MW. The wind power capacity was six times larger than in Latvia – 438 MW [104]. 

The short-run marginal costs of producing electricity with hydropower or wind are very 
small. However, production from these resources in the Latvian and Lithuanian area is usually 
insufficient to cover the whole demand, thereby the market clearing price is mostly set by either 
electricity import or local thermal plants. As found by M. Balodis in [105], the highest prices 
in the region (150..200 €/MWh) occur if the marginal production unit is a heavy fuel oil or gas 
turbine plant. 

3.2.3. Correlation analysis 

In order to analyze what factors have the most influence on the electricity day-ahead market 
clearing price, correlation analysis is performed on various variables. For this analysis, hourly 
resolution data from May 1, 2016, to April 30, 2017, is used. This period was chosen to account 
for changes in price dynamics introduced by the commissioning of the NordBalt (SE4–LT) and 
LitPol (LT-PL) interconnectors at the beginning of 2016, and it constitutes a full year of data 
as available at the time of performing the analysis. 

The correlation versus electricity day-ahead market clearing price in Latvia is assessed for 
the following variables: 

 Nord Pool system price, 

 electricity consumption, 

 electricity production, 

 usage (loading) of the most important interconnections, 

 price of natural gas, 

 price of CO2 emission allowances, 

 ambient air temperature. 
 
Pearson’s correlation coefficient [106] is used for the assessment as it is suitable for finding 

the linear correlation of a pair of samples of variables x  and y , as in: 
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where  ix , iy – individual sample points of the variables; 

 x , y – the mean values of the samples; 

 n  – sample size. 

 
The coefficient r describes the strength of the correlation and its value can be from –1 to 1. 

The closer it is to the bounds, the stronger is the correlation between the two studied samples 
of variables x and y. If its value is 0, then there is no linear correlation between the two variables. 
A positive coefficient means that an increase in x corresponds to an increase in y, but for a 

negative coefficient the opposite is true. The absolute value of the correlation coefficient r   

can be interpreted as follows [107]: 

 0.80–1.00: very strong correlation, 

 0.60–0.79: strong correlation, 

 0.40–0.59: moderate correlation, 

 0.20–0.39: weak correlation, 

 0.00–0.19: very weak correlation. 
 
However, results of correlation analysis ought to be considered cautiously – a strong 

correlation does not necessarily imply causation. Thereby, it is necessary to also take into 
account the potential influence of other parameters. The sample size is also of importance – the 
larger it is the more statistically significant are the results and vice versa. The results of the 
correlation analysis are as follows: 

 Nord Pool system and bidding area prices 

The correlation coefficient for Nord Pool day-ahead system (SYS) price and the price in the 
Latvian (LV) bidding area [9]22 from 05.2016 to 04.2017 is 0.45, which shows a moderate 
correlation between the two prices. If we plot the correlation (Fig. 3.2), several data points can 
be seen where the difference between the prices is very significant. For instance, for 70 hours 
the price in LV area exceeds 80 €/MWh (averaging 126.98 €/MWh), while the average SYS 
price in the same hours is only 32.60 €/MWh.  

If these hours are excluded from the analysis, the correlation coefficient for the remaining 
8 680 hours is 0.62, showing a stronger correlation. Notably, if we look at the 70 hours with the 
most expensive price, a common feature manifesting in 62 of them is the inability of the largest 
plant (Riga CHP-2) to participate in the market with full capacity (in 25 of these hours both 
Riga CHP-2 production units were down for maintenance and in the remaining 37 – one of the 
units [108], [109]23) . 

                                                 
22 Here and further on, Nord Pool price data extracted from data files elspot-prices_2016_hourly_eur.xls and 

elspot-prices_2017_hourly_eur.xls. 
23 Here and further on, power plant unavailability data extracted from Nord Pool Urgent Market Messages 

(UMM) service and ENTSO-E Transparency Platform section Unavailability of Production and Generation Units. 
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Fig. 3.2. SYS and LV day-ahead hourly market price correlation. 

In those same 70 hours the price in the Lithuanian (LT) area was as high as in the LV area, 
and, in 50 of those, the NordBalt cable (connecting the Lithuanian and Swedish bidding area 
SE4) was unavailable. Furthermore, in 35 of these hours the maximum import capacity in the 
link between Estonia and Latvia (EE-LV) had been reached [9]24. Since price differences are 
caused precisely because of reaching the allocated cross-border transfer capacities, in further 
analysis, it is useful to assess not only the whole year (8 760 hours) as a whole, but also 
separately analyze those hours when due to transmission congestions different area prices 
emerge. Thereby the overall data sample is divided in three additional subsets – 2 009 hours 
when there are different prices in Estonia and Latvia (designated as EE≠LV); 5 204 hours when 
the price is equal in Finland, Estonia, Latvia and Sweden SE4 (designated as FI=EE=LV=SE4) 
and another small subset of 162 hours for specifically when the SYS price equals the LV area 
price (SYS=LV). 

Table 3.1. Correlation of the day-ahead market price of various Nord Pool bidding areas 

 SYS SE1 SE2 SE3 SE4 FI DK1 DK2 EE LT 

SYS 1          

SE1 0.782 1         

SE2 0.782 1.000 1        

SE3 0.782 0.997 0.997 1       

SE4 0.772 0.958 0.958 0.963 1      

FI 0.692 0.886 0.886 0.890 0.871 1     

DK1 0.732 0.718 0.718 0.724 0.715 0.652 1    

DK2 0.705 0.888 0.888 0.892 0.929 0.826 0.804 1   

EE 0.681 0.879 0.879 0.883 0.864 0.979 0.648 0.820 1  

LT 0.440 0.627 0.627 0.631 0.649 0.708 0.458 0.629 0.725 1 

LV 0.451 0.652 0.652 0.655 0.652 0.729 0.467 0.633 0.746 0.967 

 

                                                 
24 Here and further on, the transfer capacities available for trading are extracted from the corresponding data 

files of Elspot capacities, whereas market flows – from the data files regarding Elspot flow.  
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In Table 3.1, the correlation coefficients between Nord Pool bidding area prices are 
summarized25. For the LV area price, there is nearly full correlation (0.967) with the LT area 
price, and it is notable also with the EE and FI area price (0.746 and 0.729 respectively), 
followed by SE4 and DK2. 

 Electricity consumption in Latvia and Lithuania 

The correlation coefficient of the total electricity consumption in Latvia and Lithuania in 
hourly resolution with the LV area price in the studied period (Fig. 3.3) is 0.52, which signifies 
a moderate correlation. If the 70 hours with the atypically high prices (> 80 €/MWh) are 
excluded, the coefficient becomes 0.69, showing high correlation between the market price and 
electricity consumption. This is in line with the principles of setting the market clearing price, 
whereby consumption is covered by the generating units with the least expensive marginal 
costs, i.e. with increased consumption it is necessary to accept more expensive units. 

 

Fig. 3.3. LV and LT consumption and LV day-ahead hourly market price correlation. 

If we look at the FI=EE=LV=SE4 subset, r = 0.66, but, in the EE≠LV subset, r = 0.32, and, 
in the SYS=LV subset r = 0.55. The more equal are the prices in Nord Pool areas, the higher is 
the LV area price correlation with the consumption in Latvia and Lithuania. This is influenced 
by effective operation of the market in the corresponding time periods, which reduces the need 
for expensive and rarely activated generation units, and also by smaller demand in the 
corresponding hours, due to which it is not necessary to fully utilize interconnections and 
thereby price differences do not emerge. 

 Electricity generation in Latvia and Lithuania 

When looking at the correlation of electricity production in Latvia and Lithuania with the 
local area price, the situation is very similar (Fig. 3.4). For the whole sample r = 0.45, but, when 
the 70 most expensive hours are excluded, r = 0.57, which, in whole, implies a moderate 
correlation. 

                                                 
25 With the exception of the Norwegian bidding areas, since very low correlation was identified there. 

0

50

100

150

200

250

0 500 1 000 1 500 2 000 2 500 3 000 3 500

L
V

 p
ri

ce
 (

€/
M

W
h)

LV + LT consumption (MWh)



71 
 

 

Fig. 3.4. LV and LT generation and LV day-ahead hourly market price correlation. 

For FI=EE=LV=SE4, r = 0.59; for SYS=LV, r = 0.53; but for EE≠LV, r = 0.36. 

 Electricity generation by source in Latvia, Lithuania and Estonia 

In order to assess the correlation of the day-ahead market clearing price in Latvia with the 
electricity production per type of energy source, data from the ENTSO-E Transparency 
Platform is used [108]26. In the results (Table 3.2–Table 3.4), those sources for which the hourly 
production in the period is relatively small (not exceeding 100 MWh/h) are considered 
statistically insignificant and subsequently colored in light grey. 

Within the generation sources in Latvia (Table 3.2), the highest market price correlation 
(albeit moderate, r = 0.424) was found with electricity production in natural gas power plants. 
The positive correlation can be explained by the fact, that natural gas power plants normally 
would not be in operation when the market price is the lowest, due to higher marginal 
production costs. Their profitable operation can only be possible if the market clearing price 
reaches a sufficiently high level.  

On the other hand, production in HPPs is mainly dictated by the natural inflow, thereby its 
correlation with the market price is very weak (r = 0.132, i.e., Latvian HPP plants in general 
are price takers). For the remaining generation sources in Latvia, the correlation with market 
price is also very weak.  

This is also at least partially caused by the RES support schemes in place (i.e., mandatory 
procurement) which does not motivate the owners of these power plants to adjust their 
production schedules according to market-based factors [105]. Instead, for instance, biomass 
and biogas cogeneration plants schedule their operation in accordance to the heat demand 
profile, or maintain it relatively constant. 

