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To develop an advanced control of thermal energy supply for domestic heating, a number 
of new challenges need to be solved, such as the emerging need to plan operation in accor-
dance with an energy market-based environment. However, to move towards this goal, it is 
necessary to develop forecasting tools for short- and long-term planning, taking into account 
data about the operation of existing heating systems. The paper considers the real operational 
parameters of five different heating networks in Latvia over a period of five years. The applica-
tion of regression analysis for heating load dependency on ambient temperature results in the 
formulation of normalized slope for the regression curves of the studied systems. The value of 
this parameter, the normalized slope, allows describing the performance of particular heating 
systems. Moreover, a heat load forecasting approach is presented by an application of multiple 
regression methods. This short-term (day-ahead) forecasting tool is tested on data from a rela-
tively small district heating system with an average load of 20 MW at ambient temperature 
of 0 °C. The deviations of the actual heat load demand from the one forecasted with various 
training data set sizes and polynomial orders are evaluated for two testing periods in January 
of 2018.  Forecast accuracy is assessed by two parameters – mean absolute percentage error 
and normalized mean bias error. 
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1. INTRODUCTION

 In line with the recently proposed Euro-
pean Climate Law, energy consumption and 
greenhouse gas (GHG) emissions should 
be dramatically reduced in order to achieve 
the European Union’s long-term climate 
neutrality objective [1]. Energy production 
for district heating system (DHS) operation 
makes up to 14 % of the total energy bal-
ance in Latvia [2].  

Recent energy market liberalization 
for heat and electrical energy supply cre-
ates additional challenges for DHS, espe-
cially in case of integrated operation with 
combined heat and power plants (CHPPs). 
The requirement for competition between 

different energy producers in heat and elec-
trical energy markets calls for the creation 
and utilization of accurate forecasting tools 
for various important parameters (e.g., elec-
tricity market price, heating demand etc.) 
necessary for operational planning and the 
optimization of bidding in the energy mar-
kets. 

In Latvia, the introduction of Climate 
Finance became an important support for 
significant improvements in DHS effi-
ciency. During the last few years, at least 
three heat energy storage sites integrated 
with CHPPs were constructed in Latvia, 
summarised in Table 1.

Table 1. The Largest Heat Storage Sites in Latvia

Heat storage site Tank volume, m3 Heat storage  
capacity, MWh

Max. charge/discharge 
capacity, MW/h

Riga CHPP-2, Latvenergo [3] 18000 550 150
Salaspils Siltums [4] 8000 418 15/25
Jelgava, Fortum Latvia [5] 5000 170 15

The application of heat storage tanks 
and utilization of the thermal inertia of con-
sumers (i.e., buildings) can cover disbal-
ance between heat demand in DHS and the 
request for electrical energy produced by 
CHPPs from the perspective of the electric-
ity wholesale market [6]–[8]. DHS reno-
vation together with the already ongoing 
pre-insulated network pipe exchange and 
building thermal insulation improvements 
will enhance the overall operational effi-
ciency. For instance, the heat losses from 
DHS network can be reduced by 40 % if 
old pipes are replaced by new pre-insulated 
pipes as estimated for a particular case in 
Tallinn DHS [9]. In another study [10], 
ranking of the DHS based on efficiency and 
relative losses from networks is offered. For 
the overall technical evaluation of network 
performance, a factor is suggested, which 

depends on the heat transfer coefficient of 
the pipes. Another way to decrease losses 
in DHS networks is forward temperature 
reduction in the supply lines [11]. More-
over, the heat load can be modelled by con-
trolling the forward temperature in the net-
work and the indoor temperature in housing 
[12]. However, ultimately, all these steps 
will ensure the best performance only if the 
smart operation of DHS is also supported 
by accurate heat load prediction. 

Furthermore, the simulation of DHS 
performance requires the application and 
modelling of heat demand profiles, forward 
and return temperature in the supply line, as 
well as the estimation of pressure losses in 
the network. Therefore, forecasting of heat 
load is an important part of the overall DHS 
planning process [13]. The planning of the 
electricity generation schedule of CHPPs 
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for participation in the electricity wholesale 
market requires day-ahead hourly forecast 
of the heat load for DHS to be supplied by 
the particular CHPPs [14]. Overall, there 
are several approaches to heat demand fore-
casting in the literature. For instance, the 
forecasting of heat demand for the case of 
Riga by an application of artificial neural 
networks, linear regression and a combined 
method ensured the daily mean average per-
centage error in the range of 4.76–5.83 % 
for the particular data set studied [14]. 

