#### October 28-29, 2021 Riga, Latvia

# 12<sup>th</sup> Paul Walden Symposium on Organic Chemistry







INVESTING IN YOUR FUTURE





## Organized by





#### The best poster award by



Supported by the European Regional Development Fund "Support for international cooperation projects in research and innovation in Latvian Institute of Organic Synthesis", contract No. 1.1.1.5/18/I/007.







**EUROPEAN UNION** European Regional

INVESTING ΙN YOUR FUTURE

| 12 <sup>th</sup> Paul | Walden | Sym | posium | on ( | Organic | Chemistry |
|-----------------------|--------|-----|--------|------|---------|-----------|
|                       |        |     |        |      |         |           |

#### PROGRAM AND ABSTRACT BOOK

Riga, Latvia 28-29 October, 2021

https://walden.osi.lv/

## **Table of contents**

| Program               | 6  |
|-----------------------|----|
| Plenary lectures      | 9  |
| Student presentations | 18 |
| Posters               | 21 |

## List of posters

| D-1  | Benzoxaphosphepine 2-oxides as potential carbonic anhydrase inhibitors <i>Anastasija Balašova</i>                                          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------|
| D-2  | Reactivity Investigation of Propargyl Silanes with Various Electrophyles<br>Rūdolfs Beļaunieks, Mikus Puriņš                               |
| D-3  | Synthesis and Photophysical Properties of C-C Bonded Triazole-Purine Conjugates  Aleksejs Burcevs, Armands Sebris                          |
| D-4  | Process optimization of the synthesis of UAMC-00050, a novel uPA inhibitor  Davide Ceradini                                                |
| D-5  | Electrosynthesis of $\alpha,\beta$ -unsaturated esters from furfurylated ethylene glycols and amino alcohols<br>$Madara~D\bar{a}rzi\eta a$ |
| D-6  | Functionalization of 1 <i>N</i> -protected tetrazoles by deprotonation with turbo Grignard reagent <i>Konstantinos Grammatoglou</i>        |
| D-7  | Synthetic approach towards enantiopure cyclic sulfinamides<br>Glebs Jersovs                                                                |
| D-8  | C-H Activation of Betulin Analogs<br>Vladislavs Kroškins, Kristiāns Jankovičs                                                              |
| D-9  | Cation– $\pi$ interactions for high emission intensity <i>Kaspars Leduskrasts</i>                                                          |
| D-10 | $S_N$ Ar Regioselectivity and azide-tetrazole equilibrium study in pyrido[2,3- $d$ ]pyrimidine $Kristaps\ Leškovskis$                      |
| D-11 | Peptidic boronic acids as inhibitors of PfSUB1<br>Elīna Līdumniece                                                                         |
| D-12 | Synthesis of fluorocyclopropylidenes via Julia-Kocienski olefination<br>Renāte Melngaile                                                   |
| D-13 | Synthesis and Photophysical Properties of Fluorescent Purine-Carbazole Conjugates  Armands Sebris                                          |

#### Synthesis and Photophysical Properties of C-C Bonded Triazole-Purine Conjugates

#### Alekseis Burcevs, Armands Sebris

Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry,
Riga Technical University
e-mail: aleksejs.burcevs@rtu.lv

Earlier, our group reported the synthesis and photophysical properties of C-N bonded 6-(1*H*-1,2,3-triazol-1-yl)-9*H*-purine derivatives **A** (Scheme 1).<sup>1,2</sup> In this work we synthesized C-C bonded 6-(1*H*-1,2,3-triazol-4-yl)-9*H*-purine derivatives **B**. Such compounds possess enhanced stability due to C-C bond connection of 1,2,3-triazole to the purine ring, thus this triazole cannot act as a leaving group.

**Scheme 1.** C-N and C-C bonded triazolylpurine structures.

Target compounds 2-3 were synthesized from 2,6-dichloropurine 1, using the sequence of Mitsunobu, Sonogashira, CuAAC and  $S_N$ Ar reactions (Scheme 2). Further, photophysical properties of obtained compounds have been studied. Quantum yields reached up to 91% in DCM and 98% in DMSO solutions.

**Scheme 2.** General structures of target products **2-3**.

Supervisor: Dr. chem. I. Novosjolova

#### Acknowledgements

*Dr. phys.* K. Traskovskis is acknowledged for photophysical measurements. This work was supported by the Latvian Council of Science grant No LZP-2020/1-0348.

#### References

- 1. Šišuļins, A.; Bucevičius, J.; Tseng, Y.; Novosjolova, I.; Traskovskis, K.; Bizdēna, Ē.; Chang, H.; Tumkevičius, S.; Turks, M. *Beilstein J. Org. Chem.* **2019**, *15*, 474.
- 2. Jovaisaite, J.; Cīrule, D.; Jeminejs, A.; Novosjolova, I.; Turks, M.; Baronas, P.; Komskis, R.; Tumkevicius, S.; Jonusauskas, G.; Jursenas, S. *Phys. Chem. Chem. Phys.* **2020**, 22, 26502.