                                                 
26 Data extracted from section Actual Generation per Production Type. 
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Table 3.2. Correlation of electricity production sources in Latvia with the LV day-ahead 
hourly market price 

 Natural gas HPPs Biomass Other Wind 

All hours 0.424 0.132 0.082 -0.075 -0.124 

EE≠LV 0.192 0.181 0.082 -0.044 -0.071 

FI=EE=LV=SE4 0.634 0.177 0.314 0.124 -0.124 

 
While analyzing the correlation of various Lithuanian electricity generation sources with 

the market price (Table 3.3), it is important to take into account the fact that, in total, a fairly 
small amount of electricity is generated there (about one quarter of the national consumption in 
the analyzed time period). The market price is moderately correlated with natural gas power 
plants (r = 0.401), however, the highest (but still moderate, r = 0.474) correlation is with the 
Kruonis PSHP27. This correlation points to this pumped storage plant having adapted to 
operation under liberalized market conditions. Furthermore, unlike in the Latvian HPPs which 
can operate at full capacity only during the spring flood season, Kruonis HPP is capable of full 
operation in the market all year round (except for periods of maintenance). The correlation with 
heavy fuel oil (HFO) plant production is even higher, but the overall volume of generation from 
this source is notably small28.  On the other hand, electricity production in Lithuanian wind 
power plants is very weakly and negatively correlated with the market price. 

Table 3.3. Correlation of electricity production sources in Lithuania with the LV day-ahead 
hourly market price 

 Kruonis 

PSHP 

Natural 

gas 
Wind HPPs HFO Solar Waste Biomass Other 

All hours 0.474 0.401 -0.153 0.080 0.542 0.331 -0.061 -0.033 0.038 

EE≠LV 0.358 0.377 -0.123 0.045 0.545 0.307 -0.014 -0.064 0.063 

FI=EE=LV=SE4 0.491 0.472 -0.120 0.233 0.515 0.188 -0.039 0.075 0.012 

 
For Estonia (Table 3.4), there is some correlation with the LV area market price with 

production in oil shale power plants (r = 0.328). However, it is weaker than with Latvian or 
Lithuanian natural gas plants, possibly due to fuel costs of oil shale plants, whereby despite 
higher CO2 emissions, their marginal costs are lower than in natural gas plants. As in Lithuania, 
Estonian wind power production is very weakly negatively correlated to the LV area price. 

Table 3.4. Correlation of electricity production sources in Estonia with the LV day-ahead 
hourly market price 

 Oil 

shale 
Wind Peat 

Natural 

gas 
Biomass HPPs 

Other 

RES 
Waste 

All hours 0.328 -0.145 -0.097 0.119 -0.085 -0.042 0.021 0.018 

EE≠LV 0.148 -0.099 -0.123 0.163 -0.124 -0.052 0.041 0.041 

FI=EE=LV=SE4 0.488 -0.115 -0.092 0.177 0.012 -0.081 -0.104 0.057 

 

                                                 
27 In this analysis, Kruonis PSHP was considered in both consumption (pumping) and generation modes. 
28 Average hourly production from HFO – 15 MWh/h, maximum hourly production – 63 MWh/h [108]. 
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 Electricity production and consumption in Nordic countries 

When analyzing the correlation of the day-ahead market hourly price with consumption and 
production time series of the Nordic countries29 (Table 3.5), a strong correlation between 
Nordic consumption and the system price can be identified (r = 0.757). Furthermore, it is greater 
than the correlation between Latvian and Lithuanian electricity consumption and the respective 
area price (0.520). This can be linked with the consumption in Northern Europe having more 
pronounced seasonal characteristics than in Latvia or Lithuania. 

In terms of generation sources, Nordic HPP production strongly correlates with the SYS 
price and moderately – the LV area price (r = 0.663 and 0.492 respectively). On the other hand, 
price correlation with production in nuclear power plants (NPPs) and wind power plants is weak 
or very weak. This is because wind production mainly depends on weather factors, while NPPs 
try to maintain generally smooth profile and do not notably react to price signals. However, for 
HPPs, significant range for regulating their output is available, thereby adjusting to the 
consumption patterns. This allows Swedish and especially Norwegian HPPs to be used for 
covering the maximum demand, which also explains the notable correlation with system price. 

Table 3.5. Correlation of Nordic electricity consumption and production with Nord Pool SYS 
price and LV area price 

 Consumption 
Production 

(total) 

Production 

(NPPs) 

Production 

(HPPs) 

Production 

(wind) 

LV price 0.282 0.308 -0.152 0.492 -0.108 

SYS price 0.757 0.349 0.396 0.663 0.055 

 Interconnection capacity utilization 

Market flow in the four most important cross-border interconnections has been analyzed in 
terms of effect on the LV area price. For this assessment, the FI=EE=LV=SE4 subset of the 
sample (i.e., when the market clearing price is equal in the Finnish, Estonian, Latvian and 
Swedish 4th bidding area) is used. Hours when the market flow in a particular interconnection 
is zero are also excluded, since those correspond to interconnector unavailability, but the aim 
is to assess correlation in normal operating conditions. 

Table 3.6. Correlation of electricity market flow with the LV day-ahead hourly market price 

Interconnection SE4–LT FI–EE EE–LV LV–LT 

Coefficient r -0.169 -0.205 -0.094 0.301 

 
Even though the correlation is overall small (Table 3.6, Figures 3.5–3.8), a trend is 

observable whereby the electricity market flow in directions SE4→LT, FI→EE and EE→LV 
decreases the market price in Latvia. On the other hand, flow in the direction LV→LT increases 
it. This is in line with electricity market principles – electricity flows from areas with lower 
local marginal production cost to areas where the cost is higher, thereby equalizing the prices 
across the regions (as long as transmission constraints are not active). 

                                                 
29 Those Nordic countries who have Nord Pool bidding areas – Norway, Sweden, Denmark and Finland. 
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Fig. 3.5. Market flow SE4–LT and LV day-ahead hourly market price correlation. 

 

Fig. 3.6. Market flow FI–EE and LV day-ahead hourly market price correlation. 

 

Fig. 3.7. Market flow EE–LV and LV day-ahead hourly market price correlation. 
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Fig. 3.8. Market flow LV–LT and LV day-ahead hourly market price correlation. 

 Price of natural gas 

To assess the correlation between electricity market price and natural gas price (Fig. 3.9), 
the monthly gas trading price of the incumbent natural gas trader Latvijas Gāze AS30 was used 
[110]. Accordingly, instead of hourly day-ahead electricity market prices, here the monthly 
weighted average prices31 were utilized. The resulting correlation coefficient r = -0.626 shows 
a strong, but, unexpectedly, negative correlation. On the one hand, this could be explained by 
peculiarities in the gas procurement process. However, more importantly, the sample size is 
overly small for this analysis (n = 12) to be of significance due to the necessity to use monthly 
values instead of hourly as before. Consequently, this result should be viewed with caution. 

 

Fig. 3.9. Natural gas monthly price and LV day-ahead weighted monthly average market price 
correlation. 

                                                 
30 This corresponds to the natural gas trading monopoly situation in Latvia as it was before April 2017, when 

the market was liberalized.  
31 Here and further on, the weighted average electricity market prices are weighted taking into account the 

volumes of electricity traded in each trading interval (i.e., hour) within the analyzed period. 
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 Price of CO2 emission allowances 

Emission allowance auctions are not hourly, thereby, for the purposes or performing this 
analysis, the correlation between weighted weekly average day-ahead electricity market price 
and weekly average CO2 allowance price at the last auction [111]32 was studied (Fig. 3.10). The 
coefficient (r = 0.060) in conjunction with the limited sample size (n = 52) do not allow to 
establish a correlation between these two variables in the sample studied. Furthermore, in the 
time period considered, CO2 allowances constituted a fairly minor part of the whole production 
marginal costs, especially compared to the fuel costs. 

 

Fig. 3.10. CO2 emission allowance price and LV day-ahead weighted weekly average market 
price correlation. 

 Ambient air temperature 

For this analysis, the actual registered hourly ambient air temperature in the capital of 
Latvia, Riga, is used [112]33. For the whole year, r = 0.066; for the EE≠LV subset, r = 0.103; 
for the FI=EE=LV=SE4 subset, r = -0.211. The negative coefficient in the last case shows that 
the electricity market price tends to increase as the air temperature decreases and vice versa. 
Partly, this can be explained by more pronounced need for thermal power plant participation in 
the market and rising electricity consumption in the winter (especially pronounced in the Nordic 
countries). Nevertheless, the correlation identified ranges from very weak to weak. 

 
To summarize the correlation analysis laid out in Chapter 3.2.3, it can be concluded that 

electricity day-ahead market price in the Latvian bidding area has the strongest positive 
correlation with consumption and production in Latvia and Lithuania, as well as the production 
from certain types of energy sources – Baltic natural gas and oil shale plants, Kruonis PSHP 
and Nordic HPPs. In other words, larger consumption is met by larger production, which 

                                                 
32 Data extracted from files emission-spot-primary-market-auction-report-2016-data.xls and emission-spot-

primary-market-auction-report-2017-data.xls. 
33 Data parameter: Air temperature, actual; Observation station: Rīga – Universitāte. 
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increases the market clearing price, and thus allows the activation of production plants with 
higher marginal costs. 

The price in the Latvian bidding area is very strongly correlated with the price in the 
Lithuanian area, and strong correlation is also with Estonia and Finland, moderate – with 
Sweden. Electricity market flow from Finland and Estonia to Latvia aids in decreasing the price, 
whereas the flow from Latvia to Lithuania, increases it. 

In the time period studied (May 1, 2016 – April 30, 2017), no strong correlation could be 
identified between electricity market prices and natural gas or CO2 allowance price. On the 
other hand, there is minor negative correlation with the ambient air temperature in the 
FI=EE=LV=SE4 subset. 

The most important factors analyzed in this subchapter are used further on in modelling the 
electricity market and assessing the role of Riga CHPs in setting the market clearing price in 
Latvia. 

