
RIGA TECHNICAL UNIVERSITY
Faculty of Computer Science and Information Technology

Institute of Applied Computer Systems

Evalds Urtans
Doctoral Student of the Study Program Computer Systems

FUNCTION SHAPING IN DEEP LEARNING
The Doctoral Thesis

Scientific supervisor
professor Dr. sc. ing.

Agris Nikitenko

RTU Press
Riga 2021

Biography
Evalds Urtans was born in 1987 in Riga (Latvia). He obtained his

bachelors degree in computer science in the UK, Wales, University of South
Wales in 2009. Afterwards, he obtained his Master’s degree at Riga Technical
University, specializing in intellectual robotic systems with Master thesis
’Active infrared markers for augmented and virtual reality’. The master
thesis received first prize in the Latvian Master thesis contest ZibIT in 2015.

Afterwards E. Urtans turned to the domain of deep learning and dur-
ing doctoral studies published multiple research papers in this field, which
received third place in Latvian doctoral student contest ResesarchSlam in
2018, as well as best paper award in the ICCDA conference in USA in 2020.
In total E. Urtans is an author of eight scientific publications.

E. Urtans is a lecturer of artificial intelligence and deep learning at three
universities in Lativia - RTU, VeA and LiepU. Until now, he has supervised
eight Bachleor thesis and been a scientific advisor to four master thesis, of
which one received second prize in the ZibIT Master thesis contest in 2019.

E. Urtans is the founder of startup SIA "ASYA" which till now has
attracted more than half a million euros of venture capital investments and
in which he commercializes his published research.

1

Abstract
The design of loss functions for deep learning methods is attracting

growing attention because empirically found loss functions have achieved
better results than commonly used loss functions that were analytically de-
rived from mathematical theory. This work describes the importance of loss
functions and related methods for deep reinforcement learning and deep met-
ric learning. A novel MDQN loss function outperformed DDQN loss function
in PLE computer game environments, and a novel Exponential Triplet loss
function outperformed the Triplet loss function in the face re-identification
task with VGGFace2 dataset reaching 85.7% accuracy using zero-shot set-
ting. This work also presents a novel UNet-RNN-Skip model to improve
the performance of the value function for path planning tasks. It has the
same policy outcome as the Value Iteration algorithm for 99.8% of the cases
and can be trained on 32x32 maps, but then applied to larger maps like
256x256. Novel approaches have been usefully applied in multiple commer-
cial applications for voice and face re-identification, audio signal denoising,
and chromatography.

2

Contents
ABBREVIATIONS 5

1 INTRODUCTION 6
1.1 Importance of the Subject . 6
1.2 Objectives and Theses . 8
1.3 Methodology . 10
1.4 Scientific Novelty and Contributions of the Author 14
1.5 Structure of the Thesis . 15

2 LITERATURE REVIEW 18
2.1 Methodolgy of Literature Review 18
2.2 Results of the Literature Review on Deep Metric Learning . . 20
2.3 Conclusions of Literature Review 31

3 IMPROVING THE PERFORMANCE OF FUNCTIONS US-
ING DEEP LEARNING MODELS 32
3.1 Value Iteration Algorithm . 32
3.2 ConvNet and UNet Models . 35
3.3 RNN Models . 39
3.4 UNet-RNN-Skip Model . 42

4 FUNCTION SHAPING IN DEEP REINFORCEMENT LEARN-
ING 46
4.1 Q-Value and Policy Gradient Functions for Reinforcement Learn-

ing . 46
4.2 Deep Q-Network model and Loss Function 47
4.3 Multi Deep Q-Network Model and Loss Function 50

5 FUNCTION SHAPING IN DEEP METRIC LEARNING 53
5.1 Zero-Shot Learning and Re-identification Task 53
5.2 Triplet Loss Function . 55
5.3 Exponential Triplet Loss Function 57

6 EXPERIMENTAL RESULTS AND APPLICATIONS 60
6.1 Results of UNet-RNN-Skip Model 60
6.2 Results of Multi Deep Q-Network Loss Function 64
6.3 Results of Exponential Triplet Loss Function 70

3

6.4 Practical Applications . 72

7 FUTURE RESEARCH 74

8 CONCLUSIONS 75

ACKNOWLEDGEMENTS 76

BIBLOGRAPHY 77

APPENDIX A - Paper 1 89

APPENDIX B - Paper 2 96

APPENDIX C - Paper 3 139

APPENDIX D - Paper 4 155

APPENDIX E - Paper 5 163

4

ABBREVIATIONS
A3C — Asynchronous Actor-Critic Agents
ACER — Actor-Critic with Experience Replay
AI — Artificial Intelligence
ASR — Automatic Speech Recognition
ConvNet, CNN — Convolutional Neural Network
CPU — Central Processing Unit
DQN — Deep Q-Network
DDPG — Deep Deterministic Policy Gradient
DDQN — Double Deep Q-Network
DNN — Deep Neural Network
DML — Deep Metric Learning
GPU — Graphical Processing Unit
GRU — Gated Recurrent Unit
HPC — High Performance Cluster
HPLC — High Performance Liquid Chromatography
IMAPLA — Importance Weighted Actor-Learner Architecture
LSTM — Long Short-Term Memory
MDQN — Multi Deep Q-Network
MERLIN — Memory, RL, and Inference Network
ML — Machine Learning
PLE — PyGame Learning Environment
PPO — Proximal Policy Optimization
RL — Reinforcement Learning
RNN — Recurrent Neural Network
ResNet — Residual Convolutional Neural Network
SLAM — Simultaneous Localization and Mapping
SLR — Systematic Literature Review
TD — Temporal Difference
UNet — U-Shaped Convolutional Neural Network
VI — Value Iteration Algorithm
VIN — Value Iteration Network

5

1 INTRODUCTION

1.1 Importance of the Subject
In the past decade, Deep Machine Learning has taken over classical

machine learning methods for approximating complex functions using high-
dimensional datasets [115], [48], [118],[126]. Deep Machine Learning models
are being used more frequently even to extract functions that describe pat-
terns in the datasets or processes they are observing in an unsupervised
or semi-supervised manner [69], [83], [19], [22]. These kinds of models are
trained using loss functions to extract deep representations that provide in-
sight into the underlying manifold of features, patterns, and logic. Nowadays,
loss functions and model architecture itself have become research subjects
instead of feature engineering and rule-based pattern recognition of data in-
puts [57]. Deep Machine Learning models achieve the highest accuracy on
image classification tasks [107], [45], natural language modeling tasks [10],
[95], automated speech recognition tasks [78] [85], time-series tasks [9], [72]
and other tasks where inputs or outputs have high dimensionality. Deep
Machine Learning models also achieve the state-of-the-art performance in
Reinforcement Learning tasks in computer game environments and robotics,
where only a human operator previously was capable of producing inputs [35],
[103], [21], [76]. Deep Machine Learning methods also provide comparable
transparency of reasoning to classical statistical methods [63], [93].

The goal of the Thesis is to develop novel loss functions and models
based on empirical research. These loss functions and models should achieve
the higher performance on selected datasets than existing loss functions and
models.

Historically, most loss functions are derived from statistics, probability,
and information theory, but recently, empirically discovered loss functions in
some tasks have shown superior results [61], [89].

To achieve the goal, the following topics have been explored:

1. The construction of novel loss functions for Deep Reinforcement Learn-
ing and Deep Metric Learning. Loss functions in reinforcement Learn-
ing have been evaluated on computer game environments to achieve
higher score. Similarly, loss functions in Deep Metric Learning have
been evaluated on face re-identification task and voice re-identification
task.

6

2. The construction of model architecture and training procedure for ap-
proximating the Value Function and improving the performance of the
Value Iteration algorithm.

3. Experimental evaluation of novel methods using synthetic, academic,
and private datasets and environments to probe their usability in prac-
tical applications.

The novel loss functions developed in the Thesis for Deep Metric Learn-
ing tasks have achieved 85.7% accuracy in the face reidentification task,
whereas the standard loss function achieved 78.6% accuracy. The accuracy
has been achieved in a zero-shot learning setting [23], [116]. The zero-shot
learning for the face reidentification task ensures that the face of a person
has not been seen during the training process, but it is only matched to the
most similar face between enrollment and reidentification samples afterwards
during the inference phase. The same loss function in the zero-shot setting
has been used for voice reidentification tasks and achieved an accuracy of
88.4% on private datasets. Similarly, the novel loss functions developed in
the Thesis for the field of Deep Reinforcement learning achieved higher scores
in PyGame Learning Environment. These novel loss functions have also been
successfully applied in a private research of solvent gradient optimization for
compound separation in analytical chemistry. Finally, novel Deep Learning
models have been developed in the Thesis to improve the performance of the
Value Function in pathfinding tasks for mobile robots. The novel model is
capable of approximating the Value Function and can be executed in parallel.
It produces a value map by an order faster than the standard Value Iteration
algorithm.

7

1.2 Objectives and Theses
The Thesis improves the deep machine learning training process per-

formance and results in practical applications in the tasks of DML and RL
by introducing novel loss functions and model architectures. Novel loss func-
tions of this research should converge faster during the training, achieve bet-
ter results, and should be usable in different tasks starting from classification
for face reidentification, analytical chemistry, and reinforcement learning for
controlling agents in complex environments.

Convergence in the context of Deep Learning is achieved when Equation
(1) is true and when the relative difference between average L loss function
output regarding inputs x and ground truth y in a current epoch and previous
epoch is smaller than δ. Depending on the cleanness of the data and the type
of task, δ could be between 0.1—0.001.

| L(fθ(x), y)i
L(fθ(x), y)i−1

| < δ (1)

Outputs of a loss function regarding the dataset or environment must
decrease and converge. Usually loss functions have a global minimum of a
value of zero, except for reinforcement learning where it might not be possible
to estimate the ground truth that would give the highest reward.

The objectives of the Thesis are as follows:

1. Perform a review of existing loss functions for functions similar to Deep
Q-Learning [68] and Triplet Loss [23].

2. Develop novel loss functions similar to Deep Q-Learning and Triplet
Loss using zero-shot learning.

3. Develop a novel model to learn approximate the Value function in Value
Iteration algorithm [88].

4. Evaluate results of a novel Deep Q-Learning loss functions in game
environments and in applications of analytical chemistry.

5. Evaluate results of a novel Triplet Loss functions in the face reidentifi-
cation task.

6. Evaluate results of a novel model of approximation of Value Function
and compare it to the full Value Iteration algorithm.

8

7. Publish findings in scientific publications and include in this Thesis.

The list of theses are as follows:

1. Novel MDQN loss function in the tasks of Deep Q-Learning outper-
forms DQN loss functions.

2. Novel Exponential Triplet Loss function in the tasks of Deep Metric
Learning to outperforms Triplet Loss function.

3. Novel UNet-RNN-Skip model improves the performance of Value Func-
tion in the context of Value Iteration algorithm.

4. Novel MDQN and Triplet Loss functions can be used in practical appli-
cations for face re-identification, voice re-identification, noise removal
for speech and chromatography in analytical chemistry.

9

1.3 Methodology
Objectives of the Thesis are accomplished by analytical and experimen-

tal research that has been published in the scientific research papers listed
in Subsection 1.5.

In the Thesis, experimental and data analysis research methods have
been used.

Qualitative and quantitative research methods have been used to review
the scientific literature, existing and novel methods.

Within this research, the primary research subject has been novel loss
functions and methods to improve performance and results for DML (Deep
Metric Learning) and RL (Reinforcement Learning).

The process of the novel loss function design is shown in Fig. 1.

Figure 1: Simplified activity diagram of the process of novel loss function
design in the context of Deep Learning.

The process starts by choosing a problem space (A) suitable for the
Deep Learning. In this research, the problem spaces include: DML based
embedding for face and voice reidentification tasks; Deep RL for Q-Value
based policy learning in environments of computer games; analytical chem-

10

istry for finding solvent gradients that separate the peaks of compounds using
Deep RL.

Next, it is necessary to look for suitable datasets or testing environ-
ments (B). In this research, face reidentification and image classification
datasets have been used as well as computer game environments for test-
ing agents in the context of RL.

Then the existing loss functions (C) have been analyzed from the sci-
entific literature and the latest publications. These functions then have been
implemented in Deep Learning frameworks like PyTorch [79] and their char-
acteristics w.r.t. (with regard to) Input parameters have been studied.

Then the existing loss functions have been tested on the chosen dataset
or environment by searching for the best hyper-parameter combinations (D).
Hyper-parameters are parameters of a loss function or model that are not
learnable during the training process, but are predefined in the beginning of
the process. Each training run is executed until it reaches the convergence of
the error w.r.t. train and loss functions. The convergence in Deep Learning
training is achieved when the output of the loss function w.r.t. train dataset
in between training epochs does not change significantly (for example, under
0.1%) and at the same time the output of the loss function w.r.t. validation
dataset does not increase. If the train and test functions diverge in further
epochs, then it might indicate overfitting. Epoch in Deep Learning is a
complete iteration of the whole training dataset and parameter fitting of a
model w.r.t. loss function. Grid-search of hyper-parameters must be done for
every loss function because the same hyper-parameters often are not optimal
for every specific loss function and the comparison would be biased without
such a search process.

Next, a creative process of design of a novel loss function occurs that
takes into account the mathematical theory and design of previous loss func-
tions. It involves analyzing the shapes and desirable properties of a loss
function w.r.t. input parameters and the gradient of the error. This process
could be done also by automatic function construction algorithms and opti-
mization methods such as Bayesian Optimization, Monte-Carlo Optimization
methods, or Genetic Algorithms. However, in practice, such loss function de-
sign often is impractical, because the grid search of hyper-parameters for each
loss function alone takes a long time, but for automatic development of loss
functions hyper-parameters in the process itself also will need a grid search
as well. Hyper-parameter searches were done on HPC (High-Performance
Cluster), it took weeks or even months depending on the dataset to search

11

hyper-parameter combinations for a single change in a loss function, training
algorithm, and in a model architecture.

Then, as described, a full hyper-parameter search (F) is done on a novel
loss function in the same manner as for the existing loss functions.

If a novel loss function yielded better results than the existing loss
function, then the results were published in the scientific literature (G), but
if a novel loss function was inferior, then it was necessary to return to the
design phase of the loss function (E).

For the research of each of the novel loss functions, the following method-
ology has been applied:

1. Review of similar loss functions, models and training procedures.

2. Implementation and testing of multiple candidates of novel loss func-
tions, models and training procedures.

3. Testing novel and existing loss functions on benchmark data-sets or
environments in case of reinforcement learning. For each of data-sets
or environments grid-search of hyper-parameters has been done for a
fair comparison.

4. Ablation studies by comparing individual parts of loss functions and
training procedures.

For Deep Q-Learning loss functions, a survey of most of the state-of-the-
art methods at the time of publication has been done [109]. Deep Q-Learning
loss functions have been tested in at least 4 PyGame Learning Environment
games [104] and have been tested in the field of chromatography of analytical
chemistry [24].

Later, a novel Exponential Triplet Loss function [110] has been devel-
oped and tested on different datasets for zero-shot reidentification tasks like
VGGFace2 [13], EMNIST [15] and CIFAR10 [47]. Data-sets have been re-
ordered so that the class samples included in the test dataset would not be
included also in the training data-set to ensure zero-shot compatible models
[71].

12

Finally, VI (Value Iteration) function has been modelled with UNet-
RNN-Skip and compared with different variants of UNet [87] models to im-
prove the speed of VI algorithm using deep learning methods. A novel syn-
thetic dataset generator has been created to validate VI and can be used also
to validate other policy models.

Implementations are made publicly available as open-source reposito-
ries.

They have been developed using PyTorch framework [79]. PyTorch has
been chosen for its capabilities of creating a dynamic function graph and easy
debugging and overriding of function gradients.

For each set of methods and loss functions, a full grid search of hyper-
parameters has been executed using RTU HPC (High Performance Cluster)
that provides access to Nvidia GPUs V100 and K40.

13

1.4 Scientific Novelty and Contributions of the Author
The Thesis includes descriptions of: a novel loss function MDQN for

Deep Reinforcement learning in Subsection 4.3, a novel loss function, Expo-
nential Triplet loss for Deep Metric learning in Subsection 5.3, a novel em-
bedding space normalization functions Unit-Range and Unit-Bounce a novel
model UNet-RNN-Skip for improving the performance of the Value function
for policy selection task for 2D representations of environments in Subsec-
tion 3.4, a novel synthetic dataset generator OccupancyMapGenerator for
2D mapping tasks.

The author is listed as the main author of all publications included in
the appendix, except a publication in High Performance Liquid Chromatog-
raphy where the author was the main author regarding Deep Learning ap-
proaches using Deep Reinforcement learning but the co-authors did research
in the chemistry field.

The research work included in the Thesis has been published in the
proceedings of 3 scientific conferences and in 1 scientific monograph. The
works have won multiple awards:

1. Best research paper in ICCDA 2020, USA

2. 3rd best doctorate research in all sciences, ResearchSlam 2018, Latvia

14

1.5 Structure of the Thesis
The Thesis comprises of 167 pages. It is divided into eight main sec-

tions. It is written in the form of a collection of publications with extended
explanations as due to the limitations of conference papers, it was not pos-
sible to include the whole background of the research in the publications
themselves.

The structure of the Thesis:

Section 1 Introduction of the Thesis describes the research background, research
motivation, and research objectives.

Section 2 Contains a literature review of Deep Metric Learning loss functions to
give better background information on the topic of loss function de-
sign. Similar survey of loss functions for Q-Value functions has been
done also in one of the attached publications [109].It Presents the back-
ground of the research done in the design of novel loss functions that
are being used in Deep Metric Learning (DML). It highlights active
research areas, methods, and practical applications.

Section 3 Describes the problem of the Value Iteration algorithm, gives an intro-
duction to the theoretical background of ConvNet, UNet, and RNN,
and describes the novel UNet-RNN-Skip model. UNet-RNN-Skip has
been trained to mimic the Value function and reduce the number of
iterations required to converge the optimal policy. The novel model is
used to learn another existing non-paralellizable function and make it
parallelizable and thus improve its convergence speed.

Section 4 Describes Q-Value function-based Deep Reinforcement Learning meth-
ods, test environments and approaches for validating results, and a
novel MDQN loss function that has been tested and analyzed within
PyGame Learning environment and in liquid chromatography method
optimization tasks.

Section 5 Describes Deep Metric Learning to use zero-shot embedding models
that have been trained using triplet loss and a novel Exponential Triplet
loss function. It has been tested on multiple datasets in the context of
the sample reidentification task.

15

Section 6 Presents the experimental results of a novel model and loss function
described in the previous sections as well as practical applications where
these models and loss functions have already been applied successfully.

Section 7 Describes future research topics discovered by studying novel models
and loss functions described in the Thesis.

Section 8 Summarizes the main contributions of this study.

Appendix Contains a list of publications that describe the research directions of
the Thesis, theoretical and experimental results.

The link between objectives, topics, and publications has been illus-
trated in Fig. 2.

Figure 2: Interconnection of published papers, Thesis objectives, and re-
search topics.

16

List of publications included in the Thesis and the main contributions:

Appendix A Value Iteration Solver Networks, International Conference on
Intelligent Autonomous Systems, 2020, IEEE, Evalds Urtans,
Valters Vecins. Introduced a novel model UNet-RNN-Skip for im-
proving the performance of the Value Iteration Algorithm and a novel
synthetic dataset generator OccupancyMapGenerator for evaluation of
path planning models.

Appendix B Software-Assisted Method Development in High Performance
Liquid Chromatography; ISBN: 978-1-78634-545-5, Sep. 2018,
Sergey V. Galushko, Irina Shishkina, Evalds Urtans, Oksana
Rotkaja. Introduced a novel Deep Reinforcement Learning based
method for sequentially developing solvent gradients in HPLC.

Appendix C Survey of Deep Q-Network variants in PyGame Learning En-
vironment, International Conference on Deep Learning tech-
nologies, 2018, ACM, Evalds Urtans, Agris Nikitenko Intro-
duced a novel Deep Reinforcement Learning based method and a novel
MDQN loss function.

Appendix D Exponential Triplet Loss, International Conference on Com-
pute and Data Analysis, 2020, IEEE/ACM, Evalds Urtans,
Valters Vecins, Agris Nikitenko Introduced a novel Deep Metric
Learning based loss function Exponential Triplet Loss.

Appendix E asya: Mindful verbal communication using deep learning, Cor-
nell University, Computing Research Repository, 2020, Evalds
Urtans, Austris Tabaks Introduced a novel system based on Expo-
nential Triplet Loss for voice reidentification.

17

2 LITERATURE REVIEW
This section aims to provide a background of existing research in the

loss functions of the Deep Metric Learning. It explains the importance of the
research and activity in the development of novel loss functions. Similar sur-
vey of methods and loss functions has been done also for Deep Reinforcement
Learning [109]. Results of the findings for Deep Reinforcement Learning have
been included in Appendix C.

2.1 Methodolgy of Literature Review
The methodology of SLR (Systematic Literature Review) presented in this
document is based on a systematic mapping study [80] [43]. The results
of SLR contain the map of clusters based on the origins of loss functions
and methods, as well as a qualitative review based on research questions.
The results also include a list of limitations identified for loss functions and
methods used in the reviewed papers.

The method for selecting and evaluating papers contains the steps listed
in Fig. 3. Initially the most well-known publications [7], [23] in the field of
deep metric learning (DML) have been selected. Additionally, the follow-
ing keywords were used for the initial search of papers: triplet loss, con-
trastive loss, ranking loss, deep metric learning, representation learning, one-
shot learning, zero-shot learning, product re-identification task, signature
re-identification, face re-identification task. Then the publications have been
thoroughly analyzed and documented to check if publications match the field
of DML loss function research. Then matching to Quality Assessment crite-
ria has been evaluated. If at least single assessment criterion has been met,
a publication was added to the main list. In addition, if answers to research
questions have been found in selected publications, then those were docu-
mented. The references and citations of this publication have been found.
For each of the relevant publications, their citation count has been found and
divided by years passed since publishing. Those with the highest value of
influence were analyzed first.

18

Figure 3: The methodology of SLR.

To find a valid direction of further research, few research questions (RQ)
were selected. The research questions addressed by this study are:

• RQ1: What kinds of functions have been studied similar to Triplet Loss
functions?

• RQ2: Do the novel loss functions achieve significantly better results
than previous functions?

• RQ3: Do the novel loss functions have theoretical grounding, or are
they purely empirical?

• RQ4: What are the limitations of novel loss functions?

19

2.2 Results of the Literature Review on Deep Metric
Learning

The results of SLR regarding DML are mapped in multiple tables depending
on the relevant properties extracted from papers. Information about authors,
affiliation, country of origin, and conferences regarding DML have been listed
in Table 1.

Publications have been ordered by the year of publishing, and the num-
bering of publications has been maintained also in the following tables.

Table 1:

Authors and conferences on studies regarding DML.

No Title Authors Affiliation Country Year Conference
/ Journal

1 Signature Verification Us-
ing A "Siamese" Time De-
lay Neural Network [7]

J. Bromley,
J. Bentz,
L. Bottou,
I. Guyon,
Y. LeCun,
C. Moore,
E. Sckinger,
R. Shah

AT&T Bell labo-
ratories

USA 1993 INT J
PATTERN
RECOGN

2 Neighbourhood Compo-
nents Analysis [27]

J. Goldberger,
S. Roweis,
G. Hinton,
R. Salakhutdinov

AT&T Bell labo-
ratories

Canada 2004 NIPS

3 Learning a Similarity
Metric Discriminatively,
with Application to
Face Verification [14]

S. Chopra,
R. Hadsell,
Y. LeCun

NYU USA 2005 CVPR

4 Distance metric learning
for large margin near-
est neighbor classification
[127]

K. Q. Weinberger,
L. Saul

Yahoo!,
University of Cal-
ifornia

USA 2005 NIPS

5 Large scale metric learn-
ing from equivalence con-
straints [46]

M. KŽstinger,
M. Hirzer,
P. Wohlhart,
P. Roth,
H. Bischof

Graz University
of Technology

Austria 2012 CVPR

6 Quadruplet-Wise Image
Similarity Learning [52]

M. Law,
N. Thome,
M. Cord

Sorbonne Univer-
sity

France 2013 ICCV

7 Reidentification by Rela-
tive Distance Comparison
[135]

W. Zheng,
S. Gong,
T. Xiang

College of Elec-
tronic and Infor-
mation,
South China Uni-
versity of Tech-
nology

China 2013 TPAMI

8 Deep Metric Learning
for Practical Person
Re-Identification [132]

D. Yi,
Z. Lei,
S. Li

IEEE China 2014 ArXiv

9 FaceNet: A unified
embedding for face
recognition and
clustering [23]

F. Schroff,
D. Kalenichenko,
J. Philbin

Google USA 2015 CVPR

10 Improved Deep Metric
Learning with Multi-class
N-pair Loss Objective [98]

K. Sohn NEC USA 2016 NIPS

11 A Discriminative Feature
Learning Approach for
Deep Face Recognition
[128]

Y. Wen,
K. Zhang,
Z. Li,
Y. Qiao

SIAT China 2016 ECCV

20

12 Deep Metric Learning via
Lifted Structured Feature
Embedding [100]

H. O. Song,
Y. Xiang,
S. Jegelka,
S. Savarese

Stanford Univer-
sity,
MIT

USA 2016 CVPR

13 Deep
clustering: Discriminative
embeddings for segmenta-
tion and
separation [34]

J. Hershey,
Z. Chen,
J. Le Roux,
S. Watanabe

Mitsubishi,
Columbia Univer-
sity

USA 2016 ICASSP

14 Learning Deep Embed-
dings with Histogram
Loss [113]

E. Ustinova,
V. Lempitsky

Skoltech Russia 2016 NIPS

15 Local Similarity-Aware
Deep Feature Embedding
[37]

C. Huang,
C. C. Loy,
X. Tang

The Chinese Uni-
versity of Hong
Kong,
SenseTime Group
Limited

China 2016 NIPS

16 Metric Learning with
Adaptive Density Dis-
crimination [86]

O. Rippel,
M. Paluri,
P. DollĞr,
L. D. Bourdev

Facebook USA 2016 ICLR

17 L2-constrained Softmax
Loss for Discriminative
Face Verification [84]

R. Ranjan,
C. D. Castillo,
R. Chellappa

UMIACS USA 2017 ArXiv

18 In Defense of the Triplet
Loss for Person Re-
Identification [33]

A. Hermans,
L. Beyer,
B. Leibe

RWTH Germany 2017 ArXiv

19 Deep Metric Learning
with Angular Loss [117]

J. Wang,
F. Zhou,
S. Wen,
X. Liu,
Y. Lin

Baidu China 2017 ICCV

20 No Fuss Distance Met-
ric Learning Using Proxies
[70]

Y. Movshovitz-
Attias,
A. Toshev,
T. Leung,
S. Ioffe,
S. Singh

Google USA 2017 ICCV

21 Sampling Matters in Deep
Embedding Learning [64]

R. Manmatha,
C. Y. Wu,
A. Smola,
P. KrŁhenb§hl

UT Austin,
Amazon

USA 2017 ICCV

22 Deep Metric Learning via
Facility Location [99]

H. O. Song,
S. Jegelka,
V. Rathod,
K. Murphy

Google USA 2017 CVPR

23 Deep spectral clustering
learning [53]

M. Law,
R. Urtasun,
R. Zemel

University of
Toronto

Canada 2017 ICML

24 Hard-Aware Deeply Cas-
caded Embedding [133]

Y. Yuan,
K. Yang,
C. Zhang

MOE,
Peking Univer-
sity,
DeepMotion,
Microsoft Re-
search

China 2017 ICCV

25 PPFNet: Global Context
Aware Local Features
for Robust 3D Point
Matching [17]

H. Deng,
T. Birdal,
S. Ilic

TMU,
NUDT

Germany,
China

2018 CVPR

26 Ranked List Loss for Deep
Metric Learning [121]

X. Wang,
Y. Hua,
E. Kodirov,
G. Hu,
R. Garnier,
N. Robertson

Anyvision,
QueenÕs Univer-
sity Belfast

UK 2019 CVPR

27 Multi-Similarity Loss with
General Pair Weighting
for Deep Metric Learning
[119]

X. Wang,
Xintong Han,
W. Huang,
D. Dong,
M. Scott

Malong Technolo-
gies

China 2019 CVPR

28 A Simple and Effective
Framework for Pairwise
Deep Metric Learning [82]

Q. Qi,
Y. Yan,
Z. Wu,
X. Wang,
T. Yang

The Chinese Uni-
versity of Hong
Kong

China 2019 ECCV

21

29 Deep Metric Learning
Meets Deep Clustering:
An Novel Unsupervised
Approach for Feature
Embedding [73]

B. X. Nguyen,
B. D. Nguyen,
G. Carneiro,
E. Tjiputra,
Q. D. Tran,
T. T. Do

AIOZ Singapore 2020 ArXiv

30 Exponential triplet loss
[110]

E. Urtans,
A. Nikitenko,
V. Vecins

RTU Latvia 2020 ICCDA

In, Table 3 information about novel loss functions and their properties
regarding DML have been listed. Embedding space refers to normalization
or measurement methods between two or more vectors in a latent space.
Each of the embedding vectors has been produced by a deep learning based
model for the data point. Then two or more embedding vectors have been
processed using the loss function and a deep learning based model weights
are calculated using the back-propagation algorithm. In addition, for many
of these papers sample mining methods are used to select the best training
samples to improve the results and speed of the training.

Table 3:

Novel loss functions of studies regarding DML.

No Title Year Embedding space Sample Mining Loss function
1 Signature Verification Us-

ing A "Siamese" Time De-
lay Neural Network [7]

1993 Euclidean None Contrastive loss

2 Neighbourhood Compo-
nents Analysis [27]

2004 Euclidean, Maha-
lanobis

None NCA Loss

3 Learning a Similarity
Metric Discriminatively,
with Application to
Face Verification [14]

2005 L1, Euclidean None Contrastive Loss

4 Distance metric learning
for large margin near-
est neighbor classification
[127]

2005 Euclidean, Maha-
lanobis

None Triplet Hinge
Loss

5 Large scale metric learn-
ing from equivalence con-
straints [46]

2012 Mahalanobis None KISS-BCE Loss

6 Quadruplet-Wise Image
Similarity Learning [52]

2013 Qwise None Quadruplet
Hinge Loss

7 Reidentification by Rela-
tive Distance Comparison
[135]

2013 RDC None RDC Loss

8 Deep Metric Learning
for Practical Person
Re-Identification [132]

2014 Cosine distance Hard Binomial De-
viance Loss

9 FaceNet: A unified
embedding for face
recognition and
clustering [23]

2015 L2, Euclidean Hard, Semi-Hard Triplet Loss,
Harmonic Triplet
Loss

10 Improved Deep Metric
Learning with Multi-class
N-pair Loss Objective [98]

2016 L2, Cosine distance N Hard Mining multi-class N-pair
loss

11 A Discriminative Feature
Learning Approach for
Deep Face Recognition
[128]

2016 Cosine distance None Center loss

22

12 Deep Metric Learning via
Lifted Structured Feature
Embedding [100]

2016 L2, Euclidean Mining positives Lifted Structured
Loss,
Lifted Struct

13 Deep
clustering: Discriminative
embeddings for segmenta-
tion and
separation [34]

2016 L2, Euclidean None Pairwise metric
Loss

14 Learning Deep Embed-
dings with Histogram
Loss [113]

2016 Cosine distance None Histogram Loss

15 Local Similarity-Aware
Deep Feature Embedding
[37]

2016 PDDM Hard mining PDDM - Double
Header Hinge
Loss

16 Metric Learning with
Adaptive Density Dis-
crimination [86]

2016 Euclidean Neighbourhood Sam-
pling

Magnet Loss

17 L2-constrained Softmax
Loss for Discriminative
Face Verification [84]

2017 Cosine distance None L2 constrained
Softmax Loss

18 In Defense of the Triplet
Loss for Person Re-
Identification [33]

2017 L2, Euclidean None Batch All Triplet
Loss

19 Deep Metric Learning
with Angular Loss [117]

2017 Angle None Angular loss

20 No Fuss Distance Met-
ric Learning Using Proxies
[70]

2017 L2, Euclidean None Proxy Ranking
Loss,
Proxy NCA Loss

21 Sampling Matters in Deep
Embedding Learning [64]

2017 L2, Euclidean Distance weighted
sampling

Triplet Loss,
Contrasitve Loss

22 Deep Metric Learning via
Facility Location [99]

2017 L2, Euclidean None Struct Clust,
Clustering Loss

23 Deep spectral clustering
learning [53]

2017 L2, Euclidean None Spectral Cluster-
ing Loss

24 Hard-Aware Deeply Cas-
caded Embedding [133]

2017 Euclidean Model-based Any / Con-
trastive loss

25 PPFNet: Global Context
Aware Local Features
for Robust 3D Point
Matching [17]

2018 L2, Euclidean None N-Tuple loss

26 Ranked List Loss for Deep
Metric Learning [121]

2019 Euclidean Hard Ranked List Loss

27 Multi-Similarity Loss with
General Pair Weighting
for Deep Metric Learning
[119]

2019 Cosine distance Hard Multi-Similarity
Loss

28 A Simple and Effective
Framework for Pairwise
Deep Metric Learning [82]

2019 Euclidean TopK Loss mining DRO-TopK Loss

29 Deep Metric Learning
Meets Deep Clustering:
An Novel Unsupervised
Approach for Feature
Embedding [73]

2020 L2, Euclidean None Unsupervised
UDML Loss

30 Exponential triplet loss
[110]

2020 Unit-Range Hard Exponential
Triplet Loss

23

In Fig. 4 relationship of DML Loss functions has been summarized.
Colours denote similar groups of loss functions by their origin and method-
ology. It is possible to observe that most of the loss functions come from the
seminal works of Contrastive Loss [7], NCA Loss [27], and Triplet Loss [127].
Most of the functions are extensions of simple Hinge Loss [127]. As seen
in Table 3, most of the loss functions use sample mining methods, because
they are trained only using a few data samples per training iteration. Some
methods like Histogram Loss [113] or Quadruplet Hinge Loss [52] use more
samples per training iteration, but their results on benchmark datasets are
not significantly better than other methods as seen in Table 5.

24

Figure 4: Relationship of DML Loss functions. Colours denote similar groups
of loss functions by their origin and methodology.

Table 5 lists practical applications for each of DML loss functions that
have been studied, as well as their benchmark datasets and the best results
on those datasets. Where applicable, Top-1 accuracy has been selected for
the best results on each of the datasets. As seen in the listings, most of
the practical applications and datasets have been used for face and product
re-identification.

25

Table 5:

Practical applications and best results for every dataset.

No Title Year Practical
application

Dataset / Top-1
Acc.

