


RIGA TECHNICAL UNIVERSITY 

Faculty of Computer Science and Information Technology 

Institute of Smart Computer Technology 

 

 

 

Artjoms Supoņenkovs 

Doctoral Student of the Study Programme “Automation and Computer Engineering” 

 

 
DEVELOPMENT OF COMPUTER-BASED 

DIAGNOSTIC SYSTEM IN THE DOMAIN OF 

MAGNETIC RESONANCE APPLICATIONS 
 

Summary of the Doctoral Thesis 

 

 

 

 

 

 

 

 

 

 Scientific supervisor  

Professor Dr. habil. sc. ing. 

ZIGURDS MARKOVIČS 

 

Scientific consultant  

 Assoc. Prof. Dr. med. 

ARDIS PLATKĀJIS 

 

 

 

RTU Press 

Riga 2021  



Supoņenkovs, A. Development of Computer-

Based Diagnostic System in the Domain of 

Magnetic Resonance Applications. Summary of 

the Doctoral Thesis. Riga: RTU Press, 2021. 53 p. 

 

Published in accordance with the decision of the 

Promotion Council “RTU P-07” of  4 November 

2020, Minutes No. 20-6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.7250/9789934225833  

ISBN 978-9934-22-582-6 (print)  

ISBN 978-9934-22-583-3 (pdf) 

 

https://doi.org/10.7250/9789934225833


DOCTORAL THESIS PROPOSED TO RIGA TECHNICAL 

UNIVERSITY FOR THE PROMOTION TO THE SCIENTIFIC 

DEGREE OF DOCTOR OF SCIENCE 

To be granted the scientific degree of Doctor of Science (Ph. D.), the present Doctoral 

Thesis has been submitted for a remote defence at the open meeting of RTU Promotion 

Council on February 15, 2021 at the following link: https://rtucloud1.zoom.us/j/97821007392. 

 

 

 

OFFICIAL REVIEWERS 

 

Professor Dr. habil. sc. ing. Jānis Grundspenķis 

Riga Technical University, Latvia 

 

Professor Dr. habil. sc. ing. Irina Arhipova 

Latvia University of Life Sciences and Technologies, Latvia 

 

Professor Dr. habil. sc. ing. Arunas Lukosevicius 

Kaunas University of Technology, Lithuania  

 

 

 

 

 

 

DECLARATION OF ACADEMIC INTEGRITY 

 

I hereby declare that the Doctoral Thesis submitted for the review to Riga Technical 

University for the promotion to the scientific degree of Doctor of Science (Ph. D.) is my own. 

I confirm that this Doctoral Thesis had not been submitted to any other university for the 

promotion to a scientific degree. 

 

Artjoms Supoņenkovs ……………………………. (signature) 

 

Date: ……………………… 

 

The Doctoral Thesis has been written in Latvian. It consists of Introduction; 5 chapters; 

Conclusions; 134 figures; 45 tables; 12 appendices; the total number of pages is 219. The 

Bibliography contains 116 titles. 

 

https://rtucloud1.zoom.us/j/97821007392


4 

CONTENTS 

GENERAL DESCRIPTION OF THE DOCTORAL THESIS ............................................ 5 

Topicality of the Research ..................................................................................................... 5 

The Main Aim of the Doctoral Thesis ................................................................................... 7 

Thesis Statements .................................................................................................................. 8 

The Subject and Object of the Research ................................................................................ 8 

Methods of Research ............................................................................................................. 8 

Scientific Novelty of the Doctoral Thesis ............................................................................. 9 

Practical Significance of the Doctoral Thesis........................................................................ 9 

Structure of the Doctoral Thesis .......................................................................................... 12 

1. THEORETICAL PART OF THE DOCTORAL THESIS ............................................ 13 

1.1. Magnetic Resonance Imaging ..................................................................................... 13 

1.2. Knee-Joint and Osteoarthritis ...................................................................................... 14 

1.3. MRI Image Processing and Analysis .......................................................................... 15 

2. PROPOSED METHODS AND IMPLEMENTATIONS ............................................... 19 

2.1. Calculation of Relaxation Times ................................................................................. 19 

2.2. Visualization of a Knee MRI Scanning Result ........................................................... 21 

2.3. Tissue Dispersion Analysis ......................................................................................... 23 

2.4. Contour Searching in Medical Image ......................................................................... 24 

2.5. Automatic Detection of Increased Synovial Fluid Volume ........................................ 26 

2.6. Textual Analysis of Patient’s Information .................................................................. 28 

2.7. FPGA Optimization .................................................................................................... 30 

3. APPROBATION ................................................................................................................ 31 

3.1. Results of Visualization Methods ............................................................................... 31 

3.2. Results of Histogram Analysis .................................................................................... 31 

3.3. Modulating the Relaxation Process by Many MRI Images ........................................ 32 

3.4. Results of Image Pre-Processing and Segmentation ................................................... 33 

3.5. Knee-Joint Tissue Recognition ................................................................................... 34 

3.6. Results of Contour Searching in Medical Image ........................................................ 37 

3.7. Result of Automatic Detection of Increased Synovial Fluid Volume ........................ 40 

RESULTS AND CONCLUSIONS ........................................................................................ 43 

APPENDICES ........................................................................................................................ 45 

REFERENCES ....................................................................................................................... 50 

 

 

  



5 

GENERAL DESCRIPTION OF THE DOCTORAL THESIS 

Topicality of the Research 

The knee-joint analysis is very relevant today [1] because of the increasing number of 

people with knee-joint diseases [2]. The main type of a knee-joint disease is osteoarthritis 

(OA) [3]. Approximately 27 million Americans have OA. Ramifications of OA are very 

dangerous: limited range of movement, pain and other problems. Therefore, the analysis of 

knee-joint soft tissue is very important, especially for OA early diagnostics. The OA early 

diagnostics allow starting treatment earlier and therefore reducing the risk of knee-joint 

destruction. The early OA detection offers a chance to completely cure osteoarthritis. It is 

important for the OA early diagnostics to check the destruction of knee-joint soft tissue. A 

doctor can check knee-joint soft tissue destruction using the magnetic resonance imaging 

(MRI) of the knee. MRI is useful for the knee-joint soft tissue presentation [4], but usually a 

doctor cannot see all necessary information in MRI data [5]. The result of a knee MRI scan 

contains a lot of information. A radiology technologist, which uses simple (grayscale) images, 

can see and analyse only a small part of the knee MRI scanning information. This makes it 

very difficult for a technologist to make an early osteoarthritis diagnosis. Computer MRI 

analysis makes it possible to process all MRI data and provides additional information for the 

doctor. This additional information can make it easier to detect invisible injuries of knee-joint 

soft tissues.  

The main source of diagnostic information in this work are medical images. There are 

several software programs for visualisation and analysis of medical images [6]: MicroDicom, 

OsirX, OsirX Plugin, ANALYZE, Radiant DICOM
1
 Viewer, Slicer, Gimias, and 3D-Doctor. 

The existing medical image software can be divided into three types: 

1) simple and convenient software, which are intended mainly for displaying DICOM 

files and have a convenient interface; 

2) complex software that has many functions and a complex interface; 

3) complex software with several modules, which allow expanding the possibilities of the 

software (usually the modules are intended for the analysis of certain organs). 

Unfortunately, the existing universal medical image software have a complex interface 

and do not have enough image processing tools.  

There are several existing tools (programming libraries and modules) that simplify the 

processing and analysis of medical images [7]: MeVisLab, OpenCV
2
, IDL

3
, MATLAB, ITK

4
. 

But these tools cannot be used by a doctor. These tools are primarily intended for software 

developers that can create their own programs using these tools. However, these tools have 

limitations: 

                                                 
1 DICOM – Digital Imaging and Communications in Medicine. 
2 OpenCV – Open source computer vision. 
3 IDL – Interactive Data Language. 
4 ITK – Insight Toolkit. 



6 

1) the tools contain standard algorithms ‒ often standard algorithms do not have enough 

capabilities to perform complex tasks (e.g., automatic knee-joint analysis, knee-joint 

position determination); 

2) it is usually not possible to improve or change the algorithm of the tool – it means that 

it is difficult to adapt the algorithm to a specific task; 

3) integration problems ‒ tool functions and algorithms can work only with certain 

information formats; 

4) result representation ‒ the results of tool functions support only specific formats that 

can be difficult to integrate with other systems; 

5) some tools are not available for free. 

Therefore, the author tries not to use external tools in the development of this work (the 

external tools are only used for comparison). 

Computer OA diagnostics are impossible without segmentation of knee-joint tissues. 

Before computer OA diagnostics it is important to detect and segment tissue pixels in MRI 

data. After that, it is possible to do feature analysis of tissue pixels. This distinctive feature 

analysis allows recognizing different tissue types in the knee-joint. OA damages different 

types of knee-joint tissue. Therefore, in order to detect injuries of the joint tissues, a 

comparison of currently analysed tissues with healthy tissues is necessary for computer OA 

diagnostics. The segmentation of knee-joint tissues allows making a comparison of different 

tissue pixel groups. 

