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Abstract: Generator maintenance scheduling presents many engineering issues that provide power 
system personnel with a variety of challenges, and one can hardly afford to neglect these 
engineering issues in the future. Additionally, there is vital need for further development of the 
repair planning task complexity in order to take into account the vast majority of power flow 
constraints. At present, the question still remains as to which approach is the simplest and most 
effective, as well as appropriate for further application in the power flow-oriented statement of the 
repair planning problem. This research compared directed search, differential evolution, and very 
fast simulated annealing methods based on a number of numerical calculations and made 
conclusions about their prospective utilization in terms of a more complicated mathematical 
formulation of the repair planning task. A comparison of results shows that the effectiveness of 
directed search methods should not be underestimated, and that the pure differential evolution and 
very fast simulated annealing approaches are not essentially reliable for repair planning. The 
experimental results demonstrate the perspectivity of unifying single-procedure methods in order 
to net out risk associated with specific features of these approaches. 

Keywords: scheduling; generator; differential evolution; simulated annealing; maintenance; 
directed search 

 

1. Introduction 

Currently, there is a significant national and industrial push for a reduction in emissions, as well 
as for reductions in reliance on fossil fuels as a whole and conventional generation in particular. 
According to this trend, the development of new power system control approaches on the one hand, 
and wide integration of renewable generation on the other, have shown an unprecedented pace in 
recent years. Modern demand response strategy, electric vehicle incorporation, increasing 
penetration of renewable generation, and energy storage systems only provide higher equipment and 
grid efficiency, environmental friendliness, and electrical power system flexibility. Nevertheless, the 
same novelties also pose new significantly complicated problems for reliable and economic control 
of power systems. In fact, the uncertain characteristics of primarily renewable generation and load 
profiles equipped with energy storage devices may develop into serious and, at times, disastrous 
situations, causing, first and foremost, economic losses for electrical industry subjects. 

Flexible and optimal control of the generating equipment state and output power is the primary 
effective means of power system state control for system operators. As a result, the problems 
mentioned above increase the importance of every generating unit operating in power systems. The 
concern regarding the controllability of generating equipment underlines, in turn, the significance of 
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generator maintenance scheduling procedures. These measures can be completed using generating 
adequacy approaches, being responsible for the assessment of the balance between generated and 
consumed energy [1–3]. For instance, the criterion being widely used in order to estimate the 
generating adequacy of a power system is expected an energy not supplied (EENS) coefficient [4]. 

The scientific community recognized the risk and seriousness of inappropriate repair planning 
long before this research was completed. Despite this fact, there is still no general approach to major 
and midlife maintenance planning for generating equipment. The primary barrier for a successful 
solution is the complicated integer entity of the optimization problem, being multiextremal and 
requiring additional measures to find the global optimum or a close quasi-optimum point. Then, all 
of the possible approaches to the problem could be subdivided into deterministic and heuristic ones. 
Different researchers advocate the effectiveness of the certain methods corresponding to these 
groups. As a result, the development and implementation of specialized generating equipment 
maintenance scheduling methods are needed, which are discussed below in detail. 

Currently, there is a rich body of specialized literature related to the application of integer 
programming methods for generator maintenance scheduling [5–8]. There is certain disagreement 
over how adequate these types of methods are, since they were one of the first approaches used to 
solve the problem under consideration. Nevertheless, the idea does not correspond to the current 
situation, as, for example, researchers in Ref. [6] and Ref. [7] propose to apply integer programming 
methods for generator maintenance scheduling, taking into account demand response strategies and 
AC/DC high voltage directed current (HVDC) link constraints, respectively. However, many 
researchers, as it was mentioned above, advocate the use of heuristic approaches to solve the 
problem—in particular, increasing attention today is being paid to ant colony algorithms [9–11], 
fuzzy and artificial neural network approaches [12–14], evolution [15,16] and genetic methods [17–
19], simulated annealing methodologies [20–23], particle swarm techniques [24–26], taboo search 
procedures [27–29], etc. In addition, one should not forget about directed search methods [30], which 
combine deterministic nature with the simplest implementation, while ensuring appropriate 
planning results. 

Taking into account the diversity of the presented possible approaches, a question arises as to 
what method is the most appropriate for further application in a more complicated scheduling 
statement. Currently, it is an acceptable practice to consider only active power line loading 
constraints [6,7,21]. Nevertheless, in order to plan repairs or outages, for example, for either static 
reactive compensators or energy storage devices, it is necessary to consider more complex 
constraints, such as allowable voltage levels and small-signal stability limitations of a power system. 
The need becomes dramatically increased when equipment to be scheduled operates in the weak 
networks that still exist and operate widely around the world. From this point of view, there is a 
significant need for comparison of the different currently applied methods in order to develop 
existing or create new methods that are simple enough, reliable, and fast in their calculations. 

It is proposed, in terms of research, to compare differential evolution and very fast simulated 
annealing methods as modifications of the genetic algorithm and convenient simulated annealing 
methods, respectively. The directed search method is to be used as a reference method in terms of 
this comparison. Despite their heuristic characteristics, annealing and evolution methods belong to 
two different approaches to the solution searching process: the simulated annealing method is very 
similar to the probabilistically modified directed search method, which means that on every step of 
the iterative process, there is always one current solution point and a certain potential variant to be 
assessed. Meanwhile, the differential evolution approach relies on the diversity and significant 
quantity of current solutions unified in a population, and looks somewhat similar, from this point of 
view, to the particle swarm approach. As a result, a comparison of these methods would provide not 
only profitable information about their own effectiveness, but could also uncover the most 
appropriate methods for generator maintenance scheduling. 

A comparison is based on the resultant optimization function values for a number of test 
systems, the simplicity of the implementation of the method, the calculation time needed to complete 
scheduling, the possibility to take into account power flow constraints, and the number of objective 
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function calculations. Analysis of the results and further perspectives of the use of these methods for 
complex power system equipment maintenance scheduling procedures is not merely a matter of 
academic interest, but is vital in industrial application. This is reasonable, as the resultant collected 
data can vary significantly depending upon the dimensionality of the problem, the proportion of 
generators to be repaired in a power system, the generation and consumption profile, and so on. 

In addition, currently there is a very limited number of publications considering the 
effectiveness of the initialization and initial parameter settings for the heuristic methods of 
maintenance scheduling procedures. In particular, such research as in Ref. [15] for the differential 
evolution method and Ref. [20] for the simulated annealing procedure estimate primarily the 
possibility to apply these methods but not behavior of the results in different scenarios. In this 
research, the initialization procedure for the simulated annealing method is presented. The 
generation profile diversity and the power system’s reserve effect on the maintenance schedule are 
also assessed for simulated annealing and differential evolution methods. Moreover, the influence of 
the different parameters of these methods on the resultant maintenance plans is assessed in order to 
justify a certain approach for their initialization, as well as to analyze the behavior of the simulation 
results. 

The rest of this paper is organized as follows: Section 2 presents the mathematical formulation 
of the maintenance planning problem statement considered and a description of the proposed 
implementation of the directed search, differential evolution, and very fast simulated annealing 
methods, as well as providing descriptions of the experimental procedure and the test model. Section 
3 represents the discussion of the comparison results, while Section 4 concludes this paper. 