3.2.4. Analysis of hourly prices in the Latvian bidding area 

To more thoroughly assess under what conditions do exceptionally high price spikes occur 
in the Latvian bidding area of the Nord Pool day-ahead market, the hourly prices from 2016 
were analyzed. This period was selected as it contains more hours with atypically high prices 
than, for instance, 2017. 

Nevertheless, also in 2016 exceptionally high price spikes were observed relatively rarely 
and in 92.4% of hours the price did not exceed 50 €/MWh (Table 3.7). Most often (~29.3% of 
hours) the price was in the range 25–33 €/MWh, followed by 33–41 €/MWh (in 25.8% of hours) 
and 41–50 €/MWh (19.9%).  

Price higher than 50 €/MWh occurred only in 671 hours within the year. Higher than 
100 €/MWh it was only in 105 hours (1.2% of all hours), higher than 150 €/MWh – 39 hours 
(0.4%). The highest price, above 200 €/MWh, occurred in only 19 hours (0.2%).  

Table 3.7. Rate of occurrence of various day-ahead prices in LV bidding area (2016) 

Price range Number of hours % of all hours 

≤ 50 €/MWh 7 950 92.4% 

> 50 €/MWh 671 7.6% 

> 100 €/MWh 105 1.2% 

> 150 €/MWh 39 0.4% 

> 200 €/MWh 19 0.2% 

 
The occurrence of prices in the equal or below 50 €/MWh range is further broken down in 

a histogram in Fig. 3.11, and a duration curve of the recorded day-ahead price statistics is 
presented in Fig. 3.12. 
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Fig. 3.11. Histogram of the day-ahead prices (≤ 50 €/MWh) in LV bidding area in 2016. 

 

Fig. 3.12. Duration curve of the day-ahead prices in LV bidding area in 2016. 

If we assume the marginal costs of Riga CHPs to be in the range of 30–50 €/MWh, evidently 
the market price falls within this range for 5 176 hours or 58.9% of the year. By estimating the 
marginal production costs of Riga CHPs in more detail for each hour of the year, and using the 
actual statistics of the plant operation in 2016, it is possible to identify the hours when either 
Riga CHP-1 or CHP-2 have been the price setting generation unit in the Latvian bidding area. 
Afterwards a hypothesis can be made, stating that if these plants were unavailable then taking 
also into account the transmission congestions, generation units with greater marginal costs (i.e. 
in the range of 100–200 €/MWh), would become the price setters. 

A common trait of the 105 of most expensive hours in 2016 (> 100 €/MWh) is that in 93 of 
them the NordBalt cable was not available for market transactions. Evidently, whenever this 
cable is out of service or with limited transmission capacity, the role of local generation sources 
significantly increases. Another important characteristic of the most expansive hours is that in 
only 19 of them both units of Riga CHP-2 were operational (for 58 hours either of the units 
were unavailable, but for 28 – both of them). 

The impact of Riga CHP-2 on the market clearing price can be observed all through 2016. 
For instance, whenever it was unavailable due to planned or unforeseen maintenance, the 
average day-ahead price was 68.30 €/MWh, but whenever Riga CHP-2 was available to 
participate in the market, the average price in Latvia was 39.09 €/MWh. 
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3.3. Modelling methodology 

The overarching task of the research work presented in Chapter 3 is assessing the impact 
natural gas cogeneration plants Riga CHP-1 and Riga CHP-2 have on the market clearing price 
in the Latvian bidding area of Nord Pool till 2030 by employing mathematical modelling. Both 
plants received capacity payments in accordance to Cabinet Regulation No. 221 [113]. In 
addition, the possibilities to receive the support payments to 75%, 50%, 25% and 0% of the 
current level, and the subsequent impact of such actions is analyzed. In accordance to 
information published by the Ministry of Economics [114], the annual capacity payment to 
Riga CHP plants constituted 99.88 mill. €34. 

As described in the previous subchapter, electricity market price is affected by a number of 
factors: consumption, production in various countries and various types of power plants, 
production costs, transmission capacities and flows etc. All of these parameters vary in time, 
thereby for long-term modelling forecasts have to be used based on assumptions. However, it 
is important to keep in mind that for long-term scenario modelling it is not possible to obtain 
results with absolute certainty, i.e., scenario modelling results are not and should not be 
interpreted as forecasts. Instead, they are useful indicators to evaluate the possible effect of 
certain decisions. 

3.3.1. Modelling approach 

To quantitatively assess the impact of both CHP plants on the day-ahead market clearing 
price, a market simulation model was devised (shown in Fig. 3.13). The model includes 
approximated bids of all types of power plants in the considered bidding areas and a more 
accurate production model of the Riga CHP plants to enable detailed techno-economic 
feasibility calculations. 

 

Fig. 3.13. The overall structure of the model. 

                                                 
34 This is the maximum amount of annual support, not taking into account subsidized electricity tax and 

capacity payment correction. However, the deductions are accounted for in the mathematical model. 
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The algorithm is comprised of the following main steps: 
1. Read the input data for each particular year. 
2. Taking into account the price of natural gas and CO2 emission allowances, as well as 

the heating load demand, calculate the variable production costs (short-run marginal 
costs) for each of the CHP unit in cogeneration, condensing and mixed modes35. 

3. Model the supply-demand equilibrium to estimate the market clearing price for each 
hour of the year as follows: 
a) consumption, non-fossil generation and interconnector power flow time series are 

used as input based on historical data and future assumptions; 
b) local fossil sources, including Riga CHP plants, are activated in a step-wise manner 

based on their marginal costs until the demand is met (i.e., following a merit order 
list). 

4. Return  the resulting market price signal to the CHP model, which calculates and selects 
the operational mode and amount of energy to be produced corresponding to the price. 

5. Finally, calculate and compare various Riga CHP plants expenditure and income 
positions to evaluate profitability of the plant operation in the particular year modelled.  

3.3.2. CHP production model 

In the overall structure of the algorithm (Fig. 3.13), CHP operation modelling is utilized 
twice in each iteration. Firstly, it is used to estimate the short-run marginal costs and pass them 
to the market simulation model. Secondly, once the market clearing price is known, the CHP 
model is used to generate the production profile and calculate the corresponding indicators in 
accordance to the market situation. 

The following technical parameters of the Riga CHP plants are incorporated in the model36: 

 Both plants supply the same district heating network. It is assumed that during the 
heating season CHP-1 supplies 40% of the demand, but CHP-2 – 60%37, whereas in 
summer (hot water provision), it is covered fully by CHP-1.  

 Electricity self-consumption in the plants is assumed to be 5%38. 

 The technical minimum of electrical power – 185 MW (CHP-2.1), 148 MW (CHP-
2.2) and 45 MW (CHP-1). 

 Installed electrical power – 407 MW and 419 MW for CHP-2.1 and CHP-2.2 in 
cogeneration mode and respectively 437 MW and 439 MW in condensing mode 
[115]; 144 MW for CHP-1 (only cogeneration mode) [116]. 

                                                 
35 Both Riga CHP-1 (one unit) and CHP-2 (two units) are capable of high efficiency cogeneration modes, 

whereas condensing (no heat energy production) and mixed modes are only possible in the two units of CHP-2. 
36 All the input data and assumptions used for the research described in Chapter 3 were sourced only from 

publicly available data and no proprietary information was used. The reason for this was twofold – firstly, the final 
report would have to be publicly accessible, and, secondly, the policy-maker decisions stemming from the 
conclusions of this research would directly affect the company holding any potentially useful proprietary data. 
Thereby, to avoid any conflicts of interest, such data was neither requested nor utilized. 

37 This ratio is obtained by analyzing the total annual heat production data as presented in the plant operator 
Latvenergo AS annual reports [11]. 

38 Obtained from annual reports [11] by comparing the amounts of produced and supplied electricity. 
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 Installed heat power – 274 MW, 270 MW and 145 MW in respectively CHP-2.1, 
CHP-2.2 and CHP-1, whereas installed power of heating boilers on CHP-2 premises 
is 580 MW, but on CHP-1 premises – 348 MW. 

 The ratio of electrical vs heating energy production in cogeneration mode is assumed 
to be 1.49 (CHP-2.1), 1.55 (CHP-2.2) and 0.99 (CHP-1)39. 

 Efficiency – 0.8690 and 0.8819 in cogeneration and 0.5577 and 0.5561 in 
condensing mode for CHP-2.1 and CHP-2.2, but 0.8854 for CHP-1. In reality, the 
efficiency coefficients are dependent on various factors, e.g., electrical power, 
ambient air temperature, however, to correctly approximate such nonlinearities, 
multi-year data of operational parameters of the plants would be required, which is 
sensitive proprietary information. Since within this research only publicly available 
data has been used, the coefficients in the model are considered to be constant. 

 The CO2 emission factor for natural gas is assumed to be 0.2002 t/MWh [117]. 

 the efficiency of the water heating boilers is assumed to be 0.92 (akin to high 

efficiency boilers). 
 
The hot water boilers are installed to cover peak demand of heating during cold spells or to 

supply heating when the cogeneration mode is either technically or economically unfeasible. 
The procedure to estimate the cost of energy produced starts with distribution of the heating 

load among the plants: 

  CHP-1 CHP-2 1t t t tQ Q k Q k Q        

where  tQ – total heat demand (MWh) during hour t ; 

 CHP-1
tQ , CHP-2

tQ – heat load to be covered by each plant (MWh); 

 k – coefficient to expresses the division of the heat load in the DH network. 

 

The amount of electricity to be produced by each power unit n  of the CHP plants depends 

on the hourly heating load assigned to it, t
nQ . Thus, the amount of electricity to be produced in 

cogeneration mode by power unit n  (MWh): 



min max
 cog.  cog.

max max
 cog.  cog.  cog.

min
 cog.

if   

if   

0 if   

t t t
n n n n n n

t t t
n n n n n n

t
n n

a Q A Q Q Q

E a Q A Q Q

Q Q

    
   
 

 

where na – coefficient expressing the proportion of electricity production versus heat 

production; 

 t
nA – binary variable designating the availability of power unit n at hour t;  

 min
 cog.nQ , max

 cog.nQ – technical constraints on the heat production in the power unit. 