1 Signature Verification Us-
ing A "Siamese" Time De-
lay Neural Network [7]

1993 Signature re-
identification

Signatures: 97%

2 Neighbourhood Compo-
nents Analysis [27]

2004 Handwriting iden-
tification, Face
re-identification

USPS: 85%
FERET-B

3 Learning a Similarity
Metric Discriminatively,
with Application to
Face Verification [14]

2005 Face Re-identification AT&T: 92.5%

4 Distance metric learning
for large margin near-
est neighbor classification
[127]

2005 Handwriting identifi-
cation, text classifica-
tion

MNIST: 98.8%
Letters: 96.3%
20news: 92%
Isolet: 96.6%
YaleFaces: 93.9%

5 Large scale metric learn-
ing from equivalence con-
straints [46]

2012 Face Re-
identification,
Image Re-
idenification

LFW: 80.5%
VIPeR: 22%

6 Quadruplet-Wise Image
Similarity Learning [52]

2013 Product or image re-
trieval

OSR: 74.6%
Pubfig: 77.6%

7 Reidentification by Rela-
tive Distance Comparison
[135]

2013 Face Re-identification ETHZ: 61.58%
i-LIDS: 32.60%
VIPeR: 9.12%

8 Deep Metric Learning
for Practical Person
Re-Identification [132]

2014 Face Re-identification VIPER: 34.49%

9 FaceNet: A unified
embedding for face
recognition and
clustering [23]

2015 Face Re-identification LFW: 99.63%
YTF: 95.12%

10 Improved Deep Metric
Learning with Multi-class
N-pair Loss Objective [98]

2016 Product image re-
trieval,
Face Re-identification

LFW: 98.33%
SOP: 28.19%
CAR-196: 33.5%
CUB-200: 27.24%

11 A Discriminative Feature
Learning Approach for
Deep Face Recognition
[128]

2016 Face Re-identification LFW: 99.28%
YTF: 94.9%
MegaFace: 76.5%

12 Deep Metric Learning via
Lifted Structured Feature
Embedding [100]

2016 Product or image re-
trieval

CUB200: 55%,
CARS196: 48%,
SOP: 62%

13 Deep
clustering: Discriminative
embeddings for segmenta-
tion and
separation [34]

2016 Speaker diarization,
seperation

WSJ0: 2.74 dB
(SDR)

14 Learning Deep Embed-
dings with Histogram
Loss [113]

2016 Product or image re-
trieval

CUHK03: 65.7%
CUB-200: 51%
Market-1501:
59.47%
SOP: 65%

15 Local Similarity-Aware
Deep Feature Embedding
[37]

2016 Product or image re-
trieval

CARS196: 57.4%
CUB-200: 58.3%
ImageNet: 48.2%

16 Metric Learning with
Adaptive Density Dis-
crimination [86]

2016 Image classification,
Face Re-identification

Stanford Dogs:
75.1%
Flowers-102: 91.4%
Oxford-IIIT Pet:
89.4%
ImageNet: 84.1%

17 L2-constrained Softmax
Loss for Discriminative
Face Verification [84]

2017 Image classification,
Face Re-identification

LFW: 99.33%
YTF: 99.78%
MNIST: 99.05%
IJB-A: 97.5%

18 In Defense of the Triplet
Loss for Person Re-
Identification [33]

2017 Product image re-
trieval,
Face Re-identification

MARS: 90.53%,
Market-1501: 79.8%,
CUHK03: 87.58%

26

19 Deep Metric Learning
with Angular Loss [117]

2017 Product or image re-
trieval

CAR-196: 71.4%,
CUB-200: 54.7%,
SOP: 70.9%

20 No Fuss Distance Met-
ric Learning Using Proxies
[70]

2017 Product or image re-
trieval

CARS196: 73:22%
CUB200: 73.22%
SOP: 73.73%

21 Sampling Matters in Deep
Embedding Learning [64]

2017 Product or image re-
trieval,
Face Re-identification

CARS196: 86.9%
CUB200: 63.9%
SOP: 72.7%

22 Deep Metric Learning via
Facility Location [99]

2017 Product or image re-
trieval

CARS196: 58.11%
CUB200: 48.18%
SOP: 67.02%

23 Deep spectral clustering
learning [53]

2017 Product or image re-
trieval

CARS196: 73.07%
CUB200: 43.22%
SOP: 67.59%

24 Hard-Aware Deeply Cas-
caded Embedding [133]

2017 Product or image re-
trieval

CARS196: 83.8%
CUB-200: 60.7%
In-shop: 62.1 %
SOP: 70.1%

25 PPFNet: Global Context
Aware Local Features
for Robust 3D Point
Matching [17]

2018 3D Point Cloud
matching

SUN3D: 71%

26 Ranked List Loss for Deep
Metric Learning [121]

2019 Product or image re-
trieval

CARS196: 82.1%
CUB-200: 61.3%
SOP: 79.8%

27 Multi-Similarity Loss with
General Pair Weighting
for Deep Metric Learning
[119]

2019 Product or image re-
trieval

CARS196: 77.3%
CUB-200: 65.7%
In-Shop: 78.2%

28 A Simple and Effective
Framework for Pairwise
Deep Metric Learning [82]

2019 Product or image re-
trieval

In-shop: 91.3%
CARS-196: 86.2%
CUB-200: 68.1%

29 Deep Metric Learning
Meets Deep Clustering:
An Novel Unsupervised
Approach for Feature
Embedding [73]

2020 Product or image re-
trieval

CUB200: 47.5%,
Car196: 42.6%

30 Exponential triplet loss
[110]

2020 Face Re-
identification,
Image Re-
idenification

VGGFace2: 85.7%
EMNIST: 86%
FMNIST: 93.1%
CIFAR10: 87.3%
MNIST: 99.6%

The Quality Assessment (QA) criteria are as follows:

• QA1: Does the publication provide open-source implementation of a
novel loss function or methodology?

• QA2: Has a publication achieved state-of-the-art results on the datasets
it studies?

• QA3: Does the publication provide a theoretical proof of a novel loss
function or methodology?

• QA4: Does the publication include an ablation study to test effects on
the results of functional parts one by one?

• QA5: Does a publication have over 100 citations?

27

Table 7:

Evaluation of quality of publications baset on criteria.

No Title QA1 QA2 QA3 QA4 QA5 Total
11 A Discriminative Feature

Learning Approach for
Deep Face Recognition
[128]

Yes Yes No Yes Yes 4

18 In Defense of the Triplet
Loss for Person Re-
Identification [33]

Yes Yes No Yes Yes 4

21 Sampling Matters in Deep
Embedding Learning [64]

No Yes Yes Yes Yes 4

23 Deep spectral clustering
learning [53]

No Yes Yes Yes Yes 4

28 A Simple and Effective
Framework for Pairwise
Deep Metric Learning [82]

Yes Yes Yes Yes No 4

3 Learning a Similarity
Metric Discriminatively,
with Application to
Face Verification [14]

No Yes Yes No Yes 3

5 Large scale metric learn-
ing from equivalence con-
straints [46]

No Yes Yes No Yes 3

9 FaceNet: A unified
embedding for face
recognition and
clustering [23]

No Yes No Yes Yes 3

16 Metric Learning with
Adaptive Density Dis-
crimination [86]

Yes Yes No No Yes 3

17 L2-constrained Softmax
Loss for Discriminative
Face Verification [84]

No Yes No Yes Yes 3

19 Deep Metric Learning
with Angular Loss [117]

No Yes Yes No Yes 3

20 No Fuss Distance Met-
ric Learning Using Proxies
[70]

No Yes Yes No Yes 3

22 Deep Metric Learning via
Facility Location [99]

No Yes Yes No Yes 3

25 PPFNet: Global Context
Aware Local Features
for Robust 3D Point
Matching [17]

No Yes No Yes Yes 3

27 Multi-Similarity Loss with
General Pair Weighting
for Deep Metric Learning
[119]

Yes No No Yes Yes 3

1 Signature Verification Us-
ing A "Siamese" Time De-
lay Neural Network [7]

No Yes No No Yes 2

4 Distance metric learning
for large margin near-
est neighbor classification
[127]

No No Yes No Yes 2

6 Quadruplet-Wise Image
Similarity Learning [52]

No No Yes Yes No 2

7 Reidentification by Rela-
tive Distance Comparison
[135]

No Yes No No Yes 2

8 Deep Metric Learning
for Practical Person
Re-Identification [132]

No No Yes Yes Yes 2

10 Improved Deep Metric
Learning with Multi-class
N-pair Loss Objective [98]

No No No Yes Yes 2

12 Deep Metric Learning via
Lifted Structured Feature
Embedding [100]

No Yes No No Yes 2

28

14 Learning Deep Embed-
dings with Histogram
Loss [113]

Yes No No No Yes 2

24 Hard-Aware Deeply Cas-
caded Embedding [133]

Yes No No No Yes 2

26 Ranked List Loss for Deep
Metric Learning [121]

No Yes No Yes No 2

29 Deep Metric Learning
Meets Deep Clustering:
An Novel Unsupervised
Approach for Feature
Embedding [73]

No No Yes Yes No 2

30 Exponential triplet loss
[110]

Yes Yes No No No 2

2 Neighbourhood Compo-
nents Analysis [27]

No No No No Yes 1

13 Deep
clustering: Discriminative
embeddings for segmenta-
tion and
separation [34]

No No No No Yes 1

15 Local Similarity-Aware
Deep Feature Embedding
[37]

No No No No Yes 1

After reviewing over 30 publications in the field of DML, the following
answers have been found to the research questions (RQ):

• RQ1: In this study, 27 types of loss functions for DML have been iden-
tified. They have been categorized and listed in their historical order
in Fig. 4. All the DML loss functions originate from Margin Rank-
ing Loss, which itself is a variant of earlier Hinge Loss functions [127].
Then most of the newer loss functions originate from Contrastive loss
[7], Triplet Loss [23], Histogram Loss [113], and Quadruplet Hinge Loss
[52]. For most of the publications included in the study research subject
is either the loss function itself or the sample mining methodology.

• RQ2: Latest loss functions and sample mining strategy achieve sig-
nificantly better results than the previous functions as seen in Table
5. Also, datasets used in experiments have changed over time, but
practical applications like image re-identification have not.

• RQ3: Most of the novel loss functions do not have theoretical expla-
nations or derivations of the novel loss functions used in the model,
but nonetheless some loss functions like Contrastive Loss [14], Triplet
Hinge Loss [127], KISS-BCE Loss [46], Quadruplet Hinge Loss [52] and
Binomial Deviance Loss [132] do have theoretical proof. Most of the
other loss functions discussed in this study have their grounding in
empirical experiments.

29

• RQ4: A number of significant limitations of DML loss functions and
methods have been found in this study. Most of the loss functions
require hyper-paramter α that is, a margin between clusters, but in
realistic datasets this might not be equal for all classes. Some classes
might have more variance than others. Some efforts have been made to
resolve the issue like Proxy NCA Loss [70], but even this loss function
requires hyper-parameter tuning and prior knowledge of class distribu-
tions.
Intra-class similarities are also a significant problem. Most of DML loss
functions ignore the fact that the same class samples also have their
own distributions of similarities. Some works address this problem, but
it still not fully solved [86] [52] [121].
Sample mining strategies also are a major problem as they require sig-
nificant computing resources dedicated just for selecting the best sam-
ples to train the model and apply the loss function. Multiple sampling
strategies have been developed like Hard [23], Semi-Hard [23], N Hard
Mining [98], Neighborhood Sampling [86], Distance weighted sampling
[64] and others, but the problem is still not yet fully solved.
Choice of the number of dimensions of embedding vectors and their
embedding space also is a problem that still needs more studies. Pub-
lications differ in suggestions, how many dimensions to choose, and
what normalization methods to apply to embeddings. Typical method
is to use Euclidean distance with L2 normalized embeddings with high
dimensionality of at least 128 dimensions [23], but some of the lat-
est papers propose also alternative embedding space normalization [37]
[117] and lower number of dimensions per embedding [110].
Another significant limitation is the computing resources required to
reach higher accuracy in re-identification tasks, some earlier works from
2015 required over 2000 CPU hours to reach the highest accuracy on
face re-identification tasks [23]. Latest works have been using GPUs
to accelerate and parallelize training, but even nowadays as datasets
grow larger that requires expensive GPU hardware [110].

30

2.3 Conclusions of Literature Review
The results of the literature review indicate that the loss function design is
an active research topic in DML. Many of the DML loss functions have been
designed using empirical experiments instead of the derivation of classical
mathematical theories.

DML loss functions come from Hinge loss and Ranking loss functions
that have been around since the early days of computing. Then most of the
modern loss functions originated from two major approaches, either by using
triplets and Triplet Hinge Loss [127] or by using pairs and Contrastive Loss
[7]. There have also been studies to use quadruplets or even more permu-
tations of samples, but none has been as effective as Contrastive Loss and
Triplet Loss based methods. The last group of DML methods are related to
NCA [27] and other dimension reduction methods that produce similar out-
comes like DML, but would not work as well for zero-shot learning settings.

Other significant areas of research have been identified for sample min-
ing methods and embedding space normalization functions. Sample mining
methods are necessary so that the model would use only difficult data sam-
ples in a loss function to improve the convergence speed of a loss function.
The most common sampling methods are the Hard sample mining and the
Semi-Hard sample mining [23]. Also, normalization of the embedding space
is important, because the embeddings should be bounded to a predictable
range of values to fill evenly the embedding space with clusters of different
known and unknown classes. The most common method for normalization is
to use Euclidean distance with L2 normalization, but some studies also have
used cosine distances, Mahalanobis distance, angle in degrees, etc. DML
is applicable to different types of practical solutions like re-identification of
faces, speakers, signatures, handwriting, and product images.

31

3 IMPROVING THE PERFORMANCE OF
FUNCTIONS USING DEEP LEARNING
MODELS
This section of the Thesis introduces a novel deep learning-based ap-

proach to optimize the performance of well-studied functions. As a practical
application, the Value Iteration algorithm has been used. It finds the short-
est path from any position in the map to the target position in the map.
Its performance degrades exponentially with the larger input size of the map
as it cannot be executed in parallel, but novel iterative deep learning-based
models can produce comparable results using parallelized architectures and
achieve higher performance on larger maps.

The problem domain of Value Function and Value Iteration algorithm
learning has been described in Subsection 3.1, then the existing Deep Learn-
ing based methods that can be used to model Value Function are shown in
Subsection 3.2 and in Subsection 3.3. Finally, a novel method to model Value
Function has been presented in Subsection 3.4. The results of these methods
have been shown in Subsection 6.1.

3.1 Value Iteration Algorithm
Value Iteration Algorithm (VI) is used in classical reinforcement learn-

ing tasks to find an optimal policy for any problem within a fully observable
environment. It can take into account the state transition model when the
transition is uncertain [88]. VI is often used for finding the optimal path
in maps with discrete states. A path finding task formalizes and discretizes
a natural terrain and obstacles of the environment. Often this information
is gathered using sensors that are attached to the mobile robot. These sen-
sors might include LIDAR (Light Detection and Ranging), ultrasonic sensors
for distance measurement, or IMU (Internal Measurement Units), etc. Dis-
cretization of a map is usually done by generating an occupancy grid.

VI is an iterative algorithm that repeatedly applies the same Value
function of Equation (3) over all positions of a map to find the cumulative
value of each cell position, as shown in Fig. 5.

Then the gradient between the values of these positions gives the policy
of the optimal path. The policy of the optimal path enables an agent to find
its way from any state in a discretized map to a positive terminal state. For

32

each state s, there is a grid of positions and for each state there are a number
of actions a that can be taken, like moving up, down, left, right, or staying at
a position. Depending on the environment, there could be more or different
actions. The action a is chosen to maximize the cumulative reward with a
given action Ra, then it is multiplied by transition model’s probability Pa

and added to adjacent state values V (s′) multiplied by discount factor γ, like
shown in Equation (3).

Value function is called iteratively over the whole map until the values
converge between iterations. The number of iterations needed to converge
the value function grows exponentially with the size of the map.

| V (s)i

V (s)i−1

| < δ (2)

Convergence in the context of VI is achieved when the relative difference
between average values of states in a current iteration and previous iteration
is smaller than δ, as shown in Equation (2). Depending on the cleanness of
the data, the tolerance of the error and the type of task, δ could be between
0.1 — 0.001.

Vi+1(s) := max
a
{
∑
s′

Pa(s, s
′)(Ra(s, s

′) + γVi(s
′))} (3)

33

Figure 5: Visualization of the Value Iteration algorithm’s consecutive itera-
tions. Iterations depicted from the top left corner to the top right corner, then
from the bottom left corner to the bottom right corner. After convergence
has been achieved, it is possible to derive the optimal policy from every state
to reach the terminal state with the highest cumulative reward. Green colour
represents the highest cell values (closest to the positive terminal state) and
red colour represents the lowest cell values.

The rationale behind modelling a value function using deep learning
models is to increase its performance by parallelizing a task and reducing
the sequential time complexity, as shown in Table 9 There are other popular
algorithms that use heuristics to reduce the time complexity, such as Dijkstra
or A* [88], but they also reduce the precision of the result.

Table 9:

Comparison of proposed Value Iteration Solver Network (VSIN) with other
methods.

Method Complexity Quality
VI (Value function) O(m · n2) Optimal
Dijkstra O(n2) Good
A* O(h · n) Medium
VISN (Proposed method) O(h · n) Good

34

3.2 ConvNet and UNet Models
To increase the performance of VI algorithm, the function can be mod-

elled using a ConvNet model [56], [48], [97], [102], [31], [38] that has been
trained to predict the output of V (s) function. The whole model can be a
Value function approximation. The ConvNet model works like filters for the
whole occupancy grid map at once and predicts the output of VI without do-
ing an iterative process. ConvNet also can be parallelized on modern GPUs
and using deep learning frameworks, whereas VI is not a fully parallizable
algorithm. The ConvNet models used in this research for the encoder part
of VI are ResNet [31] and DenseNet [38] that are shown in Fig. 6. The
encoder of the model learns to compress and encode high-dimensional inputs
to low-dimensional latent vector that later can be used in deeper parts of the
model.

In this research, a decoder model with transposed convolution functions
has been used [74]. The decoder model decompresses low-dimensional latent
vectors to high-dimensional outputs that are applied as filters to the inputs.
Architectures could be using simple arithmetical addition, multiplication, or
substitution. Auto-Encoder model architecture that contains the decoder is
shown in Fig. 7.

35

Figure 6: Comparison between ResNet on the left and DenseNet on the right
encoder models. Plus sign denotes the arithmetic addition operation.

36

Figure 7: Example of Auto-Encoder model architecture. In the middle of the
function graph, an optional affine transformation (FC) could be added if the
models have fixed sized inputs and outputs.

The behaviour of the VI algorithm is similar to the multi-pass filter-
ing task, as the structure of input data is not changed, but only fine details
are modified by each pass. For filtering, style transfer tasks and even seg-
mentation tasks, a good candidate is a UNet model [87], as it contains skip
connections that maintain the details of the original input at different scales
and depths of the model. Within this research, UNet models have been
trained to obtain VI outputs in multiple iterations or also in a single step.

37

Figure 8: Example of UNet model architecture. Using skip connections,
features are added from the encoder part of the function graph to the decoder
part.

The original UNet model, as depicted in Fig. 8 contains the graph of
functions, as shown in equation Equation (4). In the equations, the input
x is passed through a number of functions, where Conv function is a linear
2D convolutional function with kernel size 3x3, stride 1 and padding 1 that
will produce the same size output map. Whereas DeConv are transposed
2D convolutional functions with kernel size 4x4, stride 2 and padding 1 that
will produce twice as large output maps. Similarly, also MaxPool functions
are producing output maps twice as small as the input maps by choosing
the maximum value of the reduced region. Skip connections are shown in
Equation (10) and Equation (13) uses a concatenation operation, but for
segmentation tasks it is often also used as an addition operation, as in ResNet

38

[102]. Final output y that is limited by a sigmoid function σ that is then
scaled to the range of values for every cell in the map.

o1 = ReLU(Conv(x)) (4)
o2 = MaxPool(o1) (5)

o3 = ReLU(Conv(o2)) (6)
o4 = MaxPool(o3) (7)

o5 = ReLU(Conv(o4)) (8)
o6 = DeConv(o5) (9)

o7 = (o6, o3) (10)
o8 = Dropout(ReLU(Conv(o7))) (11)

o9 = DeConv(o8) (12)
o10 = (o9, o1) (13)

o11 = ReLU(Conv(o10)) (14)
y = σ(o11) (15)

3.3 RNN Models
Often, RNN (Recurrent Neural Network) models are used to model it-

erative processes and time-series type of data. In the case of VI algorithm,
these models have been applied to reduce the complexity of a problem pre-
dicting all V (s) at once by using a single iteration ConvNet model that has
no knowledge of the history of previous timesteps. With RNN based model,
the values are predicted in consecutive iterative steps, similarly how it is done
by using VI algorithm, but unlike VI algorithm, the number of steps needed
to converge the values is much smaller.

In this research, established RNN models like LSTM (Long-Short Term
Memory) [36] and GRU (Gated Recurrent Unit) have been applied [28]. To
improve the performance and speed of convergence, specific initialization
strategies of parameters for these models were used. For example, initializing
the bias vectors of the parameters of the forget gate function for LSTM
model as scalar values of 1 to remember more information at the beginning
of training. Similarly, initialize the biases of GRU model of the reset gate as
a scalar value of minus 1 to achieve the same goal [41], [54], [25], [106].

39

Figure 9: Function graph of LSTM model.

Function graph of LSTM model’s equations is given in Equation (17)
and visualized in Fig. 9. Trainable weights and biases are denoted with W ,
U and b, sigmoid function is σ based gates are ft forget gate, it input gate
and ot output gate. Internal state is ct and hidden state ht vectors in the
beginning of each sequence are set to zero and they progressively with each
sequence step are updated to a new value. At every time step, outputs of the
cell are the current ht value. According to the latest research, bf should be
initialized as bf = 1 [106], RNN Dropout or ZoneOut regularization should
be added [49], [94], h0 and c0 should be changed to learnable parameter just
for the first timestep [75].

40

ht =

layers∑
k=i

hk
t (16)

Layer Normalization should be added for all linear transformations
within LSTM cell [3] and, finally, multiple LSTM cells should be stacked
upon each other and should sum together like in Equation (16) and as it
has been done in ResNet for equal error propagation through all layers [102],
[38], [106].

ft = σg(Wfxt + Ufht−1 + bf) (17)
it = σg(Wixt + Uiht−1 + bi) (18)
ot = σg(Woxt + Uoht−1 + bo) (19)
c̃t = σh(Wcxt + Ucht−1 + bc) (20)
ct = ft ⊙ ct−1 + it ⊙ c̃t (21)
ht = ot ⊙ σh(ct) (22)

GRU, as shown in Equation (23) and Fig. 10, is a simplified version
of LSTM with less learnable parameters. It contains only zt update gate
and rt reset gate, and it uses not only sigmoid but also tanh ϕ functions
as in traditional vanilla RNNs. To get the highest performance, the same
improvements as listed above for LSTM applies also to GRU, except br should
be initialized to br = −1 [106].

zt = σg(Wzxt + Uzht−1 + bz) (23)
rt = σg(Wrxt + Urht−1 + br) (24)
ĥt = ϕh(Whxt + Uh(rt ⊙ ht−1) + bh) (25)
ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt (26)

41

Figure 10: Function graph of GRU.

3.4 UNet-RNN-Skip Model
As a part of the Thesis, a novel UNet and RNN based model has been

introduced. The novel UNet-RNN-Skip model contains multiple parts of the
state-of-the-art models put together with a purpose to improve the speed
of convergence of the VI algorithm results. It contains UNet, LSTM, and
similar skip connections to ResNet, but for time series and segmentation
tasks.

UNet-RNN-Skip model is designed to approximate the value function

42

of VI algorithm in parallel on all cells in the occupancy grid, whereas VI
algorithm needs to calculate the values only in sequential steps. It is also
designed to approximate the value of a state in a single iteration, whereas
VI algorithm would need multiple iterations to do the same task.

Another advantage of UNet-RNN-Skip model is that it can be trained
on smaller maps with dimensions of 32x32 but then used in inference on
much larger maps with dimensions of 256x256 without the need to retrain the
model, as it has learned the Value function itself and not only patterns of the
map. All maps have been generated using a novel OccupancyMapGenerator
algorithm that was also a part of this research and is described in Subsection
6.1. Experimental results of properties of the model are also listed in the
same subsection.

The key of UNet-RNN-Skip model is to use LSTM at the bottom of
"the U shape" of a function graph and at the same time use UNet skip
connections similar to those used in ResNet [31], UNet++ [136] and UNet
3+ [39]. Unlike a simple UNet depicted in Fig. 8 that uses concatenation,
the new architecture uses arithmetic addition operations for skip connections.
The ResNet [31] function blocks depicted in Fig. 11 have been configured in
two different ways. First, there is an Identity ResBlock shown in the equation
following Equation (27)

yc×w×h = ReLU(Conv3x3(xc×w×h)) (27)
y′c×w×h = BatchNorm(yc×w×h) (28)

zc×w×h = ReLU(Conv3x3(y′c×w×h)) (29)
z′c×w×h = zc×w×h + xc×w×h (30)
uc×w×h = ReLU(z′c×w×h) (31)

u′
c×w×h = BatchNorm(uc×w×h) (32)

43

Second, there is a BottleNeck which is shown in Equation (33). The
purpose of BottleNeck is to reduce the feature map size, but at the same
time to increase the number of channels. ResBlock used here is similar to
the preactivated ResBlock [32] by placing Batch Normalization before linear
functions. The same functions have also been used for transposed convolu-
tional layers where they are increasing the size of the output map and channel
count.

yn·c×w
n
× h

n
= ReLU(Conv3x3(xc×w×h)) (33)

y′
n·c×w

n
× h

n

= BatchNorm(yn·c×w
n
× h

n
) (34)

zn·c×w
n
× h

n
= ReLU(Conv3x3(y′

n·c×w
n
× h

n

)) (35)

x′
n·c×w

n
× h

n

= Conv1x1(xc×w×h) (36)

z′
n·c×w

n
× h

n

= zn·c×w
n
× h

n
+ x′

n·c×w
n
× h

n

(37)

un·c×w
n
× h

n
= ReLU(z′

n·c×w
n
× h

n

) (38)

u′
n·c×w

n
× h

n

= BatchNorm(un·c×w
n
× h

n
) (39)

44

Input

Conv,
k=3x3, p=1

bottleneck
Resblock

Identity
Resblock

Identity
Resblock

bottleneck
Resblock

bottleneck
Resblock

Identity
Resblock

Identity Deconv.
Resblock

bottleneck deconv.
Resblock

Identity Deconv.
Resblock

bottleneck deconv.
Resblock

Identity Deconv.
Resblock

bottleneck deconv.
Resblock

Identity Deconv.
Resblock

Transp. Conv,
k=3x3, p=1

Result

Sigmoid

Adaptive
avg. pool

Identity
Resblock

Adaptive
avg. pool

LSTM

Figure 11: UNet-RNN-Skip model. Colours denote different blocks of func-
tions used by the model.

45

4 FUNCTION SHAPING IN DEEP REIN-
FORCEMENT LEARNING
This section of the Thesis introduces a novel loss function and training

procedure for Deep Q-Learning. The novel MDQN loss function uses the
capabilities of dynamic function graphs by changing the shape of the loss
function while the training is in the process. To study the properties of Deep
Learning methods using Q-Value function, a survey of the methods has been
done. Novel procedures also provide visualizations of policies and values of
the states to change black box models into white box models.

The problem domain of Deep Learning-based reinforcement learning
has been described in Subsection 5.1, then the existing DQN loss function
has been described in Subsection 4.2 and finally, a novel loss function has
been described in Section ??. The results of these methods have been shown
in Section ??.

4.1 Q-Value and Policy Gradient Functions for Rein-
forcement Learning

Reinforcement learning algorithms have been well developed even be-
fore the advent of Deep Learning, but with new methods their capacity has
greatly increased [68]. Similarly, like the previously discussed VI algorithm,
these algorithms are used to estimate the best policy π at a given state st.

Three major sets of methods exist in classical reinforcement learning:

1. Q-Value based methods

2. Policy gradient methods

3. Actor-Critic methods (combination of Q-Value and Policy gradient
methods).

All of these sets of methods mostly are grounded in loss function shap-
ing, as it is one of the most important parts of the algorithm to make it
work.

Policy gradient methods rely on the policy gradient theorem, Equation
(40) where the gradient of error for the policy function π is the estimation
of probability of trajectory of previous states τ at state st and action at
multiplied by cumulative reward R Equation (41).

46

This gradient function is unstable and too hard to converge, but more
recent advances that came with Deep Learning like TRPO [92], PPO [91],
MERLIN [125] and IMPALA [21] have improved it by a large margin.

∇πθ(at|st) = ∇logπθ(at|st)R(τ) (40)

Cumulative reward R Equation (41) is the total reward of the trajectory
of states, multiplied at each time step t by discount factor γ. A small discount
value γ prioritizes short-term rewards, but a larger value prioritizes rewards
and positive events that happen at later stages of an episode. Discount factor
usually is a hyper-parameter set at a value in the range 0.9 0.99, but for
environments where the reward comes later in an episode, it might have a
lower value.

R =
n∑

t=0

γtrt (41)

The second set of methods is grounded in the Bellman equation Equa-
tion (42) that estimates the R value using a model of the Q-Value function
for a given state st when action at has been taken. By examining and select-
ing an action at that is giving the highest Q-Value, it is possible to determine
the policy, π.

Qπ(st, at) = rt +max
a′

Qπ(st+1, a
′) (42)

Third set of methods are Actor-Critic methods that are grounded in
a combination of two previous methods. Many successful variants of these
methods have been developed like DDPG (Deep Deterministic Policy Gra-
dient) [60], A3C (Asynchronous Advantage Actor-Critic) [67], GPU A3C [4]
and ACER (Actor-Critic with Experience Replay) [124].

Although it might seem reasonable that the best results should be
achieved using a later set of methods, the-state-of-the-art results have been
achieved mostly with the first two methods used alone.

4.2 Deep Q-Network model and Loss Function
One of the most successful models for Deep Reinforcement learning has

been DQN (Deep Q-Network). Since the initial success of DQN [68], there
has been a significant development of Q-Value function-based approaches [2].

47

Initial DQN was tested on Atari games that have only very high-dimensional
state representations — either RAM memory dump or raw pixels of each
frame of a game state, as shown in Fig. 12. Another common environment
for evaluating RL (Reinforcement Learning) models is the OpenAI Gym [6].
However, in contrast to Atari games, these environments often contain only
simple tasks and have only low-dimensional state representations. For exam-
ple, MoonLander environment in the state representation includes the posi-
tion, speed, and angle relative to the target location on the moon’s surface.
In this research, PLE (PyGame Learning Environment) has been used for
validating models [104]. It contains high and low dimensional state represen-
tations for each environment, and it is even possible to modify the behaviour
of the environment while the model is trained to better study the properties
of the model.

Some small, but significant additions over the last years have been made
to DQN to substantially improve its performance. One of the most important
improvements is the Prioritized Experience Replay [90] that enables sampling
the most valuable samples with the highest TD (Temporal Difference) loss to
be selected more often for training. Another improvement is Dueling DQN
[123] that tries to enforce the model to learn instant and delayed rewards,
primarily using the specific architecture of the model. The next improvement
is DDQN (Double DQN) [29], [30] that allows for more stable convergence
of DQN based loss function Equation (43) by introducing new DDQN loss
function Equation (44) In DDQN model, weights Qtarget are copied and frozen
from QΘ every predefined time interval during the process.

Ldqn =

{
(rt + γmaxa′ QΘ(st+1, a

′)−QΘ(st, at))
2 if t < tlast

(rt −QΘ(st, at))
2 if t = tlast

(43)

Lddqn =

{
(rt + γmaxa′ Qtarget(st+1, a

′)−QΘ(st, at))
2 if t < tlast

(rt −QΘ(st, at))
2 if t = tlast

(44)

48

Figure 12: Atari games were used for DQN based model evaluation [68].

Finally, Rainbow-DQN has shown that when all small additions are put
together, the model outperforms all of these additions alone [35], as shown
in Fig. 13. In the chart comparison of different loss functions has been
shown and methods regarding the millions of frames it took to train them
and normalized the score across all Atari games. Rainbow-DQN is based on
DDQN loss function with the additions mentioned above.

49

Figure 13: Rainbow-DQN comparison to its parts using normalized Atari’s
score [35].

4.3 Multi Deep Q-Network Model and Loss Function
The Thesis introduces a novel MDQN (Multi Deep Q-Network) loss

function, which is a dynamic loss function that changes its behaviour while
the model is training. Similarly to DDQN, it contains target models that are
updated with predefined time frame intervals, but unlike DDQN, there can
be more than one additional version of DQN model. Two or three additional
versions of DQN model can be changed intermittently to dampen the effects
of short-term events on the Q-function and stabilize the learning process. The
behaviour of MDQN loss function is listed in the pseudocode in Algorithm
1.

Depending on MDQN variant, multiple weights of DQN models Q1, Q2, ..., Qn

are initialized in the beginning. For example, MDQN-3 contains three par-
allel Q models. Then initial Qa and Qb are randomly sampled from a set of

50

DQN models. Frame counters ca, cb, ..., cn are set to zero. Hyper-parameters
thresholda, thresholdb, ..., thresholdn are found using grid search, but they
also could be learnable parameters that would be used only for a training
procedure. MDQN also uses state transition sets at, st, st+1, Rt that are simi-
lar to those seen in a replay buffer to train Q-Value functions using the actual
ground truth values of the cumulative reward. Not only transition tuples are
easily matched in replay memory when using low-dimensional environments
in PLE (PyGame Learning Environment) [104], but also can be found in
high-dimensional (pixel space) environments via Deep Metric Learning and
embedding vector similarities that are described in the next chapter of the
Thesis.

51

Algorithm 1: MDQN loss function
1: procedure Train
2: Q1, Q2, ..., Qn

3: thresholda, thresholdb, ..., thresholdn
4: ca, cb, ..., cn = 0
5: Qa = Sample(Q1, Q2, ..., Qn)
6: Qb = Sample(Q1, Q2, ..., Qn)
7: while Training = True do
8: for do{at, st, st+1} sample from ReplayBuffer
9: ∀n, cn = cn + 1

10: if ∀n, cn > thresholdn then
11: Qb = Qa

12: Qa = Qn

13: cn = 0

14: if {at, st, st+1} similar exist in ReplayBuffer then
15: Qa(at, st)←

∑t+1
t=0 γ

tRt

16: else
17: if st ̸= terminal state then
18: Qa(at, st)← Rt + γmaxa Qb(a, st+1)
19: else
20: Qa(at, st)← Rt

21: while st ̸= terminal state do
22: at ← maxaaverage({Qa(a, st), Qb(a, st)})
23: ...
24: store {at, st, st+1, rt} in ReplayBuffer

52

5 FUNCTION SHAPING IN DEEP MET-
RIC LEARNING

This section of the Thesis introduces a novel Exponential Triplet
loss function and novel training procedures for deep metric learning. It also
introduces novel embedding space normalization functions that provide co-
sine distance properties to Euclidean distances.

The problem domain of re-identification task is described in Subsec-
tion 5.1, the existing Deep Learning loss function to solve the re-identification
task is presented in Subsection 5.2 and finally, a novel loss function is ex-
plained in Subsection 5.3. The results of these methods are shown in Sub-
section 6.3.

5.1 Zero-Shot Learning and Re-identification Task
Zero-Shot learning is a subset of machine learning methods that are

based on a model that can be applied for the categorization of novel classes
in the inference phase, as shown in Fig. 14. These novel classes have never
been seen in a model during the training phase [66], [23], [44], [62]. Usually,
both datasets in the training and inference phase are from the same domain,
for example, dataset of photos of faces, voice recording dataset, photos of
cars dataset, etc.

Figure 14: Zero-shot learning visualization using EMNIST dataset with a
split of disjoint training and testing datasets.

53

The advantage of such models is that it is not necessary to retrain
them for new classes, and the characteristics of the model can be fine-tuned
after the training phase. This can be achieved by changing the thresholds
and parameters of clustering algorithms, as well as a latent vector space
normalization in the inference phase. Another advantage is that for novel
classes, very few data points are needed instead of thousands of data points
normally needed in classification models that do not use zero-shot learning
methods [116]. Zero-shot learning has high sample efficiency that can have
comparable accuracy to full training of a dataset with even just 2 samples
[116]. Sometimes in the scientific literature, zero-shot learning is also called
one-shot learning, although technically one-shot learning means that during
the training process the model is allowed to see at most one sample from
each class. There also exists a few-shot learning where multiple data samples
of new classes are given during the training process of the model. These
classes can be given alone or along with other classes that contain many
more samples. Usually these methods are used with transfer learning to
adapt the model for novel classes, but in zero-shot learning the model has
never seen any of the target classes during the training. After training, the
model is an encoder that is able to compress high-dimensional information,
like photos down to low-dimensional latent vectors that maintain semantic
information. The distance between such vectors ensures clustering of the
novel and existing classes, thus these models are often labeled as Deep Metric
Learning (DML) or Distance Metric Learning. These models are widely
used for the re-identification task for face verification and other biometric
verification systems [23], as shown in Fig. 15. In such systems, each person
is enrolled with one or multiple samples of their face’s photo that becomes
a novel class of dataset. Later, the system can re-identify this person using
any other photo never seen in the enrollment or training process.

54

Figure 15: Difference between the speaker verification task and speaker
re-identification task (implemented in "asya" commercial system). Re-
identification task is a zero-shot learning, because model f has not seen
audio samples x4, x5, x6 during the training.

5.2 Triplet Loss Function
For the model to learn deep representations or embedding of input

data in a zero-shot case, usually either Contrastive Loss [8] or Triplet Loss [23]
based functions are used. The goal of the Triplet Loss function Equation (45)
is to increase the distance of sample vectors from different classes ∥ya− yn∥22
and to decrease the distance of the same class sample vectors ∥ya − yp∥22, as
shown in Fig. 16. At the same time, the function is built to not collapse the
same class vectors into a single modality, but to have the margin distance
α between them. Often for distance metrics, cosine or Euclidean distance is
used.