2. The Methods under Consideration and a Description of the Test Materials 

This section provides insight into the mathematical formulation of the generator scheduling 
problem, the implementation of the directed search, differential evolution, and very fast simulated 
annealing generator maintenance scheduling methods, and the test data used in terms of the 
experimental part of this research. 

2.1. Mathematical Formulation of the Repair Planning Problem 

First of all, attention should be paid to the mathematical statement of the generator maintenance 
planning problem. 

Task. For all generating units to be repaired within the time interval being considered, set 
moments of the beginning of the repairs, taking into account the optimization criterion. 

Mathematical method. In this case, the very fast simulated annealing, differential evolution, and 
directed search methods are applied. 

Variables. Variables are discontinuous moments of the beginning of generating unit 
maintenance 𝑥 ∈ N , which can be represented as vector �̅� = 𝑥 , 𝑥 , … , 𝑥 . 

Planning horizon. The time period within which all repairs should be completed is stated to be 
equal to 1 year, while the simulation step is 1 week—𝑇 =  52. It is suggested that the generation 
profile remains constant during the week. 

Optimization criterion and objective function. The optimization criterion is generating adequacy 
oriented in character. It is based on assessment of the EENS coefficient. The idea behind the criterion 
can be described as follows: as a system for which generation maintenance planning is to be 
completed is assumed to be strongly interconnected, the power state constraints and topology of the 
system could be omitted in the first approximation. Therefore, an undersupply of energy can arise 
only when the electrical load in the system is greater than the total available generation for a certain 
moment. Then, let us observe an equation for EENS for one hour, taking into account the probability 
characteristics of the system consumption: 𝑀 𝐷 =  𝐿 − 𝐺 1 − 𝐹 𝐺 , 𝐿 ,𝜎 , +  𝜎 , ∙ 𝑓 (𝐺 , 𝐿 ,𝜎 , ), (1) 

where 𝑀(𝐷 )  is the EENS for hour t of week w, MWh; 𝐿  is the expected electrical energy 
consumption for hour t, MWh; 𝜎 ,  is the standard deviation of consumption for hour t, MWh; 𝐺  
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is the total available generation for hour t, MWh; and 𝐹 𝐺 , 𝐿 ,𝜎 ,  and 𝑓 (𝐺 , 𝐿 ,𝜎 , ) are the 
consumption cumulative distribution and the probability density function for hour t, respectively. 
Obviously, taking into account that the calculation step is equal to 1 week and the fact that the 
generation profile remains constant during this interval, the EENS coefficient calculated using 
Equation (1) reaches its maximum value when 𝐿  is the peak load value for week w. As a result, the 
generating adequacy of the system for week w can be assessed based on the 𝑀 𝐷  value only. 

From the above reasoning, it can be concluded that the generating adequacy optimization 
criterion can be stated as the minimum of the sum of the EENS values for the peak hours 𝑡  of 
every week w within the time period under investigation. Then, the objective function for the period 
of 1 year can be written as follows: 

𝜑 = 𝑀 𝐷  → 𝑚𝑖𝑛, (2) 

where 𝑀 𝐷  is the EENS for peak load hour 𝑡  of week w. 
Constraints. In order to integrate the constraints into the problem statement, it is necessary to 

introduce new auxiliary variables 𝛾 ,  for all generators to be repaired i and in which weeks w. If 
generator i is undergoing maintenance in week w, then 𝛾 ,  = 0; otherwise, 𝛾 ,  = 1. Using these 
parameters, it is stated that the objective Equation (2) is subjected to the following constraints: 

• The maintenance of generator i to be repaired is to be continuous over repair: 

1 − 𝛾 , =  𝜏 ; (3) 

• The maintenance of generator i to be repaired is to be completed within period T, while the 
duration of repair procedure is equal to 𝜏 : 𝑤 + 𝜏 − 1 ≤ 𝑇, (4) 

where 𝑤  is the week in which the maintenance of generating unit i is started and 𝜏  is the duration 
in weeks of the maintenance action of generation unit i; 
• The maintenance of generator i to be repaired is to be started after initial week 𝑤 , and is to be 

finished before final week 𝑤 : 𝑤 ≤ 𝑤 ≤ 𝑤 , (5) 

where 𝑤  is the week after which the maintenance of generating unit i is to be started and 𝑤  is the 
week before which the maintenance of generating unit i is to be finished. 
• As there is a limited capability of maintenance crews in a system, there cannot be more than 𝐶  

simultaneous maintenance actions in week w: 

1 − 𝛾 , ≤  𝐶 ; (6) 

where 𝐶  is the capability of the maintenance crews in week w (the number of crews that are able to 
provide maintenance actions individually). 

Assumptions. The following assumptions are made in this research. Power state constraints and 
the topology of a power system are not considered, as the system is supposed to be a strongly 
interconnected one. It is supposed that maintenance crews are able to complete maintenance actions 
on all types of units. The economical relationships between the subjects of the electricity market and 
the economic characteristics of generators are neglected. 

In the following sections, on the basis of this mathematical formulation of the problem, a 
description of the methods under investigation is provided. 
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2.2. Directed Search Method for Generating Equipment Maintenance Planning 

The directed search methods proposed first by Oboskalov [30] are methods that rest on a two-
step approach: an initial sort of the list of generators to be repaired, and then the local enumeration 
procedure. The research in Ref. [30] was primarily related to deep investigation into the effectiveness 
of the directed search method and showed the probabilistic characteristics of the power system 
generation reserve. In order to provide insight into the nature of the directed search method, it would 
be profitable to present briefly its principal algorithm in the current research. The algorithm of the 
second-order directed search method can be described as follows: 

(1) For every unit i in the list of generators to be repaired, criterial coefficient 𝐴  is calculated 
according to the following formula: 𝐴 = 𝑃 ∙ 𝜏 ∙ 𝑝 , (7) 

where 𝑃  is the available active power of generating unit i, MW, and 𝑝  is the probability of failure 
of the generating unit i, p.u. 
(2) The list of generators is sorted in descending order of 𝐴 . As a result, after the sorting procedure, 

the generators at the top of the list are the most reliable, powerful, and long since repaired units. 
In particular, these machines will be repaired first in the following stages. It is of note that 
research in Ref. [30] mentioned that the above proves that the initial sorting procedure of the 
generator list ensures that generator maintenance scheduling using this method finds one of the 
best solutions in the top 2% of all possible combinations of moments to begin the repairs. 

(3) Taking into account the second-order directed search method, at this stage, for the two 
generators being first in the list, all possible vectors of repair moments �̅� , = 𝑥 , 𝑥  are 
enumerated. 

(4) For the first generator in the pair of generators under investigation, the moment of the beginning 
of the repair is established as equal to moment 𝑥  from vector �̅� , = 𝑥 , 𝑥 , corresponding to 
the smallest objective function value (2) among all variants enumerated in the previous stage. 
Steps 3 and 4 are repeated for every pair of generators (for instance, 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 
…, 𝑥 , 𝑥 ) until there are no more generators in the list without an established moment to 
being repairs 𝑥 . 

Depending upon the quantity of the generators enumerated in the fourth stage, the order of the 
method is defined. For example, if there are three generators enumerated in every iteration, then this 
method is named the third-order directed search method. 