Segmentation of knee-joint tissues by MRI data is a very complicated task, because of the 

similarity between different soft tissues and MRI data features [8], [9]: 

 various image planes (axial, sagittal, coronal);  

 many MRI parameters (proton density, relaxation times, magnetic field power) that 

strongly change the MRI signal; 

 different sequences ‒ spin-echo (SE), fast spin-echo (FSE) [10], gradient echo (GRE) 

and inversion recovery (IR); 

 artifacts, patient movement and noise [11]. 

Therefore, a deep analysis of physical and texture features is necessary for segmentation 

and recognition of joint tissues. 

Obviously, the estimation of patient’s knee-joint condition is a quite complex task. This 

task has many subtasks (Fig 1.): 

1) estimation, classification and localization of knee-joint tissue; 

2) analysis of knee-joint tissue by statistical, physical parameters and features; 

3) analysis of patient disease information; 

4) acceleration of medical image processing, segmentation and analysis processes; 

5) displaying of additional information (creation of a visual interface). 

In view of the above, there are many unresolved issues that will be addressed in this work. 
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Fig. 1. Common flowchart.  

The Main Aim of the Doctoral Thesis 

The aim of the Doctoral Thesis is to develop approaches, methods and algorithms that 

allow creating digital medical diagnostic systems that could be used for the knee-joint 

analysis.  

In order to achieve the aim of the Doctoral Thesis, it is necessary to solve the following tasks 

of the Doctoral Thesis: 

1) to develop methods of relaxation time calculation; 

2) to develop a pre-processing method of medical images that are used to remove 

artifacts and noise; 

3) to develop interactive and automatic segmentation methods of medical images that are 

used to perform segmentation of human body tissue and fluid; 

4) to develop methods for creation and recognition of human body tissue pattern; 

5) to develop methods for the analysis of human body tissues and fluids; 

6) to develop methods, algorithms and implementations for the visualization of human 

body tissues and fluids; 

7) to develop methods and computer implementation for calculation of the osteoarthritis 

severity index and probability index of knee-joint; 

8) to develop methods of speeding up execution time for image processing and analysis.  

As a result of the Doctoral Thesis, six new modules have been developed and are 

described in the practical part. These new modules have a lot of possibilities: calculation of 
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relaxation times; segmentation of fluids and tissues of human body, calculation of features 

and defect detection; pre-processing and visualization of medical image; optimization of 

medical image processing instruction; textual analysis of patient’s information. 

Thesis Statements 

1. The tissue segmentation and texture feature analysis methods, developed in the 

author’s work, make it possible to distinguish healthy patients from patients with 

osteoarthritis. 

2. The author’s proposed medical template matching method allows making automatic 

detection and localization of fluids and tissues.   

3. The author’s proposed adaptive watershed method is used to perform automatic 

detection of synovial fluid augmentation. 

4. Statistical features of medical image texture could be helpful for classifying tissues 

and fluids of human body. 

The Subject and Object of the Research 

The subject of the research is methods and algorithms that are used to process the 

patient’s diagnostic information. These methods and algorithms are medical image pre-

processing, methods and algorithms of segmentation and analysis that are used for the 

analysis of the patient’s textual diagnostic information.  

The object of research is diagnostic information of the patient’s knee-joint. This knee-

joint diagnostic information contains medical MRI images in DICOM format. Also, this 

diagnostic information includes a textual description of the patient’s medical condition that 

has been obtained by using DICOM file tags and author’s questionnaire. 

Methods of Research 

The following methods have been used in the Doctoral Thesis: 

1) classification and observation methods ‒ segmentation of medical image; 

2) methods of comparison and measurement ‒ statistical analysis of tissues and fluids of 

human body; 

3) observation method ‒ visual analysis of enhanced medical images; 

4) methods of comparison and measurement ‒ analysis of textual description of the 

patient’s medical condition; 

5) methods of comparison, measurement and induction ‒ analysis of texture and 

geometric features of tissues and fluids of human body; 

6) observation method ‒ analysis of medical image noise and artifacts; 

7) experimental method ‒ template matching; 

8) modelling method ‒ modelling of T2 / T1 relaxation process; and others.  
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Scientific Novelty of the Doctoral Thesis 

The new achievements are as follows:  

1) development of automatic methods for fluid and tissue localization and analysis [12, 

5], [13, 5], [14, 4]; 

2) development of automatic methods for osteoarthritis diagnosis by using statistical 

analysis [13, 7], [15], [16, 6]; 

3) development of methods that allow finding unique texture features of medical images 

of tissues and fluids of human body [17, 5], [18, 5], [14, 3, 5, 6]; 

4) development of MRI image visualisation methods that are used to perform early 

osteoarthritis diagnostics [13, 4, 6], [16, 5]; 

5) development of methods for speeding up execution time of image processing and 

analysis. The author’s proposed module allows to reduce the runtime of FPGA
5
 

instruction. Also, it allows to minimize the size of FPGA instruction [19, 4], [20, 8], 

[21, 6], [22, 7], [23];  

6) development of module of relaxation time calculation that allows to calculate 

relaxation time by one, two, or many MRI images [16, 4], [12, 3, 4]. 

Practical Significance of the Doctoral Thesis 

The practical significance of the Doctoral Thesis is the six new modules. These new 

modules have a lot of possibilities: calculation of relaxation time; segmentation of fluids and 

tissues of human body, calculation of features and defect detection; medical image pre-

processing and visualization; optimization of medical image processing instruction; textual 

analysis of patient’s information. The results of the Doctoral Thesis have been presented in 11 

scientific conferences and published in 10 international scientific papers.  

Publications 

1. Suponenkovs A., Markovics Z., Platkajis A. “Knee-joint tissue recognition in 

magnetic resonance imaging”, (2018) IEEE 30
th

 Jubilee Neumann Colloquium, NC 

2017, 2018-January. (SCOPUS) (Author’s contribution – 86 %, writing for 

publication, software development). 

2. Suponenkovs A., Glazs A., Platkajis A. “Development of methods for analysis of knee 

articular cartilage degeneration by magnetic resonance imaging data”, Journal of 

Physics: Conference Series, 818 (1), art. No. 012001. Indonesia; (2017) (SCOPUS) 

(Author’s contribution ‒ 86 %, writing for publication, software development). 

3. Suponenkovs A., Markovics Z., Platkajis A. “Computer Analysis of Knee by 

Magnetic Resonance Imaging Data” (2016) Procedia Computer Science, 104, pp. 

354‒361. (SCOPUS) (Author’s contribution ‒ 86 %, writing for publication, software 

development). 

                                                 
5 FPGA – Field-programmable gate array. 
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4. Suponenkovs A., Grabis, J., Kampars, J., Sisojevs, A., Pinka, K., Mosans, G., 

Taranovs, R., Locmelis, A. Application of Image Recognition and Machine Learning 

Technologies for Payment Data Processing Review and Challenges. 2017 5
th

 IEEE 

Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE 

2017) (SCOPUS) (Author’s contribution ‒ 80 %, writing for publication, software 

development). 

5. Lemberski I., Suponenkovs A. “Asynchronous Logic Design Targeting LUTs”, 

Budva; Montenegro; 10 June 2018. (SCOPUS) (Author’s contribution ‒ 50 %, 

assistance in writing for publication, software development). 

6. Lemberski I., Suponenkovs A. “Asynchronous logiс one-level LUT design based on 

partial acknowledgement”, Microelectronics Journal, 2018. (SCOPUS) (Author’s 

contribution ‒ 50 %, assistance in writing for publication, software development). 

7. Suponenkovs A., Kovalovs A., Markovics Z. “Application of Computer Vision 

Technologies for Autonomous Pile Manipulation”, 12
th

 International Scientific and 

Practical Conference on Environment. Technology. Resources. Rezekne, Latvia, 20 

June 2019. (SCOPUS) (Author’s contribution ‒ 84 %, writing for publication, 

software development). 

8. Lemberski I., Suponenkovs A., Uhanova M. “LUT-Oriented Asynchronous Logic 

Design Based on Resubstitution”, Proceedings – 2019 14
th

 IEEE International 

Conference on Design and Technology of Integrated Systems in Nanoscale Era, DTIS 

2019, Mykonos, 2019. (SCOPUS) (Author’s contribution ‒ 33 %, assistance in 

writing for publication, software development). 

9. Suponenkovs A., Platkajis A., Markovics Z. “Application of Magnetic Resonance 

Imaging and Computer Vision Technologies for Analysis of Knee Articular Cartilage 

Degeneration.” Lietuva Radiology Update, 2018. (Copernicus) (Author’s 

contribution ‒ 86 %, writing for publication, software development). 

10. Lemberski I., Uhanova M., Suponenkovs A. “Distributed Indication in LUT-Based 

Asynchronous Logic”, PdeS 2019, High Tatras, Slovakia. (SCOPUS) (Author’s 

contribution ‒ 33 %, assistance in writing for publication, software development). 