Lstd = |∥ya − yp∥22 − ∥ya − yn∥22 + α|+ (45)

55

Figure 16: Triplet loss-based training Equation (45) using cosine distances
of embedding anchor ya vector, same class as anchor yp vector, different class
yn vector. When a negative pair is pushed to a maximum distance, yn will
start to become closer again to ya.

Cosine distance is preferred because it has a cyclic nature. With
the cosine distance, when the sample distance is larger than the maximum
distance of 2, it will return to 0. Triplet loss-based functions normally require
to have very selective sample mining algorithms and filtering constraints on
what samples can be allowed to pass to the loss function. For example,
usually during training, the worst pairs of samples are found for the loss
functions. Worst positive, the same class pairs are those with the longest
distance in between them and the worst negative, different class pairs are
those with the shortest distance in between them. These kinds of pairs
regarding the anchor point ya give the largest error gradient and help to
converge the loss function faster.

Model fθ(x) is an encoder that reduces dimensionality from high
dimensional input image x to low dimensional embedding y. Embedding
should be chosen with 32 dimensions or larger, as explained in Appendix D
and [110]. Parameters θ are the same for every sample x, as shown in Fig.
17.

56

Figure 17: Example of a triplet loss applied for a face re-identification task.
Encoder fθ(xi) shares the weights. Dimensionality of yi is much smaller than
xi.

5.3 Exponential Triplet Loss Function
In the Thesis, a novel Exponential Triplet Loss function Lexp has

been introduced that has a specifically designed shape of error space, as seen
in Fig. 18, which leads to better convergence than a Triplet Loss Lstd function
described in the previous section.

Exponential Triplet Loss Lexp has asymmetric shape that keeps neg-
ative pairs not closer within a half of maximum distance max(femb(x)) of
embedding space, normally, max(femb(x)) = 2.0 when it is in a spherical
space.

cn is the minimal class cluster size similar to margin α in Lstd. This
distance cn is calculated by dividing the maximum distance max(femb(x)) by
the number of classes K in the training dataset, as shown in Equation (46).

cn =
max(femb(x))

K
(46)

embp =
∥ya − yp∥22

max(femb(x))
embn =

∥ya − yn∥22
max(femb(x))

(47)

57

Lexp = −log(1.0−
|embp − cn|+

1− cn
+ ϵ)− log(1.0− |0.5− embn|+

0.5
+ ϵ) (48)

Figure 18: Comparison between Lstd and Lexp functions. Positive pair dis-
tance ∥ya − yp∥22 (pos) and negative pair distance ∥ya − yn∥22 (neg).

To further improve the performance of Lexp, multiple other loss
functions from recent research have been combined into the composite loss
function Lcomp, Equation (52). Additions include L2-constrained Softmax
with cross-entropy Lclass [84] and center loss Lcenter [128], Equation (50) and
Equation (51) Within Lclass Equation (49) input in Softmax function f(x) is
L2 normalized and scaled by s. Within Lcenter during training, class instances
are accumulated and then cyi the centere of the cluster is calculated.

Lclass = −
M∑
i=1

yilog
eW

T
i s|f(xi)|22+bi∑C

j=1 e
WT

j s|f(xi)|22+bj
(49)

Lcenter′ =
M∑
i=1

||xi − cyi ||22 (50)

Lcenter =
M∑
i=1

|||xi − cyi ||22 −
cn
2
|+ (51)

Lcomp = Lexp + CcenterLcenter + CclassLclass (52)

58

Figure 19: Illustration of Unit-Bounce embedding normalization function
within L2 spherical space.

Another contribution to DML is a function to normalize an embed-
ding space called Unit-Bounce, as shown in Equation (53) and Equation (54).
It has similar properties to the cosine distance in the Euclidean space. As
shown in Fig. 19, when the embedding vector reaches the edge of a sphere, it
bounces back towards the centere of the embedding space, and when the em-
bedding reaches the opposite side of the sphere with a radius of cs it bounces
back towards the centere again. This ensures that the whole 3D latent space
is effectively used instead of just the surface of the sphere as it is in the case
of L2 normalization.

f ′
emb(x) =

{
fbounce(x), if |x|2 ≥ 1

x, otherwise
(53)

fbounce(x) =

|x|2 −
⌊
|x|2
cs

⌋
− cs

x
|x|2 , if ⌊ |x|

cs
⌋ mod 2 = 0

cs
x

|x|2 − |x|
2 − ⌊ |x|

2

cs
⌋, otherwise

(54)

59

6 EXPERIMENTAL RESULTS AND AP-
PLICATIONS

This section of the Thesis lists the main experimental results of the
novel loss functions and methods described in Section 3, Section 4 and Section
5. The novel methods have been tested in multiple domains starting from
the task of VI algorithm, Deep Reinforcement learning in various computer
game environments, Deep Metric learning for face re-identification tasks, and
ending with practical applications in analytical chemistry and humans voice
processing. The full results of the studies described in this section are listed in
scientific publications, see Appendix A, Appendix B, Appendix C, Appendix
D, Appendix E.

6.1 Results of UNet-RNN-Skip Model
UNet-RNN-Skip model has been tested in the problem set of VI

algorithm to optimize the speed of convergence of the Value function. VIN
(Value Iteration Network) is a model based on UNet-RNN-Skip that is usable
for different map sizes without the need to retrain the VIN for each of the
map sizes, as shown in Fig. 20. VIN iteration count to achieve convergence
grows linearly with a map size, whereas VI algorithm’s execution speed to
achieve convergence grows exponentially when increasing a map size. The
metric success rate has been used to determine stability of the model on the
test dataset. The success rate is a percentage that describes the number of
cells on the map that contain a path to the positive terminal state via the
gradient of the values of adjacent cells. For VI, the metric of success rate will
always be 1.0 after the convergence. The research also established that for
the task of VI algorithm, UNet models outperform convolutional AE models,
as shown in Table 10

Table 10:
Comparison of ConvNet based and UNet based models for VI problem.

Model Loss Success rate Epoch (min)
Conv-AE-RNN 8.58E-06 0.598 10.862
UNet-RNN-Skip 3.04E-06 0.998 15.833

60

Table 11:
Comparison of VIN and VI methods for speed (sec.) to convergence.

Model / Map Size 32 64 128 256
VI 2.95 24.873 195.902 1473.108
VIN 0.031 0.071 0.236 0.833

Figure 20: Comparison of convergence speed VI versus VIN based on UNet-
RNN-Skip.

With the novel UNet-RNN-Skip model, this research work intro-
duced also the synthetic dataset generator OccupancyMapGenerator for oc-
cupancy grid with obstacles and mazes, as shown in Fig. 21.

61

Figure 21: Examples of synthetic maps generated by OccupancyMapGener-
ator and cell values to reach the positive terminal state (Green - the highest
value, Red - the lowest value).

The generator is capable of generating any predefined size 2D occu-
pancy grid map using command line arguments. It produces maps in PNG
image format and executes VI algorithm on the maps and stores the optimal
state values. The generator uses predefined constants of coverage percentages
of obstacles. Obstacles consist of a randomly generated maze, rectangles, and
circles. Dijkstra path-finding algorithm [18] is used to check the reachability
of each cell to ensure that all walkable cells are interconnected with each
other. For maze generation, a Recursive Backtracking algorithm has been
used. The algorithm of OccupancyMapGenerator is listed in Algorithm 2.

62

Algorithm 2: OccupancyMapGenerator map generation algorithm
1: procedure GenerateMap
2: size
3: types_obstacles = {maze, circles, rectangles}
4: maxcoverage

5: iterations_obstacles
6: ϵV I

7: M
size×size

← generateZeros(size)

8: if maze ∈ types_obstacles then
9: M ← generateMaze(M)

10: if circles ∈ types_obstacles or rectangles ∈ types_obstacles then
11: for iterations_obstacles do
12: coverage = walkable

size2

13: if coverage < maxcoverage then
14: M ← generateObstacles(M, types_obstacles)
15: else
16: break
17: goalx,y ← RandomWalkablePosition(M)
18: for posx,y in M do
19: if posx,y ∈ walkable then
20: reachable← dijkstra(M, goalx,y, posx,y)
21: if ¬reachable then
22: M ← fillHole(M, posx,y)

23: Mvi ← valueIteration(M, ϵV I)
24: store(Mvi,M)

63

6.2 Results of Multi Deep Q-Network Loss Function
MDQN loss function [109] has been tested in multiple computer game envi-
ronments in PLE (PyGame Learning Environment) [104].
It has been tested on games like Flappy Bird, Pong, 3D Raycast Maze, and
VizDoom, as shown in Fig. 22. These games provide high-dimensional states
such as the raw pixel matrix, and some of them, like Pong, also provide low-
dimensional state that is especially useful for quickly validating novel loss
functions before applying them to a high-dimensional input.
As seen in Table 12, MDQN loss function achieved higher performance than
DDQN loss function that at the time of publication was state-of-the-art ap-
proach for Deep Q-Learning based reinforcement learning [29].
Grid search of hyper-parameters and 20 repetitions of training procedures
were done for all combinations of environments and loss functions to ensure
a fair comparison between methods.

Figure 22: Example of PLE games. Top row from left: "Pixel Helicopter",
"Monster Kong". On the right: "Flappy Bird". In the bottom row: 2 variants
of VizDoom mini-games that have also been trained within this research
(video of an agent that is trained using MDQN loss function: https://www.
youtube.com/watch?v=oqN6rtnv1EI)

64

https://www.youtube.com/watch?v=oqN6rtnv1EI
https://www.youtube.com/watch?v=oqN6rtnv1EI

MDQN loss function outperformed DDQN loss function in PLE environments
and was more robust when experiments were repeated multiple times, as
shown in Table 12.
Along with MDQN loss function, a new method for visualizing Q-function
values of each state has been developed. A new Q-Value Map is obtained
by manipulating objects within a computer game environment to produce an
accurate understanding of an agent’s policy at every time step and every stage
of learning. As these games have open-source code in PLE, for example, it is
possible to manipulate the location of the player and then calculate Q-value
for every pixel or set of states in the frame, as shown in Fig. 23.

Table 12:
Results of the average score for 20 experiments using different loss functions

in PLE.
Loss function Environment Avg. score
MDQN Flappy Bird 17.2
DDQN Flappy Bird 16.9
MDQN Pong 1.7
DDQN Pong 1.3
MDQN 3D Raycast Maze 3.9
DDQN 3D Raycast Maze 3.7

65

Figure 23: Q-Value Map of FlappyBird environment, where each pixel rep-
resents a Q-Value if the player (bird) would be located in this position. Red
colour denotes low Q-Value and green colour denotes high Q-Value. On
the left there are Q-Value maps before training, in the middle during the
training, and on the right after the training.

66

Even for 3D environments such as 3D raycast maze, it is possible to eval-
uate each state in the map by rotating the camera around the Z axis and
averaging Q-Value from rendered pixels in 360 degrees. Then the average
values can be plotted on top-down view, as shown in Fig. 24. As shown in
Table 13, MDQN function achieved the highest average score over 20 training
repetitions and the least variance of the score compared to DDQN and DQN
functions. MDQN-2 and MDQN-3 denote 2 and 3 sets of copies of MDQN
models used in MDQN function.

Table 13:
Results for 20 training repetitions using different loss functions in 3D

raycast maze environment.
Loss func. Learning rate Avg. score Var. score
MDQN-2 1.00E-05 3.904359232 0.728045918
DQN 1.00E-05 3.88654262 2.124993494
MDQN-2 1.00E-06 3.7166532 0.154117942
DDQN 1.00E-06 3.713829593 1.524318234
DDQN 1.00E-05 3.638360789 1.662039807
DDQN 0.0001 3.267777864 2.889255991
MDQN-3 1.00E-05 3.056116361 2.339890159
DQN 1.00E-06 3.026868771 2.028895348
MDQN-3 1.00E-06 2.770128326 0.714132328
MDQN-2 0.0001 2.545370799 4.120312752
DQN 0.0001 2.24425396 2.153779645
MDQN-3 0.0001 2.174641347 3.541216037

67

Figure 24: In the top row of frames: 3D raycast maze environment. In the
bottom row: Q-Value Map of the environment from top-down view of the
3D raycast maze before, during, and after training.

Finally, along with the novel the MDQN loss function, an extensive survey
of Deep Q-Learning based methods has been done. In the result, it has been
found that Deep Q-Learning based methods are very sensitive to the random
seed and intrinsic randomness of the environment on which they are tested.
As shown in Fig. 25, a sufficient number of repetitions are needed to find
a sample with the highest score using the same set of hyper-parameters. It
has been found that 20 repeated full training procedures are necessary to
establish an accurate baseline of the performance of these methods.

68

Figure 25: Variance of the score of the same hyper-parameters with different
number of re-training procedures of Deep Q-Network in Flappy Bird envi-
ronment.

Figure 26: Deep learning-based agent executes consecutive HPLC runs to
find the best solvent gradient for peak separation of compounds.

MDQN loss function and other Deep Learning methods have been tested
also in a commercial project in SIA ChromSword. As shown in Fig. 26, in
3 consecutive runs, it is possible to find HPLC solvent gradient for the best
peak separation of unknown compounds. These models are used in analytical
chemistry and drug development applications.

69

6.3 Results of Exponential Triplet Loss Function
Results of Exponential Triplet loss Lexp for the class re-identification task are
shown in Table 14 All results were achieved with a grid search of all hyper-
parameters. This is the reason that even the standard Triplet Loss Lstd in
many datasets achieved comparable results. All results have been classified
using zero-shot models and the re-identification task, with the closest em-
bedding of a sample to the same class center of mass. None of the classes
and samples used for validation have been seen during the training time. In
addition, the composite loss function has been used for both Lstd and Lexp

by adding Center Loss Lcen and L2-Softmax Classification Loss Lcls. Clas-
sification Loss was calculated only for the training dataset, because the test
dataset contained different number and types of classes. In this research,
a dataset for re-identification task was chosen as VGGFace2 [13] with 9000
classes, but the models also have been tested on classical image datasets like
MNIST [55], Fassion-MNIST [130], EMNIST (Extended-MNIST) [15] and
CIFAR10 [47]. For classical image data-sets, train and test sub-sets were
re-divided by classes, so that the test set would not contain classes included
in the train data-set. For all the datasets, 20% of classes with their samples
were set aside for testing and 80% of different classes were left for training.

Table 14:
Comparison of zero-shot accuracy on test dataset for different loss functions

(Triplet Loss Lstd, Exponential Triplet Loss Lexp, Center Loss Lcen,
Classification Loss Lcls

Loss / Acc. MNIST FMNIST EMINST CIFAR10 Simpsons VGGFace2
Lstd 99.6 91.4 82.0 56.2 91.0 77.4
Lstd + Lcls 99.6 92.1 85.0 79.8 91.2 76.3
Lstd + Lcen 97.5 71.5 61.7 52.1 90.9 76.4
Lstd + Lcen + Lcls 97.7 82.0 70.9 62.8 91.2 78.6
Lexp 99.6 92.7 82.7 85.7 91.5 85.0
Lexp + Lcls 99.6 93.1 85.2 87.2 90.9 84.1
Lexp + Lcen 99.6 93.1 85.7 85.3 92.1 84.0
Lexp + Lcen + Lcls 99.6 93.1 86.0 87.3 91.7 85.7

70

Additionally, The Simpsons dataset provided by Kaggle was also analyzed
for the re-identification task. The results for zero-shot learning depicted in
Fig. 27 showed good separation in 3D between visually different characters.
As seen in the example below, the model achieved clustering of class and
visual features only by applying linear PCA.

Figure 27: Visualization of PCA of the Simpsons test dataset that Exponen-
tial Triplet loss-based model has not used for training.

71

6.4 Practical Applications
Novel loss functions and models described in the Thesis can be applied
to many applications, some of these applications have already been imple-
mented, others have not yet been tested. Practical applications for each of
the novel loss functions and models are listed further.
Practical applications of UNet-RNN-Skip:

1. Optimization of VI algorithm for faster convergence of policy in path
planning task. This application has been tested within the Thesis. This
model can achieve multiple orders of magnitude faster convergence than
VI algorithm and is more scalable than VI algorithm on larger maps,
even though it has been trained only on smaller maps.

2. Optimization of VI algorithm for RL tasks. Policy can be calculated
also for other tasks such as sequential planning, where instead of con-
verging policy to the shortest path in the map states can represent
observations and gradient of value in the graph of actions can repre-
sent decisions.

3. Style transfer tasks for video data [40], [120]. The novel model pre-
sented in the Thesis can be used to colorize black and white movies,
add noise to make it look authentic, convert movies to look like car-
toons.

4. Style transfer tasks for audio data [16], [1]. The novel model presented
in the Thesis can be used to clone voices or generate artificial voices
using recorded source voice as an input. Model can be used with 1D au-
dio signal or 2D spectrographs that later are converted back to audible
signal using Griffin-Lim algorithm.

5. Video denoising tasks [20], [105]. The novel model can be used to
remove noise and film degradation artifacts, as well as to improve com-
pression of video by reducing complexity in regions that human ob-
server would not pay attention to.

6. Audio denoising tasks [58], [131]. This task has been successfully ap-
plied in commercial solutions in SIA Asya. The models are used in real-
time to remove background noises in natural environments and leaving
just signal of voice. Because of this model commercial implementation

72

of asya.ai mobile application is able to provide conversational analysis
in noisy environments such as coffee shops or offices.

Practical applications of MDQN Loss function:

1. Training Q-Value function based policy for a wide variety of RL tasks
like simulations [42], self-driving [134], virtual assistants [50] and robot
control [77]. In the Thesis a novel MDQN loss function has been tested
using PLE computer games. MDQN loss function is especially efficient
when used with low dimensional state inputs or using Deep Metric
Learning and low dimensional state embeddings.

2. Real-time optimization of solvent gradients for HPLC in analytical
chemistry [26]. It has been successfully tested in commercial solutions
in SIA ChromSword. The model is capable of finding the gradient
of solvents for compound separation in 2 hours, while before manual
sequences of experiments it could take multiple days.

Practical applications of Exponential Triplet Loss function:

1. Pre-training of encoder using deep metric learning of embeddings for a
wide variety of tasks like RL, RNN, classification and regression [129].
Pre-training encoder using Exponential Triplet Loss can speed up the
training process of the main task. The precondition for this method
is that a dataset used for training must be labelled or similarity mea-
sure between samples must be included. But this measure also can be
approximated using unsupervised learning methods, like VAE (Varia-
tional Auto Encoders) [19].

2. Re-identification task for images or biometric data [23], [5]. The novel
loss function has been tested within the Thesis in the context of face
and image re-identification. It has also been successfully applied in
commercial solution in SIA Asya for voice re-identification task. Asya
mobile application executes the re-identification of multiple speakers
using voice biometric data for natural conversations in real-time. It
could also be applied for e-commerce solutions for re-identification of
different products by their visual similarity.

73

7 FUTURE RESEARCH
Future research of the novel loss functions, their attributes, and shape can
be based on the findings presented in the Thesis.
Research in Deep Q-Learning and Reinforcement Learning is very tied to
loss function as it is the main and unchaining factor in an unpredictable
environment. One extension to the loss function of Deep Q-Learning would
be to add a loss that would emulate curiosity and exploration of environment.
Loss function that emulates curiosity should not be based on rewards of
the environment itself, but instead unexpected and novel state information
should generate an intrinsic reward. At the same time, random events that
are not linked to the actions of an agent should not be included in this
intrinsic reward. Some work has been done in this direction, but it has not
been fully solved [12], [11].
Another direction would be to add to the model multiple read and write
heads to train the model to use auxiliary memory tables in the context of
Deep Reinforcement Learning. Memory tables should contain embeddings
of states, previous states, and rewards. These models would learn to store
and use the facts observed in the environment and use them to maximize
reward even though these facts have never been observed during the training
process, similarly to how zero-shot learning works. The model would learn
the algorithm that can solve the environment, not the patterns of an envi-
ronment. To train such models, a composite loss function that includes the
regularization of heads could be added. Recent work has been done also in
this direction, but it has not yet been solved for complex environments [125],
[81], [51].
The loss functions needed to map the similarity of embeddings of read and
write heads for auxiliary memory tables and curiosity models are similar to
those used in Deep Metric Learning like Triplet Loss or Contrastive Loss.
Deep Metric Learning in the context of Zero-Shot, One-Shot k-Shot learning
also has not yet been solved.
Extension of the research presented in the Thesis might be adding KL
(Kullback—Leibler) divergence or other probability density similarity func-
tions and adding prior distributions. Usually KL is used together with a
Gaussian distribution with learnable mean and standard deviation, but the
loss function could enable the model to learn also other distributions. In
addition, it might be useful to add the reconstruction loss generated from
VAE and the adversarial loss generated from GAN.

74

Recently, novel loss functions like Margin Loss in CapsNet (Capsule Net-
works) [89] and Focal Loss [61] have been used also for classification prob-
lems instead of the commonly used cross-entropy loss function that comes
from established information theory. Both of these functions have different
properties of shape of the function that leads to better convergence. There
could be even better versions of loss functions for classification task and other
common machine learning tasks, and the shape of the function might be an
important factor.

8 CONCLUSIONS
The thesis has proposed and evaluated novel loss functions, model archi-
tectures, and training algorithms. It has presented research findings of the
importance of the shape of functions for deep learning methods.
Contributions of this work include UNet-RNN-Skip model, OccupancyMap-
Generator algorithm, MDQN Loss function, Q-Value maps, Exponential
Triplet Loss function, Unit-Range latent space normalization function, Unit-
Bounce latent space normalization function and other methods that have
been published in the scientific literature produced by the author and at-
tached to the Thesis.
The experimental results show that the proposed methods achieve better
results than the established deep learning methods.
For the face re-identification task and for the deep metric learning task on
VGGFace2 dataset, Exponential Triplet Loss function reached state-of-the-
art results of 85.7% accuracy using zero-shot setting. The exponential Triplet
Loss function also converges faster than the conventional Triplet Loss func-
tion with common composite loss function addition. Unit-Range normaliza-
tion function and Unit-Bounce normalization function achieve better utiliza-
tion of the embedding space than L2 normalization function and have similar
properties to the cosine distance in Euclidean space.
For the reinforcement learning task in computer game environments, MDQN
loss function achieves higher scores than DDQN and DQN loss functions.
It also provides functionality to construct a Q-Value map that exposes the
model policy as a white box to understand the better decision-making process
using a visual representation of each state. The results also showed the need
for repeated experiments with the same set of hyper-parameters of MDQN
and other loss functions at least 20 times to reduce the effect of random weight

75

initialization in highly random environments like PLE. MDQN loss function
research also included a survey of state-of-the-art methods at the time of
publishing and analysis of scientific literature regarding Deep Q-Learning.
For Value function modelling, UNet-RNN-Skip execution speed is on the
order of magnitude greater than the classical Value function used in VI.
It also can have the same policy outcome for 99.8% of the cases and can
be trained on 32x32 maps, but then applied to larger maps like 256x256.
OccupancyMapGenerator can be applied successfully to generate synthetic
datasets of occupancy maps. These datasets can be used for tasks related to
VI algorithm, as well as for other tasks such as SLAM.
All the theses listed in Subsection 1.2 have been confirmed.
Novel MDQN and Exponential Triplet Loss functions have been success-
fully applied in commercial products for analytical chemistry task at SIA
ChromSword and for voice and face re-identification task at SIA Asya. UNet-
RNN-Skip also has been successfully applied in a commercial product for
noise reduction of audio signal at SIA Asya.
The contributions of this research can be used in different applications that
have been described in Subsection 6.4 Applications include zero-shot tasks
not only for biometric re-identification, but also for finding similar prod-
ucts using photos. Applications also include path planning, analytical chem-
istry, automatic speech recognition, reinforcement learning, and robot con-
trol. The work emphasizes the efficiency of unconventional loss functions
and approaches in Deep Learning that have been developed and shaped us-
ing empirical methods.

ACKNOWLEDGEMENTS
The research has been completed with the support from the IKSA Research
Lab and High-Performance Computing Centre of Riga Technical University.
RTU HPC provided 12 nVidia K40 GPUs and 8 nVidia V100 GPUs. Spe-
cial thanks go to Lauris Cikovskis, manager of RTU HPC, and to Professor
Agris Nikitenko, the Dean of Faculty of Computer Science and Information
Technology and manager of IKSA Research Lab.

76

BIBLOGRAPHY
[1] Sercan Ö. Arik et al. “Neural Voice Cloning with a Few Samples”. In:

ArXiv abs/1802.06006 (2018).
[2] Kai Arulkumaran et al. “A Brief Survey of Deep Reinforcement Learn-

ing”. In: ArXiv abs/1708.05866 (2017).
[3] Jimmy Ba, J. Kiros, and Geoffrey E. Hinton. “Layer Normalization”.

In: ArXiv abs/1607.06450 (2016).
[4] Mohammad Babaeizadeh et al. “GA3C: GPU-Based A3C for Deep Re-

inforcement Learning”. In: CoRR abs/1611.06256 (2016). url: http:
//arxiv.org/abs/1611.06256.

[5] H. Bredin. “TristouNet: Triplet Loss for Speaker Turn Embedding”.
In: 2017 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP) (2017), pp. 5430–5434.

[6] Greg Brockman et al. “OpenAI Gym”. In: ArXiv abs/1606.01540
(2016).

[7] J. Bromley et al. “Signature Verification Using a "Siamese" Time De-
lay Neural Network”. In: Int. J. Pattern Recognit. Artif. Intell. 1993.

[8] Jane Bromley et al. “Signature Verification Using A "Siamese" Time
Delay Neural Network”. In: IJPRAI 7.4 (1993), pp. 669–688. doi:
10.1142/S0218001493000339. url: https://doi.org/10.1142/
S0218001493000339.

[9] Edward De Brouwer et al. “GRU-ODE-Bayes: Continuous Model-
ing of Sporadically-Observed Time Series”. In: ArXiv abs/1905.12374
(2019).

[10] T. Brown et al. “Language Models Are Few-Shot Learners”. In: ArXiv
abs/2005.14165 (2020).

[11] Yuri Burda et al. “Exploration by Random Network Distillation”. In:
ArXiv abs/1810.12894 (2019).

[12] Yuri Burda et al. “Large-Scale Study of Curiosity-Driven Learning”.
In: ArXiv abs/1808.04355 (2019).

[13] Qiong Cao et al. “VGGFace2: A Dataset for Recognising Faces across
Pose and Age”. In: 2018 13th IEEE International Conference on Au-
tomatic Face & Gesture Recognition (FG 2018) (2017), pp. 67–74.

77

http://arxiv.org/abs/1611.06256
http://arxiv.org/abs/1611.06256
https://doi.org/10.1142/S0218001493000339
https://doi.org/10.1142/S0218001493000339
https://doi.org/10.1142/S0218001493000339

[14] Sumit Chopra, Raia Hadsell, and Yann LeCun. “Learning a Similarity
Metric Discriminatively, with Application to Face Verification”. In:
2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR 2005), 20-26 June 2005, San Diego, CA,
USA. 2005, pp. 539–546. doi: 10.1109/CVPR.2005.202. url: https:
//doi.org/10.1109/CVPR.2005.202.

[15] Gregory Cohen et al. “EMNIST: An Extension of MNIST to Hand-
written Letters”. In: ArXiv abs/1702.05373 (2017).

[16] J. Cong et al. “Data Efficient Voice Cloning from Noisy Samples with
Domain Adversarial Training”. In: ArXiv abs/2008.04265 (2020).

[17] Haowen Deng, Tolga Birdal, and Slobodan Ilic. “PPFNet: Global Con-
text Aware Local Features for Robust 3D Point Matching”. In: 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2018), pp. 195–205.

[18] E. Dijkstra. “A Note on Two Problems in Connexion with Graphs”.
In: Numerische Mathematik 1 (1959), pp. 269–271.

[19] E. Dupont. “Learning Disentangled Joint Continuous and Discrete
Representations”. In: NeurIPS. 2018.

[20] T. Ehret et al. “Model-Blind Video Denoising via Frame-to-Frame
Training”. In: 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2019), pp. 11361–11370.

[21] Lasse Espeholt et al. “IMPALA: Scalable Distributed Deep-Rl
with Importance Weighted Actor-Learner Architectures”. In: ArXiv
abs/1802.01561 (2018).

[22] Chelsea Finn, S. Levine, and P. Abbeel. “Guided Cost Learning:
Deep Inverse Optimal Control via Policy Optimization”. In: ArXiv
abs/1603.00448 (2016).

[23] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “FaceNet:
A Unified Embedding for Face Recognition and Clustering”. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR
2015, Boston, MA, USA, June 7-12, 2015. 2015, pp. 815–823. doi:
10.1109/CVPR.2015.7298682. url: https://doi.org/10.1109/
CVPR.2015.7298682.

[24] S. Galushko et al. “ChromSword: Software for Method Development
in Liquid Chromatography”. In: 2018.

78

https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682

[25] Yuan Gao and Dorota Glowacka. “Deep Gate Recurrent Neural Net-
work”. In: ArXiv abs/1604.02910 (2016).

[26] Tarun Gogineni et al. “TorsionNet: A Reinforcement Learning Ap-
proach to Sequential Conformer Search”. In: ArXiv abs/2006.07078
(2020).

[27] Jacob Goldberger et al. “Neighbourhood Components Analysis”.
In: Advances in Neural Information Processing Systems. Ed. by L.
Saul, Y. Weiss, and L. Bottou. Vol. 17. MIT Press, 2005. url:
https : / / proceedings . neurips . cc / paper / 2004 / file /
42fe880812925e520249e808937738d2-Paper.pdf.

[28] Klaus Greff et al. “LSTM: A Search Space Odyssey”. In: IEEE Trans-
actions on Neural Networks and Learning Systems 28.10 (Oct. 2017),
pp. 2222–2232. issn: 2162-237X, 2162-2388. doi: 10.1109/TNNLS.
2016.2582924. arXiv: 1503.04069. url: http://arxiv.org/abs/
1503.04069 (visited on 04/25/2019).

[29] Hado van Hasselt, Arthur Guez, and David Silver. “Deep Reinforce-
ment Learning with Double Q-Learning”. In: CoRR abs/1509.06461
(2015). url: http://arxiv.org/abs/1509.06461.

[30] Hado V. Hasselt. “Double Q-Learning”. In: Advances in Neural In-
formation Processing Systems 23. Ed. by J. D. Lafferty et al. Curran
Associates, Inc., 2010, pp. 2613–2621. url: http://papers.nips.
cc/paper/3964-double-q-learning.pdf.

[31] Kaiming He et al. “Deep Residual Learning for Image Recognition”.
In: 2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2016), pp. 770–778.

[32] Kaiming He et al. “Identity Mappings in Deep Residual Networks”.
In: ArXiv abs/1603.05027 (2016).

[33] Alexander Hermans, Lucas Beyer, and Bastian Leibe. “In De-
fense of the Triplet Loss for Person Re-Identification”. In: ArXiv
abs/1703.07737 (2017).

[34] J. Hershey et al. “Deep Clustering: Discriminative Embeddings for
Segmentation and Separation”. In: 2016 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP) (2016),
pp. 31–35.

79

https://proceedings.neurips.cc/paper/2004/file/42fe880812925e520249e808937738d2-Paper.pdf
https://proceedings.neurips.cc/paper/2004/file/42fe880812925e520249e808937738d2-Paper.pdf
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.1109/TNNLS.2016.2582924
https://arxiv.org/abs/1503.04069
http://arxiv.org/abs/1503.04069
http://arxiv.org/abs/1503.04069
http://arxiv.org/abs/1509.06461
http://papers.nips.cc/paper/3964-double-q-learning.pdf
http://papers.nips.cc/paper/3964-double-q-learning.pdf

[35] Matteo Hessel et al. “Rainbow: Combining Improvements in Deep
Reinforcement Learning”. In: ArXiv abs/1710.02298 (2018).

[36] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory”. In:
Neural Computation 9 (1997), pp. 1735–1780.

[37] C. Huang, Chen Change Loy, and X. Tang. “Local Similarity-Aware
Deep Feature Embedding”. In: NIPS. 2016.

[38] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. “Densely Con-
nected Convolutional Networks”. In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2017), pp. 2261–2269.

[39] Huimin Huang et al. “UNet 3+: A Full-Scale Connected UNet for
Medical Image Segmentation”. In: ICASSP 2020 - 2020 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP) (2020), pp. 1055–1059.

[40] Satoshi Iizuka and Edgar Simo-Serra. “DeepRemaster: Temporal
Source-Reference Attention Networks for Comprehensive Video En-
hancement”. In: ArXiv abs/2009.08692 (2019).

[41] Rafal Józefowicz, Wojciech Zaremba, and Ilya Sutskever. “An Em-
pirical Exploration of Recurrent Network Architectures”. In: ICML.
2015.

[42] A. Kiani, Chris Wang, and Angela Xu. “Sepsis World Model: A
MIMIC-Based OpenAI Gym "World Model" Simulator for Sepsis
Treatment”. In: ArXiv abs/1912.07127 (2019).

[43] B. Kitchenham et al. “Systematic Literature Reviews in Software En-
gineering - A Systematic Literature Review”. In: Inf. Softw. Technol.
51 (2009), pp. 7–15.

[44] Gregory R. Koch. “Siamese Neural Networks for One-Shot Image
Recognition”. In: 2015.

[45] A. Kolesnikov et al. “Big Transfer (BiT): General Visual Representa-
tion Learning”. In: arXiv: Computer Vision and Pattern Recognition
(2019).

[46] Martin Köstinger et al. “Large Scale Metric Learning from Equiva-
lence Constraints”. In: 2012 IEEE Conference on Computer Vision
and Pattern Recognition (2012), pp. 2288–2295.

80

[47] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny
Images”. In: 2009.

[48] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks”. In: Com-
munications of the ACM 60.6 (May 24, 2017), pp. 84–90. issn:
00010782. doi: 10 . 1145 / 3065386. url: http : / / dl . acm . org /
citation.cfm?doid=3098997.3065386 (visited on 04/25/2019).

[49] David Krueger et al. “Zoneout: Regularizing RNNs by Randomly Pre-
serving Hidden Activations”. In: ArXiv abs/1606.01305 (2017).

[50] Katya Kudashkina, P. Pilarski, and R. Sutton. “Document-Editing
Assistants and Model-Based Reinforcement Learning as a Path to
Conversational AI”. In: ArXiv abs/2008.12095 (2020).

[51] Guillaume Lample et al. “Large Memory Layers with Product Keys”.
In: ArXiv abs/1907.05242 (2019).

[52] M. Law, N. Thome, and M. Cord. “Quadruplet-Wise Image Similar-
ity Learning”. In: 2013 IEEE International Conference on Computer
Vision (2013), pp. 249–256.

[53] M. Law, R. Urtasun, and R. Zemel. “Deep Spectral Clustering Learn-
ing”. In: ICML. 2017.

[54] Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton. “A Simple Way
to Initialize Recurrent Networks of Rectified Linear Units”. In: ArXiv
abs/1504.00941 (2015).

[55] Yann LeCun and Corinna Cortes. “MNIST Handwritten Digit
Database”. In: (2010). url: http://yann.lecun.com/exdb/mnist/
(visited on 01/14/2016).

[56] Yann LeCun et al. “Comparison of Learning Algorithms for Hand-
written Digit Recognition”. In: 1995.

[57] H. Lee et al. “Convolutional Deep Belief Networks for Scalable Un-
supervised Learning of Hierarchical Representations”. In: ICML ’09.
2009.

[58] J. Lee et al. “Dynamic Noise Embedding: Noise Aware Training and
Adaptation for Speech Enhancement”. In: 2020.

81

https://doi.org/10.1145/3065386
http://dl.acm.org/citation.cfm?doid=3098997.3065386
http://dl.acm.org/citation.cfm?doid=3098997.3065386
http://yann.lecun.com/exdb/mnist/

[59] Chao Li et al. “Deep Speaker: An End-to-End Neural Speaker Embed-
ding System”. In: CoRR abs/1705.02304 (2017). arXiv: 1705.02304.
url: http://arxiv.org/abs/1705.02304.

[60] Timothy P. Lillicrap et al. “Continuous Control with Deep Reinforce-
ment Learning”. In: CoRR abs/1509.02971 (2015). url: http : / /
arxiv.org/abs/1509.02971.

[61] Tsung-Yi Lin et al. “Focal Loss for Dense Object Detection”. In: 2017
IEEE International Conference on Computer Vision (ICCV) (2017),
pp. 2999–3007.

[62] Teng Long et al. “Zero-Shot Learning via Discriminative Representa-
tion Extraction”. In: Pattern Recognition Letters 109 (2018), pp. 27–
34.