                                                 
39 Obtained as a ratio of the installed electrical and heating power. 
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Similar calculations are carried out also for the condensing and mixed operation modes of 
CHP-2. For the condensing mode, no heat load is necessary, but the efficiency is thereby lower, 
whereas for the mixed mode, some heat energy is produced, thereby the overall efficiency 
depends on the heating demand covered by the units.  

The cost of electricity produced in any of the modes,  E
t
nC , is comprised of two main 

components: the cost of fuel and the cost of carbon emissions: 


2 E  E, G  E, CO

t t t
n n nC C C   

of which 



 E

3
 E, G G 10 ,

t
n

t
t tn
n nt t

n n

G

E
C G c

E Q
   


 

where t
nE – the amount of electricity produced (MWh); 

 n – efficiency of generation unit; 

 t
nG – total fuel (natural gas) consumption of the power unit (nm3); 

  E
t
nG – fuel consumption for electricity production (nm3); 

 Gc – fuel price (€/t.nm3); 

 
and 


2 2 2

 cog. E

 E, CO  E LHV CO CO

t
n

t t
n n

Em

C G Q f c   


 

where  LHVQ – lower heating value of the fuel (MWh/nm3); 

 
2COf – CO2 emission factor (t/MWh); 

  cog. E
t
nEm – CO2 emissions from electricity production (t); 

 
2COc – cost of CO2 emission allowances (€/t); 

 
Finally, the marginal cost of electricity (€/MWh) used for bidding to the market is 

determined for each operation mode: 

  E
 E

 s.c.

t
t n
n t t

n n

C
c

E E



 

where  s.c.
t
nE is the self-consumption energy of power unit n  at time t  (MWh). 

 
The resulting marginal costs along with the corresponding amounts of generation for all 

technically feasible modes of CHP plants are then passed to the overall market simulation 
model.  
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The market clearing model outputs the wholesale price signal based on the established 
supply-demand equilibrium which is then compared to the marginal costs of the CHP plants to 

select the operational mode for each power unit as illustrated in Fig. 3.14. The variable LV
tc    

represents the market clearing price in the bidding area where the CHP plants in question 
operate – in this case, it is the Latvian area of the Nord Pool. 

 

Fig. 3.14. Decision logic for power generation mode selection of CHP plants. 

Once the operational mode and amount of electricity production is known, as well as the 
heating energy production and means of doing it (in cogeneration or with hot water boilers), it 
is possible to calculate all the costs of energy production, as well as the income from selling the 
electricity in the market and the heating energy to the district heating network operator. 

However, as follows from Eq. (3.3), the heating load to be covered by the CHP plants 
significantly affects the amount of electricity which can be produced in cogeneration or mixed 
modes and subsequently also its marginal cost. Thereby hourly heating demand time series is 
required for the operation of the model. 

In this study, the hourly heating demand time series is simulated utilizing some public data 
sources. Namely, the sum amount of heating energy sold to the district heating network operator 
in 2016 (2 416 GWh [11]) and the actual registered hourly ambient air temperature in Riga 
[112]. This data is used to construct an equation to approximate hourly heating demand from 
hourly ambient air temperature. 

Firstly, the off-season (summer) heating demand is assessed. For purposes of simplification, 
it is assumed to be equal for each hour within the off-season. Based on Latvenergo AS public 
annual reports [11], it is found that in the 3rd quarter of 2016 (01.07–30.09), the sum heating 
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energy production was 179 GWh or, on average, 81 MWh/h. Secondly, by assuming the time 
period of the off-season to be from 01.05.2016 to 30.09.2016, it can be estimated that during 
the heating season the sum production of heating energy is about 2 118.6 GWh. 

To obtain the heating demand hourly profile during the heating season, an optimization task 
is solved to find the coefficients of a 2nd order polynomial approximating heating demand from 
ambient temperature. The objective function is error minimization, whereby an error is the 
mismatch between the set total heating load in the season and the sum load of the hourly 
approximated values. 

Of course, such a problem statement can produce many solutions most of which would not 
resemble a realistic demand profile, thereby to obtain a result which allows constructing 
believable and trustworthy hourly heating demand profiles, additional constraints are 
introduced – during the warmest hour of the heating season the heating load must be exactly 
100 MWh, but during the coldest hour, it must be within the constraints of 990 to 1100 MWh. 
The resulting heating demand approximation polynomial is as follows: 

 2( ) 0.418 25.152 407.877,Q T T T      

where  T – the actual ambient air temperature at any given hour (°C); 

 ( )Q T – hourly heat demand corresponding to the ambient air temperature (MWh/h). 

3.3.3. Market clearing price modelling 

The estimation of hourly market clearing price in the Latvian bidding area of Nord Pool is 
based of indirect simulation of the demand and supply curves. However, the demand is 
considered to be price-inelastic as is the case in power systems without well-developed demand 
response programs [118]. Since the Latvian and Lithuanian bidding areas are very well 
interconnected as established in Chapter 3.2.3, the amount of electricity demand in the market 
is obtained by summing the demand in these two countries within each modelled hour. For 
future scenarios, historical exogenous time series are used as input, scaling them to adjust to 
the forecasts of the expected value in any given year. Thereby, for instance, to obtain the hourly 
electricity consumption in Latvia in a given year YYYY , the 2016 time series can be used as 
base as in the following equation40: 

 cons.,LV,
cons.,LV, cons.,LV,2016

cons.,LV,2016

,YYYYt t
YYYY

E
E E

E



   

where  cons.,LV,2016
tE – the actual electricity consumption in Latvia in hour t  in 2016; 

 cons.,LV,
t

YYYYE – the estimated electricity consumption in Latvia in hour t  in year YYYY ; 

cons.,LV,2016E – the actual total electricity consumption in Latvia in 2016; 

 cons.,LV,YYYYE – the forecasted/assumed total electricity consumption in Latvia in year 

YYYY . 

                                                 
40 Such scaling is performed for various exogenous time series used in the model.  
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Note, when scaling the electricity demand in the Lithuanian bidding area, the demand due 
to the Kruonis PSHP operation mode is subtracted from the historical time series, since its 
operation is modelled separately. 

From the supply side, several energy sources that otherwise would be modelled via optimal 
dispatch are instead in the model implemented as non-dispatchable due to the support scheme 
(i.e., feed-in tariffs) in place in Latvia. This support scheme demotivates the owners of small 
hydropower and cogeneration plants from planning their schedules following market signals 
[105].  

The large HPP plants are also assumed to operate based on historical data, assuming that 
the peculiarities of their production profiles are captured in it, namely, larger production 
whenever the market price is higher, which normally is during consumption peaks, 
consequently the production is reduced during nights and weekends. The seasonality of HPP 
production is also implicitly present in the historical data, whereby production is significantly 
lower during the summer due to low inflow, and noticeably higher during the spring flood 
season. 

All exogenous time series (production of small and intermittent plants from ENTSO-E 
Transparency Platform [108], consumption, electricity import price from other Nord Pool 
areas) [9] are obtained by scaling historical data using April 2016 to March 2017 as the base 
year. Earlier data was not used as the market situation has changed significantly after NordBalt 
cable (LT–SE4) started its regular operation at the beginning of 2016. The choice of scaling 
factors, however, is scenario based. Also, historical data on unavailability of interconnectors 
from ENTSO-E Transparency Platform is used. 

If import capacities are sufficient for covering the consumption in Latvia and Lithuania 
without activating additional local fossil units, the marginal price is assumed to be defined by 
import from the SE4 area of Nord Pool market. The assumption is based on the historic market 
trends and the price series for SE4 are derived from Energinet’s future projections [119]. The 
same source is used for fuel and CO2 emission price projections for the time period from 2018 
to 2030. 

Additionally, the Kruonis PSHP in Lithuania has been modelled to purchase electricity 
whenever its market price is below 80% and sell when it is above 111% of the two-week 
average41. This follows from the 0.72 round-trip efficiency of the plant and other factors 
discussed and assessed in Chapter 1.4. The constraints related to water reservoir levels are also 
respected by tracking the amount of stored energy in hourly resolution throughout each 
modelled year. 

Thereby, in the first approximation, the electricity market balance in hour t   is approximated 

without local fossil fuel plants as follows: 


LV+LT cons.,LV cons.,LT hydro,LV biom.,LV wind,LV oth.sm.,LV biom.,LT

sol.,LT waste,LT wind,LT oth.sm.,LT imp.,EE imp.,SE4

t t t t t t t t

t t t t t t

E E E E E E E E

E E E E E E

        

     
 

                                                 
41 Using two of its four hydroelectric sets, assuming the other two to be restricted for reserve provision. 
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If LV+LT
tE  is negative (i.e., the consumption is not covered by the stated production sources 

or electricity import), in the next iteration, the next cheapest thermal power plant bid is 
accepted, repeating the process until the balance is either zero or positive, which means that 
electricity market equilibrium has been found (in case of positive balance, there is electricity 
market export from the LV+LT areas). The resulting market clearing price in Latvia is then set 
by the most expensive of the accepted bids, i.e., the production costs of the marginal power 
plant. 

Table 3.8 summarizes the remaining local fossil plants [120] that can be activated in the 
model to meet the demand of electricity, apart from the Riga CHP plants which are modelled 
and included with each of the possible operation modes in the merit order list separately. The 
last entry in the table (a low efficiency oil plant) is the price setting one if consumption is not 
met otherwise, i.e., it is the final marginal unit, hence its max power is not constrained. 

Table 3.8. Fossil power plants modelled in the merit order 

Parameter 

Type 
Natural gas (cogeneration) Natural gas (condens.) Oil (condens.) 