Publications (submitted for publishing) 

11. Supe I., Suponenkovs A., Platkajis A., Kadisa A., Lejnieks A. “Detecting knee 

cartilage structural changes using magnetic resonance computed vision analysis in 

patients with osteoarthritis; preliminary results”, PROCEEDINGS OF LATVIAN 

ACADEMY OF SCIENCE, 2020 (will be available in SCOPUS) (Author’s 

contribution ‒ 40 %, assistance in writing the publication, program development). 

Research results presented in conferences 

1. 14
th

 IEEE International Conference on Design and Technology of Integrated Systems 

in Nanoscale Era, DTIS 2019, Mykonos, Greece, 2019. (Title of the report ‒ “LUT-

oriented asynchronous logic design based on resubstitution”). 
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2. 7
th

 Mediterranean Conference on Embedded Computing, MECO 2018, Budva, 

Montenegro, 2018. (Title of the report ‒ “Asynchronous logic design targeting 

LUTs”). 

3. 30
th

 IEEE Jubilee Neumann Colloquium, NC 2017. Obuda University, Budapest, 

Hungary, 2017. (Title of the report ‒ “Knee-joint tissue recognition in magnetic 

resonance imaging”). 

4. Congress on Industrial and Applied Life Sciences and Mathematics, Nature-Math. 

Indonesia. 2016. (Title of the report ‒ “Development of methods for analysis of knee 

articular cartilage degeneration by magnetic resonance imaging data”). 

5. 12
th

 International Scientific and Practical Conference on Environment. Technology. 

Resources. Rezekne, Latvia, 2019. (Title of the report ‒ “Application of Computer 

Vision Technologies for Autonomous Pile Manipulation”). 

6. 5
th

 IEEE Workshop on Advances in Information, Electronic and Electrical 

Engineering, AIEEE 2017, Riga, Latvia. (Title of the report ‒ “Application of image 

recognition and machine learning technologies for payment data processing review 

and challenges”). 

7. 16
th

 IFAC Conference on Programmable Devices and Embedded Systems (PdeS 

2019), 2019, High Tatras, Slovakia. (Title of the report ‒ “Distributed Indication in 

LUT-Based Asynchronous Logic”). 

8. 7
th

 Baltic Congress of Radiology (BCR) 2018, Kaunas, Lithuania. (Title of the report ‒ 

“Application of Magnetic Resonance Imaging and Computer Vision Technologies for 

Analysis of Knee Articular Cartilage Degeneration”). 

9. Riga Technical University 59
th

 International Scientific Conference. (Titles of reports: 

“Diagnosis of osteoarthritis by magnetic resonance imaging data and topological 

model”; “Visualization and preprocessing of MRI scanning result”). 

10. Riga Technical University 60
th

 International Scientific Conference.  (Titles of reports: 

“Segmentation and Analysis of Knee Joint Tissue”; “Industrial Computer Vision”; 

“Analysis of Magnetic Resonance and Spectroscopic Material”). 

11. Riga Technical University 57
th

 International Scientific Conference. (Titles of reports: 

“Tissue segmentation and analysis by magnetic resonance imaging data”; “DICOM 

series joining and analyzing”; “DICOM series image processing”). 

Awards 

Certification of Best Paper Award, Congress on Industrial and Applied Life Sciences and 

Mathematics, Nature-Math. Indonesia, 2016.  

Comparison of international results (Best LUT-6 Implementations ‒ 2020) 

https://github.com/lsils/benchmarks/tree/master/best_results 
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Structure of the Doctoral Thesis 

The Doctoral Thesis consists of Introduction, 5 chapters, Conclusions, references and 12 

appendices.  

Introduction gives a general description of the Doctoral Thesis. It contains topicality of 

the research, the main aim and tasks of the Doctoral Thesis. It also describes scientific 

novelty, practical significance and results of the work.  

Chapter 1 ‒ Magnetic resonance imaging ‒ describes physical aspects of the 

dissertation with the aim to study the dependencies between the physical processes of atoms 

and the intensities of the pixels (voxels) of the MRI image. It describes the process of the 

MRI image acquisition and DICOM file format. 

Chapter 2 ‒ Knee-joint and osteoarthritis – describes medical aspects of the 

dissertation with the aim to investigate the dependencies between the MRI data and knee-joint 

conditions. It describes the risk factors and pathogenesis of knee-joint osteoarthritis. 

Chapter 3 ‒ MRI image processing and analysis ‒ describes mathematical aspects of 

the dissertation with the aim to study pre-processing, segmentation and analysis methods of 

medical images. Approaches of pattern search, geometric and texture feature analysis have 

been analysed in this chapter. It describes the FPGA technology-based accelerating approach 

for medical image processing and analysis. 

Chapter 4 ‒ Proposed methods and implementations – describes six new modules 

developed by the author. These new modules have a lot of possibilities: calculation of 

relaxation times; segmentation of fluids and tissues of human body, calculation of features 

and defect detection; medical image pre-processing and visualization; optimization of medical 

image processing instruction; textual analysis of patient’s information. 

Chapter 5 ‒ Approbation of the proposed methods – shows the experimental results 

that have been achieved by author’s methods. The chapter describes an experiment of image 

pre-processing, segmentation, and texture analysis. It describes many important experiments: 

experiment of pattern search, experiment of automatic detection and localization of synovial 

fluid, experiment of relaxation time calculation, experiment of analysis and visualization of 

cartilage. 

The last chapter ‒ Main results and conclusions ‒ shows the main results of the 

dissertation. 
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1. THEORETICAL PART OF THE DOCTORAL THESIS 

1.1. Magnetic Resonance Imaging 

This chapter describes physical aspects of the dissertation with the aim to study the 

dependencies between the physical processes of atoms and the intensities of pixels (voxels) 

of the MRI image. It describes the process of MRI image acquisition and the DICOM file 

format [24]. 

Protons of hydrogen atoms are very important in MRI process. The MRI process cycle has 

3 stages: 1) initial state ‒ protons of hydrogen atoms are in a strong magnetic field; 2) RF 

pulse ‒ protons of hydrogen atoms receive energy and move from a low energy level to a high 

energy level; 3) relaxation process ‒ protons of hydrogen atoms return the energy and go back 

to their start state. This relaxation process takes some time (relaxation time). There are two 

relaxation process types: spin-lattice relaxation (takes time T1) and spin-spin relaxation (takes 

time T2).  Spin-lattice relaxation process is the relaxation process of the Mz component. The 

spin-spin relaxation process is the relaxation process of the Mxy component. The spin-spin 

relaxation process may take less time, T2*, because of inhomogeneity of magnetic field.  

The value of simple MRI image pixels is dependent on MRI signal (S). But the MRI 

signal is dependent on relaxation times T2 and T1 as well as proton density ρ [9]. We can 

change the relaxation time and proton density influence on MRI signal. The dependence 

between the signals and relaxation time for SE (spin-echo signal sequence) is shown in the 

following Equation (1.1) [9]: 

R E
0

1 2

1 exp exp ,
T T

S M
T T

       
       

      
    (1.1) 

where M0 – initial magnetization or start state, TR – time to repeat, TE – echo time, T1 and T2 – 

relaxation time, and S – MRI signal. 

The initial magnetization (M0) is foremost depending on proton density and magnetic field 

power (B0) measured in tesla (T). This is shown in Equation (1.2). Usually is using MRI with 

1.0 T, 1.5 T and 3.0 T. 

0 0~ ,M B       (1.2) 

where ρ – proton density and B0 – magnetic field power. 

By manipulating with TR and TE parameters we can change the relaxation times and 

proton density influence on MRI signal. As a result of manipulation with these parameters we 

can get three types of MRI images: T1 weighted, T2 weighted, and proton density (PD) image 

(Table 1.1) [8]. According to the MRI image type PD/T1/T2 the MRI signal foremost is 

depending on proton density, relaxation time (T1) and relaxation time (T2) [25].  
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Table 1.1 

TR and TE Parameters for SE Sequence 

Sequence 
MRI image 

type 

Parameter 

TR 

Parameter 

TE 

SE 

T1 600 ms 10–30 ms 

PD 1000 ms 10–30 ms 

T2 2000 ms 80–250 ms 

 

The findings of this chapter are as follows.  

1. Soft tissues consist mainly of hydrogen atoms. Therefore, it is useful to analyse 

hydrogen atoms by MRI. Also, hydrogen atoms have a high value of gyromagnetic 

ratio that allows getting high-contrast medical images of soft tissues. 

2. MRI medical images do not have standard tissue-intense scale (like a Hounsfield scale 

in CT scans). This means that the same tissue may have different intensity in MRI 

images with different TR and TE parameters.  

3. The value of MRI image pixels is dependent on proton density, magnetic field power, 

time to repeat (TR), echo time (TE), and relaxation times T1 and T2.  

4. Magnetic resonance imaging (MRI) is the most effective non-invasive technique for 

analysing and displaying the soft tissue damage. Thus, this work describes new 

methods for soft tissue diagnostics by magnetic resonance imaging data. 