[63] Scott Lundberg and Su-In Lee. “A Unified Approach to Interpreting
Model Predictions”. In: NIPS. 2017.

[64] R. Manmatha et al. “Sampling Matters in Deep Embedding Learn-
ing”. In: 2017 IEEE International Conference on Computer Vision
(ICCV) (2017), pp. 2859–2867.

[65] Michael Phi. Illustrated Guide to LSTMs and GRUs: A Step by Step
Explanation. Jan. 6, 2020. url: https://towardsdatascience.com/
illustrated- guide- to- lstms- and- gru- s- a- step- by- step-
explanation-44e9eb85bf21.

[66] Erik G. Miller, Nicholas E. Matsakis, and Paul A. Viola. “Learning
from One Example through Shared Densities on Transforms”. In: Pro-
ceedings IEEE Conference on Computer Vision and Pattern Recogni-
tion. CVPR 2000 (Cat. No.PR00662) 1 (2000), 464–471 vol.1.

[67] Volodymyr Mnih et al. “Asynchronous Methods for Deep Reinforce-
ment Learning”. In: ICML 48 (2016), pp. 1928–1937. url: http :
//arxiv.org/abs/1602.01783.

[68] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement
Learning”. In: CoRR abs/1312.5602 (2013). url: http://arxiv.
org/abs/1312.5602.

[69] Igor Mordatch. “Concept Learning with Energy-Based Models”. In:
ICLR. 2018.

82

https://arxiv.org/abs/1705.02304
http://arxiv.org/abs/1705.02304
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602

[70] Yair Movshovitz-Attias et al. “No Fuss Distance Metric Learning Us-
ing Proxies”. In: 2017 IEEE International Conference on Computer
Vision (ICCV) (2017), pp. 360–368.

[71] “N-Shot Learning: Learning More with Less Data”. In: (). url:
https://blog.floydhub.com/n-shot-learning/.

[72] D. Neil, M. Pfeiffer, and Shih-Chii Liu. “Phased LSTM: Accelerating
Recurrent Network Training for Long or Event-Based Sequences”. In:
NIPS. 2016.

[73] Binh X. Nguyen et al. “Deep Metric Learning Meets Deep Clustering:
An Novel Unsupervised Approach for Feature Embedding”. In: ArXiv
abs/2009.04091 (2020).

[74] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. “Learning De-
convolution Network for Semantic Segmentation”. In: 2015 IEEE In-
ternational Conference on Computer Vision (ICCV) (2015), pp. 1520–
1528.

[75] “Non-Zero Initial States for Recurrent Neural Networks - R2RT”. In:
(). url: https://r2rt.com/non- zero- initial- states- for-
recurrent-neural-networks.html.

[76] OpenAI et al. “Solving Rubik’s Cube with a Robot Hand”. In: ArXiv
abs/1910.07113 (2019).

[77] OpenAI et al. “Solving Rubik’s Cube with a Robot Hand”. In: ArXiv
abs/1910.07113 (2019).

[78] D. Park et al. “Improved Noisy Student Training for Automatic
Speech Recognition”. In: ArXiv abs/2005.09629 (2020).

[79] Adam Paszke et al. “Automatic Differentiation in PyTorch”. In:
(2017).

[80] K. Petersen et al. “Systematic Mapping Studies in Software Engineer-
ing”. In: EASE. 2008.

[81] Alexander Pritzel et al. “Neural Episodic Control”. In: ArXiv
abs/1703.01988 (2017).

[82] Qi Qi et al. “A Simple and Effective Framework for Pairwise Deep
Metric Learning”. In: Computer Vision ECCV 2020. Ed. by Andrea
Vedaldi et al. Cham: Springer International Publishing, 2020, pp. 375–
391. isbn: 978-3-030-58583-9.

83

https://blog.floydhub.com/n-shot-learning/
https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html
https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html

[83] Hubert Ramsauer et al. “Hopfield Networks Is All You Need”. In:
ArXiv abs/2008.02217 (2020).

[84] Rajeev Ranjan, Carlos D. Castillo, and Rama Chellappa. “L2-
Constrained Softmax Loss for Discriminative Face Verification”. In:
CoRR abs/1703.09507 (2017). arXiv: 1703 . 09507. url: http : / /
arxiv.org/abs/1703.09507.

[85] Mirco Ravanelli, Titouan Parcollet, and Yoshua Bengio. “The
Pytorch-Kaldi Speech Recognition Toolkit”. In: ICASSP 2019 - 2019
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP) (2019), pp. 6465–6469.

[86] Oren Rippel et al. “Metric Learning with Adaptive Density Discrim-
ination”. In: ICLR abs/1511.05939 (2016).

[87] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convo-
lutional Networks for Biomedical Image Segmentation”. In: MICCAI.
2015.

[88] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach (2nd Edition). Prentice Hall, Dec. 2002. isbn: 0-13-790395-
2. url: http://www.amazon.ca/exec/obidos/redirect?tag=
citeulike09-20&path=ASIN/0137903952.

[89] Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. “Dynamic
Routing between Capsules”. In: ArXiv abs/1710.09829 (2017).

[90] Tom Schaul et al. “Prioritized Experience Replay”. In: CoRR
abs/1511.05952 (2015). url: http://arxiv.org/abs/1511.05952.

[91] John Schulman et al. “Proximal Policy Optimization Algorithms”. In:
ArXiv abs/1707.06347 (2017).

[92] John Schulman et al. “Trust Region Policy Optimization”. In: ICML.
2015.

[93] Ramprasaath R. Selvaraju et al. “Grad-CAM: Why Did You Say
That? Visual Explanations from Deep Networks via Gradient-Based
Localization”. In: CoRR abs/1610.02391 (2016). url: http://arxiv.
org/abs/1610.02391.

[94] Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. “Recur-
rent Dropout without Memory Loss”. In: COLING. 2016.

84

https://arxiv.org/abs/1703.09507
http://arxiv.org/abs/1703.09507
http://arxiv.org/abs/1703.09507
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0137903952
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0137903952
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1610.02391
http://arxiv.org/abs/1610.02391

[95] M. Shoeybi et al. “Megatron-Lm: Training Multi-Billion Pa-
rameter Language Models Using Model Parallelism”. In: ArXiv
abs/1909.08053 (2019).

[96] Ari Silburt et al. “Lunar Crater Identification via Deep Learning”. In:
Icarus 317 (2019), pp. 27–38.

[97] Karen Simonyan and Andrew Zisserman. “Very Deep Convolu-
tional Networks for Large-Scale Image Recognition”. In: CoRR
abs/1409.1556 (2015).

[98] Kihyuk Sohn. “Improved Deep Metric Learning with Multi-Class n-
Pair Loss Objective”. In: NIPS. 2016.

[99] Hyun Oh Song et al. “Deep Metric Learning via Facility Location”. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2017), pp. 2206–2214.

[100] Hyun Oh Song et al. “Deep Metric Learning via Lifted Structured
Feature Embedding”. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2016), pp. 4004–4012.

[101] Hyun Oh Song et al. “Learnable Structured Clustering Framework for
Deep Metric Learning”. In: ArXiv abs/1612.01213 (2016).

[102] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. “Inception-
v4, Inception-ResNet and the Impact of Residual Connections on
Learning”. In: AAAI. 2016.

[103] Haoran Tang et al. “#Exploration: A Study of Count-Based Explo-
ration for Deep Reinforcement Learning”. In: ArXiv abs/1611.04717
(2017).

[104] Norman Tasfi. “PyGame Learning Environment”. In: GitHub reposi-
tory (2016). url: https://github.com/ntasfi/PyGame-Learning-
Environment.

[105] Matias Tassano, J. Delon, and T. Veit. “FastDVDnet: Towards Real-
Time Deep Video Denoising without Flow Estimation”. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2020), pp. 1351–1360.

[106] “Tips for Training Recurrent Neural Networks”. In: (). url: https://
danijar.com/tips-for-training-recurrent-neural-networks/.

85

https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment
https://danijar.com/tips-for-training-recurrent-neural-networks/
https://danijar.com/tips-for-training-recurrent-neural-networks/

[107] Hugo Touvron et al. “Fixing the Train-Test Resolution Discrepancy”.
In: Advances in Neural Information Processing Systems (NeurIPS).
2019.

[108] “Triplet Loss and Online Triplet Mining in TensorFlow | Olivier Moin-
drot Blog”. In: (). url: https://omoindrot.github.io/triplet-
loss.

[109] E. Urtans and Agris Nikitenko. “Survey of Deep Q-Network Variants
in PyGame Learning Environment”. In: ICDLT ’18. 2018.

[110] E. Urtans, Agris Nikitenko, and Valters Vecins. “Exponential Triplet
Loss”. In: Proceedings of the 2020 the 4th International Conference
on Compute and Data Analysis (2020).

[111] E. Urtans and Valters Vecins. “Value Iteration Solver Networks”. In:
2020 3rd International Conference on Intelligent Autonomous Sys-
tems (ICoIAS) (2020), pp. 8–13.

[112] Evalds Urtans and Ariel Tabaks. Asya: Mindful Verbal Communica-
tion Using Deep Learning. 2020. arXiv: 2008.08965 [eess.AS].

[113] E. Ustinova and V. Lempitsky. “Learning Deep Embeddings with His-
togram Loss”. In: NIPS. 2016.

[114] R. Vaillant, C. Monrocq, and Y. Le Cun. “Original Approach for
the Localisation of Objects in Images”. In: IEE Proceedings - Vision,
Image and Signal Processing 141.4 (1994), pp. 245–250.

[115] Athanasios Voulodimos et al. “Deep Learning for Computer Vision: A
Brief Review”. In: Computational Intelligence and Neuroscience 2018
(2018).

[116] Chanchin Wang, Xue Zhang, and Xipeng Lan. “How to Train Triplet
Networks with 100K Identities?” In: 2017 IEEE International Con-
ference on Computer Vision Workshops (ICCVW) (2017), pp. 1907–
1915.

[117] J. Wang et al. “Deep Metric Learning with Angular Loss”. In: 2017
IEEE International Conference on Computer Vision (ICCV) (2017),
pp. 2612–2620.

[118] Jinjiang Wang et al. “Deep Learning for Smart Manufacturing: Meth-
ods and Applications”. In: Journal of Manufacturing Systems 48
(2018), pp. 144–156.

86

https://omoindrot.github.io/triplet-loss
https://omoindrot.github.io/triplet-loss
https://arxiv.org/abs/2008.08965

[119] X. Wang et al. “Multi-Similarity Loss with General Pair Weighting for
Deep Metric Learning”. In: 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2019), pp. 5017–5025.

[120] Xinrui Wang and Jinze Yu. “Learning to Cartoonize Using White-
Box Cartoon Representations”. In: 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2020), pp. 8087–
8096.

[121] Xinshao Wang et al. “Ranked List Loss for Deep Metric Learning”.
In: 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2019), pp. 5202–5211.

[122] Ziyu Wang, Nando de Freitas, and Marc Lanctot. “Dueling Net-
work Architectures for Deep Reinforcement Learning”. In: CoRR
abs/1511.06581 (2015). url: http://arxiv.org/abs/1511.06581.

[123] Ziyu Wang, Nando de Freitas, and Marc Lanctot. “Dueling Net-
work Architectures for Deep Reinforcement Learning”. In: CoRR
abs/1511.06581 (2015). url: http://arxiv.org/abs/1511.06581.

[124] Ziyu Wang et al. “Sample Efficient Actor-Critic with Experience Re-
play”. In: ArXiv abs/1611.01224 (2017).

[125] Greg Wayne et al. “Unsupervised Predictive Memory in a Goal-
Directed Agent”. In: ArXiv abs/1803.10760 (2018).

[126] “We Analyzed 16,625 Papers to Figure out Where AI Is Headed
next | MIT Technology Review”. In: (). url: https : / / www .
technologyreview.com/2019/01/25/1436/we-analyzed-16625-
papers-to-figure-out-where-ai-is-headed-next/.

[127] Kilian Q. Weinberger and L. Saul. “Distance Metric Learning for
Large Margin Nearest Neighbor Classification”. In: NIPS. 2005.

[128] Yandong Wen et al. “A Discriminative Feature Learning Approach for
Deep Face Recognition”. In: ECCV. 2016.

[129] Cameron R. Wolfe and Keld T. Lundgaard. “E-Stitchup: Data Aug-
mentation for Pre-Trained Embeddings”. In: 2019.

[130] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-Mnist: A
Novel Image Dataset for Benchmarking Machine Learning Algo-
rithms”. In: ArXiv abs/1708.07747 (2017).

87

http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1511.06581
https://www.technologyreview.com/2019/01/25/1436/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next/
https://www.technologyreview.com/2019/01/25/1436/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next/
https://www.technologyreview.com/2019/01/25/1436/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next/

[131] Yong Xu et al. “Dynamic Noise Aware Training for Speech Enhance-
ment Based on Deep Neural Networks”. In: INTERSPEECH. 2014.

[132] Dong Yi, Zhen Lei, and S. Li. “Deep Metric Learning for Practical
Person Re-Identification”. In: ArXiv abs/1407.4979 (2014).

[133] Y. Yuan, Kuiyuan Yang, and Chao Zhang. “Hard-Aware Deeply Cas-
caded Embedding”. In: 2017 IEEE International Conference on Com-
puter Vision (ICCV) (2017), pp. 814–823.

[134] Q. Zhang and Tao Du. “Self-Driving Scale Car Trained by Deep Re-
inforcement Learning”. In: ArXiv abs/1909.03467 (2019).

[135] W. Zheng, S. Gong, and T. Xiang. “Reidentification by Relative Dis-
tance Comparison”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 35 (2013), pp. 653–668.

[136] Zongwei Zhou et al. “UNet++: A Nested u-Net Architecture for Med-
ical Image Segmentation”. In: Deep Learning in Medical Image Analy-
sis and Multimodal Learning for Clinical Decision Support : 4th Inter-
national Workshop, DLMIA 2018, and 8th International Workshop,
ML-CDS 2018, held in conjunction with MICCAI 2018, Granada,
Spain, S... 11045 (2018), pp. 3–11.

88

APPENDIX A - Paper 1

89

Value Iteration Solver Networks
1st Evalds Urtans

Riga Technical University
Riga, Latvia

evalds.urtans@rtu.lv

2nd Valters Vecins
Riga Technical University

Riga, Latvia
valters.vecins@rtu.lv

Abstract—Value Iteration Algorithm is iterative and can’t be
parallelized. Computation time grows exponentially when the
size of the input maps is increased. We propose UNet-RNN-
Skip artificial neural network architecture that can be used
to parallelize Value Iteration Algorithm results. The proposed
model can solve Value Iteration problem in fewer iterations than
the original algorithm and computation time increases by only
a small amount when increasing the size of the input map.
Fundamental UNet-RNN-Skip architecture can be used also to
solve and parallelize other sequential problems. With this paper
synthetic dataset of maps and generator has been published to
enable further studies in mapping and path planning tasks.

Index Terms—ResNet, ConvNet, RNN, Value Iteration Algo-
rithm

I. INTRODUCTION

Value Iteration Algorithm (VI) is widely used to generate
navigation maps and policies for a wide range of problems
where each state can have different value [1].

For navigation task policy for movement is calculated to the
direction of the gradient of adjacent grid cell values within
a discretized map. Value Iteration Algorithm is an iterative
process where the values of each grid cell depend on the values
of the previous iteration of adjacent grid cells. Within Value
Iteration Algorithm given in (1) for each state s value V (s) is
calculated by choosing action a that maximizes sum of reward
with given action Ra, multiplied by transition probability Pa

and added adjacent state values V (s′) multiplied by γ discount
factor. Formally state s consists of the state that includes all
gird cells in the map, but for a simplified explanation, we can
assume that each grid cell has its own state.

Value Iteration Algorithm ensures optimal policy within
fully observable environment Fig. 1. In this case, it ensures
that a positive terminal state is reachable from every cell in
the map by following a policy that guides by the closest path
to the target.

Using Value Iteration Algorithm for path planning in real-
time is often limited to its performance as it becomes expo-
nentially slower as the map becomes larger.

Vi+1(s) := max
a

{
∑
s′

Pa(s, s
′)(Ra(s, s

′) + γVi(s
′))} (1)

An alternative approach is to use heuristic-based approaches
for path planning such as Dijkstra or A* algorithms [1]. These
are much faster than VI and are widely used in simulations
and computer games, but they do not ensure optimal policy.

Another approach is to utilize the latest research in Deep
Artificial Neural Networks hence we propose Value Iteration
Solver Network model. Currently, similar models have been
applied to a wide range of problems starting with image
classification, image segmentation and policy selection of
agent in the reinforcement learning.

Architectures of these models are different depending on
the task, but basic concepts are common in between them.
Convolutional artificial neural network architectures that we
are proposing in this research are based upon AlexNet [2],
VGG [3], InceptionNet [4], ResNet [5], DenseNet [6] and
UNet [7].

Fig. 1. Visualization of Value Iteration Algorithm’s consecutive iterations.
After convergence, it is possible to derive optimal policy from every state to
reach the terminal state with highest cumulative reward.

II. RELATED WORK

Value iteration algorithm is a variation of the Markov
decision process (MDP) for finding the optimal policy in
discrete state-action space.

Recently Value Iteration Networks has been proposed as a
novel neural model-based algorithm that focuses on mimicking
the behaviour of Value Iteration Algorithm by iterating over
values multiple times in the inner loop of convolutional
architecture [8]. Even though the inner workings of such
model have high research value, the results produced by this
method are not robust enough for practical use. Other research
has been done in solving Value Iteration problem by using
reinforcement learning. ”Second Order Value Iteration in Rein-
forcement Learning” proposes using Newton-Raphson method

for second-value iteration algorithm for faster convergence to
almost optimal values [9].

Also, there have been other developments in this field of
research like ”Value Iteration Networks on Multiple Levels
of Abstraction” that extends the work of original ”Value
Iteration Networks” by processing input in multiple levels of
abstraction. With multiple levels of abstraction, they increase
the success value metric for larger maps. [10]

III. METHODOLOGY

Within this research, we developed a novel artificial neural
network architecture that can be used for different problems,
and to achieve the same results as Value Iteration Algorithm
for map navigation task. These models are based on ResNet
and UNet architectures as well as on Recurrent Neural Net-
works.

A. UNet variant

UNet architecture was first introduced to solve biomedical
image segmentation [7].

Solving the value iteration algorithm task is similar to
the segmentation task, a network output should retain a lot
of features from the input image like walls and obstacles
in a map. Solving value iteration with convolutional neural
networks using UNet architecture helps the network to learn
how value iteration values propagate through the map because
all of the information doesn’t have to be encoded in the
latent vector. UNet skip connections allow passing different
abstraction latent representations from encoder to decoder
Fig. 2.

While using ResNet or UNet architectures it is possible to
concatenate or add the values of skip connections [11]. In
our network we are using addition operation, so all of the
information from the encoder is used by the decoder and
gradient from error through back-propagation is distributed
evenly. Concatenating the values would cause some of the
values to be used more than others by the network. This model
is similar to the denoising auto-encoder task, but instead of
encoding features, we use it as the single iteration filter to get
the map of state values and policies.

B. UNet-RNN variant

With UNet-RNN variant we introduced recurrent neural net-
work cell and slightly changed the definition of the task Fig. 3.
With recurrent models, we are modelling value iterations not
within a single step, but within multiple iterations where an
output of a previous iteration is fed into the next iteration. In
fact the model learns to include in a single iteration multiple
steps of the value iteration algorithm thus reducing, even more,
the time needed to generate the value map. For recurrent part,
we tested different versions of LSTM and GRU and found out
that single-layer LSTM had the best performance [12].

With the use of the recurrent layer, models task is simplified
because the model can do multiple iterations on the same
map. In theory, this allows the model to produce better value
predictions for map places with narrow corridors or obstacles.

Input

Conv,
k=3x3, p=1

bottleneck
Resblock

Identity
Resblock

Identity
Resblock

bottleneck
Resblock

bottleneck
Resblock

Identity
Resblock

Identity
Resblock

Identity Deconv.
Resblock

bottleneck deconv.
Resblock

Identity Deconv.
Resblock

bottleneck deconv.
Resblock

Identity Deconv.
Resblock

bottleneck deconv.
Resblock

Identity Deconv.
Resblock

Transp. conv,
k=3x3, p=1

Result

Sigmoid

Fig. 2. Residual UNet architecture. Colors denote different building blocks
used for model.

Input

Conv.,
k=3x3, p=1

bottleneck
Resblock

Identity
Resblock

Identity
Resblock

bottleneck
Resblock

bottleneck
Resblock

Identity
Resblock

Identity
Resblock

Identity Deconv.
Resblock

bottleneck deconv.
Resblock

Identity Deconv.
Resblock

bottleneck deconv.
Resblock

Identity Deconv.
Resblock

bottleneck deconv.
Resblock

Identity Deconv.
Resblock

Transp. conv.,
k=3x3, p=1

Result

Sigmoid

Adaptive
avg. pool

Adaptive
avg. poolLSTM

Fig. 3. UNet-RNN architecture. Colors denote different building blocks used
for model.

C. UNet-RNN-Skip variant

With UNet-RNN-Skip variant we introduced a novel model
architecture that is built on UNet-RNN. It is similar to the
approach used in DenseNet architecture [6], but applied to
UNet-RNN. In this model’s architecture, we propose to add
skip connections within the encoder and the decoder part
itself Fig. 4. For the encoder and the decoder, we use 2 skip
connections, each going over 3 residual blocks within the same
part of the model. These skip connections, in theory, allows
the model to maintain details of the map at different scales and
different feature abstractions. For joining skip connections we
used addition operation as before.

Input

Conv,
k=3x3, p=1

bottleneck
Resblock

Identity
Resblock

Identity
Resblock

bottleneck
Resblock

bottleneck
Resblock

Identity
Resblock

Identity Deconv.
Resblock

bottleneck deconv.
Resblock

Identity Deconv.
Resblock

bottleneck deconv.
Resblock

Identity Deconv.
Resblock

bottleneck deconv.
Resblock

Identity Deconv.
Resblock

Transp. Conv,
k=3x3, p=1

Result

Sigmoid

Adaptive
avg. pool

Identity
Resblock

Adaptive
avg. pool

LSTM

Fig. 4. UNet-RNN-Skip architecture. Colors denote different building blocks
used for model.

IV. EXPERIMENTS

A. Data set

While there are some available synthetic data-set generation
tools available [8], we created our grid map generator of vary-
ing complexity. The grid map generator can generate maps of
different sizes and different coverage of obstacles in the map.
It is possible to choose between different obstacle types and
map types, for example, rectangular obstacles or obstacles gen-
erated from the maze patterns Fig. 5. Source code is available

at https://gitlab.com/VVecins/OccupancyMapGenerator.git. On
synthetically generated grid maps we applied the value it-
eration algorithm to create the ground truth data-set for
the training of the model. For the value iteration algorithm
generator, changeable parameters include the map size, the
discount value, allowed movement types and environment
type (deterministic or stochastic). In this research, iterations
were saved when the delta for values between iterations
was higher than predefined constant (0.1). Not saving all
iterations was for training RNN model to solve the multiple
value iterations in one iteration. Source code available at
https://gitlab.com/VVecins/ValueIterationGridmap.git.

Fig. 5. Examples of synthetic maps generated by OccupancyMapGenerator.

B. Implementation details

All of the source code of our models are open-source and
have been implemented using pytorch library. With pytorch
it is possible to execute UNet-RNN-Skip mostly in a parallel
manner as we processed all data of encoder and decoder parts
together. Some parts of the training process of the model like
our metrics ”success score” and ”success rate” are also made
to be executed in a parallel manner using multiprocessing [13].

C. Metrics

For the loss function, we were using MSE loss and modified
MSE loss function. Modified MSE loss function consists of
average MSE from output and error for the grid cell value
of the positive terminal state. Modified MSE loss function
was introduced because by using regular MSE models tend
to get good values by copying obstacles and then reach a
plateau when learning gradient of values. An added loss for
the terminal state decreases iteration count for when the model
to correctly predict gradient values Fig. 6.

We introduce two metrics for evaluating the model per-
formance, success rate metric Fig. 7 and score metric. By
calculating from how many states we can reach the positive
terminal state following the gradient of adjacent values of the
grid, we calculate success rate and by calculating the sum
of all transitions needed to reach the positive terminal state
from every state of the map, we calculate score metric. If by
following the gradient of the values from a particular state we
never reach the positive terminal state then the value of score
metric is equal to the number of walkable gird cells in the
map.

An interesting feature that we observed in UNet and Unet-
RNN type of models is the ability to successfully use models
that have been trained on smaller maps like 32x32 on much
larger maps like 64x64 without need to retrain them and
maintaining high success rate values. This is possible because
UNet model is a fully convolutional model and after learning
the value iteration algorithm can generalize it on any size of
the map. Unet-RNN type of models can achieve this because
they have pooling layer before RNN cell in the middle.

Fig. 6. Mean Squared Error test loss depending on training epoch.

Fig. 7. Success rate metric for test data-set depending on training epoch.
Value of 1.0 means that from all states in the map it is possible to reach the
the positive terminal state.

D. UNet variant

The experimental results of the simple UNet variant were
somewhat good with the success rate of 0.996 as seen in
Table I. Looking with the eye it is almost impossible to
distinguish the difference between value maps produced by
neural network-based models and the Value Iteration algorithm
as seen in Fig. 8. Although in order to have an optimal policy
in any state of the map it would be necessary to have success
rate metric of value 1.0.

In the Table II are shown a comparison between different
types of non-recurrent models. Starting with Convolutional
Auto-Encoder (Conv-AE), ResNet, UNet with concatenation
type of skip connections and UNet v2 with addition type of
skip connections.

E. UNet-RNN variant

The experimental results of the UNet-RNN variant yielded
better results than UNet variant. Advantage of recurrent mod-
els is the ability to pass output map multiple times through
the model to further improve precision until polices converge.

UNet-RNN, when applied to the map, are changing only a
few of the closest grid cells to the wave-front of values. By
changing only part of the map and not all of it at the same
time, the model can predict better values than models without

Fig. 8. On the left ground truth generated by Value Iteration algorithm. In
the middle UNet generated map. Gradients of these maps indicate state values
that lead to a positive terminal state. On the right, UNet generated success
map. White cells in the success map indicate that there exists a path to a
positive terminal state.

TABLE I
UNET PERFORMANCE ON 32X32 SIZE MAPS.

Learning rate Batch size Loss Success rate Epoch (min)
0.001 4 3.88E-06 0.996 4.244
0.0006 4 3.38E-06 0.996 4.415
0.003 8 5.08E-06 0.996 2.719
0.002 16 6.17E-06 0.995 2.030
0.003 16 3.67E-06 0.995 2.020
0.002 8 4.12E-06 0.995 2.735
0.001 8 4.05E-06 0.995 3.076
0.001 16 4.04E-06 0.994 2.013
0.0006 8 3.25E-06 0.994 3.075
0.003 4 5.11E-06 0.994 3.698
0.002 4 4.50E-06 0.994 4.214
0.0006 16 3.97E-06 0.990 1.733

TABLE II
COMPARISON BETWEEN DIFFERENT TYPES OF MODELS FOR EMULATING

VALUE ITERATION ALGORITHM.

Model Loss Success rate Epoch (min)
Conv-AE 0.073 0.014 0.958
ResNet 0.002 0.054 1.195
UNet 0.001 0.956 1.807
UNet v2 0.001 0.996 2.020

recurrent layers. This can be observed by watching activations
of layers using Grad-CAM [14] method that allows seeing
what parts of the map model gives more attention at different
abstraction layers of the model.

F. UNet-RNN-Skip variant

Finally, we achieved close to optimal policy results with
success rate of 0.998 using UNet-RNN-Skip model Fig. 9.
We also compared UNet-RNN-Skip model with standard con-
volutional RNN auto-encoder shown in Table III as Conv-
AE-RNN. It is possible to observe that skip connections
have significant importance on the performance of the model.
Adding additional skip connections to the architecture of the
model reduced epochs needed to have the convergence of the
policy.

In Table IV are shown results for UNet-RNN-Skip with
different hyper-parameters. All training instances achieved
success rate metric higher than 0.95. Best training instance
with success rate 0.998 and loss value 3.04E-06 was with
learning rate 0.001 and batch size 4. For all of the models,
we used small batch sizes because it affected the stability of
convergence.

TABLE III
COMPARISON OF PERFORMANCE OF UNET-RNN MODELS.

Model Loss Success rate Epoch (min)
Conv-AE-RNN 8.58E-06 0.598 10.862
UNet-RNN-Skip 3.04E-06 0.998 15.833

TABLE IV
UNET-RNN-SKIP MODEL PERFORMANCE.

Learning rate Batch size Loss Success rate Epoch (min)
0.001 4 3.04E-06 0.998 19.959
0.001 8 5.20E-06 0.998 17.650
0.002 8 5.43E-06 0.997 17.459
0.003 8 1.01E-05 0.992 17.464
0.002 16 1.24E-05 0.991 15.833
0.003 4 1.92E-05 0.985 19.944
0.002 4 3.16E-05 0.983 19.753
0.001 16 1.81E-05 0.970 15.605
0.003 16 2.77E-05 0.966 15.505

a) b) c)

d) e) f)
Fig. 9. UNet-RNN-Skip maps generated by progressive iterations (a, b, c),
last iteration (d), ground truth (e) and success map (f).

G. Speed of convergence

Our proposed UNet-RNN-Skip model is more salable than
Value Iteration Algorithm in terms of execution speed as seen
in Table V. It means that the model can be used for real-
time applications where recalculation of value map should be
done multiple times in a second. As shown in Fig. 10 for
the smallest tested map size of 32, Value Iteration Algorithm
needs much more time to produce the output than UNet-RNN-
Skip model. As map size increases the delta of processing
time increases by average multiplier of 8 for Value Iteration
Algorithm, but only by average multiplier of 3 for UNet-RNN-
Skip model.

TABLE V
COMPARISON OF EXECUTION TIME IN SECONDS BETWEEN MODELS.

Model / Map Size 32 64 128 256
VI 2.95 24.873 195.902 1473.108
UNet-RNN-Skip 0.031 0.071 0.236 0.833

H. Experiments on mobile robot platform

We also tested UNet-RNN-Skip model on real-life data
gathered from mobile platform using LIDAR as shown in
Fig. 11 and Fig. 12. The proposed model can be used for real-

Fig. 10. Comparison of time to convergence between models on different
size maps (log scale).

time path planning and obstacle avoidance on GPU powered
robotic platforms like nVidia Jetson.

Fig. 11. Map generated from LIDAR point cloud on 2D plane from mobile
robot platform.

Fig. 12. Discretized map from LIDAR point cloud on 2D plane on the left.
The map of values of states after passing through UNet-RNN-Skip model on
the right.

V. FURTHER RESEARCH

The proposed model could be used also in other applications
where input is sequential data and the task is to transform part

of it or to segment it depending on previous time steps. It can
be used to model all sorts of sequential algorithms with input
that could be represented as a matrix with spatial features.
Some example use-cases could be colouring task of movies
or tracking and segmentation of moving objects in between
frames. Also, these models have been successfully used in
spectral processing tasks within the realm of audio processing
in commercial product http://www.asya.ai.

Our synthetic data-set generator could be used in other path
planning or mapping problems research.

Another line of research could be the development of
models that work on different size maps. Currently, our models
have been tested on 64x64 maps when they have been trained
on 32x32 maps, but it would be interesting to research the
limits of such model ability to generalize on even larger maps.

VI. CONCLUSIONS

This research shows that UNet-RNN-Skip models can be
used to parallelize Value Iteration algorithm and achieve
comparable results in shorter execution time. New synthetic
data-set has been introduced and source code to generate even
more data-sets that could be used in further research. Results
show that on GPU powered robotic platforms UNet-RNN-Skip
models could be used in real-time whereas sequential Value
Iteration algorithm would be impractical.

ACKNOWLEDGMENTS

Research has been completed with a support from High-
Performance Computing Center of Riga Technical University.

REFERENCES

[1] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach
(2nd Edition). Prentice Hall, Dec. 2002.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, May 2017.

[3] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” CoRR, vol. abs/1409.1556, 2015.

[4] C. Szegedy, S. Ioffe, and V. Vanhoucke, “Inception-v4, Inception-ResNet
and the Impact of Residual Connections on Learning,” in AAAI, 2016.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770–778, 2016.

[6] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely Connected Con-
volutional Networks,” 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2261–2269, 2017.

[7] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Net-
works for Biomedical Image Segmentation,” in MICCAI, 2015.

[8] A. Tamar, S. Levine, P. Abbeel, Y. Wu, and G. Thomas, “Value Iteration
Networks,” in IJCAI, 2016.

[9] C. Kamanchi, R. B. Diddigi, and S. Bhatnagar, “Second Order Value
Iteration in Reinforcement Learning,” arXiv:1905.03927 [cs, stat], May
2019.

[10] D. Schleich, T. Klamt, and S. Behnke, “Value Iteration Networks on
Multiple Levels of Abstraction,” arXiv:1905.11068 [cs], May 2019.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,”
2015 IEEE International Conference on Computer Vision (ICCV), pp.
1026–1034, 2015.

[12] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and J. Schmid-
huber, “LSTM: A Search Space Odyssey,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, no. 10, pp. 2222–2232, Oct.
2017.

[13] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” p. 4.

[14] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual Explanations from Deep Networks via
Gradient-Based Localization,” 2017 IEEE International Conference on
Computer Vision (ICCV), pp. 618–626, 2017.