2.3. Differential Evolution Method for Generating Equipment Maintenance Planning 

The differential evolution approach, first proposed by Storn [31] as mentioned above, is a 
heuristic method closely connected to genetic algorithms. According to the methodology, the solution 
space is considered a linear one. As an almost immediate corollary, this feature allows application of 
vector space mathematical tools in order to complete crossing-over operations and to find appropriate 
solutions. The maintenance planning algorithm on the basis of this method can be represented as follows: 

(1) In order to obtain an initial estimate for further optimization processing, the first-order directed 
search method is applied to the list of generators to be repaired. It is fair to ask why the first-
order method is used here; the fact is that the strongest bases on which the differential evolution 
method rests are the diversity and dispersion of the initial data. Consequently, in this step, there 
is no need to find the best solution, because the results of the initial optimization are needed 
only for further localization of the initial maintenance plan vectors in the following steps. This 
method returns the vector of the repair moments for generators �̅� . 

(2) A population matrix is formed, comprising column vectors �̅� : 

𝑃 = 𝑥 , ⋯ 𝑥 ,⋯ 𝑥 , ⋯𝑥 , ⋯ 𝑥 , , (8) 
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where n is the number of generators to be repaired; s is the population size (i.e., the number of repair 
plan vectors included in the population); and 𝑥 ,  is the repair moment for generating unit i 
according to repair plan vector j. 
(3) The population matrix (Equation (8)) is changed in order to obtain an initial population matrix 

according to the following equations: 

𝑃 = 𝑥 , + ∆𝑥 , ⋯ 𝑥 , + ∆𝑥 ,⋯ 𝑥 , + ∆𝑥 , ⋯𝑥 , + ∆𝑥 , ⋯ 𝑥 , + ∆𝑥 , , (9) 

where ∆𝑥  is the pseudorandom departure of the repair moment of generating unit i of column 
vector j, drawn according to a further probability distribution: 

𝑓 ∆𝑥 , = 1𝜎 √2𝜋 𝑒 ∆ ,√ , (10) 

where 𝜎 =  ∙  𝜏  is the repair moment standard deviation for generating unit j. Since, after 
operation (Equation (10)), the repair moments do not belong to a set of natural numbers 𝑥 ∉ 𝑁 , the 
resultant elements of the population matrix must be rounded off to the nearest integer values. The 
idea behind the initialization of the standard deviation value for the presented probability 
distribution is that the pseudorandom departure of the repair moment for unit i cannot be greater 
than half of the duration of the maintenance period for this unit (i.e., 𝜏 —three standard deviations 
for a normal probability distribution, Equation (10)). This approach to the initialization of repair 
moment departures, which directly affects the diversity of the initial set of repair plans, can be 
changed depending upon the user’s assessment. 
(4) Every iteration of the search process k for population 𝑃  can be subdivided into the following 

steps: 
(a) For every column vector �̅�  of the population matrix, two more column vectors, �̅�  and �̅� , are chosen randomly, while 𝑗 𝑎 𝑏. Using these three elements, a trial vector 𝑉 is 

calculated as follows: 

𝑉 = 𝑣…𝑣 =  𝑥 ,…𝑥 , + 𝐹 𝑥 ,…𝑥 , − 𝑥 ,…𝑥 , , (11) 

where 𝐹 is the crossing-over coefficient, defined by the user. The coefficient can be represented not 
only as a certain number, but also as a diagonal matrix. 

(b) The child vector 𝑈  is defined based on the trial vector 𝑉  and the parent vector �̅�  
according to the idea illustrated graphically by Figure 1: two integer numbers, h and g, are 
chosen randomly (ℎ 𝑔 , ℎ ∈ 1,𝑛 ,𝑔 ≤ 𝑛 − ℎ) , while h is the starting index of the 𝑈 
interval to be exchanged by the elements of the same interval of 𝑉, and g is the number of 
elements that are to be exchanged. 

 
Figure 1. The final stage of the crossing-over procedure—calculation of the child vector 𝑈. 

(c) Health indexes 𝐻  corresponding to the objective function values (2) for the �̅�  repair plan 
vectors are calculated for the child vector 𝑈 and the parent vector �̅� . Depending upon 



Energies 2020, 13, 5381 7 of 26 

 

whether the child’s index is greater or less than that of the parent, it is either eliminated or 
exchanged with vector �̅� . 

(d) After the crossing-over procedures are completed for all elements �̅�  of the population 𝑃 , 
the minimal and average health indexes are defined in order to check the stopping criterion. 

(5) The iterative search process is stopped when either the minimal health index in the population 
remains constant during the threshold number of iterations 𝑘 , or the maximal number of 
iterations 𝑘  is reached. 

(6) The result of the method is the suboptimal element �̅�  of the final population matrix 𝑃  with 
the smallest health index value. 

Despite the resultant vector �̅�  being the purpose of the whole procedure, the final population 
matrix 𝑃  consists of many suboptimal repair plans and, great number of such vectors is 
considered during the whole iteration process. This is a distinctive feature of the differential evolution 
method as, for example, these elements are valuable as possible starting points for further applying 
the methods strongly influenced by the initial conditions. Finally, this method seems perfect for the 
first step of a bee algorithm. 

To conclude, a question remains as to how to choose the parameters of the method, particularly 
the population size s and the crossing-over coefficient 𝐹. Moreover, here one may observe another 
significant advantage of the method. First, although these parameters influence the calculation 
results, it is intuitively obvious that a greater population size has a positive effect on the resultant 
generator maintenance schedules. Meanwhile, from purely a logical point of view, the appropriate 
crossing-over coefficient values are localized in a comparatively narrow range of possible values from 
0.1 to 1.0. s, speaking only about the crossing-over coefficient, it should be noted that initial diversity 
of the population guarantees that the method will provide at least a number of acceptable 
maintenance plan variants, regardless of the coefficient chosen. As a result, there is no need for a 
special approach to define the certain optimal setting of the method. Thus, its parameters could be 
set intuitively or on the basis of the tentative results of preliminary experiments. 

2.4. Very Fast Simulated Annealing Method for Generating Equipment Maintenance Planning 

The convenient simulated annealing method was invented by Metropolis [32] and developed by 
Kirkpatrick [33]. The ideas involved in the method are related to a mathematical representation of 
the physical metal annealing process. According to the conventional simulated annealing method, 
the temperature value 𝑇 is established for a certain system of elements. On every iteration of the 
optimization process, a new system state is found and its energy 𝐸, which represents an objective 
function, is calculated. If a new system state is better, then it is chosen as a new basic state for the 
following process and the temperature is decreased; otherwise, depending upon the temperature 
value, the system could potentially move to a worse solution point. The last mechanism allows the 
avoidance of local extremum points. The very fast simulated annealing method, first proposed by 
Ingberg [34], is an improved version of this algorithm, providing faster convergence of the iterative 
process. 

The proposed algorithm for generating equipment maintenance planning by application of the 
very fast simulated annealing method, with the first-order directed search method as a means to 
obtain an initial estimate of the vector of repair plan moments, can be represented by the following 
steps: 

(1) By applying the first-order directed search method, an initial estimate of the vector of repair plan 
moments �̅�  is completed. 