Max. power (MW) 360 60 110 335 455 600 – 

Efficiency 0.915 0.9065 0.8087 0.7988 0.58 0.38 0.22 

 
The market clearing price modelling module was tested on the historical data of 2016, where 

the actual average market price in the Latvian bidding area was 36.09 €/MWh, but the weighted 
average – 38.55 €/MWh. The results obtained from the model test run were sufficiently close 
to the actual data – the modelled average price is 35.53 €/MWh and modelled weighted average 
price is 37.58 €/MWh. The relatively minor difference allows the model to be considered 
capable of estimating electricity day-ahead market clearing price. 

3.3.4. CHP plant operation economic assessment 

To assess the profitability of Riga CHP plants’ operation with varying degrees of support, 
it is necessary to know both income and expenditure positions related to the plants. The income 
from sold electricity and heating energy is obtained using the outputs of the CHP operation and 
market clearing models. Electricity is sold at the modelled market price, whereas heating energy 
is sold at the procurement price set by the district heating network operator.  

It is assumed that Riga CHP units are in operation if the market clearing price in any of the 
feasible operation modes exceeds the marginal cost. Only heating energy produced in the 
cogeneration units and not in the hot water boilers is considered in these calculations, since only 
the cogeneration units are subject to state support in the form of capacity payments. The variable 
production costs are obtained from the CHP operation model. 

Furthermore, the capacity payments received by Riga CHP plants are subject to additional 
conditions, which also need to be included in the assessment model. The payment is reduced if 
market situation has been favorable to CHP plant operation. The procedure of support reduction 
is laid out in Cabinet Regulation No. 221 [113], and this correction is only applied starting from 
the 1 201st hour of full-load operation. 
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As stipulated by the regulation, the correction of the capacity payment is considered per 
monthly basis, by comparing the market price of the electricity sold at each hour with 
approximate production cost estimated according to Eq. (3.11). 


2

g e
CO1.2 0.17 3.55,

9.3

Tr Tr
c


     

where  gTr – the end tariff (without VAT) of natural gas (€/t.nm3); 

 eTr – natural gas excess tax (€/t.nm3); 

 
2COc – carbon dioxide emission allowance (EUA) price (€/t). 

 
The approximated hourly production costs as per Eq. (3.11) multiplied by the produced 

energy are subtracted from the hourly income from the day-ahead market (the produced 
electricity multiplied by electricity market price). The difference in each hour constitutes either 
an additional market income or a perceived loss. The hourly differences within each calendar 
month are summed up, and if the sum is positive, it is considered to be additional income. The 
capacity payment for the particular month is reduced by an amount equal to 75% of the 
additional income.  

Capital expenditure and maintenance costs are the final parameters required for the 
assessment of CHP plant profitability under various support conditions. These indicators are 
summarized in Table 3.9. 

Table 3.9. Expenditure assumptions for the financial assessment of Riga CHP plant operation 

Parameter CHP-1 CHP-2.1 CHP-2.2 Source 

Investment cost (M€) 106 178 320 [121]–[123] 

WACC42 (%) 7.8% [124] 

Service life (years) 15 20 15 In accordance with the 

regulated support period Time of operation 2006–2020 2009–2028 2014–2028 

Fixed maintenance costs (€/kW/y) 24.3 19.8 
[120] 

Variable maintenance costs (€/MWh) 1.4 0.7 

Capital expenditure per year of 

modelled operation (M€) 
12.23 17.86 36.93 

Calculated with the 

assumed WACC 

3.3.5. Long-term assumptions and forecasts 

There are several assumption-driven factors impacting the market clearing model at specific 
points in the long-term outlook: 

 Beginning with 2021, the maximum EE-LV transmission capacity is assumed to 
increase by 600 MW [103]. 

 Beginning with 2021, Riga CHP-1 no longer participates in the market due to end 
of the support period. 

                                                 
42 Weighted Average Cost of Capital 
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 Beginning with 2025, the maximum EE-LV transmission capacity is assumed to 
increase by 1400 MW [103]. 

 Beginning with 2029, Riga CHP-2 units no longer participate in the market due to 
end of the support period. 

 
As stated previously, forecasts of the yearly average electricity market price in Nord Pool 

SE4 bidding area, as well as the price of natural gas, heavy fuel oil and CO2 emission allowances 
are taken from the Danish transmission system operator Energinet modelling assumption 
database [119]43. 

The total annual electricity consumption and installed capacity of electricity production 
sources in Latvia till 2026 is extracted from the national TSOs Augstsprieguma tīkls AS 
projections made in the Base scenario of the 2015 report [125]. The corresponding data for 
Lithuania is taken from Litgrid’s projections [126]. 

Historical hourly time series of SE4 price, hourly consumption and interconnection capacity 
are taken from Nord Pool database [9], time series of various production sources (hydro, wind, 
solar etc.) are taken from ENTSO-E Transparency Platform [108], and the hourly unavailability 
of both Riga CHP plants is obtained from Nord Pool REMIT UMM (Urgent Market Message) 
system [109] – the 2016 unavailability profile for each unit is assumed to repeat in the 
subsequent years. 

The amount of emission allowances is modelled in accordance to Cabinet Regulation 
No. 499 [127] till 2020. For the following years, it is assumed to gradually decrease by reaching 
zero in 2027. 

Various long-term assumptions are summarized in Annex I. The grey cells are interpolation 
or extrapolation results for years to which no values could be found in the information sources 
used. As can be seen from Fig. 3.15, the long-term assumptions are driven by expectations of 
notable fuel price and emission allowance price increases, as well as an overall steady increase 
in the electricity market price (as inferred from the SE4 price projections). 

 

Fig. 3.15. Fuel, emission allowance and electricity price projections used in the modelling. 

                                                 
43 Energinet’s projections of fuel and emission allowance prices trends are partly based on futures contracts 

(EEX EUA, Europe ICE Brent, Germany ICE Endex), partly on IEA World Energy Outlook New Policies Scenario 
(for 2030). SE4 price projections are based on forward prices and Energinet’s own modelling exercises. 
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3.3.6. Analyzed scenarios 

Overall, two different future scenarios have been considered for market simulations. They 
both use the assumptions and projections described previously, but they differ in two notable 
aspects – firstly, the unavailability profile of the NordBalt cable, which allows the import of 
generally cheap electricity from Scandinavia, and, secondly, they consider different 
developments in the heating energy system of Riga. 

First of the scenarios (Conservative Scenario) envisions the same unavailability profile of 
the NordBalt interconnector as in the base period (April, 2016–March, 2017). In the first months 
of 2016, the cable was operating in test mode and often was unavailable to the market. However, 
also in the considered period a pronounced characteristic of the interconnection was frequent 
disconnections and, overall, in the base period it was available to the market for only 72% of 
the hours. In the Conservative Scenario, the electricity market price is modelled and Riga CHP 
plants profitability assessed with varying degrees of support by assuming that also in the future 
the NordBalt cable will encounter technical difficulties with the same pattern as until the time 
this study was carried out. The second defining characteristic of the Conservative Scenario is 
an assumption that the situation in the heating energy demand and supply in Riga remains as 
before, i.e., the demand profile is as in the base year and can be supplied by the Riga CHP plants 
in cogeneration mode or their hot water boilers. 

The other modelled scenario (Development Scenario), foresees two major deviations in 
regards to these assumptions: 

1) Significant technical improvements have been carried out to the most fault-
vulnerable parts of the NordBalt cable, as a consequence of which, starting from 
2018 it no longer disconnects as frequently as before. The unavailability profile is 
thereby assumed to be similar to that of a comparable submarine cable (Estlink-2, 
650 MW), which, in 2016, was available to the market for 95.7% of the hours. 
Thereby this assumption signifies a notable improvement in electricity import 
capabilities from Scandinavia. 

2) Beginning from 2018, new biomass thermal energy plants start operation in the 
district heating network where Riga CHP plants supply their thermal energy. The 
total installed thermal capacity of these new developments is assumed to be 80 MW, 
and it is also assumed that these sources outcompete Riga CHP plants in the thermal 
energy market. A direct consequence of this assumption is the inability of Riga CHP 
plants to operate in cogeneration mode during summer, due to lack of heating load 
to be supplied. 

 
The purpose of these scenarios is assessment of Riga CHP plants impact on the electricity 

market price and evaluation of options to decrease the capacity payments they receive (to 75%, 
50%, 25% or 0% of the current level). The previously described considerations allow to 
hypothesize that in the Development Scenario the price constraining effect of Riga CHP plants 
will be smaller, while support reduction will more considerably decrease their operational 
profitability and increase the risk of mothballing them. 
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3.4. Results and discussion 

3.4.1. Conservative Scenario 

The results from the Conservative Scenario are summarized in Figures 3.16–3.18. The 
impact of Riga CHP plants on the electricity price is estimated by comparing modelling runs 
with and without their participation in the market.  

Fig. 3.16 shows the price in SE4 as a reference for electricity imports and the simulated 
weighted average market price in Latvia. The price here is averaged over four different types 
of hours based on the availability of the NordBalt connection and Riga CHP plants. We see that 
in 2018, 2023 and 2028, the CHP plants contribute to a decrease of the price by 5.71, 12.74 and 
29.65 €/MWh respectively during the hours when the NordBalt is operational and by 32.32, 
48.97 and 82.45 €/MWh respectively when it is not. The price limiting effect of the CHP plants 
is indeed the most prominent when the import link from Sweden is out of service. 

 

Fig. 3.16. Annual weighted average electricity price in selected hours based on the availability 
of NordBalt and Riga CHP plants (Conservative Scenario). 

An example of the electricity market price dynamics during one modelled year is provided 
in Annex II. It is evident that without Riga CHP plants the price tends to be noticeably higher. 
When the price is averaged over the whole year, the unavailability of Riga CHPs causes an 
increase by 13.00, 22.77 and 44.26 €/MWh in 2018, 2023 and 2030 respectively (Fig. 3.17). 
However, one should be wary of long-term prognosis as the degree of uncertainty increases the 
further in the future we model [128]. 