While currently, in some DHS net-
works, the prediction of load is carried 
out for daily volumes, the need to adapt a 
more market-oriented operational and plan-
ning model in line with the highly volatile 
electrical energy prices in trading platforms 
(such as Nord Pool) requires shifting the 
forecast resolution to at least hourly basis. 
Therefore, our research is devoted to day-
ahead forecasting of hourly heating load. 
The overarching goal thereby is to devise 
and successfully validate a short-term fore-
casting approach able to provide satisfac-
tory accuracy on any DHS, at the same time 
maintaining simplicity of implementation, 
so that such an approach could be applied 
by any CHPP operator aiming to improve 
their heat and power production planning 
co-optimization. 

Consequently, the heating load fore-
casting algorithm initially described in [14] 

and more thoroughly elaborated in [15] is 
used in this study with the aim to validate 
its accuracy in DHS load forecasting in a 
particular system during different periods of 
the heating season and with varied model 
parameters. Up until now, this forecasting 
approach has been tested on only one DHS, 
which, furthermore, could be characterised 
as a generally very large system. Thereby, 
this paper envisions to add to prior research 
by validating the short-term forecasting 
approach on a significantly different DHS, 
e.g., notably smaller in terms of average 
consumption. 

Moreover, the obtained forecast devia-
tions from the actual consumption values 
are to be analysed by the implementation of 
the mean average percentage error (MAPE) 
and normalized mean bias error (NBIAS). 
When applied together, these metrics allow 
drawing more complete conclusions on the 
performance of a forecasting model.

The other major goal of this study is to 
introduce and apply a novel parameter for 
DHS performance characterisation – heat-
ing load curve normalized slope, which, to 
the best of the authors’ knowledge, has not 
previously been considered in the litera-
ture and, consequently, its definition offers 
additional novelty. The extensive datasets 
collected for this research allow for the cal-
culation of this parameter for a number of 
different DHSs.

2. METHODOLOGY

2.1. Simple Linear Regression and Normalized Slope

For this study, the data about hourly 
DHS parameters (hourly heat load in MW 
and mean hourly ambient temperature in 
°C) were collected for five distinctly dif-
ferent DHSs from 2015 to 2019 in various 
parts of Latvia.

The studied DHS networks supply heat 
energy for two main purposes: space heating 
and domestic hot water supply. Heat con-
sumption for air heating in ventilation sys-
tems is insignificant in the scope of the col-
lected data. The value of heat load depends 
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on many factors, such as the season of the 
year, ambient temperature, desired inside 
temperature, air humidity, solar radiation, 
wind speed and direction etc. The size of the 
heating area and building insulation param-
eters as well as the number of inhabitants 
and their activities also affect the resulting 
heat demand. Therefore, heat load model-
ling is a very complicated process and cer-
tain simplifications need to be made. Most 
importantly, these simplifications are based 
on the available data.

A novel parameter characterising DHS 
performance is proposed – normalized 
slope. To obtain it, it is first necessary to 
perform a linear regression analysis on the 
data sets of various DHSs, using heat load 
as a dependent variable and mean hourly 
ambient temperature as an independent 
variable. From the regression analysis, a 
linear equation is obtained in the form of

  (1)

where

 – the dependent variable (heat load);  
 – the independent variable (ambient tem-

perature);  – the slope;  – the intercept 
term (equal to the average heat load at 
ambient temperature of 0 °C).

The coefficients  and  from Eq. (1) 
are found for each DHS by minimising the 
sum of least-squares, which is a mathemati-
cal approach to calculate the dispersion of 
experimental data. The goal of the analy-
sis is to get the smallest possible sum of 
squares and draw a line according to the lin-
ear regression equation, which best matches 
the collected DHS performance data.

Goodness of fit of the obtained load 
curve can be assessed by evaluating the 
coefficient of determination (R2) for each 
studied system. It shows the deviations of 
the measured DHS load from the one calcu-

lated by the regression line. The value of R2 
is the sum of the squared deviations of the 
DHS load from the average value. It is com-
mon to consider that the obtained regression 
models are strong if R2 is close to 1.