(2) The objective function value 𝜑(�̅� ) is calculated according to (2) in order to estimate the initial 
repair plan �̅� . The initial vector of the repair moments �̅�  is considered as the base one; 
therefore, for the first iteration, �̅� = �̅� . 

(3) Every iteration k of the searching process can be subdivided into the following steps: 
(a) The vector of the repair moment departures ∆�̅�  is calculated according the following 

equation: 
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⎣⎢⎢
⎢⎡∆𝑥 ,…∆𝑥 ,…∆𝑥 , ⎦⎥⎥

⎥⎤ = 1𝑑 × ⎣⎢⎢
⎢⎡𝑡 , − 𝑡 , … 0 … 0… … … … …0 … 𝑡 , − 𝑡 , … 0… … … … …0 … 0 … 𝑡 , − 𝑡 , ⎦⎥⎥

⎥⎤ ×
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ 𝑠𝑔𝑛 𝛼 − 12 ∙ 𝑇 ∙ 1 + 1𝑇 | | − 1…𝑠𝑔𝑛 𝛼 − 12 ∙ 𝑇 ∙ 1 + 1𝑇 | | − 1…𝑠𝑔𝑛 𝛼 − 12 ∙ 𝑇 ∙ 1 + 1𝑇 | | − 1 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤, (12) 

where 𝛼  is the independent random variable, corresponding to generation unit i, uniformly 
distributed on the interval [0,1]; 𝑇  is the temperature, corresponding to generating unit i; d is the 
divider parameter needed to reduce the dispersion of the repair moments in terms of a solution search 
procedure; 𝑡 ,  is the last week when it is allowable to start repairing the generating unit i; and 𝑡 ,  is 
the very first week when it is allowable to start repairing the generating unit i. The fundamental idea 
behind divider 𝑑 is that the methodology proposed by Ingberg does not completely correspond to 
the specific characteristics of the maintenance planning problem. In particular, the use of the pure 
difference 𝑡 , − 𝑡 ,  without a divider leads to significant repair moment departures ∆�̅� , meaning 
that further local searching becomes meaningless. However, the basic idea on which the approach 
lies is to complete a local search of the possible appropriate variants. As a result, the divider 
parameter 𝑑 is used to localize the solution search process in the neighborhood of a starting point 
by limiting the random repair moment departures in every iteration. 

(b) A new vector of the repair moments �̅�  is defined using the departure vector ∆�̅� : �̅� = �̅� + ∆�̅� . (13) 

(c) The objective function value 𝜑(�̅� ) is calculated for the new vector of the repair moments �̅�  according to Equation (2). 
(d) If 𝜑(�̅� ) < 𝜑(�̅�), the base vector is equated to �̅� : �̅� = �̅�  (14) 

and for all dimensions of the repair moment vector, the temperature 𝑇  is updated according to the 
following equation: 𝑇 (𝑘) = 𝑇 ∙ 𝑒𝑥𝑝 −𝐶 ∙ 𝑘 , (15) 

where 𝑇  is the initial temperature for dimension i of the solution state space; 𝐶  is the temperature 
coefficient; 𝑘 is the iteration number; and 𝑛 is the number of generators to be repaired. 

(e) If 𝜑(�̅� ) ≥ 𝜑(�̅�), the independent random variable 𝛼 , uniformly distributed on interval [0; 
1], is drawn for every generator i to be repaired and in the case when 𝛼 ≤ 11 + 𝑒𝑥𝑝 𝜑(�̅� ) − 𝜑(�̅�)𝑇 (𝑘) , (16) 

the repair moment and temperature for the generating unit i are redefined according to Equations 
(14) and (15), respectively. Otherwise, these parameters remain unchanged. 

(f) The number of iterations k is increased by 1 and the calculation process continues from step 
3a. 

(4) The iteration process is stopped if the user-defined minimal temperature 𝑇  or maximum 
number of iterations 𝑘  is reached. Nevertheless, it is fairly difficult to assess precisely the 
minimal temperature without initial experimental test results following application of the 
method. Consequently, it is reasonable to follow the iteration maximum number criteria in order 
to simplify the research matter. 

(5) The resultant vector of the repair moments �̅� is chosen among all system states considered 
within the iteration process, as a vector with the smallest objective function value 𝜑(�̅�). 

The disadvantage of the very fast simulated annealing method, widely referred to in the 
specialized literature, is related to the significant number of settings needed to operate with this tool 
(e.g., for the case when generator maintenance scheduling for 30 units is required, there are more 
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than 60 method parameters to be established before its application). The initialization procedure, as 
a result, requires a long time initial calculations. In order to avoid this complication of the calculation 
process, it is assumed that the temperature 𝑇  and its coefficient 𝐶 are the same for all dimensions 
of the problem. This step essentially allows simplification of the simulation process, since only two 
parameters (i.e., general temperature 𝑇  and its coefficient 𝐶) are to be defined, disregarding the 
dimensionality of the problem. 

Nevertheless, even when using the simplified simulated annealing approach, a question remains 
as to how the method parameters are to be initialized. This problem is caused by the fact that, in 
contrast to the differential evolution method, the effect of these coefficients on the simulation results 
is not completely evident. Neither of them can be initialized or considered independently. Moreover, 
there is one more important distinction between the differential evolution and the simulated 
annealing methods, which is that inappropriate coefficient values for the latter leads to a lack of 
appropriate optimization results. Then, it becomes clear that an initialization methodology is needed 
to operate the very fast simulated annealing method in practice. The methodology is proposed below. 

The main idea behind the initialization procedure is as follows. If one considers the dependence 
of the repair moment departures (Equation (12)) upon the temperature 𝑇  value being equal for all 
dimensions, it is apparent that the parameter does not affect the maximum and minimum values of 
said dimensions. On the contrary, it affects only the trace form of the probability distribution. As a 
result, in order to set the parameters of the method, one could operate with only Equation (17) to 
determine the probability of accepting a worse solution equation 𝑝 : 𝑝 = 11 + 𝑒𝑥𝑝 ∆𝐸𝑇 = 11 + 𝑒𝑥𝑝 𝜑(�̅� ) − 𝜑(�̅�)𝑇 . (17) 

In order to ensure the effectiveness of the simulated annealing algorithm, it is necessary to set 
such an initial temperature 𝑇  that, for the mean objective function deviation 𝑀(∆𝐸 ) , the 
probability of accepting a worse solution 𝑝  is adequate during the simulation process. This means 
that it is to be relatively high at the very beginning of the searching process and then gradually 
decreases to significantly low values by the end. The temperature coefficient is established in the 
second stage using the Fibonacci search method [35]. Let us consider briefly this algorithm: 

(1) The approximate mean objective function deviation 𝑀(∆𝐸 ) during the process is assessed in 
order to define an order and a range of its possible deviations. 