APPENDIX B - Paper 2

96

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 53

Chapter 31

ChromSword�: Software for Method Development
in Liquid Chromatography

Sergey V. Galushko∗‡, Irine P. Shyskina∗, Evalds Urtans† and2

Oksana Rotkaja†
3

∗ChromSword, Dr. Galushko Software Entwicklung GmbH Im Wiesengrund 49B,4

64367, Muehltal, Germany5

†ChromSword Baltic, Antonijas 22-1, Riga, LV-5041, Latvia6

‡galushko@chromsword.de7

3.1 Introduction8

Method development in chromatography can be considered as a pro-9

cess studying the empirical relationships between the quality of a10

chromatogram and the chromatographic conditions. A chromatographer11

changes conditions to find an acceptable method to achieve separation12

in a reasonable time. The time required to find optimal conditions or13

to make any conclusion can be substantially reduced by using computer14

programs for method development. HPLC method development programs15

can be utilized interactively (off-line) and for automatic optimization16

(online). ChromSword� for off-line computer-assisted method develop-17

ment was launched in 1994 as an extension of ChromDream� software [1].18

During 1998–2000, the first version for unattended method development19

was started [2]. The latest version of ChromSword� combines different20

technologies of method development in one software platform:21

• Computer-assisted22

• Automated optimization23

53

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 54

54 S. V. Galushko et al.

• Automated robustness studies1

• Scouting to screen different column, solvents, buffers and methods2

It is possible for a chromatographer to use only the computer-assisted3

(off-line) or automated method development approach or to use both4

interactive and unattended optimization.5

ChromSword� off-line can be used for optimizing separations in6

reversed-phase (RPLC), normal-phase (NPLC) and ion-exchange (IEX) liq-7

uid chromatography (LC). In the off-line mode, chromatogram simulations8

and optimizations as a function of one or more variables are possible. The9

off-line mode includes two possibilities for optimization in RPLC.10

The approach which takes into account the characteristics of com-11

pounds and column/solvent properties is the solvatic or solvophobic model12

of RPLC.13

The traditional method for optimizing separation using only retention14

data of analytes is the linear solvent strength (LSS) model and other15

polynomial models.16

In the automated mode, the software operates as a chromatogra-17

phy data system controlling HPLC instruments and executes a sequence18

of runs. The user can predefine such a sequence of runs — this is a19

scouting approach to screen different stationary phases (SPs) or mobile20

phases (MPs) or statistical design of experiments (DoE) according to some21

statistical rules to study the effect of method variables on the sepa-22

ration. This method is defined as robotic process automation. Another23

approach is intelligent automation. Intelligent automation automates24

non-routine tasks like optimizations involving complex data process-25

ing and reasoning. ChromSword� supports both types of automation to26

assist chromatographers for routine and intelligent method development27

workflow.28

To support various method development workflows ChromSwordAuto�
29

package contains modules dedicated to different scenarios and tasks:30

ChromSword� for computer-assisted method development
ChromDraw� chemical editor for drawing and processing

structural formulae31

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 55

ChromSword�: Software for Method Development in LC 55

ColumnViewer� reversed-phase column properties
data base

ChromSword� Scout for automated method screening
ChromSword� Developer for automated method optimization
AutoRobust� for automated robustness study and

method transfer
ReportViewer� for data browsing, chromatogram and

spectra processing, project management
and report generation1

3.2 Automated Method Development2

Most automated HPLC method development approaches can be divided into3

three classes:4

• Mechanistic or model-based optimization.5

• Statistic or direct process optimization.6

• Screening or running a large number of column/solvent/method combi-7

nations to identify those with a reasonable separation.8

In the model-based optimization, mathematical models are utilized9

to reduce the number of experiments. The development of mechanistic10

models requires good chromatography understanding, reliable tests for11

parameter estimations and peak tracking. Limiting factors are computa-12

tional time and reliability of the models that are applied for simulation13

and optimum search. The determination of mechanistic model parame-14

ters can be complicated for computer-assisted (off-line) method devel-15

opment and requires time and operator qualification for optimization of16

multi-component mixtures. Automatic optimization with mechanistic DoE17

incorporates engineering knowledge in the form of constrains, expert-rules18

and known fundamental relationships of LC; therefore, this technology19

can find optimal conditions faster than the off-line approach. One of the20

main advantages of the automatic optimization is that a chromatogra-21

pher can avoid complex tasks of the off-line computer-assisted optimiza-22

tion — peak tracking, data input, method and sequence specifications and23

other routine and non-routine operations. It should be noted that in the

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 56

56 S. V. Galushko et al.

recent final guidance for industries with regard to the analytical method1

development, the U.S. Food and Drug Administration (FDA) recommends2

submission of data to indicate a mechanistic understanding of the basic3

methodology [3].4

An alternative to the mechanistic model-based approach is to directly5

identify process optima based on the results of experiments that are6

planned by statistical software such as repeated DoE. In contrast to model-7

based strategies, no mathematical process model is required, which is a8

significant advantage for many operators, and it is also better to use when9

the theory of LC and separation process interactions are not yet fully under-10

stood. Unfortunately for complex mixtures, when retention models cross11

each other in different regions of method variables, the direct approach12

can find the optimum only accidently. Usually, this type of DoE is used13

in a case where no, or little, prior process knowledge is available. How-14

ever, for separation processes where a high degree of knowledge is avail-15

able, statistical DoE is often not the most efficient strategy. Nevertheless,16

experimental results from the direct approach can be successfully used17

to identify a local optimal separation region for simple mixtures and to18

estimate the sensitivity of method quality to specific parameter changes19

within the design space (DS). Special software that include both features20

to create DoE and control of LC instruments to execute the DoE have sub-21

stantial advantages against statistical software which have only options to22

plan DoE.23

An alternative to the mechanistic and statistic approaches is to run the24

high-throughput screening to test combinations of method variables and25

factors — columns, solvents, buffers, gradients, etc. In contrast to the26

model-based and the statistical strategies, neither mathematical process27

model nor statistical DoE is required for the scouting approach. A chro-28

matographer needs to only create a large sequence and then run it for29

new samples, thus relying on these few combinations of method variables30

and factors that will provide practically reasonable separations. The scout-31

ing approach is used frequently for chiral separations and samples when32

specific optimization is not necessary. Specialized software for automated33

method scouting are practically useful to create and edit long sequences34

rapidly and run them automatically.35

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 57

ChromSword�: Software for Method Development in LC 57

For analytical method development, all three approaches proved to1

be practically useful, and any combination of them increase the prob-2

ability of finding more suitable methods. To support various automated3

method development workflows, ChromSwordAuto� can operate in three4

modes: scouting, model-oriented optimization and statistic (direct opti-5

mization). Each mode can be applied separately or in various combinations6

depending on the preferred strategy of method development at a particu-7

lar laboratory and project stage. Each mode is operated with a dedicated8

module.9

3.2.1 Instrument control and software configurations10

ChromSwordAuto� can operate as a chromatography method development11

data system (CDS) or as a third-party software. Functioning as the CDS12

ChromSwordAuto� controls Agilent, Waters and Hitachi HPLC and UHPLC13

systems. To control these instruments, no other CDS is necessary, and a14

stand-alone or a client–server configuration of ChromSwordAuto� can be15

chosen during installation. For the client–server configuration, data are16

collected on the local network or the internet file server (Fig. 3.1). The17

client–server configuration satisfies the requirements for data integrity18

with regard to applicable regulations like FDA 21 CFR Part 11.19

Operating as a third-party software, ChromSwordAuto� controls Agi-20

lent, Waters and Dionex instruments thorough OpenLab/ChemStation,21

Empower or Chromeleon CDS. These CDS can work in the stand-alone, net-22

work or client–server environments.23

Figure 3.1: ChromSwordAuto� client–server configuration.

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 58

58 S. V. Galushko et al.

Different configurations of HPLC and UHPLC instruments can be used1

for automated method development. The most simple method development2

system consists of a binary pump, UV detector and autosampler; how-3

ever, typically, method development systems contain 4–8 columns and 2–64

solvent channels to test different stationary and MPs.5

ChromSwordAuto� incorporates automation of routine operations: col-6

umn equilibration, column wash-out methods, system purging and column7

and solvent switching sequences.8

3.2.2 Strategies of automated method development9

Different strategies can be applied for automated method development.10

Strategies can combine screening, optimization and robustness study11

steps. One of the successful strategies for development of RPLC methods12

with ChromSwordAuto� has been used for dug candidates. It includes13

an automated screening step to identify the best column and solvent14

followed by an optimization step to fine-tune the separation [4, 5].15

A similar strategy was used to apply ChromSwordAuto� for optimization16

of chiral separations in NPLC [6] and RPLC [7]. In another approach,17

the rapid optimization mode can be used for several predefined SP and18

MP combinations which are accepted at a lab as a standard method19

development column set, and then the fine optimization mode is applied20

for the most promising combination. Robustness studies can be included21

optionally for late-stages projects or methods to be transferred to other22

laboratories. The steps of such a strategy are shown in Fig. 3.2.23

Figure 3.2: The strategy of method development for the latest stages of product
developments.

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 59

ChromSword�: Software for Method Development in LC 59

3.2.3 Automated method screening with ChromSwordAuto�
1

Scout2

Automated screening of SP and MP are used to find practically a accept-3

able separation and run time when full optimization is not necessary. The4

screening can also be the first step in a multi-step method development5

strategy to identify promising combinations of columns and MPs.6

ChromSwordAuto� Scout screening module generates sequences auto-7

matically and runs them to scout different gradients, columns, solvents,8

buffers, temperatures and other method variables for one or several sam-9

ples. For multi-column and multi-solvent instruments, ChromSwordAuto�
10

Scout controls several column compartments with 4–8 columns in each11

compartment and several (4–12 position) solvent switching valves con-12

nected to a binary or a quaternary pump. ChromSwordAuto� Scout analyzes13

2D and 3D data acquired from two detectors simultaneously.14

ChromSwordAuto� Scout application incorporates automation of col-15

umn equilibration, column wash-out methods, system purging and column16

and solvent switching sequences for changing solvents, buffers, columns17

and other chromatographic process variables and factors.18

3.2.4 Automated model-based method optimization with19

ChromSwordAuto� Developer20

ChromSwordAuto� Developer module can be used for automated method21

optimization in RPLC, NPLC, IEX, HIC, HILIC, size exclusion chro-22

matography (SEC) and supercritical fluid chromatography (SFC). For SEC,23

ChromSwordAuto� optimizes isocratic conditions, and for another type of24

chromatography, both isocratic and gradient separations can be optimized.25

Retention models that are used for different type of LC are described in26

Section 3.3.27

ChromSword� is used for automated optimization of various mix-28

tures; however, most frequently, it is applied for method development in29

the pharmaceutical industry. Typical applications are the development of30

stability-indicating and quality control methods (e.g. impurity profiling,

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 60

60 S. V. Galushko et al.

Figure 3.3: Runs shown on the resolution map that the software performs searching for
optimal conditions in the unattended mode. Method development for a mixture of nine
beta-blockers. Column: Purospher RP 18e, 5 μm, 150 × 4 mm. Mobile phase: 0.05 M phos-
phate buffer, pH = 3.0 — methanol. The goals: Rs ≥ 2.0 and run time ≤ 20 min.

assay, cleaning control, etc.). For automatic optimization, a user should1

specify the starting conditions: the column, solvent, flow rate, injection2

volume and the task type — rapid or the fine optimization. A chromatog-3

rapher can also specify the development of either isocratic or isocratic and4

gradient methods. For both procedures, the optimization process includes5

the study of a sample to build retention models followed by application of6

the optimization procedure to find the optimal conditions. For planning7

new runs, the software processes the results of the previous runs and takes8

them into account. In Fig. 3.3, the method by which the software searches9

for optimal conditions developing the isocratic methods is shown.10

For optimizations of gradient methods, both the studying and opti-11

mization runs can be linear and multi-step gradients. For optimization of12

separation, the Monte Carlo, genetic algorithms and the neural network13

methods are used. For the rapid optimization algorithm, the software per-14

forms 3–4 runs (Figs. 3.4–3.6), and for the fine optimization algorithm15

more runs are executed to study a sample and optimize the separation.16

3.2.4.1 Method development for large molecules17

Large molecules like proteins exhibit substantially different retention18

behavior than small analytes [8]. For these samples a small shift in19

chromatographic conditions can lead to high changes in retention and20

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 61

ChromSword�: Software for Method Development in LC 61

Figure 3.4: The first run of the automatic rapid optimization of the force degradation test
mixture. Column: Zorbax Eclipse C18, 1.8 μm, 50 × 2.1 mm, flow rate 0.6 mL/min.

efficiency. The other point is that these compounds have practically iden-1

tical UV spectra and cannot be used for peak tracking. Recently computer-2

assisted (off-line) method optimizations were reported for monoclonal3

antibodies (mAbs) and their domains in RPLC and IEX using 2D model as the4

gradient time–temperature model [9,10]. It should be noted however, that5

the computer-assisted method optimization can be a time consuming pro-6

cess when many samples, columns and effects of different method variables7

require evaluation. An effective approach to circumvent and increase pro-8

ductivity is automated method development. In this instance, an analyst9

defines a strategy and an ‘intelligent’ chromatography method development10

data system plans and performs many routine and optimization experi-11

ments autonomously. Various strategies of automated method development12

for mixtures of large molecules can be realized with ChromSwordAuto�.13

These can combine automated screening experiments with unattended14

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 62

62 S. V. Galushko et al.

Figure 3.5: The second run of the automatic rapid optimization. Conditions are same as
described for Fig. 3.4.

optimization, which is then followed by robustness studies using different1

DoEs. Results can also be used for off-line simulation and optimization.2

Such a strategy is used in different laboratories for automated RPLC method3

development using ChromSwordAuto� for the separation of variants and4

degradation products of the recombinant mAbs. The aim of method devel-5

opment for such projects is to study the domain-specific oxidation and6

develop stability-indicating methods that separate degradation products.7

For complex mixtures the optimization program can run multi-step gradi-8

ents to separate more components (Fig. 3.7).9

An important point to be considered is the column length for opti-10

mization of small and large molecules. It is known that the column effi-11

ciency for small compounds like peptides, after the digestion of proteins,12

is improved by increasing the column length. In contrast, the retention13

behavior of large proteins is different, and their bandwidth can be almost14

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 63

ChromSword�: Software for Method Development in LC 63

Figure 3.6: The third run of the automatic rapid optimization. Conditions are same as
described for Fig. 3.4.

constant for all practical column lengths in the range 50–250 mm [11]. For1

such samples, longer columns do not provide higher separation efficiency2

[11], and therefore a short column can be a good alternative. Results3

in Figs. 3.7 and 3.8 show that the automated procedure can success-4

fully find conditions to separate proteins on small columns. It should be5

noted that the optimization procedure is not related strictly to the col-6

umn length. It is related to the target resolution and practical run time;7

therefore, shorter run times can be obtained on a long column and longer8

run time on a short column. In Fig. 3.8(a) the initial three study runs9

and in Fig. 3.8(b) the final gradient run are shown to separate monoclonal10

antibodies, under RPLC conditions. It should be noted that no optimal lin-11

ear gradient for this mixture could be found in the temperature range of12

70–80◦C where reasonable peak width is observed and the column can be13

operated.14

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 64

64 S. V. Galushko et al.

Figure 3.7: Partially digested (using IdeS) and reduced (using dithiotreitol, DTT) mAb
sample. Peaks 2–4 — oxidation products of the crystallizable fragment (Fc/2); peak 5 —
(Fc/2); peak 7 — the light chain (LC); peak 9 — the N-terminal half of one heavy chain
(Fd). Column: 50 mm × 2.1 mm AdvanceBio RP mAb C8. Mobile phase A: Water + 0.1%
TFA, B: ACN + 0.1% TFA. Temperature was set to 70◦C, flow rate = 0.3 mL/min.

3.2.5 Automated robustness studies and statistical1

DoE with ChromSword� AutoRobust2

ChromSword� AutoRobust is a specialized application for automatic evalu-3

ation of robustness of HPLC methods. According to the ICH guidelines [12]4

“Validation of Analytical Procedures: Methodology (Q2B),” the robustness5

of an analytical procedure is defined as a measure of its capacity to remain6

unaffected by small, but deliberate variations in method parameters and7

provides an indication of its reliability during normal usage. The robustness8

should be considered at an appropriate stage in the development of the9

analytical procedure [12]. AutoRobust is a software tool for automation10

of robustness experiments to study the influence of variations in method11

parameters on chromatographic results.12

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 65

ChromSword�: Software for Method Development in LC 65

Figure 3.8: Column: 50 × 2.1 mm Zorbax 300 SB-Diphenyl. Mobile phase A: water +
0.1% TFA, B: ACN + 0.1% TFA. Flow rate: 0.25 mL/min; Temperature: 80◦C. Sample: test
mixture of mAbs (mAb1, mAb2 (confidential), Erbitux and Avastin). (a) Initial study runs of
unattended optimization for separation; gradients: 1. 30–70% B in 25 min; 2. 36–66% in
22 min; 3. 36–66% in 19 min. (b) The final run of the unattended optimization; gradient:
0 min — 50% B in 2.2 min — 51% B; 16.6 min — 54% B; 18 min — 55% B.

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 66

66 S. V. Galushko et al.

Robustness of a method is extremely important for providing method1

transfer to other laboratories and instruments. Typically, robustness tests2

are performed at late stages of drug development projects; however,3

performing robustness tests at later stages involves the risk that when a4

method is found to not be robust, it should be redeveloped and optimized.5

Therefore, it is better to perform robustness tests at an earlier stage6

of method development. Different critical quality attributes (CQAs) of a7

method can be tested — including area, area%, retention time, resolution8

and other CQAs. One of the most important CQAs for HPLC methods9

is the resolution between peaks of target compounds. The resolution10

characteristic of a method should be within appropriate limits to ensure11

the drug product quality.12

The following steps can be identified for robustness tests projects:13

(1) selection of the factors to be tested,14

(2) selection of the experimental design,15

(3) definition of the different levels of the factors,16

(4) creation of the experimental set-up,17

(5) execution of the experiments,18

(6) calculation of effects,19

(7) statistical and graphical analysis of the effects,20

(8) drawing conclusions from the statistical analysis and21

(9) if necessary, improving the performance of the method.22

These different steps are considered in more detail below.23

3.2.5.1 Selection of the factors24

For robustness tests, different operation factors can be considered. The25

selected factors can be quantitative (continuous) like the temperature or26

the concentration or qualitative (discrete) like the column batch. These27

factors should represent those that can be changed when a method is28

transferred between laboratories, analysts or instruments and that poten-29

tially could affect the response of the method. Typically, the following30

factors can be included in the robustness tests:31

• gradient time and slope of linear gradients,32

• initial and final concertation of linear gradients,33

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 67

ChromSword�: Software for Method Development in LC 67

• time and concentration of each gradient node (step) for multi-step1

gradients,2

• flow rate,3

• column compartment temperature,4

• pH of the MP,5

• wavelength,6

• column batch,7

• method equilibration time,8

• injection volume.9

All these parameters and factors are supported by automated DoE10

with ChromSword� AutoRobust module. A chromatographer can optionally11

specify all or several factors to be included in the DoE.12

The difference in flow rate, concentration and gradient time affect the13

resolution when different type of pumps (low- or high-pressure mixing14

systems), different solvent mixers and pumps from different manufacturers15

are used. The effective temperature inside a column can be different due16

to the difference in construction of compartments (forced air or still air17

oven). The small difference in glass electrodes and standard buffers can18

lead to differences in pH of a MP and selectivity of separation of basic and19

acidic compounds. If concentration of a sample is too low or too high,20

then increasing the injection volumes can lead to peak distortion.21

3.2.5.2 Selection of the experimental design22

The one-factor-at-a-time (OFAT), full factorial design (FFD) and the23

Plackett–Burman partial factorial design (PBD) can be used for robustness24

tests. The OFAT is the fastest design; however, it cannot estimate interac-25

tions of different variables without preliminary studies. The FFD is the most26

comprehensive design to determine interactions of factors and describe the27

response surface for finding optimum factor-values; however, it requires28

substantially more experiments. The PBD can be used as an alternative29

to FFD, but arrays of data points after the PBD cannot typically be used30

to solve the system of equations to determine chromatographic retention31

model parameters. In this case, a less reliable, simplified model is usually32

used to calculate response; however, deviations between the predicted and33

experimental value of a critical quality parameter can be too high. Another34

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 68

68 S. V. Galushko et al.

problem is a possible confounding of effects due to reducing the number1

of runs in PBD. In this case, the effects of different factors or interac-2

tion factors cannot be evaluated individually and the interpretation of the3

results becomes difficult and even incorrect.4

We consider that the robustness projects should include two designs:5

(1) The OFAT design which can rapidly identify which of tested variables6

has a significant effect on the response.7

(2) The FFD of the critical variables which were identified in (1).8

Both steps can be executed in a completely automatic manner with9

a reasonable number of experiments. The PBD can be planned when the10

number of runs is too high and it is not practically reasonable to run the11

FFD designs.12

3.2.5.3 Definition of the levels for the factors13

The factor levels of variables to be tested should be set around the nom-14

inal values specified in the operating (basic) method. The interval cho-15

sen between the extreme values represents the limits between which the16

factors are expected to vary when a method is transferred. It should be17

noted that the levels should be defined by the analyst according to the18

results of a preliminary study of chromatographic retention behavior of19

compounds and instrument specifications taking into account the preci-20

sion and the uncertainty with which a factor can be set and reset. To define21

the factor levels for the temperature, concentration and time of gradient22

steps, it is recommended to study the effect of these variables in more23

detail.24

3.2.5.4 Creation of the experimental set-up25

Each variable is studied in the experimental design, which is selected as26

a function of the number of factors and of levels to investigate. Two-27

level screening designs are a simple approach that can screen a rela-28

tively large number of factors in a relatively small number of experiments.29

More informative are the two-level designs with center points for effects30

of concentration and gradient time or the four-level designs with center31

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 69

ChromSword�: Software for Method Development in LC 69

points for effects of flow rate and temperature. Such designs are optional in1

AutoRobust and allow the analyst to establish a linear or nonlinear reten-2

tion model. Creation of the experimental design manually takes substantial3

time, even for OFAT. For planning FFD and PBD, normally special statistical4

software are used and then the design plan should be transferred into a5

sequence of runs of a chromatography data system. This is also a time-6

consuming process, and is practically very important that robustness test7

software can create DoE and transfer it into a sequence of runs automati-8

cally. The AutoRobust software module in ChromSword� provides a simple9

and rapid automated set-up of up to eight variables with 2–7 levels for10

OFAT, FFD and PBD. An unlimited number of qualitative factors (column,11

solvent batches, etc.) can also be included in the DoE.12

3.2.5.5 Execution of experiments13

It is important for reproducible robustness experiments to provide con-14

stant parameters both for injection and conditioning runs. Column and15

instrument wash-out, and purging and conditioning runs should be set up16

according to the instrument and column specifications. Adequate time for17

column equilibration, not less than 10 column volume have a paramount18

importance especially for large proteins to obtain reproducible results. For19

more confidence, it is recommended to include the column equilibration20

time as a variable in the robustness tests DoE.21

The planned DoE is executed automatically with AutoRobust. The22

method development system performs these runs while interacting with a23

chromatography data system or directly with the modules. For estimation24

of time effects and stability of the instrument and the column, a number25

of additional experiments at nominal levels can be added to the planned26

DoE. These replicate experiments are performed before, at regular time27

intervals between, and after the robustness test experiments. These exper-28

iments allow checking whether the method performs well at the beginning29

and at the end of the experiments and to estimate for drift and column30

stability.31

The results of runs are used to calculate effects of variables and deter-32

mine the response.33

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 70

70 S. V. Galushko et al.

3.2.5.6 Calculation of effects and response determined1

From the performed experiments, a number of responses can be determined.2

For chromatographic methods, responses describing a quantity such as the3

content of main substance and by-products and effects of variables on peak4

area% and areas should be evaluated. The responses determined during5

the robustness test can be one of the following: the resolution between6

each pair of neighboring peaks, the retention time, the area and the area%7

of compound peaks. These parameters allow for evaluating the quality of8

a method and the effects of variables and factors.9

The automated data processing procedure additionally calculates the10

relative retention, the peak asymmetry, the peak height and number of11

theoretical plates, which can also be included in the robustness study12

results.13

3.2.5.7 Numerical and graphical analysis of the effects14

One of the most important CQAs for HPLC methods is the resolution between15

peaks of target compounds. The resolution characteristic of a method16

should be within appropriate limits to ensure the drug product quality.17

As mentioned earlier, two approaches can be used to evaluate the effect18

of method variables on resolution — descriptive and mechanistic. Tra-19

ditional statistically based software uses the descriptive approach and20

models the response surfaces with quadratic polynomials [12]. The main21

advantage of this approach is the simple and easy data processing proce-22

dure. This approach does not use physical models of the separation process23

and peak tracking from run to run. However, from the theory and practice24

of computer-assisted HPLC method development, it is well known that the25

quadratic dependence between resolution and method variables (concen-26

tration of organic modifier, gradient profile, temperature, pH) is more an27

exception rather than a rule for complex mixtures with irregular retention28

models [8]. Retention models of compounds can cross each other, and29

dependences Rs = f (temperature, concentration, gradient time, pH) can30

have one or several maxima and minima. Figure 3.9 shows the resolution31

plots for limited pairs of a mixture of nine beta-blockers as a function32

of the concentration of methanol in the mobile phase. It is obvious that33

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 71

ChromSword�: Software for Method Development in LC 71

Figure 3.9: Resolution map: Effect of methanol concentration in MP on resolution
of a mixture of nine beta-blockers. The arrows show the change of the limited pair
in different regions of methanol concentration. 1 metipranolol/alprenolol; 1–2 propra-
nolol/metipranolol.; 2–3 carazolol/celiprolol; 3–4 metoprolol/celiprolol; alprenolol —
carvedilol.

modeling of the resolution response without peak tracking in this case will1

lead to wrong conclusions regarding optimal conditions and robustness of2

the method. The mechanistic approach uses parameters of the chromato-3

graphic process responsible for the response; however, retention behavior4

of the compounds must be studied to describe the effect of variables on5

the resolution. These include peak tracking from run to run, evaluation6

of parameters of retention modes in gradient elution and under different7

temperatures, and building a system of equations and solving them.8

The mechanistic approach that applies relations from the theory of LC9

is supported in the AutoRobust software. After the design of experiments10

is created and performed in automated mode, data are processed for sta-11

tistical and graphical analysis of responses. Method variables can have a12

substantial effect on resolution, and knowledge of the effect of the combi-13

nation of these variables is necessary to study the robustness and to build14

up a DS of the method. The example of the effect of two variables with a15

fixed nominal value for two other variables is shown in Fig. 3.10.16

3.2.5.8 Improving the performance of the method17

Analysis of the resolution maps for a combination of three different vari-18

ables enables visualization of areas where resolution can be increased19

or decreased. For example, the resolution map shows that temperature20

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 72

72 S. V. Galushko et al.

Figure 3.10: Resolution maps: Effect of the temperature and the gradient breakpoint time
on resolution of a limited pair at the flow rate of 1.0 mL/min (a) and 0.8 mL/min (b).
Mixture: 10 hair dyes. Column: ACE Excel C18-Amide 100 × 4.6 mm, 3 μm.

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 73

ChromSword�: Software for Method Development in LC 73

Figure 3.11: Chomatograms at a temperature 30◦C, flow rate of 1.0 mL/min and gradient
time of 24 min (a) and at 28◦C, 0.80 mL/min and 22 min, respectively (b).

at 28◦C, the flow rate of 0.80 mL/min and the gradient time of 22 min1

will provide a more robust method with higher resolution than one that2

was used after optimization (30◦C, 1.0 mL/min and 24 min, respectively)3

(Figs. 3.10(b) and 3.11). Thus, robustness studies can also be considered4

as an additional tool to improve the performance of the method.5

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 74

74 S. V. Galushko et al.

3.3 Computer-assisted Method Development1

ChromSword� in the off-line mode can be used for optimizing separations2

in RPLC, NPLC and IEX.3

If the structural formulae of compounds are known then, ChromSword�
4

can predict the conditions of isocratic or gradient elution for acceptable5

retention to be obtained. No preliminary experiments need to be performed6

for the virtual chromatography. If the structural formulae of compounds7

being separated are known, then it is possible to start optimization of8

resolution after the first run. In this case, after inputting the experimen-9

tal retention data for the first run, parameters of solutes will be refined10

to predict the best conditions for the separation. Entering experimental11

retention data for the second and the following runs makes possible a more12

precise prediction.13

For solutes with unknown structures, ChromSword� can determine,14

from chromatographic experiments, their characteristics (molecular vol-15

ume, the energy of interaction with water, nature (acid, base, neutral, pKa16

value) and then predict their retention times on different reversed-phase17

columns and with different MPs.18

Prediction is the first step in method development. The subsequent19

steps are optimization of retention and separation. ChromSword� enables20

a user to optimize the concentration of a modifier in a MP, pH value, tem-21

perature, gradient profile and column coupling. To optimize the separation22

of a mixture in gradient elution mode, stochastic methods like Monte Carlo23

and genetic algorithms are used.24

For NPLC, it is possible to optimize the concentration of a stronger25

solvent in a weaker one when the retention data for two or more runs are26

entered. For IEX, the buffer or salt concentration in a MP can be optimized.27

Optimization of temperature is possible both for NPLC and IEX.28

Optimization of method variables are organized in different modules29

of the software. The results depend on the information that a user enters30

into the software (Table 3.1).31

ChromSword� can work with massive amounts of data. One sample file32

can contain up to 100 compounds including structural formulae and the33

data for up to 20 runs in the each module.34

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 75

ChromSword�: Software for Method Development in LC 75

Table 3.1: Input/output of ChromSword� in the off-line mode.

Minimal input Expected output

Structural formulae are considered

Structural formulae (up to 100
in a file)

Starting conditions for RPLC: column type, eluent.

Structural formulae and data of
one run

Optimal eluent for separation of a mixture in isocratic
RPLC on a column being used.

Optimal gradient profile.
Starting conditions of RPLC for other column types

and an eluent.

Structural formulae are not considered

Data of two runs with different
concentrations of an organic
solvent in a MP (RPLC)

Optimal eluent for separation of a mixture in isocratic
RPLC on a column being used.

Starting conditions of RPLC for other column types
and an eluent.

Evaluation of the analyte parameters (molecular
volume, polarity).

Data of two runs with different
concentrations of an organic
solvent or a buffer in a MP

Optimal eluent for separation of a mixture in isocratic
RPLC, NPLC and IEX.

Optimal gradient profile.

Data of two runs with different
gradient profiles

Optimal gradient profile for separation of a mixture in
gradient HPLC.

Optimal eluent for separation of a mixture in isocratic
HPLC.

Data of two runs with different
temperatures of a column

Optimal temperature for separation of a mixture in
isocratic HPLC.

Enthalpy sorption of analytes.

Data of two runs with different
pH of a MP

Data of three runs with
different pH of a MP

Optimal pH for separation of a mixture in isocratic
RPLC.

Optimal pH for separation of a mixture in isocratic
RPLC.

Nature of analytes (base, acid, neutral).
pK value of analytes.

Two variable optimizations

Data of three and four runs
with different
concentrations, pH,
temperatures, columns,
solvents, gradient profiles

Optimal gradient profile and temperature;
concentration and pH; concentration and
temperature; pH and temperature; concentration of
two different organic solvents; optimal connection
of two columns with different selectivity and
concentration, gradient profile, pH or temperature.

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 76

76 S. V. Galushko et al.

3.3.1 Concepts and procedures for developing HPLC methods1

The central idea of the computer-assisted method development is to input2

information about the mixture to be separated and then to apply a com-3

puter simulation to predict results for different chromatographic condi-4

tions, thus finding the acceptable conditions for separating the mixture.5

One of the options is to use structural formulae as input for a computer6

program and to predict acceptable chromatographic conditions by analyz-7

ing information concerning their structures. It is an easy way for the user,8

but it is one of the most complicated problems in chromatographic science9

to predict acceptable conditions from a chemical structure. A much less10

complicated problem is to predict the results of chromatographic experi-11

ments by analyzing the results of several experiments previously performed.12

It is understandable that the less information a computer program13

receives, the less precise the prediction that is obtained. If the input is14

only the structural formulae of compounds, the level of predictability is15

much less than that we would have after entering the results of several16

chromatographic experiments and their conditions. On the other hand,17

the fewer experimental results the computer program requires to produce18

acceptable prediction, the less time we have to spend developing the19

method.20

It is hard to obtain an exact prediction of the retention time values from21

the structural formulae. The task of working with structural formulae is not22

to enable the precise prediction of retention in the first-guess experiment23

but to predict the concentration of an organic solvent in a MP (or a gradient24

profile) for acceptable retention to be obtained. Successful prediction of25

the concentration or the gradient profile will save time and the amount of26

solvent used in the experimental work. From a practical point of view, it is27

not important at this stage to predict the retention factor values precisely.28

The most important issue is to obtain these values within the acceptable29

practical limits of 1–20.30

A practically reasonable approach is to start method development with31

only the information about structure, to receive the first prediction of chro-32

matographic conditions (the first-guess method), to inject the sample and33

then to use experimental retention results for correcting the first-guess34

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 77

ChromSword�: Software for Method Development in LC 77

prediction. In this case, a good chance exists to find acceptable conditions1

within a minimal amount of time. However, in many cases, a chromatog-2

rapher has no information about compounds in a mixture or the structure3

parameters are not known. This situation is typical for developing stability4

indicating methods, reaction monitoring, separation of bio-mixtures and5

large molecules. In this case, it is necessary to obtain retention times for6

two or more experiments and then start computer experiments.7

3.3.2 Retention models8

The retention model in ChromSword� is defined as a type of a mathemat-9

ical equation which describes the relationship between the retention of a10

compound and its properties as well as the conditions appertaining to the11

chromatographic experiments.12

It is the focal point in method development software to determine13

retention models that adequately describe the effect of chromatographic14

conditions on the retention of compounds in a sample. In this case, based15

on only a few experiments, the software can predict the results of many16

other experiments under different conditions, thus allowing a chromatog-17

rapher to simulate experiments with a computer and find the conditions18

for acceptable or best separation.19

ChromSword� supports two approaches for the determination of reten-20

tion models in RPLC. These are as follows:21

(A) A traditional formal approach which applies linear, quadratic, cubic
or other polynomial models for describing the relationship between the
retention of solutes and the concentration of an organic solvent in a MP:

ln k = a + b(C) (1)

ln k = a + b(C) + d(C)2 (2)

ln k = a + b(C) + d(C)2 + e(C)3 (3)

where k is the retention factor of a compound, C is the concentration of22

an organic solvent in a MP and a, b, d, and e are parameters of equations23

that must be determined by the software for each compound from the24

retention data obtained by using different concentrations of an organic25

solvent in a MP.26

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 78

78 S. V. Galushko et al.

The simplest is the first linear model, which is known as the LSS model.1

It requires two initial experiments to start the optimization, but some-2

times it does not completely predict correctly the effect of concentration3

of an organic solvent in a MP. This can be observed for basic and acidic4

compounds that contain highly polar and charged structural fragments.5

Such fragments are typically observed in natural and pharmaceutical com-6

pounds, and retention models for such compounds are nonlinear in many7

cases. Additional experiments as a rule do not lead to improvement in the8

accuracy of the linear model when it is applied for nonlinear functions.9

The quadratic model describes retention more adequately. Additional10

experiments improve the accuracy, but three initial experiments are11

required to start computer optimization. The higher the power of a model,12

the more complex retention behavior can be described and the more initial13

experiments must be performed to start optimization of separation.14

ChromSword� supports optimizing separation for polynomial models15

up to power 6. A chromatographer optionally can choose from powers16

1 to 6. Typically, the powers 1–3 are most commonly used; however, the17

most complex retention can be described and separation optimized with18

the higher polynomial powers.19

All polynomial models predict the retention of solutes rather precisely20

in the interpolation region of those concentrations studied. These models21

are less reliable in the extrapolation region. For example, if experiments22

were performed with 40% and 50% of the organic solvent in a MP, one23

can expect rather a good prediction of retention and separation in the24

region between of these concentrations and less accuracy in the regions25

of 30–35% and 50–55%. Extrapolation within wider limits very often leads26

to substantial deviations between predicted and experimental data.27

(B) An approach that takes into account both the features of solutes28

being separated and the characteristics of the stationary and MPs being29

used:30

In this method, the two-layer continuum solvatic retention model was31

proposed [14,15] as an extension of the solvophobic model of RPLC [16]:32

• The surface of a modifier sorbent in RPLC has a surface layer that involves33

hydrocarbon radicals and some of the components of a MP.34

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 79

ChromSword�: Software for Method Development in LC 79

• The surface layers are assumed as being quasi-liquid having their own1

physical characteristics i.e surface tension and dielectric permittivity.2

• The surface characteristics vary with varying the MP composition and3

SP properties.4

• Molecules of retained substances penetrate into the surface layer.5

• The retention is determined by the difference in molecule solvation6

energies in the mobile and SPs.7

In this model, the retention of a solute is derived as

ln k = a(V)2/3 + b(ΔG) + c (4)

where V is the molecular volume of a solute, ΔG is the energy of8

interaction of a solute with water, and a, b and c are the parameters9

which are determined by the characteristics of a reversed-phase column10

in the eluent being used, i.e. surface tension, dielectric permittivity and11

others. This approach works more precisely and rapidly than that based12

on formal linear and quadratic polynomial models, but it requires that13

both the parameters of the solutes (volume and energy of interaction14

with water) and the characteristics of the reversed-phase column under15

experimental conditions be known.16

The characteristics of different commercially available RPLC columns17

were experimentally determined initially in a wide range of concentrations18

of methanol and acetonitrile in water. ChromSword� contains a database19

of characteristics for more than 150 commercially available reversed-phase20

columns in these eluents; they load automatically when a column and an21

eluent are chosen from the software menu.22

ChromSword� calculates the parameters of compounds from the struc-23

tural formulae. If structural formulae of the compounds being studied is24

not known or a user decides not to draw them, these parameters can be25

determined by ChromSword� from the two chromatographic experiments26

with different concentrations of an organic solvent in a MP.27

This approach enables ChromSword� to predict regular or irregular28

retention behavior of solutes separated and enables a chromatographer to29

move rapidly to achieve maximal separation in minimal time. Each addi-30

tional experiment leads to an improvement in the predictability.31

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 80

80 S. V. Galushko et al.

Thus, this approach enables a chromatographer to start optimizing1

retention without any preliminary tests if the structural formulae of the2

compounds are known and also enables one to start optimization of sep-3

aration on entering the retention data for only one run.4

For solutes with unknown or undefined structures, this approach can5

also be used after entering the retention data and chromatographic con-6

ditions for two runs.7

The main advantage of the structure and column properties related8

approach is that it “fills” both a column and compound features. It works9

precisely in the interpolation region and reliably in the extrapolation10

region. Figure 3.12 and Table 3.2 show that the solvatic model provides a11

Figure 3.12: Adenosine monophosphate: predicted and experimental retention. Input:
structure and data of one run at 3% MeOH. Column: Purospher RP-18e, 5 μm. MP: MeOH
− phosphate buffer, pH = 2.5.

Table 3.2: Predicted and experimental retention of the beta-blocker carazolole in
the extrapolated region of concentration of MeOH in a MP.