1.2. Knee-Joint and Osteoarthritis 

An early osteoarthritis diagnosis is very important because it provides a possibility to 

completely cure osteoarthritis. Chondrocytes make it possible to regenerate cartilage. The 

knee articular cartilage changes are recoverable at the early stage of OA [26].  

Osteoarthritis has 5 grades (Fig 1.1) [27], [28]. Doctors are unable to see the first grade of 

the OA using simple grayscale MRI images. But the knee articular cartilage changes are 

recoverable at the first grade of OA. Therefore, displaying of the OA first grade is a very 

important problem. 

Early diagnosis of OA is very important, since it is necessary to start OA treatment as 

soon as possible. However, it is hard to detect the first grade (cartilage softening) by MRI. 

Therefore, it is useful to find additional symptoms of the first grade. It is possible to use 

additional information about biochemical tissue features. The first grade has the following 

additional MRI symptoms [29]:  

1) increased proton density (where proton density is the number of hydrogen resonating 

protons per unit of volume);  

2) increased T1ρ relaxation time (where relaxation time is the recovery time of the proton 

spin magnetization after RF exposure);  

3) increased T2 relaxation time. 

These symptoms make it possible to detect the first grade of OA. 
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Fig. 1.1. Outerbridge classification [30].  

The findings of this chapter are as follows. 

1. Chondrocytes make it possible to regenerate cartilage. Therefore, early diagnosis of 

osteoarthritis (before degeneration of chondrocytes) makes it possible to cure 

osteoarthritis. 

2. It is hard to detect the first grade of OA (cartilage softening) by simple grayscale MRI 

images. Therefore, it is important to use additional software for OA detection. 

3. The first grade of OA has the following features: increase in proton density and in 

relaxation times. These features make it possible to detect the first grade of OA. 

4. There are many MRI signs of OA [31]: gradual wear to the cartilage surface, synovial 

hypertrophy, joint space narrowing and osteophyte formation [32]. 

1.3. MRI Image Processing and Analysis 

This chapter describes mathematical aspects of the dissertation with the aim to study the 

pre-processing [33], segmentation and analysis methods of medical images. Approaches for 

the analysis of pattern search, geometric [34], [35] and texture features is presented in this 

chapter. The chapter also describes the FPGA technology-based accelerating approach for 

medical image processing and analysis. Special attention is paid to the edge detection 

algorithms (Fig. 1.2). 

The image segmentation makes it possible to perform an analysis of knee. However, 

segmentation is a very complicated task because MRI image contains a lot of information. 

Therefore, it is important to remove unnecessary information from MRI image. For this 

purpose, it is possible to use image preprocessing. 
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Fig. 1.2. Edge detection algorithms. 

Perona–Malik filter is an anisotropic diffusion [36], [37] that removes high frequency 

components (noise, small details). This filter has an advantage ‒ it does not remove borders of 

large segments. Therefore, Perona–Malik filter prepares the MRI image for further 

segmentation. The anisotropic diffusion is described with Equation (1.3): 

( , , ) div( ( , , ) ( , , )),tI x y t c x y t I x y t      (1.3) 

where c – special diffusion coefficient; I – smoothing image (the level of smoothing of the 

image depends on the t parameter); div – divergence;  – gradient; It ‒ resulting image. 

 As shown in Fig. 1.3, the combination of two methods (Perona–Malik filter and k-means 

clustering [38]) provided good segmentation results.  

The second segmentation type is a watershed segmentation [39]. As shown in Fig. 1.3, 

this segmentation works well together with Sobel operator. However, the result of watershed 

segmentation contains a lot of tiny segments. This problem can be solved by using additional 

information about the knee.  

Sometimes, it is necessary to improve the accuracy of segmentation. For this reason, the 

knee tissue segmentation results could be improved by textural tissue feature analysis. 

Textural tissue feature analysis can be performed by using a co-occurrence matrix [40].  
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Fig. 1.3. Two types of MRI image segmentation. 

Grayscale MRI images have different texture features: 

1) texture features based on spatial frequencies; 

2) texture features based on statistical characteristics (GLCM ‒ grey-level co-occurrence 

matrix [41], [42], histogram); 

3) texture features based on structural elements (GLRLM ‒ grey-level run length matrix 

[43], [44], GLSZM ‒ grey-level size zone matrix [45], [46]). 

For the calculation of texture features it is advised to use a special matrix or a histogram. 

In this work, special attention is paid to the GLCM (grey-level co-occurrence matrix). 

Depending on the matrix direction, there can be four types of this matrix: vertical, horizontal, 

diagonal (45 degrees) and diagonal (135 degrees). GLCM matrix preparation for the 

calculation of texture features has 4 steps. 

1. Quantization of grey image pixel values – all values of the new image pixels must be 

in the range (from 0 to GLCM matrix size).  

2. GLCM matrix calculation – GLCM matrix shows the frequency of combination of 

neighbouring elements. 

3. GLCM matrix symmetrisation. 

4. GLCM matrix normalisation – matrix values must be in the range from 0 to 1. 

After that, it is possible to calculate some features of the texture (1.4)–(1.6):  

contrast (CON): 

1
2

,

, 0

( ) ,
N

i j

i j

CON P i j




       (1.4) 

homogeneity (HOM): 
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entropy (ENT): 
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where P – GLCM matrix value (after normalisation) that shows the probability of combined 

neighbouring elements; i and j – GLCM matrix indexes, which show the quantized image 

pixels values of neighbouring elements; N – GLCM matrix size. 

It is possible to analyse the segment shape by its geometric features. The circularity can be 

calculated as follows (1.7): 

2

,
P

C
S

        (1.7) 

where P – segment perimeter, and S – segment area. 

The other important geometric feature is elongation (1.8): 
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    (1.8) 

where 20m  – two-dimensional central moment (2 and 0 is moment index), and mjk – central 

moment (j and k is moment index). 

Sometimes, it is necessary to detect a tissue edge [47]–[50]. There are a lot of edge 

detection algorithms (Fig. 1.2). The active contour model can be useful for improvement of 

tissue edge detection [51], [52]. The active contour model can improve the edge detection 

results by using the energy functional. The energy functional is described with Equation (1.9):  

 int ext( ) [ ( )] [ ( )],E v E v s E v s        (1.9) 

where Eint – internal energy of active contour, and Eext – external energy of active contour. 

The findings of this chapter are as follows. 

1. Perona–Malik filter is an anisotropic diffusion that removes high frequency 

components (noise, small details). This filter has an advantage ‒ it does not remove 

the borders of large segments. The disadvantage of this method is the relatively low 

execution speed. 

2. Filters and methods based on the first derivative can be useful for detection of long 

jumps (oblique jumps) in brightness. But, on the other hand, filters and methods that 

are based on the second derivative can be useful for detection of short jumps (pulse 

jumps) in brightness.  

3. The active contour model can improve contour searching results by using energy 

functional. 

4. k-means clustering [53]–[56] result is depending on the number of clusters. Therefore, 

it is important to choose an appropriate number of clusters.  

5. The main advantage of the watershed method [57]–[60] is automatic detection of the 

number of clusters. 

6. FPGA are semiconductor devices that can be useful for fast processing of medical 

imaging.    
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2. PROPOSED METHODS AND IMPLEMENTATIONS 

The author’s proposed systems consists of 6 modules (Fig. 2.1): 

1) calculation of relaxation time; 

2) visualization of knee-joint; 

3) segmentation of tissues and fluids; 

4) analysis of tissues and fluids; 

5) textual analysis of patient’s information; 

6) FPGA optimization. 

 

Fig. 2.1. Six modules. 

2.1. Calculation of Relaxation Times  

This work describes methods for calculation of relaxation times using one MRI image, 

two MRI images and multiple MRI images. The result of calculation (relaxation times) is 

shown by colourful images. Colourful image is useful for displaying changes of relaxation 

time. Image pixel colours (e.g., we can use Hue Saturation Value colour system) are displayed 

according to the calculated relaxation times. 

Usually, a doctor gets the DICOM images from MRI. Pixels of each DICOM image 

contain intense value, which is proportional to MRI signal (S). Let us assume that the MRI 

signal is approximately equal with DICOM image pixel containing intense value (SI). This is 

shown in the following equation: SI ≈ S. When we get MRI images, we know only the pixel 

values of MRI image (SI) and images parameters TE and TR. But we want to know relaxation 

times T2 and T1.  

Relaxation time calculation by one MRI image 

The method of “relaxation time calculation by one MRI image” is very useful for doctors 

because doctors usually use only one MRI image, which shows only one slice. This method is 
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very efficient because the time it takes to get an MRI image decreases. One MRI image is 

easier to obtain than multiple ones. If we use this method, we are able to save the MRI 

working time and reduce the RF (radio frequency) influence on patient’s health. 

But this method has some disadvantages, as it does not bear in mind some parameters, 

which influence pixels intense value (SI). As a result, the calculation of relaxation time T1 and 

T2 is very approximate. This method is useful for displaying the changes of T1 and T2. 