(2) Based on the ranges of possible values of ∆𝐸 , 𝑇  and the dimensionality of the problem’s 𝑛 
dependence of 𝑝  on 𝑀(∆𝐸 ) and 𝑇  are worked out. Using the resultant surface illustrated 
by Figure 2a, it is necessary to choose such a temperature value 𝑇  that the 𝑝  (∆𝐸 ) trace 
corresponding to it lays on the imaginary border between rapidly and slowly decreasing ones. In 
fact, further definition of the temperature coefficient partly provides some protection against possible 
mistakes in this step. Hence, it is just necessary to avoid too low a temperature being established. For 
instance, in Figure 2a, the acceptable initial temperature value is 𝑇 = 1.5. 
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(a) (b) 

Figure 2. Graphical representations of the probability of accepting a worse solution: (a) surface 𝑝  (∆𝐸 ,𝑇 ,𝑛 = 30), according to Equation (17); (b) set of 𝑝  (𝐶,𝑛 = 30) for the following series of 
objective function deviation ∆𝐸  values: blue line,∆𝐸 = 0.10; green line,∆𝐸 = 0.25; red line,∆𝐸 =0.50. 

(3) Using the set of traces for dependence of 𝑝  on the temperature coefficient 𝐶  for several 
objective function deviation ∆𝐸  values, while 𝑇  is equal to the value established in the 
previous step and the iteration step is equal to 1 (𝑘 = 1), the range of possible temperature 
coefficient 𝐶  values is established. A graphical representation of these traces is provided in 
Figure 2b. A possible temperature coefficient minimum border is to correspond to the maximum 
values of the probability of accepting a worse solution 𝑝 , while the maximum border is to 
correspond to minimum but non-zero probability values. Such a range of values guarantees that 
at the very beginning of the search process, the probability is high enough for the initially flexible 
and diversiform development of the simulation process. For instance, in the case of Figure 2b, a 
further temperature coefficient search would be quite correct if localized within [0.1; 3.0] 
borders. 

(4) Using the Fibonacci search method, a local search of the optimal temperature coefficient is 
organized within the range established. In every step of the search process, the number of 
simulated annealing generator maintenance scheduling procedures are completed for 𝑇  
chosen in step 2 and the current temperature coefficient value 𝐶 . In order to overcome an 
obstacle connected to the random character of the planning results calculated using the 
simulated annealing method, the selection criterion is proposed to be the minimum value of the 
mean objective function for a certain parameter 𝐶. The Fibonacci search is stopped when the 
length of the range of possible values reaches the user accuracy of calculation 𝜀. 

After these computational and analytical procedures, one could find appropriate initial 
temperature 𝑇  and temperature coefficient 𝐶 values for further generator maintenance scheduling 
using the very fast simulated annealing method. 

2.5. The Experiment Methodology and Test Data Used 

Let us briefly consider the test data and then, on the basis of this information, move to features 
of the experimental methodology of this research. 

As a trivial basis for further comparison and analysis, it is proposed that three variations of the 
reliability test system (RTS) RTS-96 represented in Ref. [36] are used. The main difference between 
these three systems is in their scales: The first test system (1TS), graphically illustrated in Figure 3, is 
the smallest one with a short list of generators to be repaired and a relatively low consumption, in 
contrast to the second and third test systems (2TS and 3TS, respectively). In order to organize as much 
comprehensive analysis as possible, it seems necessary to compare the methods presented on the 
basis of the different dimensionalities of the problem. The test systems are considered as strongly 
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connected ones, and the interest is related only to the test system generation profiles and generators 
to be repaired, the duration of these repairs, and the annual load profiles. Former data are presented 
for the three RTS systems in Tables 1–3. Table 4 contains the load profile data in p.u. in respect of the 
maximum annual load for the weeks of the year under consideration. The peak load values for the 
three test systems are 2850 MW, 5700 MW, and 8550 MW. 

 
Figure 3. A single-line diagram of the RTS-96 test system—the first test system in the research. 

Table 1. The generation profile of the first test system and the quantity of generators subjected to 
major and midlife repair. 

Available Generating 
Unit Power, MW 1 

Quantity of 
Generators 

Quantity of Generators 
Subjected to Major Repair 

(8 Weeks) 

Quantity of Generators 
Subjected to Midlife Repair 

(4 Weeks) 
12 5 2 1 
20 4 1 1 
50 6 1 2 
76 4 1 1 
80 3 1 1 

100 3 1 1 
155 4 1 1 
350 1 0 1 
400 2 1 0 

1 The available active generation power for the first test system is 3054 MW. 
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Table 2. The generation profile of the second test system and the quantity of generators subjected to 
major and midlife repair. 

Available Generating 
Unit Power, MW 1 

Quantity of 
Generators 

Quantity of Generators 
Subjected to Major Repair 

(8 Weeks) 

Quantity of Generators 
Subjected to Midlife Repair 

(4 Weeks) 
12 10 4 1 
20 8 1 3 
50 12 2 4 
76 8 1 3 
80 6 1 2 

100 6 1 2 
155 8 1 3 
350 2 0 1 
400 4 2 0 

1 The available active generation power for the second test system is 6108 MW. 

Table 3. The generation profile of the third test system and quantity of generators subjected to major 
and midlife repair. 

Available Generating 
Unit Power, MW 1 

Quantity of 
Generators 

Quantity of Generators 
Subjected to Major Repair 

(8 Weeks) 

Quantity of Generators 
Subjected to Midlife Repair 

(4 Weeks) 
12 15 5 3 
20 12 3 3 
50 18 3 6 
76 12 3 3 
80 9 3 2 

100 9 3 2 
155 12 3 3 
350 3 1 1 
400 6 2 1 

1 The available active generation power for the third test system is 9162 MW. 

Table 4. The weekly maximum loads for the year under consideration. 

Week 
Number 

Load, 
p.u. 

Week 
Number 

Load, 
p.u. 

Week 
Number 

Load, 
p.u. 

Week 
Number 

Load, 
p.u. 

1 0.912 14 0.800 27 0.840 40 0.800 
2 0.950 15 0.792 28 0.866 41 0.793 
3 0.926 16 0.850 29 0.851 42 0.810 
4 0.884 17 0.804 30 0.930 43 0.850 
5 0.930 18 0.887 31 0.830 44 0.931 
6 0.891 19 0.920 32 0.826 45 0.935 
7 0.882 20 0.930 33 0.850 46 0.959 
8 0.856 21 0.906 34 0.810 47 0.990 
9 0.850 22 0.861 35 0.820 48 0.940 
10 0.870 23 0.950 36 0.830 49 0.992 
11 0.880 24 0.937 37 0.870 50 1.020 
12 0.840 25 0.946 38 0.820 51 1.050 
13 0.860 26 0.911 39 0.774 52 1.002 

In relation to the experimental section of the research, it should be noted that the objectives of 
the research were twofold. The first was to show the dependence of the maintenance planning results 
on the parameters of the heuristic methods considered, and the second was to compare them based 
on the results of the generator maintenance scheduling procedures completed using these methods. 

In order to achieve the first aim, sequential maintenance planning procedures for 2TS were 
organized using the differential evolution and very fast simulated annealing approaches. The 
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experimental dependence of the resultant objective function values collected laid the foundation for 
logical conclusions. 

The second problem was solved through generator maintenance scheduling procedures for the 
three test cases with both user-defined parameters and the best parameters of the methods. Thus, 
conclusions could then be drawn directly from the resultant objective function values and their final 
deviation from the initial values. 