After the regression analysis, the DHS 
load curve normalized slope can be calcu-
lated as the ratio of the temperature multi-
plier (slope) in the linear regression equa-
tion (1) vs the average load (intercept) from 
the same equation (i.e., ). This coeffi-
cient shows the DHS load change relative 
to the average load when the temperature 
changes by one degree.

To perform this analysis, only the heat-
ing season is considered (i.e., when DHS 
heating load consists of both space heating 
and hot water supply). Thereby data about 
the heating load of various DHS networks 
during December–March period of the year 
are used. We eliminated from consideration 
the data for October–November and April, 
when the heating load is not stable.

For clarity, it should be noted that a 
simple linear regression model described 
here, the results of which are summarised 
in Section 3.2, is not used as a forecasting 
approach, but rather as a tool to obtain DHS 
characteristics necessary to calculate the 
heating load curve normalized slope (i.e., 
a DHS performance assessment approach). 
Though, in principle, it can be used as a 
forecasting method; it would generally be 
applicable as such more likely to long-term 
planning (e.g., preparing for the next heat-
ing season), as opposed to short-term fore-
casting and planning. The key difference 
in short-term planning, which is necessary 
for effective participation in established and 
emerging energy markets, is the need to 
more dynamically adapt to changes in heat-
ing consumption patterns occurring during 
the season. Such a forecasting approach 
specifically suitable for short-term opera-
tional planning is offered in the next section.
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2.2. Heat Load Short-Term Forecasting Approach 

There are various data-driven 
approaches for generating linear and mul-
tilinear regression models with different 
influencing parameters for heat load pre-
diction. For instance, in [16], the forward 
selection method is used to identify the 
most important influencing parameters 
for the forecasting of daily heat energy 
consumption. There it is found that for a 
particular DHS studied, high coefficient  
R2 = 0.9369 can be achieved when only 
daily mean ambient temperature is taken 
into account. In comparison, this coeffi-
cient grows to 0.9663 when input variables 
also include the heating consumption of the 
previous day, maximum daily temperature, 
wind data, humidity and month of the year 
[16]. Nevertheless, the selection of influ-
encing parameters also heavily depends on 
data availability.

For this case study, the heating demand 
short-term (day-ahead) forecasting method-
ology from [15] has been adapted for the 
use on one of the DHS described in this 
paper. The forecasting model is based on 
multiple linear regression with the forecast 
of the day-ahead hourly ambient tempera-
ture being the main predictor. However, for 
the purposes of this study, to not include 
temperature forecast inaccuracy in the heat-
ing demand forecasting and only isolate the 
effects of the model itself, the actual histori-
cal temperature data will be used as input. 
The additional effects temperature forecast 
inaccuracy can cause in heat demand pre-
diction have previously been discussed in 
[17].

Overall, the forecasting algorithm used 
in this study can be summarised as follows:
1. Select forecasting model parameters – 

the look-back horizon (training data set) 
in days b and the order of the polyno-
mial to be constructed with multiple lin-
ear regression k.

2. Select the number of days the forecast 
has to be performed for, h.

3. Start with the day number d = 1.
4. Read the hourly temperature and heat 

load data from previous days (d–b to 
d–1).

5. Perform multiple linear regression on 
the dataset (obtained in step 4) in the 
form of

  (2)

where  – the dependent variable at point 
i;   – independent variable at point i; n – 
power of each term; k – power of the last 
term (i.e., order of the polynomial);  – the 
error term at point i;  – the intercept term; 

 – the coefficient for the corresponding 
function of the independent variable.

Using the least-squares method, this 
allows identifying the model parameters – 
an coefficients.
6. The error terms for each point i are then 

averaged over the training dataset based 
on the hour of the day, thereby obtain-
ing a 24-hour profile of the training 
model residuals.

7. Read the hourly temperature for the 
next day d+1.

8. Input the day-ahead temperature in the 
model obtained by the linear regression 
and output the initial 24-hour day-ahead 
heating load forecast.

9. Subtract from the initial forecast the 
24-hour error profile and output the 
final heating demand forecast for day 
d+1. Save the result.

10. Increment day number d by one and 
repeat steps 4 to 10 until the day num-
ber d exceeds the preselected number of 
days for the forecasting experiment h.
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Afterwards, the results can be assessed. 
The forecasting model performance is eval-
uated using the mean absolute percentage 
error and normalized mean bias error.