For the calculation of times T2 and T1 it is assumed that proton density (ρ) is constant and 

magnetic field power (B0) is constant. If assumed that the density (ρ) is constant and magnetic 

field power (B0) is constant, then initial magnetization (M0) is constant. 

R E
0

1 2

1 exp exp ,
T T

S M
T T

       
       

      
    (2.1) 

If we want to calculate relaxation time T2, then we must use T2 weighted MRI image. 

When we use T2 weighted MRI image, we cannot consider the second part of Equation (2.1): 

(1 – exp(–TR / T1)). So, now we have Equation (2.2): 
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     (2.2) 

where SIMAX ≈ M0.  

Now we can calculate T2. For T1 calculation we can use the same method. 

Calculation of relaxation time by two MRI images 

For the calculation of relaxation time, we can use two MRI images [61]. When we use two 

MRI images, we have more information and we can calculate relaxation time T1 / T2 more 

precisely than in the previous method. For calculating T1 it is possible to use Equation (2.3):  
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     (2.3) 

where TR1 is time to repeat the first image, SI1 is intense value of the first image, SI2 is intense 

value of the second image, and TR2 = 2TR1 and TE1 = TE2. There is a proof (2.4) of Equation 

(2.3):  TR1 / T1 are denoted by letter ( a ). 
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(2.4) 

Calculation of relaxation time by multiple MRI images 

For the calculation of relaxation time, we can use many MRI images [62]. This method 

provides the possibility to modulate the relaxation process. Usually when we use this method, 
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we have 7 or 8 images, which show one slice (Fig. 2.2). These images have different TE 

parameters (when we want to calculate T2), and TR parameters (when we want to calculate 

T1). So, for each pixel of an MRI image we have 7 or 8 intense values, which show signal 

intense in different times. This gives us the possibility to approximate the relaxation process. 

We can make the approximation for two parameters: initial magnetization (M0) and relaxation 

time (T2). To solve the approximation task, we can use the least square method and partial 

derivatives. 

 

Fig. 2.2. Many MRI images, which reflect one slice (relaxation process T2). 

We can see it from the following Formula (2.5): 
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    (2.5) 

where M0 – initial magnetization; T2 – relaxation time; S – MRI signal; SI – intense value of 

image pixel; TE – echo time; n – count of images. 

2.2. Visualization of a Knee MRI Scanning Result 

Usually, the result of MRI scanning is saved in the DICOM (Digital Imaging and 

Communications in Medicine) file. This file contains a knee image of signal intensities. This 

image of signal intensities is the main source of information for tissue analysis [63]. The 

range of signal intensity values is very wide: from 0 to 6000 (sometimes reaching 15 000). 
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However, this image has to be converted in order to display signal intensities on computer. 

The result of this conversion is a grayscale image. Grayscale image values are in the range 

from 0 to 255. Therefore, the grayscale image shows only a small part of the knee MRI 

scanning information. However, it is possible to show more information about knee tissues by 

using a colour image. The colour image values are in the range from 0 to 16 777 215. It is 

important to choose the most appropriate colour model, keeping in mind the human 

perception of colour [64]. One of the appropriate colour systems is hue-saturation-value 

(HSV) colour model. Special visualization methods of a knee MRI scanning result can be 

useful for displaying signal intensities.  

Visualization of a knee MRI scanning result makes it possible to show more information 

about the knee tissues by using colour images. The task of visualization is to convert the 

intensity or relaxation time values into a colour image. Therefore, each value has an 

appropriate colour. For this purpose, it is possible to use Function (2.6). This function changes 

the parameter of a colour model (CMP). The change of a parameter depends on the values of 

intensities or relaxation times.  

MIN ,CMP CR VALUE STEP       (2.6) 

where CMP – modifiable parameter of colour model; CRMIN – minimal CMP value; VALUE – 

value of intensity or relaxation time; STEP – the ration of CMP range to value range (2.7). 

MAX MIN

MAX MIN

,
CR CR

STEP
VR VR





     (2.7) 

where CRMAX – maximal CMP value; VRMAX – maximal visualization value; VRMIN – minimal 

visualization value. 

The colour image of the scanning result depends on the colour model. There are 2 colour 

models used in this work. The colour model allows to convert the MRI signal value to colour. 

BGRA model contains 4 components: blue, green, red, and alpha. It is not difficult to display 

the BGRA information on the RGB-screen. However, the HSV model is closer to the human 

perception of colour than the BGRA model. Therefore, HSV to RGB conversion is required 

for the visual display of HSV information. The HSV model contains 3 components: hue, 

value, saturation. There are 4 display modes in this work (Fig. 2.3). 

1. BLUE RED: BGRA model – colour range is CRMAX = 500, CRMIN = 0; modifiable 

parameters (CMP) are blue and red components.  

2. FULL HUE: HSV (hue, saturation value) model ‒ colour range is CRMAX = 360, 

CRMIN = 0; modifiable parameters (CMP) is the hue component. 

3. BLUE GREEN RED: HSV model – colour range is CRMAX = 250, CRMIN = ‒10; 

modifiable parameters (CMP) are hue. 

4. GREEN RED: HSV model – colour range is CRMAX = 150, CRMIN = ‒30; CMP is hue. 
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Fig. 2.3. Display modes of MRI scanning result. 

The value range (VRMAX–VRMIN) depends on the power of the MRI magnet. For example: 

1) power of MRI magnet is 1.5 T ‒ range of signal intensities is 0–6000; 

2) power of MRI magnet is 3.0 T – range of signal intensities is 0–9000. 

After relaxation time calculation, it is possible to get ranges of relaxation times: 

1) range of relaxation time T1 is 0–6000 ms (3 T); 

2) range of relaxation time T2 is 0–2000 ms. 

Sometimes, it is necessary to show only one type of tissue (for example cartilage), in this 

case, it is possible to decrease the value range. This minimization, in turn, has made it 

possible to show more information about the proper tissue.  

2.3. Tissue Dispersion Analysis 

After automatic/semi-automatic tissue segmentation is finished, it is possible to perform 

knee analysis. The goal of this analysis is to detect the OA symptoms. There are many visual 

symptoms of OA: synovial effusion, eroded cartilage, narrowed joint space, subchondral bone 

lesion, osteophyte, inflamed synovium. However, these are symptoms of OA 2‒4 grades. The 

first grade of OA is of most interest in respect to treatment benefits. The first grade is very 

important because at this stage it is possible to completely cure OA. However, there are no 

perceptible visual changes of a knee at this stage. Therefore, biochemical changes of a knee 

must be taken into account. There are some biochemical and physical changes of cartilage 

tissue at this stage: increase in the water content in cartilage; development of surface 

fibrillation; destruction of collagen fibers; increase in the T1ρ, T2 and proton density. These 

changes of cartilage tissue have an influence on the intensities of cartilage tissue. For this 

reason, it is possible to analyse intensities of cartilage tissue by calculating the dispersion 

(2.8) and histogram. 
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     (2.8) 

where D – dispersion of cartilage pixel intensities; X  – arithmetic mean of cartilage pixel 

intensities; 
2X  – arithmetic mean of square cartilage pixel intensities; n – pixel count; σ – 

standard deviation.  

2.4. Contour Searching in Medical Image 

Contour searching process has 4 parts: 

1) edge detection (Fig. 2.4); 

2) tissue contour model creation (Fig. 2.5); 

3) contour searching (Fig. 2.6); 

4) improvement of contour searching result by using an active contour (Fig. 2.7). 

 

Fig. 2.4. Author’s edge detection method. 

The proposed edge detection method consists of four parts (Fig. 2.4): 

1) scale (optional part) – allows to speed up preprocessing; 

2) smooth (mean shift smooth [65] and Perona–Malika filter) ‒ removes high frequency 

components, but does not remove borders of large segments; 

3) filtering (edge detection) – filtering based on the second derivative; 

4) estimation of contour pixels ‒ allows removing unimportant pixels. 
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Fig. 2.5. Tissue contour model creation: a) point model; b) point-line model. 

Tissue contour model creation has two modes (Fig. 2.5): 

1) point model mode (fast matching) – creates point model that consists of points; 

2) point-line model (slower matching) ‒ consists of points and lines. 

The model creation process is very simple. A doctor can create a model by a simple 

mouse click (Fig. 2.5). 

 

Fig. 2.6. Contour searching process. 
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Figure 2.6 shows the contour searching process. There are 3 steps (Fig 2.6): 

1) selection of patient’s MRI images (29 images of knee joint); 

2) selection of contour model (pattern) – the doctor can select an appropriate contour 

model (cartilage, meniscus or bone model); 

3) the developed software tries to find this contour model in the 3D space of MRI 

images. 

The active contour model can improve contour searching results by using energy 

functional. Author’s active contour implementation has 4 important parameters (Fig. 2.7):  

1) stretch ‒ internal energy coefficient; 

2) curve ‒ internal energy coefficient; 

3) gradient – external energy coefficient; 

4) radius ‒ active contour degree of freedom. 

 

Fig. 2.7. The active contour model can improve edge detection results. 