MeOH (%) kexp Klinear Dev (%) Kquadratic Dev (%) kSolvatic Dev (%)

60 4.62 4.62 4.62 4.62
50 6.33 6.33 6.33 6.33
45 8.83 7.71 −12.7 8.83 8.26 −0.33
30 33.57 19.70 −41.3 38.74 15.4 31.90 −4.97

Note: Retention values at 60% and 50% were used as input for the linear and solvatic models
and at 60, 50 and 45% for the quadratic model. Column: Purospher RP 18e, 5 μm, 150×4 mm.
MP: MeOH − 50 mM phosphate buffer, pH = 3.5.

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 81

ChromSword�: Software for Method Development in LC 81

good enough prediction of retention behavior for highly polar compounds1

that contain both uncharged and charged highly polar fragments.2

3.3.3 Procedure for optimizing pH in RPLC3

When a sample contains basic or acidic compounds with ionizable atoms4

or groups, pH is a very effective tool for optimizing the separation.5

ChromSword� supports two mathematical procedures for optimizing pH in6

RPLC. The first procedure is based on applying polynomials with powers7

up to 6 and the second procedure determines, using the retention data8

obtained with different pH values of a MP, the nature of solutes (neutral,9

acidic, basic), their pKa value and then builds their retention models.10

3.3.3.1 Polynomial models11

The first three members are:

ln k = a + b(pH) (5)

ln k = a + b(pH) + d(pH)2 (6)

ln k = a + b(pH) + d(pH)2 + e(pH)3 (7)

The powers 4–6 optionally can be employed for describing the most com-12

plex dependencies between retention and pH value of a mobile phase.13

In order to optimize pH, a user must enter experimental retention data14

for two or more isocratic or gradient runs with different pH value of a MP.15

By analyzing retention data, ChromSword� determines and then refines the16

parameters of the retention model for the column being used and predicts17

the conditions for the best separation.18

Tasks of a user are the same as that for optimizing separation in RPLC19

using a polynomial model and is described in Chapter 2 “procedure” for20

method development in HPLC using polynomial models.21

3.3.3.2 Fit pKa optimizing procedure22

This procedure determines, using the retention data obtained with differ-
ent pH values of a MP, the nature of solutes (neutral, acidic, basic), their
pKa values and then builds their retention models:

k = k(0) + k(i)/(1 + F) (8)

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 82

82 S. V. Galushko et al.

where k(i) is the retention factor of an ionic form of a solute, k(0) is the1

retention factor of a molecular form of a solute, and F is Ka/[H+] for2

acids and [H+]/Ka for bases, where Ka is the dissociation constant of a3

solute.4

In order to optimize the pH value using the fit pKa procedure, a user5

must enter experimental retention and efficiency data for three or more6

isocratic or gradient runs with different pH values of a mobile phase. By7

analyzing retention data, ChromSword� determines the nature of the com-8

pounds (base, acid, neutral) studied at pH intervals, calculates the pKa9

values and then refines the parameters of the retention models for the10

column being used (Table 3.3, Fig. 3.13).11

Substantial differences can be seen for retention time of basic and12

acidic compounds predicted by the pKa and quadratic retention models.13

The pKa-related model typically predicts retention for acidic and basic14

compounds better (Table 3.4).15

Deviations in predicted retention can lead to a substantial difference16

in predicted optimal pH value for separation of a mixture with basic and17

acidic compounds. In Figs. 3.14 and 3.15, the resolution maps as functions18

of the quadratic and the fit pKa models are shown for optimization of19

separation of a mixture of sweeteners and preservatives.20

The Fit pKa procedure enables a user to not only optimize the separation21

but also determine the nature of the compounds and evaluate their pKa22

Table 3.3: The pKa-related model parameters determined for mixtures of
nucleobases and nucleosides.

Compound Nature k0 ki pKa

1 Uracil Neutral 1.12
2 Cytosine Base 0.78 0.51 5.63
3 Thymine Neutral 3.77
4 Uridine (U) Neutral 3.10
5 Cytidine (C) Base 2.06 1.34 4.45
6 Ara-U Neutral 4.43
7 Ara-C Base 2.68 1.68 4.17
8 6-azauridine Acid 1.54 1.20 5.62
9 6-azacytidine Neutral 0.98

10 5-azacytidine Base 2.21 1.47 4.04

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 83

ChromSword�: Software for Method Development in LC 83

Figure 3.13: Retention models (lnk = f(pH)) built with the Fit pKa procedure for the
compounds listed in Table 3.3 Column: Purospher RP18e, 5 μm, 125 × 4 mm. MP: 20 mM
phosphate buffer pH = 2.5; 4.6, 7.0. Flow rate 0.8 mL/min, T = 35◦C.

Table 3.4: Predicted retention time with the quadratic (RTq)
and pKa-related (RTpK) model. RTe — experimental values.

Compound RTq RTpK RTe pKa

1 Sorbic acid 7.54 10.00 10.00 4.67
2 Benzoic acid 4.76 5.41 5.37 4.19
3 Acesulfame 2.63 2.61 2.64
4 Saccharine 3.41 3.45 3.43
5 Aspartame 14.18 14.41 14.35
6 Caffeine 7.07 7.06 7.08

values under the conditions of a chromatographic experiment. In Tables 3.31

and 3.4, the pKa values calculated from the experimental data are listed. It2

should be noted that the chromatographic method for the determination3

of pKa values has advantages over other methods because it can be applied4

for mixtures and requires only a small amount of compounds.5

It is necessary to take into account that the fit pKa procedure assumes6

solutes to be monoprotic; therefore, for diprotic (and more) solutes as

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 84

84 S. V. Galushko et al.

Figure 3.14: Resolution map built with the Fit pKa procedure. Separation of the caffeine,
acesulfame, saccharine and benzoic and sorbic acids. Column: Purospher RP18e, 5 μm,
125 × 4 mm. MP: 10% ACN/90% 20 mM phosphate buffer, pH = 7.01; 4.02, 5.75. Flow
rate = 0.8 mL/min, T = 30◦C.

Figure 3.15: Resolution map built with the quadratic model. Conditions and mixture as
described for Fig. 3.14.

well as for zwitterions, pKa values can be considered as conditional. Nev-1

ertheless, this procedure can give valuable information about unknown2

compounds.3

3.3.4 Optimization of NPLC methods4

For optimization of the separation in NPLC, ChromSword� now sup-
ports only polynomial retention models. Retention in the NPLC can
be described rather adequately by bilogarithmic models. ChromSword�

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 85

ChromSword�: Software for Method Development in LC 85

supports polynomials up to a power of 6. The first three are the following:

ln k = a + b(ln C) (9)

ln k = a + b(ln C) + d(ln C)2 (10)

ln k = a + b(ln C) + d(ln C)2 + e(ln C)3 (11)

where C is the concentration of the stronger solvent in the mobile phase.1

The powers 4–6 can be employed for describing the most com-2

plex dependencies between retention and concentration of a modifier3

in a MP.4

In order to optimize a separation in NPLC, it is necessary to enter exper-5

imental retention and efficiency data for two or more runs with different6

concentrations of a strong solvent in the MP. By analyzing the retention7

data, ChromSword� determines and then refines the parameters of the8

retention model for a column being used and predicts the conditions for9

the best separation.10

User tasks are the same as for optimizing separation in RPLC by using11

polynomial model and described in Chapter 2 “procedure” for method devel-12

opment in HPLC using polynomial models.13

3.3.5 Optimization of IEX methods14

The effect of the buffer concentration in the MP on retention in IEX can15

be described adequately by the same functions as for NPLC. Thus, a user16

can utilize the same procedure both for normal-phase and for IEXLC.17

In order to optimize a separation in IEXLC, the user must enter experi-18

mental retention and efficiency data for two or more isocratic or gradient19

runs with different concentrations of a counter-ion in the MP. By analyzing20

the retention data, ChromSword� determines and then refines the parame-21

ters of the retention model elution for the column being used and predicts22

the conditions for the best separation.23

3.3.6 Optimization of the temperature24

Optimizing the temperature can be an effective tool if the conformation25

of solutes changes with temperature. This phenomenon can be observed26

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 86

86 S. V. Galushko et al.

rather often in the case of large molecules such as peptides, proteins or1

for molecules with bulky substituents. In general, the effect of tempera-2

ture on the logarithmic retention factor can be described by the simple3

equation ln k = a+b(1/T) for any mode of chromatography including gas4

chromatography. But if a solute changes its conformation, the function5

ln k = f(1/T) can be much more complex.6

To optimize the temperature of a chromatographic separation,
ChromSword� uses up to six power polynomials. The first three are the
following:

ln k = a + b(1/T) (12)

ln k = a + b(1/T) + d(1/T)2 (13)

ln k = a + b(1/T) + d(1/T)2 + e(1/T)3 (14)

where T is the temperature of the MP.7

For optimizing the temperature, the same procedure as for optimizing8

the concentration of a modifier in RPLC, NPLC and IEX can be used.9

In order to optimize a separation, the user must enter experimental10

retention and efficiency data for two or more runs with different tempera-11

tures of the MP. By analyzing the retention data, ChromSword� determines12

and then refines the parameters of the retention model elution for the13

column being used and predicts the conditions for the best separation.14

If the model with the power one is applied, then ChromSword� also
determines the enthalpy of sorption from the retention model:

ln k = ln k0 + ΔH/(RT) (15)

where ΔH is the enthalpy of sorption of a solute in kJ/mol and R is the15

universal gas constant.16

Thus, ChromSword� can be applied not only for optimizing a separation17

but for physico-chemical studies of compounds. For unknown compounds,18

ΔH values can be useful for elucidation of their structure.19

3.3.7 Optimization of the gradient20

There are different approaches to optimize gradient profiles after the deter-21

mination of the retention models. The most frequently used approach is the22

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 87

ChromSword�: Software for Method Development in LC 87

optimization of linear gradient profiles when two runs with linear gradients1

and different gradient times are used as input. These runs are used to build2

retention models. The initial and final concentrations of a modifier are3

fixed both for input and optimization. In this case, only the gradient time4

is optimized. This is simple approach that can easily be combined with5

the optimization of other variable like the temperature of a MP. However,6

complex mixtures in many cases can be separated only with multi-step7

gradient profiles. These include natural samples or samples after force8

degradation tests in pharmaceutical research and development laborato-9

ries. Every gradient node can be characterized by two parameters — time10

and concentration — and the position of every node in the time and the11

concentration dimensions should be optimized. Such multi-step gradients12

can be optimized by simulating chromatograms for different multi-step13

gradient profiles; however, this is not a fast method.14

To build retention models, ChromSword� can process two or more runs15

with linear or (and) multi-step gradients. In this case, every new run can16

be used to refine retention models. For the optimization of both linear and17

multi-segment gradient profiles, the Monte Carlo and genetic algorithms18

are used. A user needs to enter the parameters of optimization, desired19

run time, separation and target peaks to be separated, and the stochastic20

procedure will find the best gradient profile automatically, assuming the21

separation is possible. The more segments on the gradient profile and com-22

pounds in a sample, the more time for optimizing is necessary. Typically,23

ChromSword� spends only a few minutes with conventional PCs finding24

the best multi-segmented gradient profile.25

3.3.8 Optimizing two variables simultaneously26

Optimization of two variables is an effective tool for improving and devel-27

oping HPLC methods. ChromSword� provides all necessary interface and28

mathematical procedures for optimization of two chromatographic vari-29

ables simultaneously. The following two variables can be optimized with30

ChromSword�:31

Using one column:32

• gradient profile and temperature33

• concentration of a modifier in a MP and temperature34

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 88

88 S. V. Galushko et al.

• pH and temperature1

• concentration of an organic solvent and pH2

• concentration of two different organic solvents3

Using up to four connected columns with different selectivity (column4

coupling, column combination):5

• gradient profile and ratio of columns6

• concentration of an organic modifier and column ratio for RPLC7

• concentration of an organic modifier and column ratio for NPLC8

• pH and column ratio for RPLC9

• temperature and column ratio for RPLC and NPLC10

3.3.9 Simultaneous optimization of a gradient profile11

and temperature12

Gradient and temperature optimization procedure allows the user to predict13

retention and to optimize the separation in gradient elution by entering14

retention data and experimental conditions for three or more gradient runs15

with different slopes and temperature. It is practically useful that the16

gradient profiles can be both linear and multi-step. One of the possible17

plans of the experiments can be for a user to perform two linear gradients18

with different slopes and same temperature and the third linear gradient19

with a different temperature. The slopes should be substantially different.20

• Run 1: 20 min linear gradient with concentration of an organic solvent21

ranging from 5% to 95% at temperature 30◦C.22

• Run 2: 40 min linear gradient with concentration of an organic solvent23

ranging from 5% to 95% at temperature 30◦C.24

• Run 3: 40 min linear gradient with concentration of an organic solvent25

ranging from 5% to 95% at temperature 40◦C.26

The difference in temperature should be, in the majority cases, not less27

than 10◦C between gradients.28

When the user inputs data of experimental runs (retention, efficiency,29

area) and conditions (gradient profiles, temperature, column dead time,30

the dwell time of the HPLC system), ChromSword� builds retention mod-31

els and the user can compute simulate experiments with different profiles32

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 89

ChromSword�: Software for Method Development in LC 89

and temperatures. It is also possible to search for optimal gradient profile1

and temperature using the automatic procedure. The simplest approach2

that is used in different method development software is to build reso-3

lution maps where the resolution is a function of the gradient time and4

temperature. In this case, the initial and final gradient time values are5

fixed and cannot be optimized automatically. The user should change the6

initial and final MP compositions and observe their impact on the resolu-7

tion map. This manual procedure takes substantial time, even for simple8

linear gradients. For example, to study the effect of initial and final con-9

centrations for +/−5% it is necessary to simulate 100 resolution maps10

for all combinations of the initial and final concentration. For multi-step11

gradients, the number of computer experiments to simulate the position12

of every gradient point and their combinations is enormous. Automated13

optimization procedures that are implemented in ChromSword� have no14

such limitations and enable a user to optimize simultaneously the initial15

and final concentrations, gradient time and temperature for linear gradient16

profiles or the temperature and position of all nodes in multi-step gradient17

profiles.18

When a user finds a promising gradient profile with ChromSword� and19

performs the run, it is also possible to input the obtained retention data20

to refine retention models and then repeat the computer simulation and21

optimization.22

3.3.10 Optimization of separation using supervised machine23

learning24

In recent years, machine learning-based models have been able to solve25

problems that previously could be resolved only by experts [17,18]. Deep26

machine learning models on limited datasets were applied for the predic-27

tion of retention time of peptides in RPLC [11]. In earlier publications,28

outdated artificial neural network methods were utilized to predict reten-29

tion time of simple samples and a few linear gradients [19, 20]. None30

of these contributions attempted at finding multi-step solvent gradient31

for separation of compounds. We applied machine learning as one of the32

optimization methods in ChromSword�. The deep machine learning tech-33

nology was not utilized widely in chromatography. We consider that some34

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 90

90 S. V. Galushko et al.

information on its possibility in gradient optimization can be interesting1

for both computer scientists and specialists in computer-assisted method2

development.3

For the deep learning model, we used the recurrent neural network
(RNN). An efficient algorithm for RNN is the long short-term memory
(LSTM) cells [21]. The LSTM cell in an RNN-based model is a recursive
function that uses a set of sub-functions. This function receives input data
from the training set for every time step. In our case, the time steps are
training runs in a sequence of runs. Then, this function tries to forecast the
desired result as an optimal solvent gradient to achieve good separation of
compounds. Parameters of sub-functions inside the LSTM cell are trained
using modern variations of stochastic gradient descent (SGD) algorithms.
It should be noted that the LSTM cannot be applied directly to produce
usable method conditions because the resulting value will be in a range
from −1 to 1 (tanh function). To use LSTM layers, we need to normalize
input and output data vector to appropriate scale or to use as a last layer
linear regression of deep learning model. The linear regression layer would
then produce usable values for concentration in a range between 0 and
100. As for the input part of the LSTM, we use the convolutional neural
network (ConvNet) [22] to embed features of scouting runs like data points
of the chromatogram, spectra, retention time of compounds, solvent con-
centration gradient, temperature, etc. A very promising development in
machine learning research in recent years has been made in the field of
deep reinforcement learning [23]. These algorithms use a model that learns
regression task when it tries to forecast the cumulative reward of the whole
trajectory of actions to perform a predefined task. It means that we can
train a model to generate method conditions for a sequence of runs that
will gradually lead to the best separation of compounds. For each run, the
quality of the result (reward) can be estimated using the sum of pair resolu-
tion values for each peak in a run. The model calculates cumulative reward
value for each run in a sequence. Using these rewards, the model learns to
construct a gradient, extract knowledge from the acquired chromatogram
and then construct the next gradient that will have a higher reward value

R =
n∑

t=0

γtrt (16)

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 91

ChromSword�: Software for Method Development in LC 91

Cumulative reward R is calculated by summing all rewards rt of runs multi-
plied by discount constant γt that reduces the importance of future rewards
at the present state. We cannot use R value directly to train our model,
because it takes into account only executed actions. For example, it calcu-
lates rewards from runs with method conditions in a specific sequence, but
we would like to construct utility function to train our model to include
more possible method conditions. To realize this, we can construct the
quality method value (Q)-based model using Bellman’s equation Qπ that
takes advantage of partial Markov decision process property:

Qπ(st, at)← Qπ(st, at) + α
(
rt + max

a
Qπ(st+1, sa+1)−Qπ(st, at)

)

(17)

State st contains retention time, width of peaks, pair resolutions and other1

important method quality characteristics. Action at contains proposed a2

concentration gradient and other method conditions. We try to maximize3

Q-value that is approximated cumulative reward by changing method con-4

ditions.5

To train the deep reinforcement learning model, we used physical reten-6

tion models generated by ChromSword� as a training environment. The7

retention models were determined from retention behavior of different8

families of compounds, like small molecules and proteins. Then, a special9

procedure generated a large dataset of runs and simulated chromatograms10

for the training. In fact, the pattern of chromatograms as a function of sol-11

vent gradients and other conditions like temperature or pH can be used for12

the training. When beginning the training set, the Q-value model produces13

random method conditions; however, after training — using distributed14

computing — it can be applied to new samples. Our results showed that15

after training with simulated samples, the procedure can process the results16

of scouting runs of real samples and predict gradient profiles to provide a17

reasonable separation.18

3.3.11 Column coupling19

ChromSword� provides support in the case of the most complex mixtures20

when no acceptable conditions were found with several types of columns.21

In this case, the chromatographer can try to separate a mixture by coupling22

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 92

92 S. V. Galushko et al.

columns with different selectivities. To optimize separation on coupled1

columns, it is possible to use data that were obtained separately for dif-2

ferent single columns. Typically, columns with 2, 5, 7.5, 10, 15 and 25 cm3

lengths are commercially available and can be easily combined by using4

dead volume connectors or column cartridges. In this case, the generic5

procedure can be applied. This is done as follows:6

• Make several runs with different concentrations of a modifier or gradient7

profiles in column 1.8

• Input data of the runs for the column 1 page.9

• Build retention models for compounds being separated.10

• Build the pair resolution map, search for promising regions and simulate11

chromatograms.12

• If no acceptable conditions are found, a user has choice for the next13

step:14

• Try an other type of column (columns 2, 3, 4).15

• Try an other solvent and pH or/and temperature with column 1.16

If the chromatographer chooses the first option (change a column), it is17

possible to repeat the same steps 1–4 to try to optimize the concentration18

of a modifier in the MP or the gradient profile with that of the column 2.19

The other conditions must be the same as used for column 1 (solvent type,20

temperature, pH). If no good separation was found with column 2, the21

user can perform a computer simulation on:22

• Coupling of columns 1 and 2 (a maximum of four columns can be vir-23

tually coupled) and optimizing the ratio of column lengths or column24

segments.25

• Effect of the concentration of organic modifiers or the gradient profile26

on the separation for coupled columns.27

The same procedure can be used for optimizations of pH or temperature28

and column coupling simultaneously.29

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 93

ChromSword�: Software for Method Development in LC 93

3.4 Conclusion1

ChromSwordAuto� is a software package which includes a chromatography2

method development data system and ChromSword� module for off-line3

computer-assisted method development.4

ChromSwordAuto� is used for automatic method development of small5

and large molecules and supports mechanistic and statistic approaches for6

the optimization of method variables. ChromSwordAuto� also contains a7

module for high-throughput screening of many SP and MP combinations.8

ChromSword� and ChromSwordAuto� are used for method development9

and optimization in practically all types of LC.10

References11

[1] S.V. Galushko, A.A. Kamenchuk, G.L. Pit, The calculation of retention and selec-12

tivity in RP LC. IV. Software for selection of initial conditions and for simulating13

chromatographic behaviour, J. Chromatogr. 660 (1994) 47–59.14

[2] S.V. Galushko, V. Tanchuk, I. Shishkina, O. Pylypchenko, W.D. Beinert, ChromSword�
15

software for automated and computer-assisted development of HPLC methods, In16

HPLC Made to Measure: A Practical Handbook for Optimization, ed. Stavros Kromidas,17

WILEY-VCH Verlag GmbH & Co. KgaA, 2006, pp. 557–570.18

[3] Industry Analytical Procedures and Methods Validation for Drugs and Biologics. https:19

//www.fda.gov/downloads/drugs/guidances/ucm386366.pdf.20

[4] E. Hewitt, P. Lukulay, Implementation of a rapid and automated high performance21

liquid chromatography method development strategy for pharmaceutical drug can-22

didates, J. Chromatogr. A 1107 (2006) 79–87.23

[5] K.P. Xiao, Y. Xiong, F.Z. Liu, A.M. Rustum, Efficient method development strategy for24

challenging separation of pharmaceutical molecules using advanced chromatographic25

technologies, J. Chromatogr. A 1163 (2007) 145–156.26

[6] S. Larson, G. Gunawardana, M. Preigh, Automated method development in HPLC.27

Evaluation of the ChromSword� software package. HPLC 2007 Abstract book, P23.06.28

http://www.chromatographyonline.com/efficient-chiral-hplc-method-development-29

using-chromsword-software.30

[7] F. Vogel, S.V. Galushko, Automated development of reversed-phase HPLC methods for31

separation of chiral compounds, Chromatogr. Today 8 (2015) 54–55.32

[8] L.W. Snyder J.W. Dolan, High Performance Gradient Elution, John Wiley & Sons, Inc.,33

Hoboken, New Jersey, 2007, p. 228.34

[9] S. Fekete, S. Rudaz, J. Fekete, D. Guillarme, Analysis of recombinant monoclonal anti-35

bodies by RPLC: Toward a generic method development approach, J. Pharm. Biomed.36

Anal. 70 (2012) 158–168.37

March 5, 2018 20:25 Software-Assisted Method Development. . . - 9in x 6in b3222-ch03 EA-1 page 94

94 S. V. Galushko et al.

[10] S. Fekete, A. Beck, J. Fekete, D. Guillarme, Method development for the separation1

of monoclonal antibodycharge variants in cation exchange chromatography, Part I:2

Saltgradient approach, J. Pharm. Biomed. Anal. 102 (2015) 33–44.3

[11] J. Koyama, J. Nomura, Y. Shiojima, Y. Ohtsu, I. Horii, Effect of column length and4

elution mechanism on the separation of proteins by reversed-phase high performance5

liquid chromatography, J. Chromatogr. 625 (1992) 217–222.6

[12] ICH Topic Q 2 (R1) “Validation of Analytical Procedures”7

[13] http://www.smatrix.com/products.html.8

[14] S.V. Galushko, The calculation of retention and selectivity in RPLC, J. Chromatogr.9

552 (1991) 91–102.10

[15] S.V. Galushko, The calculation of retention and selectivity in RPLC. II. Methanol–11

water eluents, Chromatographia 36 (1993) 39–41.12

[16] Cs. Horvath, W. Melander I. Molnar, Solvophobic interaction in liquid chromatography13

with nonpolar stationary phases, J. Chromatogr. 125 (1976) 129–140.14

[17] M. Ren, R. Kiros, R.S. Zemel, Exploring models and data for image question answering,15

arXiv:1505.02074.16

[18] J. Donahue, L.A. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadarrama, K. Saenko,17

T. Darrell, Long-term recurrent convolutional networks for visual recognition and18

description, arXiv:1411.4389.19

[19] N.H. Tran, X. Zhang, L. Xin, B. Shan, M. Li, De novo peptide sequencing by deep20

learning, PNAS 114 (2017) 8247–8252.21

[20] T. Bolanča,Š. Cerjan-Stefanović, M. Novč, Application of artificial neural network22

and multiple linear regression retention models for optimization of separation in23

ion chromatography by using several criteria functions, Chromatographia 61 (2005)24

181–187.25

[21] H. Wang, W. Liu, Optimization of a high-performance liquid chromatography system26

by artificial neural networks for separation and determination of antioxidants, J. Sep.27

Sci. 27 (2004) 1189–1194.28

[22] Y. Li, Deep reinforcement learning: An Overview, http://arxiv.org/abs/1701.07274.29

[23] K. Arulkumaran, M.P. Deisenroth, M. Brundage, A.A. Bharath, A brief survey of deep30

reinforcement learning, arXiv:1708.05866.31

APPENDIX C - Paper 3

139

Survey of Deep Q-Network variants in

PyGame Learning Environment
Evalds Urtans

Riga Technical University
Kalku iela 1
Riga, Latvia

+371 26401317

evalds.urtans@rtu.lv

Agris Nikitenko
Riga Technical University

Kalku iela 1
Riga, Latvia

+371 26401317

agris.nikitenko@rtu.lv

ABSTRACT

Q-value function models based on variations of Deep Q-Network

(DQN) have shown good results in many virtual environments. In

this paper, over 30 sub-algorithms were surveyed that influence the

performance of DQN variants. Important stability and repeatability

aspects of state of art Deep Reinforcement Learning algorithms

were found. Multi Deep Q-Network (MDQN) as a generalization

of popular Double Deep Q-Network (DDQN) algorithm was

developed. Visual representations of a learning process as Q-Value

maps were produced using PyGame Learning Environment. Videos

of trained models available in following link:

http://yellowrobot.xyz/mdqn

CCS Concepts

• Theory of computation ➝ Design and analysis of algorithms

• Applied computing

Keywords

Deep Reinforcement Learning; Deep Learning; DQN; DDQN;

MDQN.

1. INTRODUCTION
This paper surveys many of the latest Deep Q-Learning algorithms

in the field of Deep Reinforcement Learning. Notable examples of

Deep Q-Learning (DQN) algorithms are the original DQN [13],

Double Deep Q-Learning (DDQN) [5], Dueling Network [23] and

asynchronous n-step DQN [14]. In addition to these Q-Value based

algorithms, there are two other major branches of development in

this field. One is policy gradient methods, with notable algorithms

like Trust Policy Region Optimization (TRPO) [17] and Proximal

Policy Optimization [19].

Another branch is a combination of Q-Value and policy gradient

models that are called actor-critic model with notable algorithms

like Deep Deterministic Policy Gradient (DDPG) [12],

Asynchronous Advantage Actor-Critic (A3C) [14], GPU A3C [2]

and Actor-Critic with Experience Replay (ACER) [22]. This paper

focuses only on Q-Value function based algorithms.

The paper explores how variations of these algorithms and hyper-

parameters affect performance in PyGame Learning Environment

(PLE) [21]. In this paper generalization of the DDQN algorithm

and extension is proposed. It can use 2, 3 or more decoupled DQN

models.

2. RELATED WORK
Recently some surveys have been conducted to assess a huge

variety of Deep Reinforcement Learning algorithms [11], [3], [9].

Many Deep Reinforcement Learning algorithms suffer from large

variance in results. There have been a number of papers trying to

resolve this issue [1], [18].

Some research also points out problems with repeatability and

identifies random seed as a significant factor that impacts results

[10], [8].

3. METHODOLOGY

3.1 Deep Q-Network variants
All Q-function algorithms share underlying equations: the

calculation of Cumulative Reward Equation 1 and the Bellman

equation for modeling policy 𝜋 through Q-function Equation 2 that

is an approximation of a reward function for a given state 𝑠 and

action 𝑎 at a time step 𝑡.

𝑅 = ∑ 𝛾𝑡𝑟𝑡

𝑛

𝑡=0

 (1)

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝑟𝑡 + 𝑚𝑎𝑥
𝑎′

𝑄𝜋(𝑠𝑡+1, 𝑎′) (2)

DQN algorithm relies on Equation 3 where a parametrized

Q-function is based on a deep neural network. Usually, an input is

a raw pixel representation trained by Convolution Neural Network

(ConvNet/CNN) or a lower dimensionality representation of 𝑠. The

model also usually utilizes Recurrent Neural Network (RNN) like

LSTM or GRU.

𝑄Θ(𝑠𝑡 , 𝑎𝑡) ← 𝑄Θ(𝑠𝑡, 𝑎𝑡)
 +𝛼(∇((𝑟𝑡 + 𝑚𝑎𝑥

𝑎′
𝑄Θ(𝑠𝑡+1, 𝑎′) − 𝑄Θ(𝑠𝑡, 𝑎𝑡)))) (3)

𝑄Θ(𝑠𝑡, 𝑎𝑡) ← 𝑄Θ(𝑠𝑡 , 𝑎𝑡)
 +𝛼(∇((𝑟𝑡 + 𝑚𝑎𝑥

𝑎′
𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑡+1, 𝑎′)

− 𝑄Θ(𝑠𝑡, 𝑎𝑡))))

(4)

DDQN algorithm is similar to DQN, but it utilizes theory from

Double Q-Learning [7] by using two decoupled Q-functions like

shown in Equation 4. 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 function parameters are copied from

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

ICDLT '18, June 27–29, 2018, Chongqing, China

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6473-7/18/06…$15.00

https://doi.org/10.1145/3234804.3234816

𝑄Θ with a given time step interval thereby achieving two decoupled

Q-functions.

3.2 Multiple Deep Q-Networks
There are some differences of DDQN (Double Deep Q-Network

via Target network) [6] and original DQL (Double Q-Learning) [7].

In case of DDQN 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 is used as decoupled function whereas in

pure DQL there should be 𝑄1 and 𝑄2 that are used intermittently.

DDQN is simpler and should preserve same properties as pure

DQL.

The paper explores this simplification impacts performance and

implemented a pure version of DDQN and compared it with a

standard DDQN. DQL algorithm was generalized to use any

number of decoupled functions in Bellman equation and call it

MDQN (Multiple Deep Q-Network). MDQN with 2 decoupled

functions is listed in Algorithm 1, but this could be easily

expendable to more decoupled function pairs.

Algorithm 1: MDQN (2 decoupled functions)

1: procedure Train

2: while Training == True do

3: if random(0.0, 1.0) < 0.5 then

4: if 𝑠𝑡 ≠ terminal state then

5: 𝑄1(𝑎𝑡 , 𝑠𝑡) ← 𝑅𝑡 + 𝛾𝑚𝑎𝑥
𝑎

𝑄2(𝑎, 𝑠𝑡+1)

6: else

7: 𝑄1(𝑎𝑡 , 𝑠𝑡) ← 𝑅𝑡

8: else

9: if 𝑠𝑡 ≠ terminal state then

10: 𝑄2(𝑎𝑡, 𝑠𝑡) ← 𝑅𝑡 + 𝛾𝑚𝑎𝑥
𝑎

𝑄1(𝑎, 𝑠𝑡+1)

11: else

12: 𝑄2(𝑎𝑡, 𝑠𝑡) ← 𝑅𝑡

13: 𝑎𝑡 ← 𝑚𝑎𝑥𝑎𝑎𝑣𝑒𝑟𝑎𝑔𝑒({𝑄1(𝑎, 𝑠𝑡), 𝑄2(𝑎, 𝑠𝑡)})

14: …

3.3 Other algorithmic improvements
Some algorithmic improvements have been made that can be

applied to other deep reinforcement learning algorithms.

One of the improvements was to use the cumulative reward for

training actions that were observed in an offline rollout of a

episode. For example, if the offline state contains {𝑠𝑡, 𝑎𝑡} and

calculated cumulative reward for {𝑠𝑡+1, 𝑎𝑡+1} then it is possible to

train the model using cumulative reward value instead of Bellman

equation. And when {𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑎𝑡+1} is not observed in an

episode it is possible to use a value from Bellman equation.

Principle is shown in in Algorithm 2.

In this research, RNN (Recurrent Neural Networks) were used as

models of DQN variants. These models take as input observation

from 5 previous frames. To speed up training, RNN-ReLU were

used instead of LSTM or GRU. LSTM and GRU perform better

than RNN-ReLU, but also take up to 7 times longer to train. Label

smoothing were implemented to prevent vanishing gradients in

RNN-ReLU [15].

All source code used to test algorithms in this paper is open-source.

Prioritized replay buffer is implemented as a separate library that

can be used with a completely different set of reinforcement

1 https://github.com/evaldsurtans/dqn-prioritized-experience-

replay

learning algorithms1. It includes both types of prioritized replay

buffer algorithms: proportional and ranked [16].

The main part of source code that contains variants of algorithms

that were tested and is also available as an open-source project2.

Code was implemented it in a way that it could utilize High-

Performance Cluster (HPC) architecture. Every training using

sample of random seed were executed as a separate task on a node

in a cluster. Each sample of random seed was a complete training

of 107 frames with specified hyper-parameters.

Algorithm 2: MDQN with a cumulative reward boost

1: procedure Train

2: while Training == True do

3: // Offline variant of an algorithm

4: while 𝑠𝑡 ≠ terminal state do

5: 𝑎𝑡 ← 𝑚𝑎𝑥𝑎𝑎𝑣𝑒𝑟𝑎𝑔𝑒({𝑄1(𝑎, 𝑠𝑡), 𝑄2(𝑎, 𝑠𝑡)})

6: …

7: store {𝑎𝑡 , 𝑠𝑡, 𝑠𝑡+1, 𝑟𝑡} in 𝑅𝑒𝑝𝑙𝑎𝑦𝐵𝑢𝑓𝑓𝑒𝑟

8:

9: for {𝑎𝑡 , 𝑠𝑡, 𝑠𝑡+1} sample from 𝑅𝑒𝑝𝑙𝑎𝑦𝐵𝑢𝑓𝑓𝑒𝑟 do

10: 𝑎′𝑡 ← 𝑚𝑎𝑥𝑎𝑎𝑣𝑒𝑟𝑎𝑔𝑒({𝑄1(𝑎, 𝑠𝑡), 𝑄2(𝑎, 𝑠𝑡)})

11: if {𝑎′𝑡 , 𝑠𝑡 , 𝑠𝑡+1} in 𝑅𝑒𝑝𝑙𝑎𝑦𝐵𝑢𝑓𝑓𝑒𝑟 then

12: if random(0.0, 1.0) < 0.5 then

13: 𝑄1(𝑎𝑡 , 𝑠𝑡) ← ∑ 𝛾𝑡𝑅𝑡
𝑡+1

𝑡=0

14: else

15: 𝑄2(𝑎𝑡, 𝑠𝑡) ← ∑ 𝛾𝑡𝑅𝑡
𝑡+1

𝑡=0

16: else

17: if random(0.0, 1.0) < 0.5 then

18: if 𝑠𝑡 ≠ terminal state then

19: 𝑄1(𝑎𝑡 , 𝑠𝑡) ← 𝑅𝑡 + 𝛾𝑚𝑎𝑥
𝑎

𝑄2(𝑎, 𝑠𝑡+1)

20: else

21: 𝑄1(𝑎𝑡 , 𝑠𝑡) ← 𝑅𝑡

22: else

23: if 𝑠𝑡 ≠ terminal state then

24: 𝑄2(𝑎𝑡, 𝑠𝑡) ← 𝑅𝑡 + 𝛾𝑚𝑎𝑥
𝑎

𝑄1(𝑎, 𝑠𝑡+1)

25: else

26: 𝑄2(𝑎𝑡, 𝑠𝑡) ← 𝑅𝑡

4. EXPERIMENTS

4.1 PyGame Learning Environment
In this research to evaluate results, an open-source game

environments "PyGame Learning Environment" (PLE)3 were used.

PLE contains many different games including Flappy Bird, 3D

Maze, Doom, and others. For most of the game environments it is

possible to get low dimensional representations of a state, which

are useful for testing deep reinforcement algorithms with limited

computational resources. Of course, it is also possible to train

agents using high dimensional pixel representations of a state.

Another very desirable feature is that game environments can be

manipulated while running because full source code for each game

is easily accessible.

Curriculum learning were implemented for the 3D raycast maze,

where target moves away from starting point in later stages of

training. Method to produce Q-value map (Q-map) were

2 https://bitbucket.org/evaldsurtans/dqn-research

3 https://github.com/ntasfi/PyGame-Learning-Environment

implemented by manipulating a position of a game character in an

environment and getting Q-value for every artificial state in a game.