  (3)

  (4) 

where 

 – the actual heat load at point i;  – fore-
casted heat load at point i;  – the total 
number of points in the forecast;  – 

maximal value of heat load in the actual 
observation series;  – minimal value of 
heat load in the actual observation series.

These two error measures have dis-
tinctly different applications and, conse-
quently, they can be used in parallel, as 
each of them describes the accuracy of the 
tested forecasting approach from a different 
angle. MAPE shows the average error dis-
regarding the bias of it. This allows draw-
ing conclusions on the overall accuracy of 
the model. On the other hand, NBIAS spe-
cifically focusses on the sign of the errors, 
allowing for the identification of systemic 
inaccuracies, i.e., a tendency of the model 
to over- or underestimate.

3. RESULTS

3.1. Example of the Case Study Data

Figure 1 shows an example of the dura-
tion curve for hourly ambient temperature 
and the corresponding DHS heat load for 
a relatively small DHS with the average 
heating power of about 8 MW during 2016. 
Figure 2 demonstrates for the same system 
the seasonal profile of average temperature 
and DHS heat load during 2016 and 2017. 

The yearly profile can be classified into two 
parts – the heating season, when the ambi-
ent temperature is lower than 8 °C, and the 
off-season. The duration of the heating sea-
son in Latvia is usually about 200 days or 
4800 hours per year. In the second part of 
the yearly profile (the off-season), the DHS 
heating load is mostly for hot water supply.

Fig. 1. Ambient temperature duration curve and the corresponding heat load in a small DHS in 2016.
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Fig. 2. Ambient temperature and DHS heat load annual profile during 2016 and 2017.

 It can already be seen from Figs. 1 
and 2 that there is a profound impact of the 
ambient temperature on the heating load in 
the DHS during the heating season. Since 
the average temperature during a heating 
season is about 0 °C, we introduce the defi-
nition of rated power (RP) of DHS as the 
average heating load (MW) when the ambi-

ent temperature is equal to the average. The 
RP values of the various DHS networks 
studied in this paper are summarised in 
Table 2, whereby data regarding the regres-
sion analysis of heating load dependency on 
the ambient temperature on an hourly basis 
are also shown, explained in more detail in 
the next section.

3.2. Simple Linear Regression Models of DHS Heat Load

Table 2 presents the analysis of a con-
siderable volume of statistical data of 
hourly heat load, which allows performing 
linear regression for DHS heat load curves. 
Data were extracted from a five-year period 
(2015–2019) for five different DHSs with 
rated power (i.e., average consumption) 
ranging from 8 to 453 MW. In Table 2 
and in the following figures, the RP value 

is used to distinguish and identify various 
DHS networks considered, since that is a 
parameter which varies greatly among the 
studied systems.

The regression analyses presented in 
Figs. 3–7 demonstrate how the DHS load 
variable changes when the independent 
variable represented by ambient tempera-
ture varies.

Table 2. Data of DHS Case Studies for Different RP and Time Periods

DHS RP/
figure  
number

Heating 
season

Average load 
Q0, MWh/h

Minimum/ 
maximum load, 

MWh

Linear regression  
equation

(Q = aT+Q0)
R2 Normalized 

slope, a/Q0

RP8/ Fig. 3 2016–2018 8.04 3.8…15 Q = –0.3229T + 8.0426 0.8600 –0.040
RP10/ Fig. 4 2018 9.66 3.8…18.2 Q = –0.4199T + 9.664 0.8894 –0.044
RP20/ Fig. 5 2017–2018 18.56 14…38 Q = –0.7972T + 18.563 0.8770 –0.043
RP40/ Fig. 6 2017 42.41 22…80 Q = –1.8123T + 42.407 0.8579 –0.043
RP40 2018 40.94 12…75 Q = –1.8357T + 40.937 0.8977 –0.045
RP40 2019 41.95 22…62 Q = –1.6395T + 41.946 0.8039 –0.039
RP460/ Fig. 7 2015 457.48 210…1100 Q = –22.877T + 457.48 0.9400 –0.050 
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Fig. 3. DHS (RP=8 MW) heat load dependency on ambient temperature (2016–2018).

  Fig. 3 demonstrates the performance of 
a DHS with RP of 8 MW during three heat-
ing seasons of 2016–2018. The obtained 

linear regression equation represented in 
Table 2 describes the average performance 
during these three seasons. 

