October 28-29, 2021 Riga, Latvia

12th Paul Walden Symposium on Organic Chemistry

EUROPEAN UNION European Regional Development Fund

INVESTING IN YOUR FUTURE

RIGA TECHNICAL UNIVERSITY

12th Paul Walden Symposium on Organic Chemistry

PROGRAM AND ABSTRACT BOOK

Riga, Latvia 28-29 October, 2021

https://walden.osi.lv/

M-19

1,2,3-Triazoles as Leaving Groups in S_NAr–Arbuzov Reactions: Synthesis of C6-Phosphonated Purine Derivatives

Kārlis Ēriks Kriķis

Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University e-mail: karlis-eriks.krikis@rtu.lv

Purine derivatives are widely studied due to their biological activity. They are used as anticancer and antiviral drugs, and as agonists and antagonists of adenosine receptors.¹ In our studies we proved that 1,2,3-triazoles can be used as leaving groups in S_NAr reactions with N-, S-, O-, C-nucleophiles.²⁻⁴ In this research we obtained 2,6-bistriazolylpurine derivatives **3** in CuAAC between diazide **2** and different alkyl-/arylalkynes and used them in reactions with phosphites, obtaining 2-triazolylpurine phosphonates **4** in yields up to 82%. Alternative pathway which starts with S_NAr-Arbuzov reaction on 2,6-dichloropurine **1**, yields phosphonates **5** and involves next S_NAr with NaN₃ and subsequent CuAAC did not give the desired products **4** (Scheme 1). Structure of compound **4** was proved by X-ray analysis (Scheme 1).⁵

Scheme 1. Synthesis of C6 purine phosphonate derivatives 4.

Supervisor: Dr. chem. I. Novosjolova

Acknowledgements

This work was supported by the Latvian Council of Science grant LZP-2018/2-0037.

References

- 1. Cristalli G.; Costanzi S.; Lambertucci C.; Taffi S.; Vittori S.; Volpini R. Farm. 2003, 58 (3), 193.
- Kovaļovs, A.; Novosjolova, I.; Bizdēna, Ē.; Bižāne, I.; Skardziute, L.; Kazlauskas, K.; Jursenas, S.; Turks, M. *Tetrahedron Lett.* 2013, 54, 850.
- 3. Novosjolova, I.; Bizdēna, Ē.; Turks, M. Tetrahedron Lett. 2013, 54, 6557.
- 4. Cīrule, D.; Novosjolova, I.; Bizdēna, Ē.; Turks, M. Beilstein J. Org. Chem. 2021, 17, 410.
- 5. Kriķis, K.-Ē; Novosjolova, I.; Mishnev, A. Turks, M. Beilstein J. Org. Chem. 2021, 17, 193.