Increased electricity prices would put a strain on the national economy. We can estimate 
the overall escalation in costs by using the annual consumption of electricity. The total 
expenditure on electricity would increase by 95.44 M€ in 2018, by 175.27 M€ in 2023 and by 
357.94 M€ in 2028 if Riga CHPs would not participate in the day-ahead market. 

Of course, the input assumptions and projections used envisioned a gradual but steep 
increase in electricity production costs due to fuel price increases and other factors in the future. 
Because of this, the price limiting effect of Riga CHP plants is more pronounced (in absolute 
terms) in the long term, resulting in larger cost increases in each subsequent year, except for 
2021, when CHP-1 was assumed to be decommissioned. 
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Fig. 3.17. Weighted average electricity price of the whole year with/without Riga CHP plants 
and electricity cost rise w/o RCHPs (Conservative Scenario). 

In Fig. 3.18, we can see the results of techno-economic assessment of the overall 
profitability of Riga CHP plants with different support schemes in mind. The capital costs and 
fixed annual costs of the power plants are sourced from public data, whereas the variable costs 
and income from the spot market are output by the model. 100% designation here corresponds 
to the full amount of support in effect for 2017. It provisioned capacity payments of 
8 525 €/MW/month with a condition of operating at least for 1 200 hours/year in cogeneration 
mode. Furthermore, starting with hour 1 201, if the monthly income in the spot market was 
more than the marginal cost in any of the remaining months of the year, the support would be 
reduced by 75% of the monthly operational profit from the spot market [113]. 

 

Fig. 3.18. Profit of CHP plants with differing amounts of support (Conservative Scenario). 

Evidently, the support can be decreased to 75% of the current level without endangering the 
feasibility of continued power plant operation. If support is reduced to 50%, the operation 
becomes feasible only starting from 2025, but with 25% support it is only feasible in 2028, i.e., 
in all previous years the plants would operate at a loss and thus would unlikely still be 
maintained. In case of immediate complete support withdrawal, the CHP plants would suffer a 
73 M€ loss already in 2018. 

Interestingly, the current amount of support with altered correction condition (from the 1st 
hour instead of 1 201st) would keep the profitability metrics reasonably positive (without 
exceeding 20 M€/year) – the more favorable market conditions, the less support is necessary. 
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3.4.2. Development Scenario 

When compared to the Conservative Scenario, this case envisions a slower electricity price 
increase due to more stable operation of the NordBalt cable (Fig. 3.19). For instance, if 
previously the weighted average price for 2018 was 30.95 €/MWh, then in this scenario it is 
merely 26.73 €/MWh. The example of modelled price provided in Annex II also shows that the 
average price peaks have decreased almost twofold. 

 

Fig. 3.19. Annual weighted average electricity price in selected hours based on the availability 
of NordBalt and Riga CHP plants (Development Scenario). 

The cost increase brought by the absence of CHP plants (Fig. 3.20) would be by 54–
120 M€/year less than in the Conservative Scenario, but still quite significant (41.69 M€ in 
2018, 95.88 M€ in 2023 and 238.09 M€ in 2028). 

 

Fig. 3.20. Weighted average electricity price of the whole year with/without Riga CHP plants 
and electricity cost rise w/o RCHPs (Development Scenario). 

The profitability in this scenario (Fig. 3.21) is more limited due to inability of the CHP 
plants to operate in the summer (because of the assumption of new heat sources outcompeting 
the large CHPs in district hot water provision) and close competition with imported electricity 
from Scandinavia. In the case of 75% support, the plants would operate at a loss till 2021. Any 
further support reduction would make the operation of CHP plants unfeasible. In the case of 
full support withdrawal, the plants would have an 85.5 M€ loss already in 2018. 
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Fig. 3.21. Profit of CHP plants with differing amounts of support (Development Scenario). 

Similarly to the Conservative Scenario, a revised support scheme, whereby a correction of 
the capacity payment is applied already from the first hour of operation, allows keeping the 
profitability at reasonable levels and a positive cash-flow in all the modelled years. The relative 
profit44 does not exceed 15 M€ in any of the years. A positive aspect of such a scheme is the 
option to noticeably decrease the support payments whenever the market conditions in 
Nord Pool enable profitable operation of the CHP plants. 

3.4.3. Discussion 

It becomes evident from the modelling results that decrease in state support to the Riga CHP 
plants to 50% of the level envisioned in 2017 or lower would significantly reduce the 
profitability and economic feasibility of continued power plant operation as they would be 
unable to cover the annual expenses. 

However, reduction to 75% only shows negative financial metrics until 2022 in the 
Development scenario and 2018 in the Conservative Scenario and would be well manageable 
in the later years. 

The electricity and fuel price assumptions in Scandinavia used in the model envision 
favorable market conditions for natural gas plants in future years enabling them not only to 
cover variable costs but also to finance at least a part of the capital expenditure. Nevertheless, 
price projections up to ten years in the future have to be viewed with caution, especially since 
the price assumptions for the closest few years are based on futures contracts, but further 
developments are results of modelling [119]. Of course, the results of this study are input and 
assumption sensitive, but they are nevertheless useful in comparative terms. Overall, they do 
affirm the hypothesis of the significant role of Riga CHP plants in limiting the wholesale price 
of electricity, especially when other significant market infrastructure objects (e.g., the 
interconnector to Sweden) are disconnected. 

                                                 
44 The annual relative profit in this research is the sum of the positive and negative cash flows related to the 

operation, maintenance and capital expenditure of the Riga CHP plants. It is relative in the sense that parts of the 
expenditure are sourced and estimated solely from publicly available information sources. It follows, that these 
results are mainly to be interpreted as an illustration of modelled trends and tendencies as needed for the purposes 
of this research, rather than an authoritative financial indicator analysis. 
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3.5. Chapter conclusions 

During the study presented in this chapter, factors influencing electricity wholesale price 
were analyzed and Nord Pool day-ahead market clearing price in the Latvian bidding area until 
2030 was simulated with the aim of assessing the impact of Riga CHP plants on it. The various 
possible operating modes of the power plants were modelled in hourly resolution in order to 
construct the merit order list necessary for clearing price identification. Furthermore, the 
options to decrease capacity payments these plants receive were considered through calculating 
financial indicators related to their operation. 

The Riga CHP plants have a very important role in the Latvian power system not only in 
terms of generation self-sufficiency and reliability, but also in ensuring efficient electricity 
wholesale market operation by limiting excessive price rises. The absence of these power plants 
would result in significantly higher costs of electricity for all consumers. Their importance in 
limiting excessive wholesale market spikes is especially pronounced when the ability to import 
relatively cheaper electricity from Scandinavia is hindered, e.g., by interconnector 
disconnections, as shown by the comparison of the two analyzed scenarios. Another takeaway 
of the scenario analysis is the necessity for adequate heating demand which the CHP plants 
could supply in cogeneration mode, which ensures high efficiency of their operation and 
competitiveness in the market. 

On the other hand, the market situation as analyzed in 2017 was not favorable to natural gas 
cogeneration plants yet despite their high efficiency and comparatively low emissions. Hence, 
support schemes have to be applied to ensure continued availability of these large power plants. 

However, evidently there is merit in reevaluating the amount of support these power plants 
receive. In the research work presented here, options to decrease the support payments were 
identified. It was found that the support payments, in principle, can be reduced without risking 
making the sustained operation and maintenance of these power plants economically 
detrimental. From the various options assessed, reduction to 75% of the current level or 
application of payment correction from the first hour of operation were found to be feasible. 

The results of this study were presented to the Ministry of Economics of Latvia, who 
incorporated them in the “Conceptual Report on Complex Measures for the Development of the 
Electricity Market” [129]. As a consequence of the aforementioned report and other factors, the 
support payment system in regards to the Riga CHP plants was changed starting from January 1, 
2018 [130]. 
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4. HEATING DEMAND FORECASTING FOR CHP PLANT 
OPTIMAL SCHEDULING 

4.1. Motivation for research in heating demand forecasting 

Combined heat and power plants are an important source of heating energy in district 
heating (DH) networks around the world. As pointed out in the previous chapter, these plants 
are characterized by high efficiency due to the electricity produced alongside heat, which allows 
them to have lesser fuel consumption and smaller carbon footprint compared to when the two 
types of energy are produced separately [131]. 

The primary task of CHP plants connected to DH networks, in general, is supplying the 
heating energy, whereas electricity is often treated as a byproduct. However, as pointed out in 
Chapter 3, for worthwhile participation in electricity markets, an adequate level of certainty is 
necessary regarding the heating demand. Although there are measures which allow more 
flexibility in the production of electrical energy by somewhat untying it from the heat demand, 
i.e., heat storage tanks, peak water boilers, improved cycling operation [131], [132], proper 
scheduling and operational control of CHP plants nevertheless heavily relies on heating demand 
forecasts. 

The forecasts necessary for CHP plant operation can be categorized in two groups 
depending on the prediction horizon: operational (sub-hourly to several hours-ahead) for near 
real time adjustments of the production output and day-ahead for unit scheduling and 
preparation of bids to a wholesale market [133]. 

A great variety of methods for DH heating demand forecasting can be found in recent 
literature, for instance, feed-forward neural networks [133]–[138], support vector machines 
[134], [136]–[141], random trees regression [134], [137], [142], ridge regression [139], [143], 
random forest [139], deep learning [143], extreme learning machines [135], [142], genetic 
programming [135], [136], [138] and even linear regression [134], [137], [143]–[145]. The 
methods vary in complexity and therefore also presumably in their time of execution, 
unfortunately, few authors provide comparable data on computational time.  

However, several studies suggest that the simpler regression models can provide similar 
[134] or even better [143], [145] forecasting accuracy than machine learning approaches. The 
study presented in this chapter aims to expand the literature on heating demand forecasting in 
DH networks with regression models by employing a very straightforward and effective 
polynomial approach and exploring the benefits of improving it with three types of 
modifications – decoupling hot water (HW) consumption from space heating demand, taking 
into account the residuals of the fitted regression model and filtering the input and output series. 
Furthermore, as currently the size of the overall historical dataset to be used for forecasting is 
seldom tested in the literature, this study provides insights into identifying a reasonable look-
back horizon for forecasting heating demand with regression methods. 

