
Applied Computer Systems
ISSN 2255-8691 (online)
ISSN 2255-8683 (print)
December 2021, vol. 26, no. 2, pp. 173–177
https://doi.org/10.2478/acss-2021-0021
https://content.sciendo.com

173

©2021 Maris Galauskis, Arturs Ardavs.
This is an open access article licensed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
in the manner agreed with Sciendo.

The Process of Data Validation and Formatting for an
Event-Based Vision Dataset in Agricultural

Environments
Maris Galauskis1*, Arturs Ardavs2

1,2 Riga Technical University, Riga, Latvia

Abstract – In this paper, we describe our team’s data processing
practice for an event-based camera dataset. In addition to the
event-based camera data, the Agri-EBV dataset contains data
from LIDAR, RGB, depth cameras, temperature, moisture, and
atmospheric pressure sensors. We describe data transfer from a
platform, automatic and manual validation of data quality,
conversions to multiple formats, and structuring of the final data.
Accurate time offset estimation between sensors achieved in the
dataset uses IMU data generated by purposeful movements of the
sensor platform. Therefore, we also outline partitioning of the data
and time alignment calculation during post-processing.

Keywords – Dataset creation, event-based vision, neuromorphic

vision dataset.

I. INTRODUCTION
When it comes to visual sensing in robotics, conventional

frame-based cameras have been an industry standard for
decades [1]. However, as with many significant inventions, it is
often beneficial to seek inspiration from nature. In recent years,
a new camera technology inspired by the working principles of
the retina has emerged, promising significant improvements in
key computer vision weaknesses [2]. A dynamic vision sensor
(DVS), also known as an event-based camera, generates single-
pixel light intensity change events instead of full frames. Each
event contains information about x and y coordinates of the
pixel, a timestamp, and the light intensity change polarity. The
asynchronous nature of the DVS allows it to achieve
microsecond-level latency as an event is sent out almost
instantly. Furthermore, event cameras have a high dynamic
range, low power consumption, take up less bandwidth, and
require less processing power than standard cameras. DVSs
generate next to no events at a standstill and are less affected by
motion blur than frame-based cameras [3].

Since event cameras are a novel technology, most modern
algorithms have not yet been adapted for the asynchronous
nature of the DVS sensors [4]. Event-based cameras are
expensive or difficult to obtain. Therefore, several datasets have
been created for researchers to develop and test event-based
algorithms. Datasets are useful since they provide a
reproducible environment, so the input data do not change
between algorithm updates and iterations. Also, researchers do

* Corresponding author’s e-mail: Maris.Galauskis@rtu.lv

not necessarily have to invest in expensive equipment to test out
their ideas, allowing them to iterate quickly and effectively and
reduce the potential cost of research in event-based vision.

There are multiple event-based and conventional computer
vision datasets available online. Among the more popular ones,
along with the general description of the datasets in their
accompanying papers, researchers mainly concentrate on the
sensor calibration process [1], [3]–[6], time synchronisation [5],
[7], and ground truth generation [4], [8]. In contrast, the data
preparation, processing, and validation processes are not so
extensively discussed in research papers; the few available
articles on the topic include [7] and [8].

Our team has created a dataset for researchers interested in
agricultural environment event-based camera data or event-
based data in general [9]. The dataset includes DVS, LIDAR,
RGB, and depth data recorded during remote-controlled
wheeled platform movements in various agricultural scenes.

Creating such a dataset involves several tasks: designing a
time synchronisation method between sensors, designing and
building a recording equipment bundle, scheduling various
locations for recording, and post-processing the obtained data
to ensure their quality before making them available publicly.

In this paper, we describe our team’s approach to dealing
with the last step of dataset creation, i.e., data processing. The
need for human input for actions like visual validation of the
data and, specifically in our case, the time offset calculation
between the sensors hinders a fully automated workflow.
Therefore, we created a semi-automated solution involving
both human input and automated software.

A. Description of the Dataset
The Agri-EBV-autumn dataset [10] contains data sequences

acquired in various agricultural environments. Each of the data
sequences includes 1–4 min of the actual recording of the
environment with OS-1 LIDAR, DVS240 event-based camera,
as well as Realsense (RS) RGB and depth cameras. A sample
frame with data from each of the sensors is shown in Fig. 1. We
also provide metadata with recording visualisations and
supplementary data subsets that offer additional data for sensor
calibration and time alignment. The dataset is intended

https://doi.org/10.2478/acss-2021-0021
http://creativecommons.org/licenses/by/4.0
mailto:Maris.Galauskis@rtu.lv

Applied Computer Systems
___2021/26

174

primarily as a source of DVS event data with supplementary
visual data from the RGB camera and depth information from
the LIDAR and the depth camera. Additionally, basic
information about the environment is recorded, such as
temperature, humidity and air pressure. IMU data of the
LIDAR, Realsense, and DVS are used for time alignment
estimation between the sensors. All the recorded sequences use
trajectories with loop-closure to allow for evaluation of SLAM
algorithms. The initial version of the dataset consists of 21 data
sequences recorded in autumn. The complete dataset will
include sequences for all four seasons. We also provide all the
recorded data in rosbag format for the convenience of ROS
users.

Fig. 1. Sample of RGB, DVS, Depth, and LIDAR data.