For example, in a game of flappy bird, the bird character is moved

across all pixels in a frame and a Q-function value is calculated that

is overlaid as a heat map like in Figure 1. This kind of

representation helps to understand what DQN model has learned.

In fact, we found and fixed a bug in a Flappy Bird environment by

using Q-map when we noticed that DQN model learned to cross an

obstacle over the top of the screen. In case of 3D raycast maze, we

implemented Q-map by teleporting a player to all walkable squares

and rotating incrementally player's camera around the center of

each square. For every frame, it is possible to calculate average Q-

Value of all actions available and then make a heat map of a maze

like in Figure 2.

4.2 Random seed and repeatability
Our research highlights a problem that all DQN, DDQN and

MDQN variants are very sensitive to seed randomization. In this

research method to restore all random seeds and repeat results were

implemented, but this is not desirable because it can lead to

misleading results when comparing different hyper-parameters. A

better approach is to increase the sample size of random seeds. This

means that every training configuration should be rerun multiple

times with different randomization seeds as shown in Figure 3.

Large variance between different samples of random seed were

observed. To make accurate comparisons, it is necessary to choose

a random seed size of 10, since we observed that this resulted in

similar variances to sample sizes 20 and 40. Whereas using a

sample size of 5 produced a much lower variance of results.

To complete this research, we had quite limited computing

resources and even random seed size of 10 took considerable time

to test. It is one of the reasons why we chose experimentally initial

hyper-parameter values that we changed one by one, instead of

performing full grid search.

Often it is advised to reduce variance by reducing the model

complexity [4]. Our results confirm this hypothesis Figure 4,

however by reducing model complexity also a maximal average

score of testing set reduces as well. When constructing such

models, it is necessary to find the compromise between model

complexity, repeated random seed test set size and a variance.

Another widely used method to reduce variance is to use

regularization. Again, our results confirm that it reduces variance,

but again it also reduces average scores as shown in Figure 5.

As for batch normalization, no significant improvement was found

as shown in results in an appendix.

Figure 1. Q-Maps of sequential training of Flappy Bird from first frame on left till 𝟏𝟎𝟕 frame on right.

Green is highest value state. Red is lowest value state.

Figure 2. 3D Raycast maze Q-map for each position in map from top down view. Each Q-map represents sequential frame

checkpoint during training. On left first frame and on right 𝟏𝟎𝟕 frame.

Notice that map increases in size thus using curriculum learning principle.

Figure 3. Sample size of random seeds and variance of average score for Flappy Bird environment.

Figure 4. Comparison of different hidden unit vector sizes and variance of average score for Flappy Bird environment.

Figure 5. Effect of L1 (Lasso) and L2 (Ridge) regularization on variance of average score for Flappy Bird environment.

Table 1. Default hyper-parameters that other parameters were measured against in all environments

parameters

batch norm: false mini-batch: 32

bellman gamma: 0.99 model: 1 states to n actions

beta replay buffer: true offline prebatch: false

cumulative reward: true online: false

diff. states: false optimizer: rmsprop

dropout: 0.0 pixels input: none

dueling arch.: false priority replay buffer: ranked

epsilon greedy: true reg.: none

epsilon start-end: 1e-3 - 1e-6 replay buffer: 5e5

epsilon stuck: false rnn: relu

extra frame reward: 1e-5 sarsa: false

frames back: 5 state prev. act. reward: false

frames before: 5e4 target network alpha: 1.0

grad clip.: 0.0 terminal reward: -1e3

Table 2. Top 15 hyper-parameters of DDQN for Flappy Bird environment

parameter lr avg. score max. score var. score time (min.)

rnn: gru 0.0001 42.97024986 264.1 549 2603.809

rnn: lstm 0.0001 28.60916534 264.1 99.2 3246.475

optimizer: adam 0.001 16.96737049 264.1 36.9 351.827

grad clip.: 1.0 0.001 12.45431387 254.096 19 399.956

optimizer: adam 0.0001 10.19414131 207.07831 21.7 367.396

grad clip.: 10.0 0.0001 9.765907544 184.06991 19.2 361.19

grad clip.: 10.0 0.001 8.694875819 156.05916 12.8 364.509

grad clip.: 1.0 0.0001 7.633139692 140.05331 17.1 357.085

rnn: lstm 0.001 6.614351436 182.06913 21.5 3770.588

optimizer: adam 0.00001 1.929185929 47.0181 1.81 375.648

mini-batch: 8 0.00001 1.922057009 40.0155 0.414 505.778

bellman gamma: 0.90 0.00001 1.916720841 47.01799 1.19 366.701

grad clip.: 10.0 0.00001 1.783358575 32.01237 0.322 400.212

beta replay buffer: false 0.00001 1.647591408 60.02323 1.02 423.562

default 0.00001 1.533690858 32.01236 0.308 377.689

Table 3. Top 15 hyper-parameters of MDQN3 for Flappy Bird environment

parameter lr avg. score max. score var. score time (min.)

rnn: gru 0.0001 24.6588361 264.1 70.62906959 2735.039

rnn: lstm 0.0001 16.17153479 224.08495 31.69684243 3041.107

optimizer: adam 0.001 12.14972485 148.05634 8.572064894 357.792

rnn: lstm 0.001 6.362237775 161.06122 10.33771355 3052.423

grad clip.: 10.0 0.001 6.148186995 130.0494 11.12354631 380.245

grad clip.: 10.0 0.0001 5.774537436 104.03959 11.92569845 361.402

optimizer: adam 0.0001 5.541812022 124.0473 18.46937444 379.416

grad clip.: 1.0 0.0001 4.706386259 119.04543 11.58234856 374.33

grad clip.: 1.0 0.001 2.676778874 65.02486 4.486235409 456.614

rnn: gru 0.001 1.117617436 64.02454 1.294722902 2537.775

target network alpha: 0.0 0.00001 1.047481234 19.00759 0.298771101 745.303

model: n states to n act. 0.00001 0.881531711 12.00483 0.101958401 600.168

epsilon stuck: true 0.00001 0.878962391 11.00452 0.013849234 384.174

grad clip.: 10.0 0.00001 0.86220963 21.00828 0.183416314 402.766

mdqn: min 0.00001 0.740644674 10.0041 0.05608085 376.083

Table 4. Comparison of DQN, DDQN and MDQN models for Flappy Bird environment. Decimal number after abbreviation like

mdqn3 1.0 denotes coefficient of target network. Coefficient 0.0 denotes that algorithm do not use target network.

model type lr avg. score max. score var. score time (min.)

dqn 1.0 0.001 28.78679352 264.1 303.0517411 500.211

mdqn2 1.0 0.001 17.19567935 264.1 50.58413201 421.452

ddqn 1.0 0.001 16.96737049 264.1 36.9 351.827

mdqn2 0.0 0.001 14.07828206 212.08043 18.74729045 493.78

mdqn3 1.0 0.001 12.14972485 148.05634 8.572064894 357.792

mdqn3 0.0 0.001 9.328698486 179.06784 24.94178454 635.494

mdqn2 0.0 0.0001 9.311841471 202.07645 13.39635414 521.696

mdqn2 1.0 0.0001 5.351493407 127.04827 14.07459022 384.702

mdqn3 0.0 0.0001 4.406378303 102.03882 5.088549631 776.327

mdqn2 0.0 0.00001 1.603283236 61.02341 0.715069292 642.106

mdqn3 0.0 0.00001 0.872432773 12.00487 0.087176378 713.332

mdqn2 1.0 0.00001 0.692394861 12.00513 0.221167891 389.493

Figure 6. Comparison between DQN model types for Pong environment.

Table 5. Comparison of DQN, DDQN and MDQN models for 3D Raycast maze environment.

model type lr avg. score var. score time (min.)

mdqn2 0.0 0.00001 3.904359232 0.728045918 1213.991

dqn 0.00001 3.88654262 2.124993494 484.859

mdqn2 1.0 0.000001 3.7166532 0.154117942 533.389

ddqn 0.000001 3.713829593 1.524318234 524.65

ddqn 0.00001 3.638360789 1.662039807 521.975

mdqn2 0.0 0.00001 3.506246831 1.746571203 809.374

mdqn2 0.0 0.000001 3.345749731 2.749636472 978.638

ddqn 0.0001 3.267777864 2.889255991 523.012

mdqn2 1.0 0.0000001 3.247272282 0.576931468 500.424

mdqn2 1.0 0.00001 3.180342964 2.016163812 523.085

mdqn3 1.0 0.00001 3.056116361 2.339890159 872.317

dqn 0.000001 3.026868771 2.028895348 534.022

mdqn3 0.0 0.00001 2.807473511 2.395394139 1212.21

mdqn3 1.0 0.000001 2.770128326 0.714132328 864.442

mdqn3 0.0 0.000001 2.629530288 1.724929361 1152.146

mdqn2 0.0 0.0001 2.545370799 4.120312752 623.82

dqn 0.0001 2.24425396 2.153779645 516.078

mdqn3 1.0 0.0001 2.174641347 3.541216037 775.408

mdqn2 0.0 0.0001 2.157170755 3.235455294 899.93

mdqn2 1.0 0.0001 1.959047125 2.688871288 479.06

mdqn3 0.0 0.0001 1.678048035 3.272271359 1117.217

mdqn2 0.0 0.000001 1.452786487 1.887540531 809.63

mdqn2 1.0 0.00000001 1.399096696 1.827157866 495.813

mdqn2 0.0 0.0000001 0.178030303 0 463.67

4.3 Flappy Bird
Initially to test more than 28 hyper-parameters of DQN variants

partial grid searches were done on combinations of parameters.

Then benchmarking for one step changes were dome in each of

hyper-parameters against initial parameters that are shown in

Table 1.

Each set of parameters were repeated for at least 10 times to

ensure repeatability as described in 4.2 section. By run, we mean

full training of 107 frames with a defined set of hyper-

parameters. RNN-ReLU were used as Q-value model in order to

speed up training and compared DQN, DDQN and MDQN

algorithms with full set of hyper-parameters as shown in Table 2,

Table 3 and Table 4.

Original DQN outperformed DDQN and MDQN, but our version

of MDQN slightly outperformed DDQN. This is nothing

particularly surprising that DQN outperforms more advanced

DDQN and MDQN because in previous studies it has also been

shown that different algorithms excel in different environments.

In some environments, DQN is more effective, but in others

DDQN.

No significant improvements were found by applying some of

more interesting architectures like Dueling Network or different

activation functions in RNN like Leaky ReLU, ELU, and PreLU.

Regularization methods such as L1, L2, Dropout or Batch

Normalization didn't improve performance. This could be the

case because huge data set that is gathered from training

environment in itself accomplishes normalization [4].

Because of the flexibility of open-source environments in PLE it

was possible to produce Q-Value maps to track and compare the

progress of different sets of hyper-parameters. An example of Q-

Value maps is given in Figure 1.

4.4 Pong
For Pong and 3D raycast maze environments, in initial hyper-

parameters optimizer was changed from "rmsprop" to "adam",

because it gave better results without increasing processing time.

In case of Pong again DQN slightly outperformed MDQN and

DDQN, but MDQN slightly outperformed DDQN as shown in

Figure 6.

Q-Value maps were generated by manipulating the position of the

ball in Pong environment on the frozen Q-Value model at

checkpoints during training as shown in Figure 7.

Figure 7. Pong Q-map before and after training. After

training possible to see path of a ball trajectory.

4.5 3D Raycast maze
Finally, algorithms were benchmarked on "3D Raycast Maze"

environment where instead of a low dimensional representation

of a state, RGB 48x48 pixel input was used. In many

environments, to save resources pixel grayscale representation

would be recommended, but to make sure that exit door have a

distinguishable difference in color form walls two channels were

used per pixel red and green. The model consisted of ConvNet

embedding and RNN layers.

All pixel inputs were normalized in a range 0.0 − 1.0 instead of

using byte value of 0 − 255.

After the model has been trained GradCAM maps [20] were

generated to visualize highest gradients in ConvNet as shown in

Figure 8. These maps are more informative than Saliency Maps

used in other Deep Reinforcement Learning papers [24]. These

maps help us to understand what part of input pixel array is the

most important for training. In this case, it was the exit door that

gives the reward when reached.

Another way to reduce the dimensionality of the problem was to

remove some of the actions available to an agent. Agent was

allowed only to move ahead and make turns left and right, but not

to go back and wait (do nothing).

Again Q-Value maps were constructed to visualize the progress

of learning as shown in Figure 2. In this case, we manipulated a

position of player around the maze and recorded Q-Values by

rotating player's view around this position. Visual representation

is a 2D top view for 3D maze.

Again, slight performance improvement were found using

MDQN in a more complex environments like 3D Raycast maze

as shown in Table 5.

Figure 8. GradCAM maps of trained MDQN agent in

3D Raycast maze environment.

 Images show attention on target in a 3D maze.

5. CONCLUSIONS
MDQN, a new Deep Reinforcement Learning algorithm was

introduced that slightly outperforms DDQN in some

environments. Still, in others, original DQN work better than both

MDQN and DDQN.

Most of DQN variants that were tested have little or no significant

effect on performance. New method to construct Q-Value maps

were introduced by manipulating training environment. Q-Value

maps are useful for assessing the progress of training. Results

show that it is essential to run a sufficient number of repeated

training runs for every set of parameters, because of the impact of

random seed initialization and large variance in results.

6. APPENDIX
With this paper, spreadsheet is published of an average score in a

game of Flappy Bird after 107 frames for each hyper-parameter

with different learning rates. All hyper-parameters have been

tested for DQN, DDQN and MDQN variants of algorithms.

Results are available in public domain4.

7. ACKNOWLEDGMENTS
Research has been completed with a support from High-

Performance Computing Center of Riga Technical University.

8. REFERENCES
[1] Anschel, O., Baram, N. and Shimkin, N. 2016. Deep

Reinforcement Learning with Averaged Target DQN. NIPS

Workshop. (2016).

[2] Babaeizadeh, M., Frosio, I., Tyree, S., Clemons, J. and

Kautz, J. 2017. GA3C: GPU-based A3C for Deep

Reinforcement Learning. ICLR. (2017).

[3] Duan, Y., Chen, X., Houthooft, R., Schulman, J. and

Abbeel, P. 2016. Benchmarking Deep Reinforcement

Learning for Continuous Control. ICML. 48, (2016), 1329–

1338.

[4] Geron, A. 2017. Hands-On Machine Learning with Scikit-

Learn and TensorFlow: Concepts, Tools, and Techniques to

Build Intelligent Systems. O’Reilly Media.

[5] Hasselt, H. van, Guez, A. and Silver, D. 2015. Deep

Reinforcement Learning with Double Q-learning. CoRR.

abs/1509.06461, (2015).

[6] Hasselt, H. van, Guez, A. and Silver, D. 2016. Deep

Reinforcement Learning with Double Q-learning.

Proceedings of AAAI. 13, (2016), 2094–2100.

[7] Hasselt, H.V. 2010. Double Q-learning. Advances in Neural

Information Processing Systems 23. J.D. Lafferty, C.K.I.

Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, eds.

Curran Associates, Inc. 2613–2621.

[8] Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,

D. and Meger, D. 2018. Deep Reinforcement Learning that

Matters. (AAAI, 2018).

[9] Hessel, M., Modayil, J., van Hasselt, H., Schaul, T.,

Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M.G.

and Silver, D. 2017. Rainbow: Combining Improvements in

Deep Reinforcement Learning. CoRR. abs/1710.02298,

(2017).

[10] Islam, R., Henderson, P., Gomrokchi, M. and Precup, D.

2017. Reproducibility of Benchmarked Deep

Reinforcement Learning Tasks for Continuous Control.

ICML. (2017).

4 http://yellowrobot.xyz/full-survey-flappybird.pdf

[11] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage

and Anil Anthony Bharath 2017. A Brief Survey of Deep

Reinforcement Learning. IEEE Signal Processing

Magazine. (2017).

[12] Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T.,

Tassa, Y., Silver, D. and Wierstra, D. 2015. Continuous

control with deep reinforcement learning. US Patent

20170024643 A1. (2015).

[13] Mnih, V. et al. 2015. Human-level control through deep

reinforcement learning. Nature. 518, 7540 (2015), 529–533.

[14] Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P.,

Harley, T., Silver, D. and Kavukcuoglu, K. 2016.

Asynchronous Methods for Deep Reinforcement Learning.

ICML. 48, (2016), 1928–1937.

[15] Pfau, D. and Vinyals, O. 2016. Connecting Generative

Adversarial Networks and Actor-Critic Methods. NIPS

Workshop on Adversarial Training. (2016).

[16] Schaul, T., Quan, J., Antonoglou, I. and Silver, D. 2016.

Prioritized Experience Replay. ICLR. (2016).

[17] Schulman, J., Levine, S., Moritz, P., Jordan, M.I. and

Abbeel, P. 2015. Trust Region Policy Optimization. ICML.

(2015), 1889–1897.

[18] Schulman, J., Moritz, P., Levine, S., Jordan, M.I. and

Abbeel, P. 2016. High-Dimensional Continuous Control

Using Generalized Advantage Estimation. ICLR. (2016).

[19] Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and

Klimov, O. 2017. Proximal Policy Optimization

Algorithms. CoRR. abs/1707.06347, (2017).

[20] Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M.,

Parikh, D. and Batra, D. 2017. Grad-CAM: Why did you say

that? Visual Explanations from Deep Networks via

Gradient-based Localization. ICCV. (2017).

[21] Tasfi, N. 2016. PyGame Learning Environment. GitHub

repository. (2016).

[22] Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R.,

Kavukcuoglu, K. and de Freitas, N. 2017. Sample Efficient

Actor-Critic with Experience Replay. ICLR. (2017).

[23] Wang, Z., Freitas, N. de and Lanctot, M. 2015. Dueling

Network Architectures for Deep Reinforcement Learning.

CoRR. abs/1511.06581, (2015).

[24] Wang, Z., Freitas, N. de and Lanctot, M. 2016. Dueling

Network Architectures for Deep Reinforcement Learning.

ICML. 16, (2016), 1995–2003.

DDQN	parameters lr=1e-05 lr=0.0001 lr=0.001
batch	norm:	false 1.533690858 0.000414183 0.000352965
batch	norm:	true 0.052704873 0.050553793 0.001360587
bellman	gamma:	0.80 0.909917989 0.000442041 0.00033299
bellman	gamma:	0.90 1.916720841 0.000477043 0.000387095
bellman	gamma:	0.99 1.533690858 0.000414183 0.000352965
beta	replay	buffer:	false 1.647591408 0.00041421 0.00043855
beta	replay	buffer:	true 1.533690858 0.000414183 0.000352965
cumulative	reward:	false 0.610356388 0.10047675 0.0004505
cumulative	reward:	true 1.533690858 0.000414183 0.000352965
diff.	states:	false 1.533690858 0.000414183 0.000352965
diff.	states:	true 0.227873573 0.139044738 0.0186802
dropout:	0.0 1.533690858 0.000414183 0.000352965
dropout:	0.1 1.466420627 0.000413939 0.000354442
dueling	arch.:	false 1.533690858 0.000414183 0.000352965
dueling	arch.:	true 0.990586934 0.010944858 0.000481386
epsilon	greedy:	false 1.437370177 0.000377079 0.000323771
epsilon	greedy:	true 1.533690858 0.000414183 0.000352965
epsilon	start,end:	1e-1,	1e-1 1.054991496 0.018243252 0.025396299
epsilon	start,end:	1e-1,	1e-6 1.06638253 0.015038533 0.02246546
epsilon	start,end:	1e-3,	1e-3 1.256475552 0.000369062 0.000344153
epsilon	start,end:	1e-3,	1e-6 1.533690858 0.000414183 0.000352965
epsilon	stuck:	false 1.533690858 0.000414183 0.000352965
epsilon	stuck:	true 1.166306408 0.000483595 0.00074477
extra	frame	reward:	0.0 1.058717912 0 0
extra	frame	reward:	1e-5 1.533690858 0.000414183 0.000352965
frames	back:	10 0.926641405 0.000392004 0.000364618
frames	back:	5 1.533690858 0.000414183 0.000352965
frames	before:	1e5 1.135056491 0.000397925 0.0003812
frames	before:	5e4 1.533690858 0.000414183 0.000352965
grad	clip.:	0.0 1.533690858 0.000414183 0.000352965
grad	clip.:	1.0 1.486492849 7.633139692 12.45431387
grad	clip.:	10.0 1.783358575 9.765907544 8.694875819
mini-batch:	16 1.352947647 0.000411727 0.00156524
mini-batch:	32 1.533690858 0.000414183 0.000352965
mini-batch:	64 1.056681304 0.000376604 0.000341958
mini-batch:	8 1.922057009 0.000311098 0.000389458
model:	1	states	to	n	actions 1.533690858 0.000414183 0.000352965
model:	n	states	to	n	act. 1.412973236 0.000294361 0.000401299
offline	prebatch:	false 1.533690858 0.000414183 0.000352965
offline	prebatch:	true 1.344636884 0.000348564 0.000363116
online:	false 1.533690858 0.000414183 0.000352965
online:	true 0.000716693 0.001188847 0.00207842
optimizer:	adam 1.929185929 10.19414131 16.96737049
optimizer:	rmsprop 1.533690858 0.000414183 0.000352965

DDQN	paramaters lr=1e-05 lr=0.0001 lr=0.001
priority	replay	buffer:	proportional 0.838263139 0.000316778 0.000327183
priority	replay	buffer:	ranked 1.533690858 0.000414183 0.000352965
reg.:	l1	0.01 1.203800715 0.000285152 0.000381959
reg.:	l2	0.01 0.986084538 0.000289221 0.000373825
reg.:	none 1.533690858 0.000414183 0.000352965
replay	buffer:	1e6 1.315573853 0.000322248 0.00035375
replay	buffer:	5e5 1.533690858 0.000414183 0.000352965
rnn:	elu 1.16391376 0.000382337 0.000334718
rnn:	gru 1.046609285 42.97024986 0.398953106
rnn:	leakyrelu 0.548797158 0.000282047 0.000397984
rnn:	lstm 0.306796714 28.60916534 6.614351436
rnn:	relu 1.533690858 0.000414183 0.000352965
rnn:	selu 1.257988316 0.000375826 0.000345283
sarsa:	false 1.533690858 0.000414183 0.000352965
sarsa:	true 0.224702505 0.000387801 0.00032473
state	prev.	act.,	reward:	false 1.533690858 0.000414183 0.000352965
state	prev.	act.,	reward:	true 1.215485463 0.000606492 0.000375826
target	network	alpha:	1.0 1.533690858 0.000414183 0.000352965
terminal	reward:	-1e3 1.533690858 0.000414183 0.000352965
terminal	reward:	0.0 0.000853557 0.000282642 0.000331196

MDQN3	paramaters lr=1e-05 lr=0.0001 lr=0.001
batch	norm:	false 0.493159693 0.000411525 0.000302813
batch	norm:	true 0.18916225 0.023392921 0.008641977
bellman	gamma:	0.80 0.667448615 0.000293686 0.000334672
bellman	gamma:	0.90 0.657513296 0.000348975 0.00030927
bellman	gamma:	0.99 0.493159693 0.000411525 0.000302813
beta	replay	buffer:	false 0.501305723 0.000421983 0.000314868
beta	replay	buffer:	true 0.493159693 0.000411525 0.000302813
cumulative	reward:	false 0.270724398 0.000377956 0.00031416
cumulative	reward:	true 0.493159693 0.000411525 0.000302813
diff.	states:	false 0.493159693 0.000411525 0.000302813
diff.	states:	true 0.31779793 0.213548615 0.039302415
dropout:	0.0 0.493159693 0.000411525 0.000302813
dropout:	0.1 0.602260763 0.000373934 0.000270495
dueling	arch.:	false 0.493159693 0.000411525 0.000302813
dueling	arch.:	true 0.504453143 0.000393069 0.000326828
epsilon	greedy:	false 0.630795214 0.000316404 0.000313741
epsilon	greedy:	true 0.493159693 0.000411525 0.000302813
epsilon	start	end:	1e-1	1e-1 0.587794046 0.017110157 0.024723262
epsilon	start	end:	1e-1	1e-6 0.665939117 0.016747024 0.022885654
epsilon	start	end:	1e-3	1e-3 0.704522112 0.000375783 0.0003061
epsilon	start,end:	1e-3,	1e-6 0.493159693 0.000411525 0.000302813

MDQN3	paramaters lr=1e-05 lr=0.0001 lr=0.001
epsilon	stuck:	false 0.493159693 0.000411525 0.000302813
epsilon	stuck:	true 0.878962391 0.000479067 0.000493813
extra	frame	reward:	0.0 0.42540338 0 0
extra	frame	reward:	1e-5 0.493159693 0.000411525 0.000302813
frames	back:	10 0.119179613 0.00041888 0.000290899
frames	back:	5 0.493159693 0.000411525 0.000302813
frames	before:	1e5 0.461907203 0.000379282 0.000305497
frames	before:	5e4 0.493159693 0.000411525 0.000302813
grad	clip.:	0.0 0.493159693 0.000411525 0.000302813
grad	clip.:	1.0 0.547549515 4.706386259 2.676778874
grad	clip.:	10.0 0.86220963 5.774537436 6.148186995
mdqn:	median 0.633033237 0.000350332 0.000302749
mdqn:	min 0.740644674 0.000384621 0.0003037
mini-batch:	16 0.645145987 0.000378161 0.000336763
mini-batch:	32 0.493159693 0.000411525 0.000302813
mini-batch:	64 0.328581472 0.000438766 0.000276725
mini-batch:	8 0.719492781 0.000293855 0.000359393
model:	1	states	to	n	actions 0.493159693 0.000411525 0.000302813
model:	n	states	to	n	act. 0.881531711 0.000324639 0.000314943
offline	prebatch:	false 0.493159693 0.000411525 0.000302813
offline	prebatch:	true 0.561788219 0.000357654 0.000306432
online:	false 0.493159693 0.000411525 0.000302813
online:	true 0.000335295 0.002049978 0.000470529
optimizer:	adam 0.659281593 5.541812022 12.14972485
optimizer:	rmsprop 0.493159693 0.000411525 0.000302813
optimizer:	sgd 0.000446 0.000452683 0.000421
pixels	input:	none 0.493159693 0.000411525 0.000302813
priority	replay	buffer:	proportional 0.384257749 0.000327589 0.000333419
priority	replay	buffer:	ranked 0.493159693 0.000411525 0.000302813
reg.:	l1	0.01 0.542517945 0.000251858 0.00032751
reg.:	l2	0.01 0.593226856 0.00053841 0.000285433
reg.:	none 0.493159693 0.000411525 0.000302813
replay	buffer:	1e6 0.624216444 0.000332877 0.000328961
replay	buffer:	5e5 0.493159693 0.000411525 0.000302813
rnn:	elu 0.375398893 0.000340552 0.000321809
rnn:	gru 0.049088854 24.6588361 1.117617436
rnn:	leakyrelu 0.085846548 0.000348879 0.000330276
rnn:	lstm 0.051772933 16.17153479 6.362237775
rnn:	relu 0.493159693 0.000411525 0.000302813
rnn:	selu 0.510327967 0.000388453 0.000332236
sarsa:	false 0.493159693 0.000411525 0.000302813
sarsa:	true 0.371476081 0.000365584 0.000285508
state	prev.	act.	reward:	true 0.525153837 0.000486443 0.000268334
state	prev.	act.,	reward:	false 0.493159693 0.000411525 0.000302813

MDQN3	paramaters lr=1e-05 lr=0.0001 lr=0.001
target	network	alpha:	0.0 1.047481234 0.000454912 0.00048847
target	network	alpha:	0.5 0.3125444 0.009422778 0.000370117
target	network	alpha:	1.0 0.493159693 0.000411525 0.000302813
terminal	reward:	-1e3 0.493159693 0.000411525 0.000302813
terminal	reward:	0.0 0.000789989 0.000302153 0.000279975

DQN	paramaters lr=1e-05 lr=0.0001 lr=0.001
batch	norm:	false 1.283649607 11.91111497 13.17070586
batch	norm:	true 0.056173539 0.045360783 0.010993424
bellman	gamma:	0.80 1.703417127 6.185744115 1.528713372
bellman	gamma:	0.90 2.137862124 19.36507549 11.39091096
bellman	gamma:	0.99 1.283649607 11.91111497 13.17070586
beta	replay	buffer:	false 1.703189311 10.04279246 12.89863154
beta	replay	buffer:	true 1.283649607 11.91111497 13.17070586
cumulative	reward:	false 0.989741071 3.595820359 2.470743469
cumulative	reward:	true 1.283649607 11.91111497 13.17070586
diff.	states:	false 1.283649607 11.91111497 13.17070586
diff.	states:	true 0.134184431 0.167864504 0.134165564
dropout:	0.0 1.283649607 11.91111497 13.17070586
dropout:	0.1 1.330009148 0.000390686 0.000368321
dueling	arch.:	false 1.283649607 11.91111497 13.17070586
dueling	arch.:	true 0.027008964 0.001377553 0.000598506
epsilon	greedy:	false 2.153229242 10.52768314 15.05309331
epsilon	greedy:	true 1.283649607 11.91111497 13.17070586
epsilon	start,end:	1e-1,	1e-6 1.131991281 5.228503262 4.929793323
epsilon	start,end:	1e-3,	1e-6 1.283649607 11.91111497 13.17070586
epsilon	stuck:	false 1.283649607 11.91111497 13.17070586
epsilon	stuck:	true 1.24398021 3.328895906 3.526427801
extra	frame	reward:	0.0 1.1193924 12.62185465 11.46642777
extra	frame	reward:	1e-5 1.283649607 11.91111497 13.17070586
frames	back:	10 1.565966324 12.67872818 6.766056991
frames	back:	5 1.283649607 11.91111497 13.17070586
frames	before:	1e5 1.314620253 11.72732532 8.484817536
frames	before:	5e4 1.283649607 11.91111497 13.17070586
grad	clip.:	0.0 1.283649607 11.91111497 13.17070586
grad	clip.:	1.0 1.830272283 7.622029053 12.45487645
grad	clip.:	10.0 1.510837858 12.12482097 8.745552219
mini-batch:	16 1.929140876 10.10765265 9.623069928
mini-batch:	32 1.283649607 11.91111497 13.17070586
mini-batch:	64 0.960969248 7.763781855 8.222028761
mini-batch:	8 1.556753631 8.285890256 6.141789924
model:	1	states	to	n	actions 1.283649607 11.91111497 13.17070586
model:	n	states	to	n	act. 1.266422601 0.000499987 0.000362667

DQN	paramaters lr=1e-05 lr=0.0001 lr=0.001
offline	prebatch:	false 1.283649607 11.91111497 13.17070586
offline	prebatch:	true 1.451969501 10.12259489 9.307812878
online:	false 1.283649607 11.91111497 13.17070586
online:	true 0.001364888 0.009441824 0.001442435
optimizer:	adam 1.549136204 11.0958563 28.78679352
optimizer:	rmsprop 1.283649607 11.91111497 13.17070586
optimizer:	sgd 0.0005885 0.00060987 0.000464353
pixels	input:	none 1.283649607 11.91111497 13.17070586
pixels	input:	rgb 0.000497369
priority	replay	buffer:	proportional 1.131824332 8.187889461 7.834152458
priority	replay	buffer:	ranked 1.283649607 11.91111497 13.17070586
reg.:	l1	0.01 1.469029549 0.000277902 0.000410069
reg.:	l2	0.01 1.148608343 0.000322185 0.000314489
reg.:	none 1.283649607 11.91111497 13.17070586
replay	buffer:	1e6 1.208407003 11.2587372 9.307465784
replay	buffer:	5e5 1.283649607 11.91111497 13.17070586
rnn:	elu 1.42752302 12.02852927 9.555151711
rnn:	gru 0.367137935 41.95876824 0.347982022
rnn:	leakyrelu 0.46394823 0.000394567 0.000352919
rnn:	lstm 0.432068508 38.19286308 6.333251634
rnn:	relu 1.283649607 11.91111497 13.17070586
rnn:	selu 1.549029797 0.000372131 0.000353642
sarsa:	false 1.283649607 11.91111497 13.17070586
sarsa:	true 0.394738604 0.144451096 0.129299982
state	prev.	act.	reward:	true 1.084134571 10.09573664 11.06724909
state	prev.	act.,	reward:	false 1.283649607 11.91111497 13.17070586
target	network	alpha:	0.0 1.218063084 8.236031427 9.316638159
target	network	alpha:	0.5 1.465495324 7.837406845 12.07657609
target	network	alpha:	1.0 1.283649607 11.91111497 13.17070586
terminal	reward:	-1e3 1.283649607 11.91111497 13.17070586
terminal	reward:	0.0 0.003241795 0.031652144 0.064477032

APPENDIX D - Paper 4

155

Exponential triplet loss
Evalds Urtans

Riga Technical University
Riga, Latvia
+37126401317

evalds.urtans@rtu.lv

Agris Nitkitenko
Riga Technical University

Riga, Latvia
agris.nikitenko@rtu.lv

Valters Vecins
Riga Technical University

Riga, Latvia
valters.vecins@rtu.lv

ABSTRACT
This paper introduces a novel variant of the Triplet Loss function
that converges faster and gives better results. This function can sep-
arate class instances homogeneously through the whole embedding
space. With Exponential Triplet Loss function we also introduce
a novel type of embedding space regularization Unit-Range and
Unit-Bounce that utilizes euclidean space more efficiently and re-
sembles features of the cosine distance. We also examined factors
for choosing the best embedding vector size for specific embedding
spaces. Finally, we also demonstrate how new function can train
models for one-shot learning and re-identification tasks.

CCS CONCEPTS
•Theory of computation→Design and analysis of algorithms;
• Applied computing;

KEYWORDS
Triplet loss, Feature embedding, Sample mining, One-shot learning,
Identification, Re-identification

1 INTRODUCTION
Models that are capable of creating embedding representation that
is somewhat disentangled and can be interpreted using distance
metrics empowers many kinds of deep learning fields tasks starting
with representation learning [1] [2], one-shot learning [3] [4], auto-
encoders, generative models and reinforcement learning.

Nowadays, it is often not feasible to store all raw data from
sensors and method for extracting and compressing only valuable
data in the form of embedding is needed. Also, edge cases in data can
be found using embedding queries thereby improving the quality
of training data. Using the same queries these models can perform
classification tasks on novel classes that have not been seen during
training. Contrary to standard classification models, the precision
of these models can be adjusted using cluster radiuses and other
proximity metrics after they have been trained. These models also
learn to generalize well and fewer samples to identify novel classes
whereas classic classification models need a lot more data samples
[5].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICCDA 2020, March 9–12, 2020, Silicon Valley, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7644-0/20/03. . . $15.00
https://doi.org/10.1145/3388142.3388163

Sample-based methods like triplet loss [6], contrastive loss [7]
[8] and N-tuple loss [8] has a goal to reduce the distance in embed-
ding space between same class samples and increase the distance
between different class samples. These methods require extensive
sample mining methods and sample selection constraints to con-
verge class representations into clusters. In this paper, we propose
a new type of function to replace triplet loss that does not need
sample selection constraints. This new function has an exponential
shape to help converge faster samples that are further away from
the desired state.

Figure 1. t-SNE embeddings of CIFAR10 trained with Lexp .
Colors denote different classes of samples. Exponential

Triplet Loss decreases the distance between anchor ya and
positive same class sample yp and increases the distance
between different class sample yn . Zoomed area shows
sample from horse class that looks very similar to deer

class samples.

2 RELATEDWORK
Important research papers in Triplet Loss come from applications
in face identification and re-identification tasks [6] [9].

ICCDA 2020, March 9–12, 2020, Silicon Valley, CA, USA Evalds Urtans, Agris Nitkitenko, and Valters Vecins

Many variations of Triplet Loss have been explored by scientific
community, notable mentions include Lifted Structured Loss [2],
Histogram Loss [10], PDDM [11], n-pair loss [12], Triplet Ranking
Loss [13], Additive Angular Margin Loss [14], Lossless Triplet Loss
[15], N-Tuple Loss [8]. Similarly to our research, Margin Ranking
Loss [16] worked on loss function shaping and described several
shortcomings in standard Triplet Loss. One of the recent advances
in Triplet Loss is Margin loss [17] that has some similar properties
to our proposed loss function.

There has been a number of recent advances also in sample
mining methods. Distance weighted sampling improves sample
distributions in mini-batches [17], but is more useful in tandem
with Margin Loss function. Doppelganger Mining [18] that takes
into account most similar samples but with different classes. Hard
example mining with auxiliary embeddings focuses on additional
class features that can be used for better sampling strategy [19].

