
Information Technology and Management Science 
ISSN 2255-9094 (online) 
2020, vol. 23, pp. 41–44 
https://doi.org/10.7250/itms-2020-0006 
https://itms-journals.rtu.lv 

 
 

41 
 

©2020 Oļegs Užga-Rebrovs, Gaļina Kulešova.  
This is an open access article licensed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0). 
 

Initial Dataset Dimension Reduction Using Principal 
Component Analysis 

Oļegs Užga-Rebrovs1, Gaļina Kulešova2 
1 Rezekne Academy of Technologies, Rezekne, Latvia 

2 Riga Technical University, Riga, Latvia

Abstract – Any data in an implicit form contain information of 
interest to the researcher. The purpose of data analysis is to extract 
this information. The original data may contain redundant 
elements and noise, distorting these data to one degree or another. 
Therefore, it seems necessary to subject the data to preliminary 
processing. Reducing the dimension of the initial data makes it 
possible to remove interfering factors and present the data in a 
form suitable for further analysis. The paper considers an 
approach to reducing the dimensionality of the original data based 
on principal component analysis. 
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I. INTRODUCTION 
In its most general form, data are defined as a set of entities 

related to a given domain and characterised by a set of attribute 
values [1]. In this definition, the concept of entities is used as a 
generalizing concept at a high level of abstraction. When it 
comes to specific data, the concept of entities is replaced by 
certain relevant content. The typical presentation of data is in 
the form of a matrix (table) whose rows represent objects, and 
the columns represent sets of attribute values. 

However, there are many other types of data that cannot be 
presented in tabular form. As such data, one can mention time 
sequences, for example, data on changes in securities prices or 
data on changes in populations of biological species. Another 
type is data streams, for example, recording sensor readings or 
recordings of negotiations between aircraft pilots and the 
dispatch service, audio and video data. A specific data type is 
represented by network data, for example, data in social and 
information networks, as well as data from a global Web 
network. 

In statistics, powerful methods have long been developed to 
test the truth or falsity of hypotheses and theories put forward. 
As noted in [1], in the theory of experimental developments, 
hypothesis testing and model building are some of the greatest 
contributions of statistics. Such a data analysis is called 
confirmatory data analysis (CD). At its core, such an analysis is 
a deductive reasoning.  

On the other hand, in the second half of the 20th century, in 
connection with the rapid development of information 
technologies, huge volumes of various kinds of data began to 

accumulate. The data themselves are a statement of the current 
state of affairs in a certain area. Users are highly interested in 
the knowledge hidden in those data. It follows that such an 
analysis of the data is necessary that makes it possible to 
identify the relevant features of their structure, patterns and/or 
dependencies, which are presented in data in an implicit form. 
Such an analysis is called exploratory data analysis (EDA). 
More detailed information on various aspects of data analysis 
can be found in [2]–[9]. 

The huge volume and complex structure of initial data 
require special methods for their analysis. Some of the 
widespread methods of this kind are principal component 
analysis (PCA), singular value decomposition (SVD), 
correspondence analysis, (CA), factor analysis (FA) and linear 
discriminant analysis (LDA). Each of these methods uses one 
or another approach to reducing the dimension of the original 
data. 

Principal component analysis is the most common data 
reduction method. The objectives of this paper are as follows: 
to present the theoretical foundations and formal procedures of 
the PCA, to demonstrate PCA procedures with an illustrative 
example and to analyse the potential benefits of PCA in the 
context of data analysis. 

II. THEORETICAL FOUNDATIONS OF PRINCIPAL COMPONENT 
ANALYSIS 

Principal component analysis (PCA) can be defined as a 
multidimensional approach that analyses a data table in which 
observations are described through various interdependent 
variables [10]. Its purpose is to extract important information 
from statistical data in order to present them as a multitude of 
new orthogonal uncorrelated variables called principal 
components and to display patterns of similarity between 
observations and variables as points in a new space. 

The general idea of the PCA is to transform a set of initial 
data into a new space in which the directions of the coordinate 
axes correspond to the directions of the greatest variability of 
the initial data. 

Let a matrix (table) A of initial data of size m n×  be given. 
Each row of this matrix represents one object and a vector of 
attribute values that characterise this object. Each column of the 
matrix corresponds to the set of values of this attribute for all 
objects. Let us sequentially consider PCA procedures. 
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1. For each column of the matrix A , the average value of the 
attribute ja , 1,...,j n=  is calculated. 