Fig. 4. DHS (RP=10 MW) dependency on ambient temperature in 2016.

In contrast, Fig. 4 represents data for a 
DHS with RP of 10 MW during only part of 

the 2016 season (January–March).

Fig. 5. DHS (RP=20 MW) dependency on ambient temperature (2017–2018).
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For DHS with RP of 20 MW presented 
in Fig. 5, the data extracted during Decem-
ber of 2017 and January–March of 2018 
were used. Note that for this DHS, the 

ambient temperature data were only avail-
able in integer values, hence the peculiarity 
of Fig. 5 compared to the other figures.

Fig. 6. DHS (RP=40 MW) dependency on ambient temperature in 2017.

  Every single heating season had its 
own set of parameters (like ambient tem-
perature profile) and therefore linear regres-
sion equation could be different for the same 
system. To exemplify this situation, data of 

a DHS with RP of 40 MW were compared 
during three distinct heating seasons (2017, 
2018, 2019) and the results were conse-
quently presented in Table 2 and Fig. 6.

Fig. 7. DHS (RP=457 MW) dependency on ambient temperature during 2015 and 2016.

Finally, the last row in Table 2 describes 
the performance of a large DHS with RP of 
460 MW during the heating season of 2015–
2016. These data are visualised in Fig. 7.

As explained before, the simple linear 
regression equations presented in Table 2 
represent the dependency of the recorded 
heating demand on the ambient tempera-
ture. Additionally, Table 2 contains the 

coefficients of determination (R2) for each 
case study. For example, in the case of 
RP460 in Fig. 7, the value of R2 is 0.94, 
which is sufficiently close to 1. However, 
in the other case studies the coefficient is 
noticeably smaller. Nevertheless, overall, 
the results presented do confirm a general 
dependency of the heating load on the ambi-
ent temperature in the studied systems and, 
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consequently, this is a promising direction 
in the further development of regression-
based forecasting tools applicable to these 
particular DHSs. 

Interestingly, linear regression of heat-
ing demand versus ambient temperature 
generally shows good correlation if studied 
from the whole system perspective, as in 
this paper; however, when performing the 
analysis on a smaller scale (i.e., residential 
building level) the correlation is noticeably 
weaker. For instance, the authors of [18] 
found that for a particular large residen-
tial building in Latvia the R2 of the daily 
heat consumption versus the ambient tem-
perature was only 0.5459. This signifies 
that while for an individual consumer lin-
ear regression against solely the ambient 
temperature is not well suited for heating 
demand estimation, on a larger scale, the 
individual consumer deviations seem to 
some extent cancel out, and the regression 
results for the whole system are markedly 
better.

Furthermore, in other studies, the ambi-
ent temperature has been proven to be a 
major impacting variable also on other 
important DHS characteristics. For instance, 
the second-degree polynomial equations 
developed for DHS return temperature in 
[19] had determination coefficient of 0.9 for 
function of ambient temperature.

 Nevertheless, the fact that for most 
of the case studies presented in this paper 
the coefficient of determination for lin-
ear regression is below 0.9, and therefore 
shows a bigger gap between the obtained 
equation and the collected data, needs to 
be addressed. The R2 value for four of the 
studied DHS networks is from 0.9 to 0.8 or, 
in other words, 10 to 20 % of the calculated 
DHS load data cannot be predicted by the 
selected independent variable – ambient 
temperature.

The observed deviations of real DHS 

heat load from the values obtained by the lin-
ear regression equations could be explained 
by the impact of factors other than ambient 
temperature. For example, in some of the 
studied DHS networks, the heating energy 
for hot water consumption can be equal to 
about 10–20% of the RP and this consump-
tion, evidently, does not depend on ambi-
ent temperature, as can be seen in the off-
season part in Fig. 2. If the presented linear 
equations were used for DHS load opera-
tional forecasting (e.g., during the follow-
ing heating seasons), the obtained results 
could provide insufficient accuracy because 
only one parameter (ambient temperature) 
was taken as argument in the linear model 
and, more so, because of the fact that vari-
ous DHS characteristics could change both 
during and in-between heating seasons. 
This latter argument is well supported by 
the results in Table 2, particularly, the sig-
nificantly changing parameters of the RP40 
DHS in the three seasons considered. 

In devising and testing a short-term DHS 
heat load forecasting approach described 
in Section 2.2, this second shortcoming is 
alleviated by incorporating an adaptive data 
set, i.e., using only the most recent data of a 
certain time period for each new forecasting 
operation. 