2.5. Automatic Detection of Increased Synovial Fluid Volume 

Automatic detection of synovial fluid is a complicated task. The main problem is the 

geometric shape of synovial fluid. Synovial fluid does not have a fixed geometric shape. 

Therefore, it is impossible to use the contour model for this task. The author has tried 

different methods, and finds that the k-means and watershed are useful for this task. 
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Fig. 2.8. Three of the author’s watershed implementations. 

The author has developed different modification of k-means and watershed (Fig. 2.8). 

Author’s improved adaptive watershed implementation has the best results.  

 

Fig. 2.9. Detection of increased synovial fluid by author’s improved adaptive watershed. 
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It has two additional parameters: depth and quant (2.9). 

( , , ),S F depth quant I      (2.9) 

where S – segment set (or cluster set); I – MRI image (or image set in 3D space); depth – 

minimal depth of segment; quant – MRI image quantization coefficient; F ‒ author’s 

improved adaptive watershed. 

Figure 2.9 shows that the author’s improved adaptive watershed can get a lot of different 

segment sets (S). The amount and shape of segment sets (S) depends on two parameters ‒ 

depth and quant (2.9). The improved adaptive watershed implementation has 8 modes. These 

modes have been described in approbation chapter. The experiments show that WAFSTTMS 

(WATERSHED_ADAPT_FAST_TRESH_TOP_MAX_SUM) is the best mode. Figure 2.10 

shows the description of author’s improved adaptive watershed implementation 

(WAFSTTMS mode). 

 

Fig. 2.10. Description of author’s improved adaptive Watershed implementation 

(WATERSHED_ADAPT_FAST_TRESH_TOP_MAX_SUM mode). 

2.6. Textual Analysis of Patient’s Information 

The author’s module for textual information analysis allows getting additional information 

about the state of patient’s knee-joint. This module provides a possibility to calculate 

osteoarthritis severity index and osteoarthritis probability index. These indexes can be 

calculated based on the patient’s responses.  
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Fig. 2.11. Improved severity index of a knee-joint (red colour – important symptoms;  

green ‒ less important symptoms). 

Improved severity index is based on BMI (Quetelet index) and Leqesne index. Improved 

severity index depends on 22 patient’s answers. Figure 2.11 shows the main symptoms of OA 

that allow calculating the severity index.  

 

Fig. 2.12. Probability index of osteoarthritis.  

Probability index of osteoarthritis depends on 6 of the author’s proposed indexes: 

WEIGHT INDEX, AGE INDEX, GENDER INDEX, STRESS LIFE INDEX, 

INTERFERENCE INDEX, and ILLNESS INDEX. These 6 indexes depend on 22 patient’s 

answers. These 6 indexes allow to create a patient model. For example, there are popular 

opposite OA patient models: 

1) old overweight woman; 

2) young sportsman with knee injuries.   

The autor’s proposed method allows creating 2400 patient models by using the mentioned 

6 indexes. In this work 27 OA patient models are shown by using the mentioned 6 indexes. 

These 27 models allow calculating the probability index of osteoarthritis.     
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2.7. FPGA Optimization 

The author’s program helps to reduce the execution time of the FPGA instruction that 

makes it possible to speed up the medical imaging processing [66], [67]. The author’s 

program tries to remove unnecessary FPGA instruction elements. These elements are LUT 

(lookup table) components [68]. Figure 2.13. shows the comparison of FPGA minimization 

result. There are two programs:  

1) SIS program (logic synthesis system) [69]; 

2) author’s program. 

The author’s program results are better than SIS program results. The comparison of 

international results (Best LUT-6 Implementations ‒ 2020)
6
 shows that the author’s program 

allows getting best minimization results in some FPGA instruction.  

 

Fig. 2.13. Minimization of lookup table. 

  

                                                 
6 Comparison of international results (Best LUT-6 Implementations ‒ 2020) ‒ 

https://github.com/lsils/benchmarks/tree/master/best_results. 
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3. APPROBATION 

3.1. Results of Visualization Methods 

Experiments were performed with special visualization methods, aiming to look for 

cartilage degeneration by using the HSV and BGRA colour models. These matching 

experiments used 5 display modes: MRI original image (monochrome), blue red (BGRA 

model), full hue (HSV model), blue green red (HSV model), and green red (HSV model). The 

results of these experiments (Fig. 3.1.) show that the highest number of observable changes of 

cartilage have been in HSV and BGRA colour models. The full hue display mode has the best 

result because of the wide range of hue values. These experiments were performed using 19 

different MRI images.  

 

Fig. 3.1. Evaluation of visualization methods. 

3.2. Results of Histogram Analysis 

The aim of this experiment is to compare the intensity dispersion of healthy and damaged 

cartilages. For these comparative experiments, proton density (PD) fat-suppressed (FS) MRI 

sequence was used. The MRI sequence TE and TR parameters have the following values:  

1) TE ‒ from 26 ms to 29 ms; 

2) TR ‒ from 2923 ms to 3170 ms.   

The results of cartilage tissue analysis (Fig. 3.2) show that a healthy patient (green colour 

P2 and P5) has lesser standard deviation of cartilage signal intensity values than the patients 

with OA (red color P1, P3, P4, et al.).  
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Fig. 3.2. Standard deviation of cartilage pixel intensities. 

The aim of the second experiment is to compare healthy and damaged cartilages by using 

statistics parameters: mean, variance, homogeneity, skewness, kurtosis, entropy. For these 

comparative experiments, proton density (PD) 3D SAG CUBE HS VAL MRI sequence were 

used. The MRI sequence TE and TR parameters have the following values:  

1) TE – from 31 ms to 32 ms; 

2) TR ‒ 1502 ms.   

25 patients participated in this experiment. There were 10 healthy patients (H1…H10) and 

15 patients (I1…I15) had problems with knee-joint (high OA probability). Each patient has 2 

values (Fig. 3.3). The first value depends on lateral cartilage and the second value depends on 

medial value. Appendix 2 contains all statistics results. The results of cartilage tissue analysis 

(Appendix 2) show that a healthy patient (green colour) has lesser variance, kurtosis,and  

entropy and bigger homogeneity intensity values than the patients with knee-joint problems 

and possible OA.   

 

Fig. 3.3. Kurtosis of cartilage pixel intensities. 

3.3. Modulating the Relaxation Process by Many MRI Images 

Relaxation T2 process can be modulated by 8 MRI images that have different TE (echo 

time). Therefore, these eight images contain information about proton energetic state at 

different moments in time. Thanks to this information, it is possible to approximate the 

relaxation process as shown in Fig. 3.4. This experiment has shown that various organic 

structures have a different relaxation process. In Fig. 3.4 we can see that muscle relaxation 
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process T2 is faster than the bone relaxation process. Different tissues have various relaxation 

times. Therefore, tissues classification problem can be solved by using the relaxation times. 

 

Fig. 3.4. T2 relaxation process. 

3.4. Results of Image Pre-Processing and Segmentation 

This experiment investigates the problem of pre-processing and segmentation. It is 

important to select the best possible combinations of methods to obtain the best results in 

reducing noise and artifacts [70]–[72]. The goal of this experiment is to compare 3 

combinations of methods: 

 only k-means clustering without image pre-processing; 

 Perona–Malik filtering and k-means clustering; 

 histogram equalization, Perona–Malik filtering and k-means clustering.   

The experiment was evaluated by the following parameters: 

 amount of images with  high levels of noise and artifacts (HLNA); 

 amount of images with low levels of noise and artifacts (LLNA); 

 amount of images without noise and artifacts (NONA).  

Each method used  273 processed images for processing. 

Figure. 3.5 shows the estimation of the first combination (k-means clustering). There is is 

lot of noise and artifacts. 

 

Fig. 3.5. k-means clustering estimation. 
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The results of the second combination (Perona–Malik filtering and k-means clustering) 

(Fig. 3.6) are much better than the k-means clustering. Figure 3.6 shows a reduction in noise 

and artifacts.  

 

Fig. 3.6. Perona–Malik filtering and k-means clustering estimation. 

The third combination (histogram equalization) had not led to any improvement in the 

results. Therefore, the second combination will be used further.  

 

Fig. 3.7. The result of Perona–Malik filtering and k-means clustering. 

The result of Perona–Malik filtering and k-means clustering can be seen in Fig. 3.7. There 

are different clusters (green, red and others). Green clusters contain voxels of cartilage and 

muscle. Blue and red clusters contain voxels of bone and fat. Magenta clusters contain voxels of 

background and meniscus. Therefore, it is impossible to recognize the tissue type using these 

clusters. It is for this reason that further experiments investigate the tissue recognition problem. 

3.5. Knee-Joint Tissue Recognition 

The easiest way to divide tissue voxels is to use the MRI signal intensities values.  