The research work presented here was carried out together with Dr. sc. ing. Roman 
Petrichenko and Dmitry Sobolevsky and it has been presented in the IEEE 6th Workshop on 
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Advances in Information, Electronic and Electrical Engineering (AIEEE) in 2018. The author 
contributed in all the phases of this research, but particularly in conceptualizing the approach, 
developing code in MATLAB scripting environment for running the forecasting experiments 
and analyzing the results. 

4.2. Methodology 

4.2.1. The underlying regression model 

In general, regression allows us to approximate a mathematical relationship between two or 
more variables if their values are known in a number of points. Eq. (4.1) illustrates a multiple 
regression model (a polynomial), where the right-side terms can be both independent variables 
and functions of independent variables. 
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i n i i

n

y a a x 


     

where  iy – dependent variable at point i ; 

 ix – independent variable at point i ; 

 n – power of each term; 

 k – power of the last term (i.e., order of the polynomial); 

 i – error term at point i ; 

 0a – the intercept term; 

 na – coefficient for the corresponding function of the independent variable. 

 
In heat load forecasting, the dependent variable is, of course, the heating demand itself, 

whereas various different factors can serve as the independent variables or predictors. All of 
the reviewed studies agree on outdoor temperature as the most important predictor in heating 
demand forecasting. However, some additional parameters have been employed as well. For 
instance, papers [134]–[136], [138], [143] also consider time-lagged heating demand values. 
Time factors like hour-of-day, day-of-week and day-of-year are also sometimes used for 
forecasting [134], [137], [143]. If the forecasting algorithm is intended to be applied for a 
smaller supply area (i.e., one substation as opposed to the whole DH network), the physical 
parameters of the DH substation can be used as well [134]. Study [139] stands out in that it 
considers dew point as a predictor variable. Finally, solar irradiation [141] and wind speed 
[141], [144] is employed as well, however, the impact of wind on the forecasts can vary a lot 
across different buildings and, on a larger scale (i.e. the whole DH network), can even out [144].  

However, the inclusion of multiple input variables in predictive models can negatively 
affect their interpretability and predictive power. Additionally, it can reduce their generalization 
capability [146]. Consequently, in this research, we focus on outdoor temperature as the most 
influential predictor [139], [141], [146]. 
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Thus, we can formulate the function for heating demand forecasting. If we assume a third 
order polynomial relationship, the model can be expressed as in Eq. (4.2). 

    2 3

0 1 2 3 ,t t ttQ a a T a T a T        

where   tQ – the forecasted heating demand (model output) at hour t ; 

 
tT – the temperature forecast (model input) at hour t ; 

 0a , 1a , 2a , 3a – polynomial coefficients (model parameters). 

 
The model parameters are obtained by solving a least squares problem where the sum of the 

model residuals is minimized. The solution can be expressed in matrix formulation as: 
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where  Y – a vector of dependent variable values (in this case, heating demand); 

 V – the Vandermonde matrix [147] for the independent variable (outdoor temperature). 

4.2.2. Modifications 

Ref. [144] identified HW as an important social component in the heating demand curve. 
In this study, it will be tested if a polynomial regression model can provide higher accuracy for 
testing datasets45 if it is supplemented by an additional component for HW handling. Since the 
recorded heating demand data does not discriminate between space heating and HW, the energy 
spent on water heating has to be identified implicitly.  

For this, it is assumed that most of the consumption during summer is specifically for HW 
and thus the social component can be obtained by averaging the recorded points over the 
corresponding time period. Afterwards, the approximate HW hourly profile can be subtracted 
from the model training dataset and added back to the forecast as a temperature-independent 
component. 

Another addition to the polynomial regression model described in this chapter lays in 
handling the residuals of the fit. It is done by assigning information on hour-of-day to the error 

term i from Eq. (4.1) for each element i. The residuals are then grouped by the respective hours 

of the day and, thus, an average error profile for a full day is obtained. This profile is subtracted 
from the forecast in an expectation to decrease the inaccuracy: 

    2 3

0 1 2 3 ,t t t ttQ a a T a T a T          

                                                 
45 Unlike in Chapter 3, for the purposes of the research described here, some proprietary information has been 

used – testing of the developed forecasting techniques was carried out on datasets provided by the operators of the 
CHP plants under study with the purpose of developing a tool for improved CHP operational planning. 
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where t is the average error of the model in the training dataset for each particular hour of the 

day t  (1..24, since the aim is to use the forecasting model for day-ahead scheduling of CHP 

plants). 
 
The third modification to be tested is applying a smoothening filter by calculating the 

weighted double-sided moving average of different lengths. This can be applied to either the 
model training data (historical heating demand, dubbed input hereinafter), the forecasted 
demand series (output), both or neither. The smoothening technique to be utilized here is the 
same which was used in processing forecasts of water inflow and market price for HPP 
optimization in Chapter 2.2.4, i.e., Eq. (2.11), assuming 24T  . 

Finally, the size of the training dataset is also a model feature to be determined. 24 different 
setups are tested, from seven days (one week) to 168 days (roughly 6 months). 

4.2.3. Setup of the simulations 

The performance of the forecasting model is evaluated using mean absolute percentage error 
(MAPE) [148]: 
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where  iQ – the actual heating demand at point i ; 

 m– total number of points in the forecast. 

 
In order to simulate the intended application of the forecasting model (i.e., in day-ahead 

scheduling), the model is utilized in a rolling horizon manner – it moves iteratively though each 
day in the testing dataset and performs a 24-hour prediction; the MAPE for the day is calculated 
and saved; afterwards, the current day is added to the training dataset and a forecast for the next 
24-hour period is performed. Once MAPEs for each of the days in the testing dataset are 
obtained, they are averaged out to find the mean error for the whole set. In order to test the 
effect of the features described in subchapter 4.2.2, the model runs are carried out a total of 384 
times.  

Finally, another approach to using the previously described additional multiple regression 
model features is tested, whereupon the model selects those features (HW exclusion on or off, 
model residual subtraction on or off, type of data filtering and, lastly, size of the training dataset) 
before each 24-hour period by exhaustively enumerating the possible model configurations on 
data from the previous day and selecting the best performer for the following day. It is expected 
that such and automated approach could provide better overall accuracy compared to if the 
preferred features are selected only once, e.g., at the beginning of the heating season. 
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4.2.4. Data set 

For validation of the proposed multiple regression model and its modifications, historical 
data from Riga, Latvia, particularly, the largest DH network on the right bank of the city, which 
is supplied by Riga CHP-1 and CHP-2, is used. The dataset employed contains heating demand 
and outdoor temperature records from Jan. 1, 2015 to Oct. 31, 2016. 

The forecasting simulation experiments will be run twice in this dataset. Case Study 1 will 
forecast demand for days from Jan. 1, 2016 to Mar. 1, 2016 (91 days), whereas Case Study 2 
will perform forecasts from Oct. 15 to Oct. 31, 2016 (17 days). The former represents the middle 
of the heating season, while the latter – the beginning. It should be noted that only period when 
the heating season is assumed to be in full effect is included in the regression model (i.e., period 
from April to mid-October is excluded). The hourly forecasts are performed in a sliding horizon 
manner with 24-hour increments, but, for comparison purposes, only the final MAPE for each 
case study (and each model setup) will be presented. 

In the results described below, the recorded temperatures are used as predictors instead of 
temperature forecasts. This is to isolate the effects from the regression model configuration, 
since the external temperature forecasts would introduce inaccuracies independent from the 
setup of the tested model. An evaluation of the impact of temperature forecast imperfections is 
already offered in, e.g., [142] and also by the author in a previously published paper [133]. 

4.3. Results 

4.3.1. Selection of polynomial order 

Multiple regression with polynomials up to the 5th order was tested. In Case Study 1, the 2nd 
order polynomial proved to provide the best accuracy with a MAPE of 5.98%, while the 3rd 
order was close behind with 6.07%. In Case Study 2, both of these parameters again showed 
very similar results albeit with the 3rd order prevailing (at 4.64% vs 4.68%).  

 

Fig. 4.1. MAPE per different polynomial orders and look-back horizon. 

The performance of each of the five models depending on the training set size is summarized 
in Fig. 4.1 (for both case studies combined). Evidently, higher order models tend to overfit if 
the training set is small, but the more the training set is increased, the more similar the 
performance of the various polynomials becomes.  
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In the subsequent forecasting tests presented here, the 3rd order model is used, and this 
parameter is not varied further, as it is not the main subject of the study. 

4.3.2. Effect of modifications and look-back horizon 

Results from the various modified model runs for Case Study 1 are summarized in 
Table 4.1. These are the MAPE values averaged over the different look-back horizons. Fig. 4.2 
and Fig. 4.3 present the disaggregated results with the impact of the training set size observable. 

Evidently, in Case Study 1, the impact of time series filtering is very small – in the range of 
0.05 percentage points. The best result is achieved if only the output is filtered. The inclusion 
of a social component for HW handling has not improved the model performance. The explicit 
correction of hour-of-day specific model residuals, however, has more notably improved the 
forecasting performance, i.e., by 0.27 percentage points. In terms of training set size, the best 
results were achieved with a look-back horizon of 28 days (5.34%). The results are similarly 
accurate for the range 14–49 days, but with larger training sets the MAPE quickly increases. 

Table 4.1. Results of Case Study 1 (MAPEs) 

Filtering Error correction Hot water component 

no filtering 5.92% included 5.78% included 5.92% 

filtered input 5.96% not included 6.05% not included 5.92% 

filtered output 5.86% 
 

filtered I/O 5.91% 

 

Fig. 4.2. MAPE per model modification and training set size (Case Study 1). 