However, before addressing the results 
of the short-term forecasting approach, we 
should also consider the last column of 
Table 2, which shows the DHS load curve 
normalized slope represented by a ratio of 
the temperature multiplier (slope) in the lin-
ear regression equation vs the average load 
(intercept) from the same equation (i.e., a/
Q0). This dimensionless coefficient shows 
the DHS load change relative to the average 
load when the temperature changes by one 
degree. To the best of the authors’ knowl-
edge, this is the first time when the normal-
ized slope parameter has been used to char-
acterise district heating systems.
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In our opinion, the value of the normal-
ized slope describes the performance of 
DHS (including energy losses in the build-
ings and the distribution networks). The 
lesser the value, the better system resistance 

to ambient temperature drops. In other 
words, statistical data analysis, also includ-
ing the calculation of the heating curve nor-
malized slope, can be used to evaluate the 
total performance of a DHS.

3.3. Testing of DHS Heat Load Forecasting

For validation of the multiple regression 
model, historical data from a DHS with RP 
= 20 MW (Table 2) were used. The dataset 
contains heat load and ambient temperature 
records from 1 September 2017 to 31 May 
2018. The forecasting simulation experi-
ments were run for two time periods from 
30 December 2017 to 7 January 2018 (9 
days; the first period) and from 23 January 
2018 to 26 January 2018 (4 days; the sec-
ond period). Both periods are in the middle 
of the heating season. The recorded tem-
peratures were used as predictors as they 

were considered to be the most important 
predictor in heating load forecasting. Mul-
tiple regression with polynomials up to the 
3rd order and for two training data set sizes 
(29 and 60 days) was tested. 

An example of the actual and forecasted 
heating demand is provided for both peri-
ods with a case of 29-day training set size 
in Figs. 8 and  9. Note that for better read-
ability of the illustrations and to emphasise 
the differences between the lines, the y-axis 
in both figures does not start from zero, i.e., 
the charts are zoomed in.

Fig. 8. Actual and forecasted demand in the 1st period with 29-day training data (RP20).

For the forecasting example from the 
second period, some additional information 
is provided in Fig. 9. Namely, the dynami-
cally changing forecasting equations have 

been extracted from the rolling-horizon 
experiment as displayed in the figure for 
each day and for each polynomial order. 
The term  in each of these equations 
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denotes the mean model residual (from the 
training dataset) averaged over the hour-of-
day, i.e., this term is different for each hour 
within the day. To obtain the final fore-
casted values, this term has to be subtracted 
from the initial forecast evaluated with the 
polynomial. These equations do not have 
any intrinsic value on their own; however, 
displaying them in the figure allows seeing 
their change over time. In the short horizon 
(four days shown), this change is moderate, 
since only one of the 29 days in the train-
ing set gets exchanged at each step. Nev-
ertheless, in a longer horizon they can be 
expected to evolve more noticeably. This 

can be particularly well understood when 
comparing these equations to the simple 
linear regression equation for RP20 from 
Table 2, which is considerably different. 
The linear regression model from Table 2 
is based on all the data from the stable part 
of the heating season, including data which 
are not known by the rolling-horizon fore-
casting model in this section, as, from its 
perspective, part of the data is in the future. 

Table 3 summarises the performance of 
each of the three polynomial models tested 
depending on the training set size (29 or 60 
days).

Fig. 9. Actual and forecasted demand in the 2nd period with 29-day training data (RP20).
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Table 3. DHS Heat Load Prediction Accuracy

The first period The second period

Training set
29 days

Training set
60 days

Training set
29 days

Training set
60 days

MAPE NBIAS MAPE NBIAS MAPE NBIAS MAPE NBIAS

1st order 
polynomial 5.76 % –0.40 % 5.77 % 1.30 % 4.31 % 3.84 % 5.10 % 5.45 %

2nd order 
polynomial 5.56 % –1.13 % 5.74 % 1.32 % 4.19 % 3.48 % 5.06 % 4.65 %

3rd order 
polynomial 5.60 % –1.08 % 5.70 % 1.17 % 4.55 % 4.50 % 5.24 % 5.50 %

For the first period, the 2nd order poly-
nomial with training set of 29 days provided 
the best accuracy with a MAPE of 5.56 %, 
while the 3rd order polynomial was close 
behind with 5.60 % and the same training 
set size. In regard with NBIAS, an over-
all tendency to have a negative bias with a 
29-day training set and a positive bias with 
a 60-day set can be observed. If calculated 
for the whole forecast set, NBIAS ranges 
from –1.13 % to 1.32 %, with 1st order poly-
nomial with a 29-day training set providing 
the best results (–0.40 %). However, when 
calculating NBIAS for individual days, 
there is more variety and the daily errors 
range from –12.93 % to 8.25 %.