MRI signal intensities 

In this experiment DICOM images have the following parameters: sequence – FSE, TR – 

600 ms ± 100 ms, TE – 10 ms ± 1 ms, and magnetic field power – 3 T. Table 3.1 shows the 

calculated mean and variance of tissue signal intensities. There are similar tissue types (in  
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Fig. 3.7 there is the same problem): bone and fat; cartilage and muscle; meniscus and 

background. Therefore, MRI signal intensities are very important for tissue recognition, but 

this tissue feature alone is not enough for precise tissue recognition. Therefore, it is helpful to 

use textural features. 

Table 3.1 

MRI Signal Intensities of Different Tissue Types 

Tissues Mean Variance 

Two sigma σ range 

(95.4 %) 

Min Max 

(No tissue) 

Background 
106.40 10 291.47 1.00 309.29 

BONE 3392.52 216 911.05 2461.05 4324.00 

FAT 3957.12 461 584.90 2598.32 5315.92 

CARTILAGE 1578.70 21 016.38 1288.76 1868.64 

MENISCUS 661.65 16 162.14 407.39 915.91 

MUSCLE 1418.56 36 280.27 1037.61 1799.51 

 

Analysis of textural features 

In this experiment 64 textural features were calculated using GLCM (48 features) and 

GLSZM (16 features). These features were estimated for each tissue type. Therefore, it is 

possible to compare the features of tissue type.  

 

Fig. 3.8. Ratio between bone and fat. 

The value of axis x is 64 features, and the value of axis y (3.1) is the ratio between the 

maximal feature value and an analysed tissue feature value. 

 
cur

max

( )
,

( )

f i
ratio

f i
    (3.1) 
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where fcur – currently analysed feature value; fmax – maximal feature value; i – feature number 

(from 1 to 64). 

In the first part of the experiment the similar tissue features are compared by the mean 

value of the features. The results of the first part of the experiments for bone and fat tissue can 

be seen in Fig. 3.8. 

In the second part of the experiment the similar tissues are compared in the value of the 

features. The point of this experiment is to find the essential similar tissue features. The 

results for cartilage and muscle features (number of experiments is 106) are shown in 

Table 3.2. There are 4 important features (uniformity, homogeneity, vertical correlation and 

diagonal correlation), the value of these features for muscle is greater than the value of these 

features for cartilage. And there is one important feature (dissimilarity), the value of this 

feature for cartilage is greater than the value of this feature for muscle. The rating for each 

feature is based on the confidence level. 

Table 3.2 

Feature Comparison Between Cartilage and Muscle 

Number of features Feature Is greater for Confidence 

58 – GLZM Uniformity Muscle 0.821 

15 – GLCM Homogeneity Muscle 0.755 

14 – GLCM Dissimilarity Cartilage 0.745 

24 and 48 – GLCM 
Correlation (vertical and 

diagonal 135) 
Muscle 0.745 

 

The results for bone and fat, meniscus and background are shown in Table 3.3. It is 

possible to recognize the tissue type using the important features and the confidence levels.   

Table 3.3 

Feature Comparison Between Background and Meniscus, Bone and Fat 

 

Feature 

number/s 
Feature 

Is greater 

for 
Confidence 

B
a

ck
g

ro
u

n
d

 a
n

d
 

M
en

is
cu

s 

58 ‒ GLZM Uniformity Background 0.990 

57 ‒ GLZM 
Spectral 

homogeneity 
Background 0.990 

51 ‒ GLZM 
Low gray level 

zone emphasis 
Meniscus 0.979 

55 ‒ GLZM 

Large zone 

low gray level 

emphasis 

Meniscus 0.979 

B
o
n

e 
a
n

d
 

F
a

t 

8 ‒ GLCM MEANX Fat 0.843 

33 ‒ GLCM MEANY Fat 0.843 

51 ‒ GLZM 
Low gray level 

zone emphasis 
Bone 0.796 
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3.6. Results of Contour Searching in Medical Image 

Results of edge detector 

Table 3.4 shows the results of Canny [73] and author’s approach. The results of Canny 

method consist of thin lines. The results of the author’s approach consist of bold lines. These 

bold lines are useful for fast contour searching. If the region of interest is large, then contour 

searching can take a lot of time. Therefore, the results of the author’s approach allow 

accelerating the contour searching process. Canny results can be useful for further contour 

improvement (contour alignment) by using active contour model. 

Table 3.4 

Comparison of Results of Edge Detectors (Full Variant – Appendix 1) 

Original 

 
 

Canny 

Threshold (upper 

and lower) 10/100 

  

Threshold 100/200 

  

Threshold 100/250 

  

Proposed approach 
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Results of contour searching 

The aim of this experiment is to evaluate the proposed approach for contour searching. 

For these estimative experiments, relaxation time (T1) fat-suppressed (FS) MRI sequence 

were used. The MRI sequence TE and TR parameters have the following values:  

1) TE ‒ from 8 ms to 11 ms; 

2) TR ‒ from 661 ms to 814 ms.   

20 patients have participated in this experiment. This experiment consists of 5 parts:  

1) cartilage (of femur bone) contour searching by 13 points and 11 lines model of 

contour; 

2) cartilage (of femur bone) contour searching by 15 points model of contour; 

3) femur bone contour searching by 24 points and 23 lines model; 

4) femur bone contour searching by 20 points model; 

5) femur bone contour searching by 8 points and 7 lines model. 

 

Fig. 3.9. Estimation of cartilage searching model. 

The experiment was evaluated on the following scale: 

1) precise match ‒ match percentage is from 85 % to 100 %; 

2) match ‒ match percentage is from 70 % to 85 %; 

3) unprecise match ‒ match percentage is from 50 % to 70 %; 

4) not match ‒ model does not match. 

Figure 3.9 shows the results of two cartilage models. The contour searching by 13 points 

and 11 lines model has the best result. This model (13 p. and 11 l.) has precise match in 19 

out of 20 experiments and match in 1 out of 20 experiments. The results of contour searching 

depend on cartilage contour model.  
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60%

80%

100%

precise match match unprecise match not match

Estimation of cartilage searching model 

Cartilage (of femur bone) contour searching by 13 points and 11 lines
model

Cartilage (of femur bone) contour searching by 15 points model
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Fig. 3.10. Estimation of femur bone searching model. 

Figure 3.10 shows the results of three femur bone models. The contour searching by 24 

points and 23 lines model has the best result. This model (24 p. and 23 l.) has precise match in 

8 out of 20 experiments, match in 8 out of 20 experiments, unprecise match in 1 out of 20 

experiments and not match in 3 out of 20 experiments.  

 

Fig. 3.11. Estimation of contour searching execution time. 

Figure 3.11 shows the contour searching execution time. The point-line model works 

slower than the point model. The main advantage of the proposed contour searching method 

is execution speed. 1.8 million comparisons of modified tissue contour model with MRI 

images take an average of 12 seconds. This allows to check 1.8 million variants and choose 

the best variant from 1.8 million model modifications. These 1.8 million procedures of 
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checking and choosing take only an average of 12 seconds (in 6-year-old notebook PC). 

Contour searching makes it possible to automatically find the region of interest (bone, 

cartilage, meniscus …). 

Contour searching results (Figs. 3.9 and 3.10) have been obtained using one contour 

model (one cartilage contour searching model or one femur bone contour searching model). 

These contour searching results might have been improved by using a larger model set. It 

means that the contour searching task can be achieved by comparison of MRI images and 

many contour models. Then, of course, the comparison by one model takes less time than the 

comparison by many models. 

3.7. Result of Automatic Detection of Increased Synovial Fluid Volume 

The aim of this experiment is to compare methods for detection of increased synovial 

fluid. 12 patients have participated in this experiment. For these comparative experiments, 

proton density PD MRI sequences were used. TE and TR parameters of  MRI sequences have 

the following values:  

1) AXIAL PD, TR = 2085–4205 ms, TE = 26–41 ms, 3 T; 

2) SAGITAL PD, TR = 2500–3679 ms, TE = 31–38 ms, 3 T.   

The author has tried different methods for detection of increased synovial fluid and finds 

the k-mean and watershed are useful for this task. Figures 3.12–3.14 show the comparison of 

author’s improved watershed implementations. There are eight segmentation modes:  

1) WATERSHED_SIMPLE_TRESH_2_5 (WST_2_5) ‒ watershed implementation with 

quant = 5 and depth = 2; 

2) WATERSHED_TRESH_TOP_2_5 (WTT_2_5) ‒ watershed implementation with 

topological analysis, quant = 5 and depth = 2; 

3) WATERSHED_ADAPT_FAST_TRESH_TOP (WAFTT) – adaptive watershed 

implementation with quant = from 5 to 25 and depth = from 2 to 3; 

4) WATERSHED_ADAPT_FAST_TRESH_TOP_MAX_SUM (WAFTTMS) ‒ adaptive 

watershed that tries to increase the area of synovial fluid segments (quant from 5 to 25 

and depth from 2 to 3);  

5) WATERSHED_ADAPT_FAST_SOFTTRESH_TOP (WAFSTT) ‒ adaptive 

watershed that has soft threshold (or greater range of synovial fluid features) for 

synovial fluid detection (quant from 5 to 25 and depth from 2 to 3); 

6) WATERSHED_ADAPT_FAST_SOFTTRESH_TOP_MAX_SUM (WAFSTTMS) – 

WAFTTMS with soft threshold (quant from 5 to 25 and depth from 2 to 3); 

7) WATERSHED_SIMPLE_TRESH_2_10 (WST_2_10) ‒ quant = 10 and depth = 2; 

8) WATERSHED_TRESH_TOP_2_10 (WTT_2_10) quant = 10 and depth = 2. 
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Fig. 3.12. Number of false detections of increased synovial fluid volume. 