Finally, in order to complete the computational experiments, all of the methods considered in 
the research were implemented in the C# software programming language using the Microsoft Visual 
Studio 2019 version 16.4.1 programming support environment. A graphical representation of 
collected results is provided, in turn, in Python language using the seaborn and matplotlib libraries 
described in much depth and represented in Ref. [37]. 

3. Results and Discussion 

3.1. Influence of the Method Parameters on the Optimization Results 

First of all, it is useful to consider, as far as possible, the state space for the best objective function 
values collected by applying the differential evolution and simulated annealing methods. In order to 
complete this task, the generator maintenance scheduling procedure was completed while the 
parameters of the methods were generated as pseudorandom uniformly distributed values. The 
results of these sequential simulations are represented in Figure 4a,b for the differential evolution 
and very fast simulated annealing methods, respectively. 

 
(a) 
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(b) 

Figure 4. State space for the resultant generator maintenance scheduling objective function for: (a) the 
differential evolution method; (b) the very fast simulated annealing method. 

The initial objective function value for 2TS calculated using the first-directed search method is 
124.842 MW. Figure 4a shows that the use of the differential evolution method is connected with a 
significant probability of obtaining inappropriate results post-simulation. It can be seen that the 
optimization criteria values for the majority of the states are greater than the initial objective function 
value. This means that it is more profitable to use the directed search method. Nevertheless, it should 
be noted that for certain crossing-over coefficient 𝐹 values, in particular for the case shown in Figure 
4a in the neighborhood of 0.2, there is an appreciable probability of obtaining better scheduling 
results. 

In relation to the very fast simulated annealing method application results presented graphically 
in Figure 4b, one can see that there is a plateau of the state points on the initial objective function 
value level. This phenomenon could be interpreted as representing unsatisfactory planning results. 
The right-hand group of state points in the diagram corresponds to certain local minimum values of 
the state space, which has become an invisible barrier for the method on the way to achieving a global 
optimum value. Moreover, even for the points not included in either the massive plateau or the local 
minimum group, there is also the probability that the iteration process will stop at a local minimum. 

For a more comprehensive analysis of influence of the parameters of the heuristic methods, the 
further subsections prove the analytical observation of the dependence of the resultant objective 
function values upon the individual parameters of the differential evolution and very fast simulated 
annealing methods. 

3.1.1. Differential Evolution Method 

In order to investigate how the population matrix size and the crossing-over coefficient 
independently affect the generator maintenance planning results, two experiments were conducted 
under the following conditions. 
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• One hundred generator maintenance scheduling procedures were conducted for population 
sizes 𝑠 within the interval of [10; 100] with steps of 10, while the crossing-over coefficient 𝐹 =0.4 remained constant. 

• One hundred generator maintenance scheduling procedures were conducted for the crossing-
over coefficient 𝐹 within the interval of [0.2; 1.0] with steps of 0.1, while the population size 𝑠 =50.0 remained constant. 

The results of these consequent calculation experiments are represented in Figures 5 and 6 as 
sets of boxplots for every stage of the calculations. 

 
Figure 5. Boxplot diagrams of the resultant objective function values 𝜑(�̅�)  for a number of 
population sizes (𝑠 = 𝑣𝑎𝑟,𝐹 = 𝑐𝑜𝑛𝑠𝑡). 

 
Figure 6. Boxplot diagrams of the resultant objective function values 𝜑(�̅�) for a number of crossing-
over coefficients (𝑠 = 𝑐𝑜𝑛𝑠𝑡,𝐹 = 𝑣𝑎𝑟). 
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Figure 5 shows that an increase in the population size results in a gradual decrease in the 
dispersion of the resultant objective function values, as well as the EENS. However, this positive 
effect is limited, because using a greater population size in the problem solution gives rise to the 
calculational efforts needed to complete one whole simulation. The last feature becomes more and 
more critical when taking into account the random character of the application results of the methods. 

If one considers Figure 6, it may seem that there is no strong correlation between the crossing-
over coefficient 𝐹 and the generator maintenance scheduling results. In turn, an alert reader will 
notice that for low (e.g., 𝐹 = 0.2) and high (e.g., 𝐹 = 0.9) parameter values, the dispersion of the 
objective function is significantly greater. The mean EENS value is also different for all crossing-over 
coefficients, and the lowest ones are concentrated in the central part of the interval under 
investigation, except for the 𝐹 = 0.5 case. 

The practical implication of the coefficient analysis by the differential evolution method is 
twofold. On the one hand, a greater size of population improves the quality of further simulation 
results but leads to a significant number of calculations. On the other hand, the optimal value of the 
crossing-over coefficient is highly likely to be located within the [0.3; 0.6] interval, but the latter 
conclusion depends on the length of the allowed maintenance periods during the time interval under 
consideration. Nevertheless, by following the differential evolution procedure, one may obtain 
inappropriate results even when the coefficients seem to be optimal. In particular, keeping in mind 
that the initial objective function value during the experiment was 𝜑(�̅� ) = 124.842 MW, almost all 
of the state points can be considered acceptable. Nevertheless, if the second-order directed search 
method is used as a reference method, then it appears that half of the points provide a worse solution 
for the task. 

Finally, in addition to the assessment of the influence of the independent parameters on the 
maintenance schedule, it would be profitable to consider how the resultant objective function value 
changes because of the diversity of the generators to be repaired, as well as the reserves of the existing 
generation 𝐿 − 𝐺 . In order to represent the diversity of the generating equipment, the available 
power of all of the generators to be repaired was divided by 4, 2, 1, and 0.5, and simultaneously, the 
quantity of these generating units was multiplied by the same numbers. The value of the total 
generating power to be repaired in the power system remained the same, but the number of 
generating units to be scheduled was increased or decreased depending upon the provision of a new 
level of maintained generation profile diversity. Then, in order to consider the different existing 
generation reserves based on the 2TS data, the peak load for every week was increased in such a 
manner as to achieve a fraction of the power system generation reserve equal to 0.7, 0.8, 0.9, and 1.0 
in relation to the initial value. 

Figure 7 illustrates the probability distributions of the resultant objective function values relative 
to the values calculated for the cases using the second-order directed search method. The first and 
obvious conclusion is that in all cases, the differential evolution method provides suboptimal 
schedules as a result of the optimization procedures. Nevertheless, one can see that the maintenance 
result becomes relatively worse when the diversity of the generating units decreases and the available 
active power of the units increases. In addition, Figure 7 underlines the fact that at first sight, for a 
number of cases, the differential evolution method provides inappropriate solutions. Nevertheless, 
deviation from the second-order directed search method results does not exceed 4% in any of the 
cases. Considering further application of the heuristic method for more a complicated problem 
statement, such a difference is not significant and rather underlines the closeness to the optimal 
solutions. 
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Figure 7. The probability distributions of the resultant objective function values for a number of 
fractions of the power system generation reserve (70%, 80%, 90%, and 100% of the initial reserve) and 
the degree of diversity of the list of generators to be repaired (128 generators to be repaired (red), 64 
generators to be repaired (blue), 32 generators to be repaired (orange), and 16 generators to be 
repaired (green)). 

3.1.2. Very Fast Simulated Annealing Method 

In relation to the very fast simulated annealing method, the effects of the temperature and 
temperature coefficient on the maintenance scheduling results should be considered. The following 
calculational procedures were completed in order to investigate these. 