For the second period, similar results 
were received. The 2nd order polynomial 
with a training set size of 29 days provided 
the best (lowest) MAPE value – 4.19 % and 
is followed by the 1st order polynomial with 
the MAPE equal to 4.31 % and training set 
of 29 days. The NBIAS values also show 
that the accuracy of the forecast is higher 
for the training set of 29 days and for the 
2nd order polynomial. Evidently, for the 
particular DHS studied, larger training set 
size introduces additional risk of overfit-
ting the regression model. This effect was 

especially pronounced in the second evalu-
ated period. The reason could potentially 
be discerned from Fig. 9 – in the second 
period the actual heating demand was sub-
ject to sharp changes, presumably induced 
by similarly sharp deviations in the ambi-
ent temperature. A larger training set might 
have not allowed the forecasting model to 
adequately react to these changes, if a sig-
nificant portion of the dataset contained 
records from more stable periods.

Moreover, in regard with NBIAS for 
the second period of the case study, there is 
a strong tendency for a positive bias. If cal-
culated for the whole forecast set, NBIAS 
ranges from 3.48 % to 5.50 %. However, 
when calculating this error measure for 
individual days, it varies from –1.70 % to 
36.55 %, but in only one of the days it is 
negative. Evidently, in certain instances, 
the forecasting approach tested can accrue 
bias. This likely is also connected to the 
notable ambient temperature change in the 
second period, especially since by the other 
metric, which disregards bias (MAPE), the 
second period of the case study actually has 
better results. Thereby, in future work, the 
approach should be improved to identify 
and eliminate bias.
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4. CONCLUSIONS

The historical data statistical analysis 
presented in this paper demonstrates that 
simple linear regression for the description 
of different DHS heat load from a single 
parameter (ambient temperature) has coef-
ficient of determination for DHS load in the 
range of 0.8 to 0.94 for five distinct and dif-
ferent DHSs in Latvia. Evidently, the heat 
load dependency on the ambient temperature 
is peculiar to particular systems. Moreover, 
as demonstrated in the case of one of these 
DHSs, this dependency can also vary notably 
from season to season. 

A major contribution of this paper is the 
introduction of a descriptive parameter for 
DHS – a dimensionless heating curve nor-
malized slope, calculated as the ratio of the 
temperature coefficient in linear regression 
equation (i.e., the slope) to the average DHS 
heat load or RP (the intercept in the regres-
sion equation). This parameter demonstrates 
how the heat load will change relative to its 
average value when the ambient temperature 
changes. It can be used for the evaluation of 
DHS performance and it can be especially 
useful when comparing different systems. 
The heating curve normalized slope can be 
recommended for application as a system 
descriptive metric also in other countries for 
a wide range of DHSs.

The accuracy of the linear regression 
models for heat load obtained in this study 
is to some extent insufficient as the models 
do not consider the ambient temperature-
independent component of heating demand – 
hot water consumption. To overcome this 
problem, in devising a heat load short-term 
forecasting approach with satisfying accu-
racy, we test in this paper the application of 
a regression-based forecasting method that 
takes into account the testing model residu-
als averaged over the hour of the day, which 
presumably may contain implicit information 
pertaining to hot water consumption. The aim 
of the testing was to prove the stability of pre-
diction accuracy for different data set sizes in 
different periods within the heating season.

For the selected system (RP = 20), the 
forecasting inaccuracy expressed by MAPE 
ranged in value from 4.19 % to 5.76 % and 
by NBIAS, from –1.13 % to 5.45 %, depend-
ing on the forecasting model parameters. 
Evidently, the forecasting approach is gen-
erally suitable for heat load day-ahead fore-
casting also in small DHSs and provides an 
overall satisfying accuracy; however, further 
improvements are necessary, especially to 
improve forecasting performance in periods 
that contain sharp changes in ambient tem-
perature.
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