 

Fig. 4.3. MAPE per filtering type and training set size (Case Study 1). 
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The results of the Case Study 2 are similarly summarized in Table 4.2 (averaged over all 
the look-back horizons) and Fig. 4.4, Fig. 4.5 (disaggregated to show also the impact of the 
look-back horizon). 

Table 4.2. Results of Case Study 2 (MAPEs) 

Filtering Error correction Hot water component 

no filtering 4.40% included 4.18% included 4.36% 

filtered input 4.37% not included 4.59% not included 4.42% 

filtered output 4.38% 
 

filtered I/O 4.40% 

 

Fig. 4.4. MAPE per model modification and training set size (Case Study 2). 

 

Fig. 4.5. MAPE per filtering type and training set size (Case Study 2). 

The MAPE of Case Study 2 is overall notably smaller. This signifies a season-specific 
reason for the inaccuracies. Similar to the previous case, filtering does little to affect the results 
(range of only 0.03 percentage points) with input filtering providing the smallest error (4.37%). 
In this case, however, HW component has slightly improved the results (by 0.06 percentage 
points). The residual component once again provides the most notable accuracy improvements 
(by 0.41 percentage points). Unlike in Case Study 1, here the best results are obtained by a 154 
day look-back horizon (4.09%), but there is also a range with low error estimates in the 28 to 
49 days period. 
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4.3.3. Automatic feature selection 

One of the main takeaways of the previous subsection is the difficulty to draw strong 
conclusions on the best forecasting model setup, since if applied to different portions of the 
dataset, the modified features offer varying advantages and disadvantages. Due to this 
uncertainty and the low computational effort the regression model requires (the 91 day testing 
dataset for Case Study 1 is handled by the forecasting algorithm46 in less than a second), an 
automatic model setup is proposed and tested. 

If before each day-ahead forecast the model can self-select those parameters which would 
have provided the best forecast for the previous day, the overall MAPE for the testing dataset 
decreases more significantly – 5.19% in Case Study 1 and 4.27% in Case Study 2, a 0.73 and 
0.12 percentage point improvement versus the average MAPE in the previous simulations 
respectively. 

The automatic forecasting algorithm chose to employ the HW component for 30.77% of 
days in Case Study 1 and 35.29 % of days in Case Study 2. The usage of the residual handling 
feature was more active – 72.53 % and 70.59 % respectively. Filtering wise, in both cases, I/O 
filtering was used most often (35.16 %, 35.29 %) while solely input filtering was the least used 
(13.19%, 17.65%). 

Fig. 4.6 summarizes the frequency of training dataset size selected in both case studies. 
While generally this model feature has varied a lot, a tendency to cluster towards smaller look-
back horizons can be observed. 

 

Fig. 4.6. Frequency of look-back horizon used in both case studies. 

4.4. Chapter conclusions 

Multiple (polynomial) regression has proven to be an effective tool for heating demand 
forecasting. One of its main strengths is the negligible computational time it takes to perform 
forecasts without losing much in terms of accuracy. 

Furthermore, the forecasting model can be improved by certain modifications, the most 
promising of which has turned out to be subtraction of the model residuals averaged over hour-
of-day. While other modifications (HW component and time series filtration) did not produce 
a consistently beneficial effect over the whole dataset, there were days when their inclusion 

                                                 
46 The algorithm is implemented in MATLAB R2017a. 
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aided in improving the accuracy. Thus, a model which automatically selects the features the 
forecasting program should consider before each daily forecast is advisable. Additionally, it 
should consider automatic selection of the training set size, since the optimum look-back 
horizon tends to vary during the heating season. 

While the model presented here already provides forecasts with adequate accuracy, further 
improvements are necessary. One promising venue for future work lays in improving the 
combined ANN/multiple linear regression forecasting model introduced in [145] with the 
modifications described here. It should also be tested what further forecasting accuracy 
improvements can be achieved if this algorithm is supplemented with advanced input data pre-
processing techniques as in [149]. Another important research topic concerns forecasting the 
heat energy demand in the DH network specifically during the very beginning and end of the 
heating season, when space heating is gradually connected/disconnected by building managers. 
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CONCLUSIONS 

1. The overall hypothesis of the work has been proven. Through the various case studies and 
analyses carried out in the main chapters of this Thesis, it is evident that application of 
well-functioning decision-making support methods, algorithms and tools by power plant 
operators and policy-makers can increase the benefits from efficient electricity market 
operation both to individual electricity wholesale market participants (e.g., storage and 
generator operators) and to the end-consumers at large. 

2. The tasks of the Thesis have also been successfully carried out: 

 A method and algorithm for the optimized scheduling of and decision-support for large-
scale energy storage plants participating in electricity wholesale market have been devised 
and tested in various case studies. 

 An algorithm and tool for cascaded hydropower plant optimized scheduling, including 
hydroelectric set selection subtask and multi-objective approach, have been improved and 
subsequently validated. 

 A method for the assessment of large combined heat and power plant impact on the 
electricity market price and evaluation of options to reduce state support received by such 
plants, in order to support policy-makers’ decision-making process, has been devised and 
applied. 

 A computationally inexpensive heating demand forecasting algorithm, to aid the 
scheduling decision-making of combined heat and power plants’ operators, has been 
devised and tested. 

3. The electricity market conditions in the Latvian and Lithuanian bidding areas of the 
Nord Pool market are sufficient for profitable operation of already existing large-scale 
storage plants, but for the construction of new facilities to be feasible, additional revenue 
streams apart from price arbitrage need to be considered. 

4. Coordinated participation of wind power and storage plants in the day-ahead market was 
found to be beneficial for both the wind power traders and storage operators. In the time 
period considered, this cooperation proved to provide slightly better net revenue than if the 
storage plant had operated independently. Furthermore, it offers additional environmental 
and societal benefits by avoiding wind power curtailment and making a maximum use of 
the available renewable energy. 

5. Dynamic programming was found to be an effective approach for the optimized selection 
of hydroelectric sets in hydropower plants. Consequently, it was incorporated in a multi-
stage cascaded HPP scheduling optimization model. 

6. Furthermore, the functionality of the HPP scheduling optimization tool was further 
appended to allow for multi-objective approach (in the particular implementation – an 
ability to also consider the number of unit start-ups alongside the main objective, profit 
maximization). As a consequence, the plant operators could be provided with a tool to aid 
in their decision-making process. 

7. Apart from practical application by HPP operators, the model can also be further used for 
research purposes by incorporating it in larger power system models or, with some 
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modifications, more directly in the assessment of reserve provision, wind power balancing 
or water value. 

8. The Riga CHP plants have a very important role in the Latvian power system in terms of 
ensuring efficient electricity wholesale market operation by limiting excessive price rises. 
This is especially pronounced when the ability to import relatively cheaper electricity from 
Scandinavia is hindered. However, for maintained competitiveness, sufficient heating 
demand is necessary to ensure the ability to operate in cogeneration mode. 

9. However, the market situation at the time of carrying out this analysis was not favorable 
for profitable CHP plant operation in the energy-only Nord Pool market, unless a certain 
level of capacity payments were available. Nevertheless, options to reduce the amount of 
support were identified. 

10. Multiple (polynomial) regression has proven to be an effective tool for heating demand 
forecasting. One of its main strengths is the negligible computational time it takes to 
perform forecasts without losing much in terms of accuracy. Furthermore, the forecasting 
model can be improved by certain modifications, the most promising of which has turned 
out to be subtraction of the model residuals averaged over hour-of-day. 
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Annex I 

Long-term modelling input data and sources 

 

 

Annual 

average price 

Total 

consumption 
Installed capacity Price 

 
SE4 area LV LT 

HPP, 

LV 

Biomass, 

LV. 

Wind, 

LV 

Other, 

LV 

Biomass, 

LT 

HPP, 

LT 

Solar, 

LT 

Other, 

LT 

Wind, 

LT 

Natural 

gas 
HFO 

CO2 

em. all. 

 €/MWh GWh GWh MW MW MW MW MW MW MW MW MW €/GJ €/GJ €/t 

              108 128 73 292 438       

2017 20.06 7248 10250 1580 80 81 290 122 130 73 294 467 4.32 5.08 4.85 

2018 19.41 7307 10400 1588 85 90 297 136 131 74 296 496 4.36 5.26 4.81 

2019 23.30 7378 10550 1588 90 99 304 150 133 74 299 525 4.50 5.64 5.65 

2020 27.20 7453 10700 1588 95 109 310 164 134 75 301 554 4.57 6.02 6.83 

2021 29.88 7530 10850 1588 100 118 317 179 136 75 303 584 4.80 6.51 8.21 

2022 32.56 7606 11000 1588 105 127 324 193 137 76 305 613 5.08 7.08 9.79 

2023 35.24 7703 11150 1588 110 161 331 207 139 76 308 642 5.40 7.74 11.58 

2024 37.92 7780 11300 1588 115 186 338 221 140 77 310 671 5.78 8.47 13.56 

2025 40.60 7857 11450 1588 120 211 345 235 142 77 312 700 6.19 9.27 15.71 

2026 43.28 7945 11600 1588 125 235 353 249 144 77 314 729 6.64 10.13 18.02 

2027 45.96 8013 11750 1588 130 264 360 263 145 78 316 758 7.13 11.05 20.48 

2028 48.64 8091 11900 1588 135 290 367 277 147 78 319 787 7.64 12.03 23.07 

2029 51.32 8170 12050 1588 140 317 374 291 148 79 321 816 8.19 13.05 25.80 

2030 54.00 8248 12200 1588 145 344 381 306 150 79 323 846 8.77 14.12 28.65 

               

               

   Energinet.dk projections and modelling outputs [119]        

   Augstsprieguma tīkls AS Base Scenario [103]     

   Litgrid AB Base Scenario [126]      

   Linear interpolation/extrapolation         
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Annex II 

Market price clearing model output example 

 

Fig. A.1. Example of modelled electricity prices during one year (Conservative Scenario). 

 

Fig. A.2. Example of modelled electricity prices during one year (Development Scenario). 
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