3 METHODOLOGY
Standard Triplet loss function (1) works with distances between
embedding vectors yp of same class as anchor embedding vector
ya and embedding vectors yn of a different class than anchor em-
bedding vector. Within the function, α is used as a margin between
classes to not push them too far away and not to have them too
close to each other.

Lstd = | ∥ya − yp ∥
2
2 − ∥ya − yn ∥

2
2 + α |+ (1)

In Figure 2 of function Lstd it is possible to see that many pairs
in lower bound of loss function converge inconsistently.

Figure 2. Lstd function depending on positive pair
∥ya − yp ∥

2
2 (pos) and negative pair ∥ya − yn ∥

2
2 (neg) of

embedding vectors

To have stable convergence of Lstd so that negative embedding
vector pairs are further away and positive are closer to each other
at least one of two constraints must be enforced [9] [6] [20]:

(1) "Hard constraint" ∥ya − yp ∥
2
2 + α < ∥ya − yn ∥

2
2

(2) "Semi-hard constraint" ∥ya − yn ∥
2
2 < ∥ya − yp ∥

2
2

After applying constraints in Figure 3 of function Lstd it is
possible to observe that area of sample combinations that guides

model to converge is very small. To have convergence using Lstd
function it is necessary to have sample mining procedure before
each mini-batch. Common approach is to use "batch hard" or "batch
all" sample mining [21].

Figure 3. Lstd function with constraints depending on
positive pair ∥ya − yp ∥

2
2 (pos) and negative pair ∥ya − yn ∥

2
2

(neg) of embedding vectors

Our proposed Exponential Triplet Loss functionLexp has higher
area where it can converge as seen in Figure 4. It also exploits ex-
ponential shape of function so that samples further away from
desirable locations have much higher loss value. Lexp has asym-
metric plateau where it does not draw closer pairs that are within
half of embedding space maximum distance max(femb (x). As this
loss function have a lot larger area of convergence it is less depen-
dent on sample mining. Hyper-parameters Cpos and Cneд can be
usually set to 1.0.

Lexp = −Cpos · loд(1.0 −
|embp − cn |+

1 − cn
+ ϵ)

−Cneд · loд(1.0 −
|0.5 − embn |+

0.5
+ ϵ)

embp =
yp

max(femb (x))
embn =

yn
max(femb (x))

(2)

It is not beneficial to push embedding vectors too far away from
each other when the model would be used for the one-shot learning
task. Sample of an unseen class that has not been introduced dur-
ing training would "jump" between modalities of training data-set
distribution. For one-shot learning task, homogeneous distribution
of classes withing embedding space would be desirable. In order to
enforce this, we propose overlap coefficient co that describes how
much instances of different classes in data-set should overlap with

Exponential triplet loss ICCDA 2020, March 9–12, 2020, Silicon Valley, CA, USA

each other. Good value of co for clean data-sets is 1.5 that produces
partial overlap in between all classes.

Figure 4. Lexp function depending on positive pair
∥ya − yp ∥

2
2 (pos) and negative pair ∥ya − yn ∥

2
2 (neg) of

embedding vectors

Figure 5. On the top example of overlapping class clusters
in 1D with homogeneous embedding space. On the bottom
example of non-homogeneous embedding space where new

class samples will "jump" between clusters.

Function (3) evenly splits space into cd embedding distances for
each class in data-set. The number of classes in training data-set isK .
When themodel is used in the inference stage then the sameK value
is used as in the training stage even though the number of classes in
inference might differ from training. Lexp can be used with cosine
distance that has upper bound of femb = 2. It enables calculation
of overlap distance that is calculated dividing this upper bound
of distance by the number of classes and multiplied by overlap
coefficient.

cd =
co · K

max(femb (x))
(3)

To use euclidean distances with Lexp it is necessary to have the
upper bound of distance. It can be solved either by applying L2
normalization in which case it will always be femb = 2 · cs depend-
ing on scale the maximum distance. But it constrains embedding
vector positions within spherical space. We propose to use hybrid
space that behaves as euclidean space when it is closer to the centre
and when it reaches the radius of L2 then it behaves like spherical
space. We call this function Unit-Range (4). Looking at embedding
vectors using simple PCA it is possible to observe that Unit-Range
space is more homogeneous than spherical space enforced by L2
normalization.

femb (x) =

{
cs

x
|x |2 , if |x |2 ≥ 1

x , otherwise
(4)

Another function to normalize embedding space that is intro-
duced by this paper is called Unit-Bounce (5). It resembles features
of cosine distance as when embedding vector reaches the edge of
a sphere it bounces back towards the centre of embedding space.
When embedding reaches the opposite side of the sphere with a
radius of cs it bounces back towards centre again, similarly how
the maximum angle between two vectors is always 180 degrees
when calculating cosine distance.

f ′emb (x) =

{
fbounce (x), if |x |2 ≥ 1
x , otherwise

(5)

fbounce (x) =


|x |2 −

⌊
|x |2
cs

⌋
− cs

x
|x |2 , if

⌊
|x |
cs

⌋
mod 2 = 0

cs
x
|x |2 − |x |2 −

⌊
|x |2
cs

⌋
, otherwise

(6)

Figure 6. Illustration of Unit-Bounce embedding
normalization function within L2 spherical space.

ICCDA 2020, March 9–12, 2020, Silicon Valley, CA, USA Evalds Urtans, Agris Nitkitenko, and Valters Vecins

4 EXPERIMENTS
Proposed exponential triplet loss function Lexp has been tested on
several image data-sets: MNIST, Fassion-MNIST, EMNIST, CIFAR10,
CIFAR100 and VGGFace2 [22]. VGGFace2 dataset is typically used
for face re-identification and verification tasks as well as one-shot
learning evaluation. Implementation in PyTorch is available as
an open-source code repository: https://github.com/evaldsurtans/
exp-triplet-loss.

As an architecture of models we used pre-trained DenseNet-121
on ImageNet [23]. At the end of the model, we added the global
average pooling function and max-out function with 16 linear units.

For all Lexp and Lstd experiments grid search of best hyper-
parameters were done to compare best results for each method.
Experiments were repeated 5 times with the same set of hyper-
parameters because in some cases convergence is sensitive to ini-
tialization.

For measuring accuracy two metrics were used:

• Closest accuracy (nearest neighbour) - after each epoch class
cluster centres were calculated and each sample was assigned
to the class closest to its embedding vector [24].

• Range accuracy - during each epoch class cluster centres
were calculated and also their maximum distances within
a class. Each sample added value of 1 to the class one-hot
encoded vector so that embedding vector is in class cluster
range. Afterwards, a one-hot encoded vector was L1 normal-
ized to have probabilistic representation.

4.1 The dimensionality of a embedding vector
From empirical tests depending on an initialization method and the
embedding space, we concluded that there is a dimension size limit
for each combination these two parameters at which it does not
improve performance of embedding models. It matches a simple
experiment done by initializing different size vectors with a chosen
pair of parameters shown in Figure 7. For example in L2 normalized
spherical embedding space using cosine distances there are very
small differences between vector size of 256 and 1024. For euclidean
distances when L2 or Unit-Range even smaller embedding vector
could be used at the size of in between 32 and 128. Experiments
with training models with different embedding sizes confirmed this
finding as shown in Figure 8. Intuitive explanation to this is that
once distances between all samples at the beginning of training
are same by random initialization then it is a good starting point
for converging samples into homogeneous clusters covering the
whole embedding space. At this point, it does not improve results

to increase the dimension count of embedding vector. The same
behaviour applies to cosine space as well as Euclidean space.

Figure 7. Cosine distances between 1000 sampled vectors
that have been initialized by uniform distribution

depending on dimension size.

Figure 8. Accuracy of EMINST test data-set depending on
dimension size of embedding vector. Unit-range and

euclidean distances has been used in training.

4.2 Initialization of embedding vector
From empirical tests, we noticed that cd had a higher effect on train-
ing if linear units of the embedding vector have been initialized
using a uniform distribution. Such initialization yielded more uni-
form distribution of class clusters in the embedding space thanmore
uni-modal initialization distributions. In Figure 9 distances between
a sample and closest class cluster centre has been displayed. On left,
there are distances before training, middle during training and on
right after training. On top embedding, vectors are initialized using

Exponential triplet loss ICCDA 2020, March 9–12, 2020, Silicon Valley, CA, USA

Xavier initialization, but on the bottom using uniform initialization.
Measurements have been taken from CIFAR10 data-set.

Figure 9. Comparison of xavier initialization on top and
uniform initialization on bottom of embedding vectors. On

left before training, in middle mid-part of training, on
right after training.

4.3 Composite loss function
In order to improve performance of embedding models compos-
ite loss function were used. For all comparisons between Lexp
and Lstd composite loss functions were used. We introduced L2-
constrained Softmax [25] with cross entropy Lclass and center loss
Lcenter . We extended center loss (8) adding margin or radius of
desired cluster to maintain (9). The idea is to discourage the col-
lapse of embedding into one point in the embedding space. Within
Lclass input in Softmax function f (x) is L2 normalized and scaled
by s . WithinLclass during training class instances are accumulated
and cyi is calculated centre of cluster.

Lclass = −

M∑
i=1

yi loд
eW

T
i s |f (xi) |22+bi∑C

j=1 e
W T

j s |f (xi) |22+bj
(7)

Lcenter ′ =

M∑
i=1

| |xi − cyi | |
2
2 (8)

Lcenter =

M∑
i=1

| | |xi − cyi | |
2
2 −

cd
2
|+ (9)

L⌋≀⇕√ = Lexp +CcenterLcenter +CclassLclass (10)

4.4 One-shot learning
A model trained for one-shot learning task or re-identification task
will work with novel classes in the test phase that has not been seen
in the training phase. As Lexp models shown in Figure 10 and Fig-
ure 11 tend to have homogeneous embedding space they are able to
cluster unseen class samples in between classes that have been seen
during the training phase. Uniform initialization mentioned in the
previous section is also beneficial for one-shot learning task where

novel samples would be more evenly distributed in the embedding
space.

Figure 10. PCA of 2D of embeddings of class clusters seen
in training. Model trained using Lexp and EMINST.

Figure 11. PCA of 2D of embeddings of class clusters
not-seen in training. Model trained using Lexp and

EMINST.

ICCDA 2020, March 9–12, 2020, Silicon Valley, CA, USA Evalds Urtans, Agris Nitkitenko, and Valters Vecins

4.5 Results
Comparisons were made using the identification task wherein the
inference phase there were the same classes as in the training
phase. For each set of methods, hyper-parameters were tuned and
multiple repeat training runs were made to compare only the best-
performing model. All models were trained using state-of-the-art
optimizer algorithm RAdam [26]. For some models, accuracy is
close of those achieved by state of the art classification models.
After analysis of mislabeled samples in the embedding space, it was
possible to find many indistinguishable and wrong samples within
training data-sets. All results of VGGFace2 have been obtained from
re-identification task and one-shot learning task where test data-set
classes were not included in train data-set. For VGGFace2 we used

only 1000 samples of each class in training and testing data-sets
with lower resolution of 128x128 pixels.

Figure 12. Comparison of convergence speed between Lexp
and Lstd on Fassion-MINST data-set.

Figure 13. t-SNE of 50 color-coded samples of VGGFace2 test data-set trained by Lexp . In lower-left corner sample given
where model clusters together close samples of similar Asian woman face with dark hair.

Exponential triplet loss ICCDA 2020, March 9–12, 2020, Silicon Valley, CA, USA

Table 1. Comparison of accuracy between models trained with different types of loss functions. Accuracy calculated by
closest cluster centre to a sample. All models use best fitted hyper-parameters and superior Unit-Range type of embedding

normalization.

Loss func. / Accuracy % MNIST Fassion-MNIST EMINST CIFAR10 VGGFace2
Lstd 99.6 91.4 82.0 56.2 77.4
Lstd + Lclass 99.6 92.1 85.0 79.8 76.3
Lstd + Lcenter 97.5 71.5 61.7 52.1 76.4
Lstd + Lcenter + Lclass 97.7 82.0 70.9 62.8 78.6
Lexp 99.6 92.7 82.7 85.7 85.0
Lexp + Lclass 99.6 93.1 85.2 87.2 84.1
Lexp + Lcenter 99.6 93.1 85.7 85.3 84.0
Lexp + Lcenter + Lclass 99.6 93.1 86.0 87.3 85.7

5 CONCLUSIONS
Proposed Exponential Triplet Loss function provides an easier way
to train embedding models. With this function, models converge
faster and have higher accuracy and class separation. They produce
embeddings in better utilized and more homogeneous Unit-Range
and Unit-Bounce embedding spaces than in L2 spherical embed-
ding space. The embedding normalization function Unit-Bounce
resembled the same properties as cosine distances but using eu-
clidean distances. Also, the training relies on less sample mining
as the convergence space covers more of the sample space. The
embedding models in this paper generalizes well also in one-shot
learning task where novel class samples grouped in clusters even
though they were not seen during the training phase.

6 ACKNOWLEDGMENTS
Research has been completed with support from High-Performance
Computing Center of Riga Technical University that provided 12
nVidia K40 GPUs and 8 nVidia V100 GPUs. Special thanks to Lauris
Cikovskis.

REFERENCES
[1] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, , T. M. Hospedales, “Learning

to Compare: Relation Network for Few-Shot Learning,” in 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,
June 18-22, 2018, pp. 1199–1208. http://openaccess.thecvf.com/content_cvpr_
2018/html/Sung_Learning_to_Compare_CVPR_2018_paper.html

[2] H. O. Song, Y. Xiang, S. Jegelka, , S. Savarese, “Deep Metric Learning via Lifted
Structured Feature Embedding,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp.
4004–4012. https://doi.org/10.1109/CVPR.2016.434

[3] M. Bucher, S. Herbin, , F. Jurie, “Improving Semantic Embedding Consistency by
Metric Learning for Zero-Shot Classiffication,” in Computer Vision - ECCV 2016
- 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part V, pp. 730–746. https://doi.org/10.1007/978-3-319-46454-1_44

[4] Y. Yuan, K. Yang, , C. Zhang, “Hard-Aware Deeply Cascaded Embedding,” in IEEE
International Conference on Computer Vision, ICCV 2017, Venice, Italy, October
22-29, 2017, pp. 814–823. https://doi.org/10.1109/ICCV.2017.94

[5] C. Wang, X. Lan, , X. Zhang, “How to train triplet networks with 100K identities?”
pp. 1907–1915.

[6] F. Schroff, D. Kalenichenko, , J. Philbin, “FaceNet: A unified embedding for
face recognition and clustering,” in IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pp. 815–823.
https://doi.org/10.1109/CVPR.2015.7298682

[7] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore, E. Säckinger, ,
R. Shah, “Signature Verification Using A "Siamese" Time Delay Neural Network,”
vol. 7, no. 4, pp. 669–688. https://doi.org/10.1142/S0218001493000339

[8] S. Chopra, R. Hadsell, , Y. LeCun, “Learning a Similarity Metric Discriminatively,
with Application to Face Verification,” in 2005 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR 2005), 20-26 June 2005, San
Diego, CA, USA, pp. 539–546. https://doi.org/10.1109/CVPR.2005.202

[9] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, , Y. Wu,
“Learning Fine-Grained Image Similarity with Deep Ranking,” in 2014 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus,
OH, USA, June 23-28, 2014, pp. 1386–1393. https://doi.org/10.1109/CVPR.2014.180

[10] E. Ustinova , V. S. Lempitsky, “Learning Deep Embeddings with
Histogram Loss,” in Advances in Neural Information Processing Sys-
tems 29: Annual Conference on Neural Information Processing Sys-
tems 2016, December 5-10, 2016, Barcelona, Spain, pp. 4170–4178. http:
//papers.nips.cc/paper/6464-learning-deep-embeddings-with-histogram-loss

[11] C. Huang, C. C. Loy, , X. Tang, “Local Similarity-Aware Deep Fea-
ture Embedding,” in Advances in Neural Information Processing Sys-
tems 29: Annual Conference on Neural Information Processing Sys-
tems 2016, December 5-10, 2016, Barcelona, Spain, pp. 1262–1270. http:
//papers.nips.cc/paper/6368-local-similarity-aware-deep-feature-embedding

[12] B. Amos, B. Ludwiczuk, , M. Satyanarayanan, “OpenFace: A general-purpose face
recognition library with mobile applications,” in CMU.

[13] M. Ye , Y. Guo, “Deep Triplet Ranking Networks for One-Shot Recognition,” vol.
abs/1804.07275. http://arxiv.org/abs/1804.07275

[14] J. Deng, J. Guo, , S. Zafeiriou, “ArcFace: Additive Angular Margin Loss for Deep
Face Recognition,” vol. abs/1801.07698. http://arxiv.org/abs/1801.07698

[15] Marc-Olivier Arsenault. Lossless Triplet loss. https://towardsdatascience.com/
lossless-triplet-loss-7e932f990b24

[16] D. P. Vassileios Balntas, Edgar Riba , K. Mikolajczyk, “Learning local fea-
ture descriptors with triplets and shallow convolutional neural networks,”
in Proceedings of the British Machine Vision Conference (BMVC), E. R. H.
Richard C. Wilson , W. A. P. Smith, Eds. BMVA Press, pp. 119.1–119.11.
https://dx.doi.org/10.5244/C.30.119

[17] R. Manmatha, C.-Y. Wu, A. J. Smola, , P. Krähenbühl, “Sampling Matters in Deep
Embedding Learning,” pp. 2859–2867.

[18] E. Smirnov, A. Melnikov, S. Novoselov, E. Luckyanets, , G. Lavrentyeva, “Doppel-
ganger Mining for Face Representation Learning,” in 2017 IEEE International
Conference on Computer Vision Workshops, ICCV Workshops 2017, Venice, Italy,
October 22-29, 2017, pp. 1916–1923. https://doi.org/10.1109/ICCVW.2017.226

[19] E. Smirnov, A. Melnikov, A. Oleinik, E. Ivanova, I. Kalinovskiy, , E. Luck-
yanets, “Hard Example Mining With Auxiliary Embeddings,” in 2018
IEEE Conference on Computer Vision and Pattern Recognition Workshops,
CVPR Workshops 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp.
37–46. http://openaccess.thecvf.com/content_cvpr_2018_workshops/w1/html/
Smirnov_Hard_Example_Mining_CVPR_2018_paper.html

[20] O. M. Parkhi, A. Vedaldi, , A. Zisserman, “Deep Face Recognition,” in BMVC.
[21] A. Hermans, L. Beyer, , B. Leibe, “In defense of the triplet loss for person re-

identification,” vol. abs/1703.07737.
[22] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, , A. Zisserman, “VGGFace2: A dataset for

recognising faces across pose and age,” pp. 67–74.
[23] G. Huang, Z. Liu, , K. Q. Weinberger, “Densely Connected Convolutional Net-

works,” pp. 2261–2269.
[24] K. Q. Weinberger , L. K. Saul, “Distance Metric Learning for

Large Margin Nearest Neighbor Classification,” vol. 10, pp. 207–244.
https://dl.acm.org/citation.cfm?id=1577078

[25] R. Ranjan, C. D. Castillo, , R. Chellappa, “L2-constrained Softmax Loss for Discrim-
inative Face Verification,” vol. abs/1703.09507. http://arxiv.org/abs/1703.09507

[26] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, , J. Han, “On the variance of the
adaptive learning rate and beyond,” vol. abs/1908.03265.

APPENDIX E - Paper 5

163

asya: Mindful verbal communication using deep learning
Pre-print Version, August 20, 2020

Evalds Urtans
Riga Technical University

Riga, Latvia
evalds@asya.ai

Ariel Tabaks
University of Central Lancashire

Preston, Lancashire, UK
ariel@asya.ai

ABSTRACT
asya is a mobile application that consists of deep learning models
which analyze spectra of a human voice and do noise detection,
speaker diarization, gender detection, tempo estimation, and clas-
sification of emotions using only voice. All models are language
agnostic and capable of running in real-time. Our speaker diariza-
tion models have accuracy over 95% on the test data set. These
models can be applied for a variety of areas like customer service
improvement, sales effective conversations, psychology and couples
therapy.

CCS CONCEPTS
•Theory of computation→Design and analysis of algorithms;
• Applied computing;

KEYWORDS
Deep Learning, Triplet loss, ConvNet, ResNet, DenseNet,Mel-Spectra,
Speaker diarization, Emotion detection, NLP

1 INTRODUCTION
asya is a mobile application that listens to a person’s voice and
provides private feedback on a person’s verbal communication. It
gives metrics on how much a person listens and speaks, how long
are a person’s sentences and utterances, how fast a person speaks,
how positive is the tone of a person, the confidence level of a per-
son’s voice based on the tone and other metrics. It is deployed as a
web service and stand-alone application. These models are being
applied to a variety of tasks starting from customer service evalua-
tion to analysis of private conversations and couple’s relationships
therapy.

Neuroscientists Andrew Newberg, M.D., and Mark Waldman,
have identified through brain scans and from other studies that if
everyday verbal interactions is coupled with increased moment-to-
moment awareness the results can lead to increased levels of trust
building, resolved conflicts, increased intimacy and other benefits
[3]. The findings show that people can benefit from speaking less,
shorter, and slower as human brain short-term memory holds only
about four “chunks” of information, which translates to speaking
time under 30 seconds [3]. Furthermore, when people practice the
30 second rule, they can train themselves to increase awareness of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
https://asya.ai, August 20, 2020, Riga, Latvia
© 2018 Copyright held by the owner/author(s).

filtering out lower quality information. In addition, when speaking
is kept with brevity in mind, the emotional centers of the brain
that can be triggered by certain words are less likely to lead the
speaker to sabotage the conversation. The research also shows that
exercising awareness not only helps to increase connection with
other people, but also suppresses the brain’s ability to generate
feelings of anxiety, irritability or stress.

The tone of voice, emotions, and the way how a person speaks
are as important as the content that a person speaks. For example,
one could imagine how one could say the phrase "you are such a
fool" in a way that could offend someone or in a way that could be
even playful and funny.

2 RELATEDWORK
In the last decade, there has been great progress in natural lan-
guage processing (NLP) models to do the tasks like "text-to-speech",
"speech-to-text", translation, semantic and syntactic understanding
of language [21] [23] [1] [9]. However, only in recent years there
has been emerging research to use deep learning models to analyze
human’s voice biometric features that are linked to psychology
[12] [5]. Before it has been done using classical machine learn-
ing models that yielded in lesser results [13]. Voice features that
typically are used for analysis are Mel-frequency filter banks, Log
Mel spectrograms, Mel-frequency cepstrum (MFCC), or even raw
waveforms in combination with audio envelopes. Mel-frequency
filter banks are filters that are applied to spectrum calculated by
Fast Fourier Transform (FFT) to simulate specific amplitudes of
sounds at different frequencies that are audible to the human ear.
The audio spectrum is much broader than that what human ear can
perceive, but other frequencies of sound are less likely to contain
useful information for NLP tasks.

Figure 1:Mel-frequencies filter bank to emulate human’s ear
perception.

Recently, also some progress has been done into recognizing
emotions form a person’s voice. Historically, there have been very
little datasets available for voice alone, but recent techniques using
transfer learning enabled to accumulate considerable datasets with
unsupervised learning to analyze emotions in a human’s voice [2].

https://asya.ai, August 20, 2020, Riga, Latvia Evalds Urtans and Ariel Tabaks

Some of the recent works have used deep Convolutional Networks
(ConvNet) [10] to extract features from human’s voice spectra and
classify 8 basic emotions: Happiness, Sadness, Anger, Fear, Disgust,
Surprise, Boredom and Neutrality. Even with the basic ConvNet
model, it has been possible to surpass human reference accuracy
on detecting emotions in a person’s voice. For example, humans on
average were able to detect happiness in voice with 65% precision,
whereas ConvNet model was able to detect it with 100% precision
[19], [15].

Figure 2: Mel-spectogram of a person speaking (processed
input of asya models).

3 METHODOLOGY
asya uses deep learning models that take as an input
Mel spectrograms and other features from raw voice recordings.
Deep Residiual Networks (ResNet) [7] and DenseNet [8] models
have been applied as feature encoders. ConvNet models are deep
artificial neural network models that have very similar results when
experimentally compared to human retina natural neural networks
[11]. At first layers of the model, they extract basic features like
Gabor patches and edges, but the deeper they go they extract more
general features. For example, for face detection task, first they
would detect features like nose and eyes, but then in deeper layers
faces as a whole. These models are very deep with usually more
than 32 layers. ConvNet models with residual connections (ResNet)
allow error to flow freely using back-propagation algorithmwithout
vanishing gradient problem. In case of DenseNet, there are even
more connections and better flow of gradient of error through the
model. asya models have been trained on multiple large private
datasets from different speakers and languages using DenseNet
models and other proprietary models.

Figure 3: Schematic illustration of ConvNet model for
speaker feature embedding using Mel-spectogram sample.

3.1 Speaker diarization
Speaker diarization (identification of different speakers in parts of
utterances) has been done primary using i-vector, d-vector [17],
x-vector [18] based models.

More recently, RNN based models also have been applied like
UIS-RNN [22].

It has also been done using triplet loss or contrastive loss and co-
sine similarity of embedding vectors (fingerprint vectors of human

voice) [12] [5] [16]. asya uses Exponential Triplet Loss function and
clustering of speaker embedding to achieve speaker diarization and
speaker re-identification in one step [20].

asya models are utterance (phrase) and language independent,
whereas, for example, Google Home recognize speaker by specific
phrase like "Ok, Google". It means that asya models are capable of
identifying a person’s voice at any point in natural conversations.
To improve training results of speaker diariaztion models data have
been split into multiple parts. asya has been trained as a set of
hierarchical models that first predict if the audio in a given window
is a noise or speech, then if it is a man or woman and finally does
feature embedding of person’s voice. During the testing, we use the
center of the mass of a person’s voice embedding vector to estimate
a probability of voice sample belonging to a particular person.

Figure 4: Histograms of cosine distance between speaker
embedding vectors acquired by asya male models. Left in
the beginning of training, right after training have been
completed. Green are distances between samples form same
speaker. Red are distances between samples form different
speakers.

Figure 5: Representation of speaker embedding vectors from
asya models in 3D space (Spherical PCA). Colors denote dif-
ferent speaker samples in test data set.

asya: Mindful verbal communication using deep learning https://asya.ai, August 20, 2020, Riga, Latvia

Figure 6: Segmentation of audio sample for speaker diariza-
tion task for 2 male speakers. Red frames are furthest away
from speaker feature embedding vector and green frames
are closest thus identifying target speaker 1.

3.2 Emotion classification
Speaker emotion classification task is also done using the same
deep learning feature extractor as for speaker diarization task, but
with softmax loss function at the end [19].

Standard academic datasets of classified emotional states of audio
are read to validate approaches. For example, traditional German
EmoDB dataset [6] contains only 500 samples of 10 speakers.

Themethodology for ourwork initially has been based on EmoVox-
Celeb [2]. EmoVoxCeleb is trained on FERPlus [4] dataset of still
pictures of human FER (Facial Expressions) in different emotional
states and then applied to a larger VoxCeleb dataset of videos [14].
These emotional states are classified as Paul Ekman’s 8 basic emo-
tions.

Even though we can achieve state-of-art results in academic
data-sets we had to create our own proprietary methodology and
dataset to to reach similar performance in production systems.

To acquire more training, data transfer learning and unsuper-
vised learning have been used to scrape public data from video sites
in the internet.

Table 1: Preliminary results of emotion classification using
asya models

emotion Human [14] EmoVoxCeleb asya
happiness 84 35 62
sadness 81 71 75
anger 97 72 75
fear 84 35 75
surprise 81 36 69
disgust 67 67 75
neutral 93 N/A 69

4 RESULTS
Asya models are currently in development and are being tested us-
ing mobile application in natural conversations to improve couples
relationships through conversations in a similar manner, how does
couple therapy would work.

Set of hierarchical models are executed in real-time in less than
500 ms. for every 1 sec. frame on consumer grade GPU server. It is
also possible also to deploy and execute these models on flagship
mobile phones with machine learning specialized processing units.

Table 2: Preliminary results of speaker re-identification and
other voice classification tasks of asya models

model accuracy
noise detection 99.2
gender detection 89.3
male speaker re-identification 87.4
female speaker re-identification 88.4

5 CONCLUSIONS
The proposedmodels are capable of analyzing human’s voice in real-
time. asya is able to detect noise in audio samples and process only
parts with a human’s voice. asyamodels are able to detect a human’s
perception of the gender of the speaker with high precision. Finally,
it is able to produce a unique embedding vector for each person’s
voice to combine speaker diarization and reidentification tasks in a
single step. Furthermore, asya models are able to detect Ekman’s
basic human emotions from language and utterance independent
data.

There can be a wide range of use cases for asya models. It
has been successfully deployed to improve communication skills
and encourage mindful communication in a commercial product
https://asya.ai. Asya is being developed also to improve public
speaking skills and provide feedback for psychologists about their
sessions with patients. Asya models also can be used to monitor
customer experience in customer service-centered businesses like
phone hotlines, post offices, stores, telemarketing, etc. Finally, they
could be used to identify persons of interest in large databases of
audio recordings, but there are even more use cases than listed in
this paper.

REFERENCES
[1] Karim Ahmed, Nitish Shirish Keskar, and Richard Socher. [n. d.]. Weighted

Transformer Network for Machine Translation. abs/1711.02132 ([n. d.]).
arXiv:1711.02132 http://arxiv.org/abs/1711.02132

[2] Samuel Albanie, Arsha Nagrani, Andrea Vedaldi, and Andrew Zisserman. [n. d.].
Emotion Recognition in Speech Using Cross-Modal Transfer in the Wild. In 2018
ACM Multimedia Conference on Multimedia Conference, MM 2018, Seoul, Republic
of Korea, October 22-26, 2018 (2018). 292–301. https://doi.org/10.1145/3240508.
3240578

[3] Andrew Newberg M.D and Mark Robert Waldman. [n. d.]. Words Can Change
Your Brain: 12 Conversation Strategies to Build Trust, Resolve Conflict, and Increase
Intimacy.

[4] Emad Barsoum, Cha Zhang, Cristian Canton Ferrer, and Zhengyou Zhang. [n. d.].
Training Deep Networks for Facial Expression Recognition with Crowd-Sourced
Label Distribution. In ACM International Conference on Multimodal Interaction
(ICMI) (2016).

[5] Hervé Bredin. [n. d.]. TristouNet: Triplet Loss for Speaker Turn Embedding. In
2017 IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP 2017, New Orleans, LA, USA, March 5-9, 2017 (2017). 5430–5434. https:
//doi.org/10.1109/ICASSP.2017.7953194

[6] Felix Burkhardt, Astrid Paeschke, Melissa A Rolfes, Walter F. Sendlmeier, and Ben-
jamin Weiss. [n. d.]. A Database of German Emotional Speech. In INTERSPEECH
(2005).

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. [n. d.]. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016 (2016).
770–778. https://doi.org/10.1109/CVPR.2016.90

[8] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
[n. d.]. Densely Connected Convolutional Networks. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017 (2017). 2261–2269. https://doi.org/10.1109/CVPR.2017.243

[9] Takuhiro Kaneko and Hirokazu Kameoka. [n. d.]. Parallel-Data-Free Voice Con-
version Using Cycle-Consistent Adversarial Networks. abs/1711.11293 ([n. d.]).
arXiv:1711.11293 http://arxiv.org/abs/1711.11293

https://asya.ai, August 20, 2020, Riga, Latvia Evalds Urtans and Ariel Tabaks

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. [n. d.]. ImageNet Classi-
fication with Deep Convolutional Neural Networks. In Advances in Neural Infor-
mation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger (Eds.). Curran Associates, Inc., 1097–1105. http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[11] Jonas Kubilius, Stefania Bracci, and Hans P. Op de Beeck. [n. d.]. Deep Neural
Networks as a Computational Model for Human Shape Sensitivity. 12, 4 ([n. d.]).
https://doi.org/10.1371/journal.pcbi.1004896

[12] Chao Li, Xiaokong Ma, Bing Jiang, Xiangang Li, Xuewei Zhang, Xiao Liu, Ying
Cao, Ajay Kannan, and Zhenyao Zhu. [n. d.]. Deep Speaker: An End-to-End
Neural Speaker Embedding System. abs/1705.02304 ([n. d.]). arXiv:1705.02304
http://arxiv.org/abs/1705.02304

[13] Benoˆ[U+FFFD]t Mathieu, Slim Essid, Thomas Fillon, Jacques Prado, and Gaël
Richard. [n. d.]. YAAFE, an Easy to Use and Efficient Audio Feature Extraction
Software. In Proceedings of the 11th International Society for Music Information
Retrieval Conference, ISMIR 2010, Utrecht, Netherlands, August 9-13, 2010 (2010).
441–446. http://ismir2010.ismir.net/proceedings/ismir2010-75.pdf

[14] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. [n. d.]. VoxCeleb: A
Large-Scale Speaker Identification Dataset. In INTERSPEECH (2017).

[15] Yafeng Niu, Dongsheng Zou, Yadong Niu, Zhongshi He, and Hua Tan. [n. d.]. A
Breakthrough in Speech Emotion Recognition Using Deep Retinal Convolution
Neural Networks. abs/1707.09917 ([n. d.]). arXiv:1707.09917 http://arxiv.org/
abs/1707.09917

[16] Florian Schroff, Dmitry Kalenichenko, and James Philbin. [n. d.]. FaceNet: A
Unified Embedding for Face Recognition and Clustering. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12,
2015 (2015). 815–823. https://doi.org/10.1109/CVPR.2015.7298682

[17] David Snyder, Daniel Garcia-Romero, Daniel Povey, and Sanjeev Khudanpur. [n.
d.]. Deep Neural Network Embeddings for Text-Independent Speaker Verification.
In INTERSPEECH (2017).

[18] David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, and Sanjeev
Khudanpur. [n. d.]. X-Vectors: Robust DNN Embeddings for Speaker Recognition.
([n. d.]), 5329–5333.

[19] Somayeh Shahsavarani. [n. d.]. Speech Emotion Recognition Using Convolutional
Neural Networks.

[20] Evalds Urtans, Agris Nikitenko, and Valters Vecins. [n. d.]. Exponential Triplet
Loss. In ICCDA (2020).

[21] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray
Kavukcuoglu. [n. d.]. WaveNet: A Generative Model for Raw Audio. In The
9th ISCA Speech Synthesis Workshop, Sunnyvale, CA, USA, 13-15 September 2016
(2016). 125. http://www.isca-speech.org/archive/SSW_2016/abstracts/ssw9_
DS-4_van_den_Oord.html

[22] Aonan Zhang, Quan Wang, Zhenyao Zhu, John W. Paisley, and Chong Wang. [n.
d.]. Fully Supervised Speaker Diarization. ([n. d.]), 6301–6305.

[23] Cong Zhou, Michael Horgan, Vivek Kumar, Cristina Vasco, and Dan Darcy. [n. d.].
Voice Conversion with Conditional SampleRNN. In Interspeech 2018, 19th Annual
Conference of the International Speech Communication Association, Hyderabad,
India, 2-6 September 2018. (2018). 1973–1977. https://doi.org/10.21437/Interspeech.
2018-1121

	ABBREVIATIONS
	INTRODUCTION
	Importance of the Subject
	Objectives and Theses
	Methodology
	Scientific Novelty and Contributions of the Author
	Structure of the Thesis

	LITERATURE REVIEW
	Methodolgy of Literature Review
	Results of the Literature Review on Deep Metric Learning
	Conclusions of Literature Review

	IMPROVING THE PERFORMANCE OF FUNCTIONS USING DEEP LEARNING MODELS
	Value Iteration Algorithm
	ConvNet and UNet Models
	RNN Models
	UNet-RNN-Skip Model

	FUNCTION SHAPING IN DEEP REINFORCEMENT LEARNING
	Q-Value and Policy Gradient Functions for Reinforcement Learning
	Deep Q-Network model and Loss Function
	Multi Deep Q-Network Model and Loss Function

	FUNCTION SHAPING IN DEEP METRIC LEARNING
	Zero-Shot Learning and Re-identification Task
	Triplet Loss Function
	Exponential Triplet Loss Function

	EXPERIMENTAL RESULTS AND APPLICATIONS
	Results of UNet-RNN-Skip Model
	Results of Multi Deep Q-Network Loss Function
	Results of Exponential Triplet Loss Function
	Practical Applications

	FUTURE RESEARCH
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	BIBLOGRAPHY
	APPENDIX A - Paper 1
	APPENDIX B - Paper 2
	APPENDIX C - Paper 3
	APPENDIX D - Paper 4
	APPENDIX E - Paper 5