The descriptions of mode names: 

1) TOP ‒ topological analysis that checks synovial fluid segment location with respect to 

each other; 

2) SOFTTRESH/TRESH – thresholds that are based on geometrical and textural synovial 

fluid features (Appendix 3). 

 

Fig. 3.13. Number of missed increases of synovial fluid volume. 

Figure 3.12 shows that the WST_2_5, WTT_2_5 and WAFSTTMS modes have the 

smallest number of false detections. Figure 3.13 shows that the WST_2_10, WTT_2_10 and 

WAFSTTMS modes have the smallest number of missed increases of synovial fluid volume. 

Figure 3.14 shows that WAFSTTMS mode has the highest number of detections of increased 

synovial fluid volume. 
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Fig. 3.14. Number of detections of increased synovial fluid volume. 

The results of the experiment show that the synovial fluid has the following unique texture 

features: medium intensity value, barycentre, area highlighting (HGZE and LGZE 

[Appendix 3]). These texture features allow localizing synovial fluid and indicate an increase 

of synovial fluid. The author’s program has 8 watershed modes of synovial fluid searching. 

The best synovial fluid searching mode is the WAFSTTMS mode. 
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RESULTS AND CONCLUSIONS  

As a result of the Doctoral Thesis, six new modules have been developed and are 

described in the practical part. These new modules have a lot of possibilities: calculation of 

relaxation times; human body fluid and tissue segmentation, calculation of features and defect 

detection; medical image pre-processing and visualization; optimization of medical image 

processing instruction; textual analysis of patient’s information. These new modules allow 

solving the following tasks. 

Segmentation of tissues and fluids. The medical image segmentation is a useful 

procedure for tissue and fluid analysis. The aim of medical image segmentation is the 

detection of pixels that contain tissues and fluids. When working with MRI images, there are 

a lot of segmentation problems: different image planes, many MRI parameters that strongly 

change the MRI signal, different sequences, artifacts, patient’s movement and noise. 

Therefore, this work shows many solutions: cluster segmentation, region growing 

segmentation, interactive segmentation method, contour searching, and methods that are 

based on the watershed algorithm.    

Preprocessing of medical image. The results of the first experiment show that the 

proposed combination of methods based on Perona–Malik filtering and k-means clustering are 

useful. The Perona–Malik filtering is very effective for reducing noise and artifacts. The k-

means clustering is helpful for tissue segmentation. But k-means clustering alone is not 

enough for precise tissue recognition. 

Analysis of tissue textural features. The results of the second experiment show that the 

MRI signal intensity feature alone is not enough for different tissue type detection. But the 

results of the third experiment show that it is possible to detect different type of tissues based on 

65 features: MRI signal intensity, 48 features (GLCM) and 16 features (GLSZM). The results of 

this work could assist in the development of automatic knee-joint soft tissue recognition system 

that would save doctors’ time. Experimental results can be useful for tissue analysis that allows 

starting treatment earlier, and therefore reducing the risk of tissue destruction.  

Automatic detection of increased synovial fluid volume. The task of synovial fluid 

detection and localization is quite important. Synovial fluid increase (in the knee-joint) 

indicates that the patient has problems with the knee-joint [74]. The developed software 

makes it possible to find an object (tissue or fluid) of any shape. Synovial fluid can take any 

form. The results of the experiment show that the synovial fluid has unique texture features: 

medium intensity value, barycentre, area highlighting (HGZE and LGZE). These texture 

features allow localizing the synovial fluid and indicate increase of synovial fluid. The 

author’s program has 8 watershed modes of synovial fluid searching. The best synovial fluid 

searching mode is the WAFSTTMS
7
 mode. The author’s program can automatically detect an 

increase of synovial fluid volume. Automatic detection of increased synovial fluid volume 

would save the doctor’s time. 

Contour searching in medical image. The developed software allows creating a model 

of tissue contour. Also, this software allows finding the selected 2D tissue contour in 3D 

                                                 
7 WAFSTTMS – WATERSHED_ADAPT_FAST_TRESH_TOP_MAX_SUM mode. 
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space of MRI images. The results of the experiment show that the point-line model provides 

better accuracy than the point model. The main advantage of the proposed contour searching 

method is execution speed. 1.8 million comparisons of modified tissue contour model with 

MRI images take an average of 12 seconds. This allows to check 1.8 million variants and 

choose the best variant from 1.8 possible million model modifications. These 1.8 million 

procedures of checking and choosing take only an average of 12 seconds (in 6-year-old 

notebook PC). Contour searching makes it possible to automatically find the region of interest 

(bone, cartilage, meniscus …).  

FPGA optimization. The process of tissue identification, classification and localization 

can take quite a long time. Therefore, it is important to speed up this process. The author’s 

program helps to reduce the execution time of the FPGA instruction that makes it possible to 

speed up the medical imaging processing. 

Relaxation time calculation. In most situations, many MRI images (7 or 8 images) are 

used for relaxation time calculation [9], [75]. The proposed relaxation time calculation methods 

are universal, they allow calculating relaxation time by any MRI images count. It is very useful 

for the old MRI, which cannot get many MRI images in the same moment. “Relaxation time 

calculation by one MRI image” method is very effective because the time of MRI imaging is 

decreasing. We can get a single MRI image faster than many images. If we use this method, it 

will be possible to save the MRI working time and reduce the RF (radio frequency) influence on 

patient’s health. When we use more MRI images, we have more information and we can 

calculate relaxation time T1 / T2 more precisely. “Relaxation time calculation by many MRI 

images” method provides a possibility to modulate the relaxation process. All these methods 

allow calculating relaxation times T2 / T1. It is important to show the relaxation time changes by 

colourful images that allow displaying changes in relaxation times.  

Visualization of medical image. Visualization of MRI scanning result makes it possible 

to show more information about tissues and fluids by using colour. The author’s developed  

visualization module has two modes: mode 2D and mode 3D. The results of 2D visualization 

methods show that the use of HSV and BGRA model provide the most effective visualization 

of the cartilage degeneration. Moreover, the full hue display mode is the most sensitive to 

changes in cartilage intensity values. The experimental results show that thanks to the 

proposed methods a doctor can see cartilage pathogen zone and make an early OA diagnosis.  

Cartilage analysing. The results of tissue analysis show that the intensity dispersion and 

intensity standard deviation of cartilage can help with the OA detection. The results of 

cartilage tissue analysis show that a healthy patient has a lesser standard deviation of cartilage 

signal intensity values than patients with OA. 

Textual analysis of patient’s information. The author’s module for textual information 

analysis allows getting additional information about the state of patient’s knee-joint. This 

module provides a possibility to calculate osteoarthritis severity index and osteoarthritis 

probability index. These indexes can be calculated based on the patient’s responses.  

 

Medical information technology expands the diagnostic possibilities of doctors. Also, this 

technology increases the quality and accessibility of medical services. 
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Appendix 1  

Comparison of Results of Edge Detectors 
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Appendix 2  

Results of Cartilage Histogram Analysis 

Sequence: 3D Sag PD Cube HS VAL; 

TR: 1502 ms; TE: 31–32 ms; 

Histogram quantization coefficient: 7; 

Number of one segment pixels: from 140 to1136 pixels; 

Segment types: lateral cartilage and medial cartilage; 

Data format:   

 

 

Index 

Of Slice 
Segment 

Pixel count 

of segments 
Mean Variance ... 

H1 34 lat. facets 870 26.40689655 34.88960761 … 

H1 25 
med. 

facets 
318 23.63836478 47.5516099 … 
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Appendix 3  

Feature Comparison Between Synovial Fluid and Other Tissues 

Feature number/s Feature Is greater for Confidence 

GLCM (20, 21, 44, 

45, 8, 9, 32, 33) 
Mean x and mean y Synovial fluid 0.9999 

GLZM (52 ‒ 

HGZE) 
High gray level zone emphasis Synovial fluid 0.9999 

GLZM (60 ‒ 

BARYGL) 
Barycenter on gray level Synovial fluid 0.9999 

GLZM (62 ‒ 

VARGL) 
Variance on gray level Synovial fluid 0.9856 

GLZM (56 ‒ 

LZHGE) 

Large zone high gray level 

emphasis 
Synovial fluid 0.9784 

GLZM (51 ‒ 

LGZE) 
Low gray level zone emphasis Other tissues 0.9999 

GLZM (53 ‒ 

SZLGE) 
Small zone low gray level emphasis Other tissues 0.8561 

GLZM (59 ‒ ZPC) Zone percentage Other tissues 0.7985 
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