• Five hundred generator maintenance scheduling procedures were provided for the 
pseudorandom temperature coefficient 𝐶  uniformly distributed within the interval of [0.10; 
3.50], while the temperature 𝑇 = 1.75 remained constant. 

• Five hundred generator maintenance scheduling procedures were provided for the 
pseudorandom temperature 𝑇  uniformly distributed within the interval of [0.01; 5.00], while 
the temperature coefficient 𝐶 = 1.50 remained constant. 

Figure 8 demonstrates dot-plot dependence of optimal solution objective function value on 
temperature coefficient. As it was in general shown by Figure 4a, influence of the last parameter of 
maintenance planning results is considerably complicated by configuration of extremum points in 
state space. In particular, right hand cluster corresponds to a number of local minimum solution 
points, as well as left hand maximum point group illustrates inability of the algorithm for such 
scenarios to find better solution then initial one. 
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Figure 8. A dot plot diagram of the probabilistic dependence of the resultant objective function values 𝜑(�̅�) collected using the very fast simulated annealing method upon the temperature coefficient 𝐶. 

The behavior of the final objective function value when the temperature coefficient is constant 
is no less intricate, but the temperature itself varies in turn, which is illustrated in the dot plot in 
Figure 9. Nevertheless, even in this case, the points localized on the right side of the diagram can be 
seen to form a certain trend in contrast to the group of state points on the left, which again illustrates 
the unsuccessful simulation results. 

 
Figure 9. A dot plot diagram of the probabilistic dependence of the resultant objective function values 𝜑(�̅�) collected using the very fast simulated annealing method upon the temperature 𝑇0. 
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At this point, consideration of generation profile diversity and power system generation reserve 
effects on the simulation results is of interest in connection to the simulated annealing method. For 
the same test cases as were used previously for the investigation relating to the differential evolution 
method, a number of scheduling procedures were provided. The probability distributions for the test 
cases are represented in Figure 10. 

 
Figure 10. The probability distributions of the resultant objective function values for a number of 
fractions of the power system generation reserve (70%, 80%, 90%, and 100% of the initial reserve) and 
the degree of diversity of the list of generators to be repaired (64 generators to be repaired (blue), 32 
generators to be repaired (orange), 16 generators to be repaired (green)). 

As shown in Figure 10, the main difference between the application of the differential evolution 
and simulated annealing methods is that the latter does not guarantee finding a certain suboptimal 
solution in terms of maintenance planning. In particular, for the case of 16 generators and a 70% 
fraction, the scheduling results appear to be almost 10% worse than those found using the second-
order directed search method. However, despite the high inhomogeneity of the solution space, the 
cases of 32 and 64 generators present great planning results, being at least close to the suboptimal 
solution. 

Finally, it can be concluded that the complexity of the solution space for the very fast simulated 
annealing method leads to difficulty in the initialization of the method parameters, as well as to a 
high probability of obtaining an inappropriate solution to the problem. 

3.2. Comparison of the Generator Maintenance Scheduling Results 

The comparison of the generator maintenance scheduling results is divided into two steps. First, 
a direct comparison is made of the calculational efforts needed and the resultant objective function 
values for the three test cases described above using the methods under discussion. Second, a 
graphical comparison is made of the possible deviation from the initial objective function values for 
the same cases using the heuristic methods. 

3.2.1. Comparison of the Generator Maintenance Scheduling Results 

Tables 5–7 represent the calculational effort estimations, as well as the resultant objective 
function values 𝜑(�̅�). In order to assess the calculational efforts, the number of objective function 
calculations was counted. The justification for this approach to the estimation of former 
characteristics is that the perspective, especially in an optimization criteria assessment, is made more 
complicated when incorporating power flow constraints into the mathematical formulation. As a 
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result, the number of objective function computations during the process provides an opportunity to 
analyze how efficient a certain method is. Let us consider the results presented. Tables 5–7 contain 
estimations of the implementation complexity of the calculation and the possibility to take into 
account complicated constraints, such as power flow constraints. 

Table 5. Maintenance scheduling results for the first test system. 

Characteristic 

Very Fast Simulated 
Annealing Method 

Differential 
Evolution Method Directed Search Methods 𝑪 = 2.19 𝑻𝟎 = 1.50 𝒅 = 80.00 

𝒔 = 93 𝑭 = 0.42 
First-
Order 

Second-
Order 

Third-
Order 

Number of calculations of 𝜑(�̅�) 44,219 244,590 690 14,904 268,272 

Optimal 𝜑(�̅�) value, MW 75.307 71.914 75.876 71.278 71.593 
Optimal 𝜑(�̅�) value, p.u. 1.057 1.009 1.065 1.000 1.004 
Average calculation time, 

min 
0.583 5.243 0.014 0.254 4.536 

Simplicity of 
implementation  

complex moderate simple 

Simplicity of the method 
parameter selection  

complex moderate - 

Possibility of considering 
power flow constraints 

yes yes no 

Table 6. Maintenance scheduling results for the second test system. 

Characteristic 

Very Fast Simulated 
Annealing Method 

Differential 
Evolution Method Directed Search Methods 𝑪 = 2.19 𝑻𝟎 = 1.50 𝒅 = 80.00 

𝒔 = 93 𝑭 = 0.42 
First-
Order 

Second-
Order 

Third-
Order 

Number of calculations  
of 𝜑(�̅�) 

74,643 239,680 1472 47,104 1,507,328 

Optimal 𝜑(�̅�) value,  
MW 

123.294 123.313 124.842 124.022 122.974 

Optimal 𝜑(�̅�) value,  
p.u. 

1.003 1.003 1.015 1.009 1.000 

Average calculation time,  
min 

1.112 8.183 0.026 0.832 26.624 

Simplicity of  
implementation  

complex moderate simple 

Simplicity of the method 
parameter selection 

complex moderate - 

Possibility of considering 
power flow constraints 

yes yes no 

Table 7. Maintenance scheduling results for the third test system. 

Characteristic 

Very Fast Simulated 
Annealing Method 

Differential 
Evolution Method Directed Search Methods 𝑪 = 2.19 𝑻𝟎 = 1.50 𝒅 = 80.00 

𝒔 = 93 𝑭 = 0.42 
First-
Order 

Second-
Order 

Third-
Order 

Number of calculations  
of 𝜑(�̅�) 

83,165 542,790 2300 115,000 5,750,000 

Optimal 𝜑(�̅�) value,  
MW 

193.985 193.336 194.219 193.820 194.029 
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Optimal 𝜑(�̅�) value,  
p.u. 

1.003 1.000 1.005 1.003 1.004 

Average calculation time, 
min 

2.051 14.278 0.037 1.843 92.482 

Simplicity of 
implementation  

complex moderate simple 

Simplicity of the method 
parameter selection  

complex moderate - 

Possibility of considering 
power flow constraints 

yes yes no 

In addition, the tables present the average calculation time for each method. Here, it should be 
noted that this parameter strongly depends upon the programming implementation of the 
calculation procedures. As a result, in order to avoid possible misunderstanding or under- or over-
estimation of the efficiency of the methods, the number of objective function calculations introduced 
above should be taken into account when considering the data. 