2. The calculated average values ja  are subtracted from the 
actual attribute values ija . 

 ij ij jd a a= − , 1, ,i m=  , 1, ,j n=  . (1) 

As a result, we have a data matrix D with centred attribute 
values. 

3. For each j -th column of the matrix D , the variance value 
2
js is calculated. For each pair of attribute values, the 

covariance value jls , , 1, ,j l n=  , j l≠  is calculated. The 

results are aggregated in a variance/covariance matrix 
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4. For the matrix S , its eigenvectors and eigenvalues are 

calculated. As a result, we have two matrices: 
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Each eigenvector of the matrix S  is represented by a column 

vector of the matrix V . Each eigenvalue of the matrix S is 
represented by a diagonal element of the matrix Λ . 

5. The transformation of the initial data into the space of 
principal components is carried out. In the general case, the 
matrix of labels of the initial data in the space of principal 
coordinates can be calculated by the expression 

 = T T
n nPC V D , (2) 

where T
nV  – the transposed matrix of eigenvectors of the 

variance/covariance matrix S  of size n n× ; Td – a transposed  
matrix of centred attribute values. 

In (2), the labels of the initial data are their coordinates in 
the space of principal components. Let us consider a simple 
practical example. 
 
Example 1. The matrix A represents the original data set. 

7....3...1
3....5...1.5
10..1...2
5...3...1
4...4...2
9...2...1.5
6...2...1
8...1...2
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A . 

It is necessary to transform these initial data into the space 
of principal components and reduce the dimension of the initial 
data. 

We centre the initial attribute values from the matrix A . The 
results are presented in the matrix D . 

0.5000.......0.3750.... 0.5000
3.5000.....2.3750.......0

3.5000.... 1.6250.......0.5000
1.5000.....0.3750.... 0.5000
2.5000.....1.3750.......0.5000

2.5000.... 0.6250.......0
0.5000.. 0.6250.... 0.5000

−
−

−
− −

=
−

−
− − −

D

1.5000..... 1.6250.......0.5000
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 
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 
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Let us define the variance/covariance matrix for the data in 
the matrix A . Since all procedures require calculations of large 
volume, they must be performed using appropriate software 
tools. In this paper, all relevant calculations are performed in 
the Matlab software environment. 

6.0000...... 3.0714......0.2857
3.0714.......1.9821... 0.1429

0.2857...... 0.1429......0.2147

− 
 = − − 
 − 

S  

Let us define the eigenvalues and the matrix of eigenvectors 
of the matrix S . 

1λ 7.6748= 2λ 0.3219= 3λ 0.1998=  

0.8788...... 0.4708...... 0.0776
0.4752.... 0.8782...... 0.0539

0.0428...... 0.0842....... 0.9955

− − 
 = − − − 
 − − 

V

 

To perform PCA, the eigenvalues of the matrix S , which are 
the diagonal elements of the matrix Λ , must be ordered in 
decreasing order of their absolute values. The eigenvectors of 
the matrix S , which are the column vectors of the matrix V , 
must be ordered in the same order. In our example, the 
eigenvalues, λ j , 1, 2,3j = , and column vectors of the matrix V  
satisfy this requirement. 

Now we have all the necessary data to transform the initial 
data in Example 1 into the space of principal components. If we 
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perform this procedure, we get the initial data labels in the space 
of three principal axes. 

We will not perform this procedure in order not to increase 
the volume of the article. Instead, we immediately turn to 
procedures for reducing the dimension of the set of initial data. 
The main idea of such a reduction is to remove a certain number 
of eigenvalues from the matrix Λ and the corresponding 
eigenvectors from the matrix V . Therefore, a criterion is 
needed to determine the number of discarded eigenvalues and 
eigenvectors. A large number of criteria of this kind have been 
developed [13]. In this paper, we use a simple and widely used 
criterion. Its essence is as follows. The sum of variations in the 
values of individual attributes is calculated using (3) 

 ( ) 2 2 2
1 2 ... nTr s s s= + + +S . (3) 

Assessment ( )Tr S  is called the trace S . Having available 

estimates of variations 2
js , 1,...,j n= and a general estimate

( )Tr S , the proportion of variability of attribute ja values in 
overall variability can be determined from (4) 

 ( )

2
js

Tr S
, 1, , .j n= 

 (4) 

Then, the boundary value of the total variability of the 
attributes left for further analysis is specified. Typically, this 
limit value is 0.9 or 90 %. 

Let us perform the necessary calculations. According to (3), 

( ) 6.0000 1.9821 0.2147 8.1968Tr = + + =S . 

By (4)  

1a :
6.0000 73%
8.1968

≈ ; 2a : 
1.9821 24%
8.1968

≈ ; 3a : 
0.2143 3%
8.1968

≈ . 

Since the total variability of the values of attributes 1a and 
2a is 97 %, the transformation of the initial attribute values into 

the space of principal components can be successfully 
performed based on the first two eigenvectors of the matrix S . 

Imagine a reduced version of the matrix V : 
0.8788...... 0.4708

0.4752.... 0.8782
0.0428...... 0.0842

− 
 = − − 
 − 

kV . 

The transformation of the initial data into the space of 
principal components based on a reduced version of the matrix 

*V is performed by (5) 

 = T T
k kPC V D , (5) 

where k  – the number of the remained eigenvectors in the 
matrix T

kV . 

By expression (5), we transform the initial centred data from 
the matrix D into the space of principal components using the 
appropriate Matlab commands. The transformation results are 
presented in the following matrix 

0.2398... 4.2046....3.8695. 1.5178.. 2.8291....2.4941. 0.1638...2.1119
0.5226. 0.4379. 0.2628...0.4190.. 0.0726. 0.6281....0.8264...0.6788

− − − − 
=  − − − − − 

PC   

The results presented in the matrix kPS can be used to 
perform the necessary data analysis. In this paper, the goal is to 
reduce the dimensionality of the initial data based on PCA. To 
do this task, you need to restore the original data using row 
vectors from the matrix PS . The calculated expression for our 
task is 

 j= ∗ +* T
kA PC V a , (6) 

where kPC  – the matrix of principal components (matrix 2PS  
in our example); T

kV  – the transposed reduced matrix of 
eigenvectors of the matrix S ; ja , 1, ,j k=  – average attribute 
values in the initial data table. 

We will restore the original data in our example based on the 
principal components 1PC , and 2PC . Recovery results are 
presented in the form of the matrix *A . 

* 6.7108...2.8050...9.9006...5.1661...4.0137...8.6918...6.3561...8.3559
2.5110...4.6231...0.7861...3.3463...3.9696...1.4397...2.7028...1.6214
 

=  
 

A   

Regarding the results obtained, two remarks should be made. 
Firstly, the matrix *A is presented in the form in which it is 
displayed at the output of the corresponding Matlab procedure. 
If necessary, for example, for visual comparison with the initial 
data matrix A , this matrix can be transposed. Secondly, any 
label of the initial data in the space of principal components is 
a linear combination of all the components of the vector of 
attribute values for a given object. Therefore, when restoring 
the original data, the third row corresponding to the values of 
attribute 3a is presented in the matrix *A  . Since our goal is to 
reduce the dimension of the original data set, we simply ignore 
this third row. As a result, we have the matrix *A in the form 
presented above. 

How can the degree of proximity of the restored and original 
data be estimated? The following estimate directly measures the 
degree of distortion of the restored attribute values regarding 
their original values. 

 ( ) ( )*
2

*

1
,

m

j j ij ij
i

a a a aδ
=

= −∑ , (7) 

where ija  – the actual value of attribute ja for the object io ; 
*
ja  – the restored value of this attribute. 

( ) ( )2* *
1 1 1 1, 0.5078.i ia a a a= − =∑δ  

Such a small error value indicates a high-quality reduction 
of the PCA-based initial data in the present example. 



Information Technology and Management Science 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 2020/23 

44 
 

III. CONCLUSION 
1. The goal of PCA is to transform the initial data into the 

space of uncorrelated principal components. With the correct 
choice of the number of eigenvectors of the 
variation/covariance matrix, the inverse transformation of data 
from the space of principal components can significantly reduce 
the dimension of the initial data. 

2. Data transformation is based on estimates of the variability 
of these data, which are displayed in the form of a matrix of 
variation/covariance of attribute values. 

3. Transformation procedures use the matrix of ordered 
eigenvectors V of the variance/covariance matrix S . The 
ordering of eigenvectors is based on an ordered set of 
eigenvalues of the matrix S  in the matrix Λ . 

4. Due to the large volume of necessary calculations, PCA 
procedures require the use of specialized software tools. 

5. Reducing the initial data set allows getting rid of non-
informative attributes and noise in the data. This is clearly 
demonstrated in the example discussed in the present paper. 
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