Based on the results for 1TS represented in Table 5, one can come to the following important 
conclusions. The best method in this case is the second-order directed search method, which allows 
the lowest resultant objective function value to be obtained with insignificant calculational efforts in 
comparison to other ones. Nevertheless, what is more interesting here is that the very fast simulated 
annealing method provides results that are insufficiently better than the first-order directed search 
method. On this occasion, it seems that the initial maintenance plan variant used in the experiment 
was unsatisfactory, resulting in search process localization close within the neighborhood of the 
starting point. Additional calculational experiments related to similar planning procedures 
completed using the very fast simulated annealing method with the other parameters did not show 
any better results. Therefore, a question obviously remains as to how to appropriately initialize the 
simulated annealing method to ensure its effectiveness for all cases. 

In contrast, the results in Table 6 illustrate a different situation—the very fast simulated 
annealing method provides one of the best results, which is also certainly true for the differential 
evolution method. 

Similarity to the last test case is seen in Table 7, providing generator maintenance scheduling 
data for 3TS. In particular, the very fast simulated annealing method provides appropriate simulation 
results. However, the best optimal maintenance plan was calculated using the differential evolution 
method. 

What was not expected was that the directed search method proved the effectiveness of the three 
methods, especially taking into account the comparatively insufficient computational efforts needed 
to use them. This demonstration allows application of these methods as a reference in further 
scientific and practical generator maintenance scheduling operations. 

Despite it being reasonable to use the directed search methods, as proven by the results, their 
application is limited only to relatively simple maintenance planning problem formulation (i.e., 
without power flow constraints and only when generator scheduling is to be planned). Then, based 
only on the results presented in the tables above, it can be concluded that the differential evolution 
method is the more reliable heuristic approach to the problem in contrast to the simulated annealing 
method. The latter seems to be strongly affected not only by the dimensionality of the problem, but 
also by the initial starting point of the search process. At the same time, one should remember that 
the differential evolution method can hardly be referred to as a computationally effective approach, 
as the number of objective function calculations it requires is one of the greatest among all of the 
experiments. It would potentially be profitable to combine these methods in terms of one 
maintenance scheduling method in order to increase their applicability for the problem mentioned. 

3.2.2. Dispersion of the Resultant Objective Function Values 

Finally, it is interesting to estimate the effectiveness of the initialization procedures proposed in 
this paper, as well as the differences between the starting objective function values for the test cases 
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and the resultant optimization criteria estimations. It seems to be useful to visualize these results as 
violin plots. 

Figure 11 presents the distribution of the resultant objective function values 𝜑(�̅�) calculated 
using the differential evolution method for the test system in the following two cases. 

• User-defined coefficients, set arbitrarily for the differential evolution method, were applied. 
• The coefficients corresponding to the best values found in terms of the previous experiment were 

applied. 

 
Figure 11. Violin plots for the resultant objective function value deviations from the initial points for 
the test cases under consideration calculated using the differential evolution method with user-
defined (first test system (1TS), second test system (2TS), and third test system (3TS): 𝑠 = 50,𝐹 = 0.5) 
and optimal (1TS: 𝑠 = 93,𝐹 = 0.42; 2TS: 𝑠 = 80,𝐹 = 0.30; 3TS: 𝑠 = 90,𝐹 = 0.21) parameters. 

Visualization of the experimental results presented in Figure 11 demonstrates the following 
features of the application of the differential evolution method. First, this technically simple method 
requires a certain approach to its initialization, since, for the greater dimensionality of the scheduling 
problem, it becomes a really tough assignment to set appropriate method parameters. For instance, 
user-defined coefficients for 3TS do not allow even one solution that is better than that of the starting 
point to be obtained. Nevertheless, as the second conclusion, even the optimal method parameters 
for the third case do not guarantee results that are better than the initial values. 

A similar experimental procedure was followed for the probability distributions for using the 
very fast simulated annealing method: both user-defined and best solution coefficients were 
considered. Figure 12 represents violin plots for this investigation. It is reasonably simple to see that 
the resultant objective function values 𝜑(�̅�)  are very similar for 2TS and 3TS, verifying the 
effectiveness of the initialization procedure for the very fast simulated annealing method. 
Nevertheless, it seems that a question remains not about initialization but about the method itself, as 
obviously, in the case of 1TS, there is no generator maintenance scheduling result better than the 
initial one and, as a result, this method appears to be unreliable and not universal for maintenance 
planning procedures. 
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Figure 12. Violin plots for the resultant objective function value deviations from the initial points for 
the test cases under consideration calculated using the very fast simulated annealing method with 
user-defined (1TS: 𝐶 = 2.19,𝐹 = 1.75; 2TS: 𝐶 = 1.50,𝐹 = 1.75; 3TS: 𝐶 = 2.00,𝐹 = 3.78) and optimal 
(1TS: 𝐶 = 1.44,𝐹 = 1.93; 2TS: 𝐶 = 2.27,𝐹 = 3.79; 3TS: 𝐶 = 2.75,𝐹 = 3.12) parameters. 

Last but not least, Figure 13 illustrates dispersions of the optimization criteria estimations for 
both heuristic methods observed in the research. It demonstrates both the advantages and 
disadvantages of these methods. The differential evolution method always provides certain results 
that are different from starting point of the search, but an obvious shortcoming is represented by the 
significant dispersion of results and the lack of guarantee for obtaining results better than the initial 
values. At the same time, the very fast simulated annealing method provides results for which the 
objective function values are relatively closely localized, but it is likely to be strongly dependent upon 
the initialization and, as a result, is not reliable for the different dimensionalities of the problem under 
investigation. 

 
Figure 13. Boxplots for the resultant objective function value deviations from the initial points for the 
test cases under consideration calculated using the very fast simulated annealing (SA) and differential 
evolution (DF) methods. 
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4. Conclusions 

In terms of this paper, deterministic and heuristic techniques for the generator maintenance 
scheduling procedure were compared. An initialization approach for the simulated annealing 
method was proposed, and possible perspectives for the development of a new methodology to the 
repair planning problem were considered. On the one hand, the directed search techniques provided 
advantages over the heuristic ones, as comparatively insignificant computational efforts were 
required to achieve appropriate maintenance scheduling results. However, it is hardly possible to 
adopt this approach for complicated mathematical formulations of the problem, or for considering 
different elements to be repaired, as well as power flow constraints. Consequently, application of the 
directed search method is very limited. On the other hand, the heuristic differential evolution and 
very fast simulated annealing methods provided relatively effective means to complete maintenance 
scheduling. However, both of them have certain disadvantages, demonstrated by this research, 
which again provides a significant barrier for their independent application in practice. 

Nevertheless, despite the fact that a question remains about how to effectively consider and 
implement the relevant heuristic methods in industrial application, more efforts are needed to 
incorporate these approaches in terms of a single procedure. A possible way to implement this is to 
use the pattern of bee colony methodology. Here, the differential evolution method could play a role in 
the first initialization stage, while the very fast simulated annealing could be used for a local solution 
search. Such an approach may neutralize the existing issues connected to the individual unreliability of 
these methods and could provide a powerful tool for the maintenance scheduling of different types of 
equipment in power systems. 
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