II. DATA PROCESSING

A. Overview
The general outline of the data processing is illustrated in

Fig. 2. We tried to automate and batch-process most of the
operations since there are 21 recordings in the first Autumn
section of the dataset alone, and we are going to add Winter,
Spring and Summer sections as well.

Fig. 2. The main data processing steps.

B. Data Acquisition from Sensor Bundle
The data sequences were recorded using a custom robot

platform with a sensor bundle mounted on top of it, as shown
in Fig. 3. External hard drives are used to facilitate the copying

Fig. 3. Platform with sensor bundle mounted during recording.

process. Therefore, the sensor bundle was only used for data
acquisition, and all the necessary data processing happened
afterwards on another computer. To automate the process and
thus minimise potential human errors, a python script is used
for copying the data from the sensor bundle to a local computer.
The software searches for log files generated by the recorder
program to identify recordings.

C. Conversion from Binary to Readable Data
All the data from the sensors are recorded into separate raw

binary files to eliminate conversion operations for the onboard
computer. Therefore, the first step in data processing is to
convert the raw binary data to commonly used individual data
formats for each recorded sensor (see Table I). This process is
summarised in the following graph (Fig. 4).

Fig. 4. File formats used during dataset processing.

A dedicated C++ converter program for each sensor type
reads a single raw data file generated by the sensor and exports

Applied Computer Systems
___2021/26

175

the data to a respective standard file format. This process is
automated by a python script that systematically launches those
converters and captures their outputs to determine whether a
conversion was successful. A log file is generated and updated
after each step to keep track of the progress in case of the main
python script failure.

Our typical recording contains four distinct parts, as shown
in Fig. 5. These parts are separated during post-processing.
There are two periods for time alignment – b and d, a sequence
for LIDAR-RGB extrinsic calibration – a, and the main
recording that contains data recorded during the platform
motion in each recording – c.

For each C++ converter, it is possible to select a start and an
end time to export only a particular part of the binary file. This
mechanism is used to partition the recording into corresponding
sections.

Fig. 5. Time dimension structure of each recording.

We first estimate approximate time offsets between the

sensors by comparing absolute time values of the DVS,
Realsense and LIDAR. It is necessary because not all the
sensors use absolute time – for example, the DVS starts its time
count after the reset command at startup. Then, we manually
examine the DVS IMU gyroscope data graphs and note the start
and end times of both platform tilting/lowering procedures.
After that, the time alignment script uses estimates of time
offsets to match the corresponding periods from the LIDAR and
RS IMU gyroscope data. Accurate time offset values are
obtained by finding a time offset with maximum cross-
correlation value within a predetermined search window.
LIDAR and RS gyroscope data are re-sampled to match the
DVS gyroscope sample rate, which is 1 kHz. The time drift
between these sensors is calculated by comparing the time
between two controlled platform tilting events, the first one
before the main recording and the second one shortly after.

To produce separate data for RGB – LIDAR extrinsic
calibration, we manually browse RGB frames to visually find
the start and end frame numbers of this part of the recording.
The time alignment script correlates these frame numbers to
their time values according to the LIDAR time conversion
coefficients found by the time offset calculation.

The converter script is used again on the raw data when all
recording periods are marked into a JSON file. This time, the
converter uses the previously acquired time interval values to
convert only the distinct four parts.

2 https://www.ffmpeg.org/

D. Preview Video Generation
For users to preview the data sequences quickly, we provide

a video containing DVS event visualisation frames, RGB
frames and depth images side by side. Since Realsense frame
durations are not constant, there are occasional occurrences of
longer frame times followed by a sequence of shorter frame
periods. First, the Realsense RGB and depth images
corresponding to the desired recording fragment start and end
times are copied. Then, the frames of DVS events are generated
by drawing all the positive and negative events of the
corresponding RGB frame duration into a png image.

TABLE I
DATA FORMATS USED FOR EACH SENSOR

Sensor type Converted file

Data stored
Realsense png RGB and Depth frames
LIDAR pcd Point cloud data

DVS aedat Pixel events data
Sensorboard csv Temperature, humidity, air

 IMU csv 3-axis acc, gyro

Afterwards, all of the three sensor images are combined into a
single frame. Finally, frames are encoded into a video using the
FFmpeg2 tool.

E. Reference Trajectory Generation
With each recording section of the Agri-EBV dataset, we

provide a reference trajectory of the sensor platform estimated
by the Cartographer SLAM tool [11]. The ROS version of the
Cartographer is used. Therefore, we first create a rosbag file that
contains both LIDAR point cloud and IMU data. Then, a script
systematically launches the Cartographer for each of the
recordings. The output trajectory points of the Cartographer are
then captured by a custom ROS node, as there is no provision
for writing these data directly to a file. The trajectory is
provided in the regular dataset version as a list of points and
orientations in a csv file. However, the trajectory is a separate
rosbag file containing a single topic of the tf2 type in the ROS
version. Afterwards, a Gnuplot3 diagram tool is used to draw
the graphs of XY coordinates of each trajectory for visual
validation.

F. Validation
We validate data in multiple steps. An overview of data

validation is shown in Table II. The first data validation is done
after raw data files are uploaded to a computer. We check
recording software log files and convert only those recordings
showing up as completed in the log. This action is helpful
because there may be recording attempts that have failed due to
equipment or environmental issues. The main validation step is
done after the raw data are converted to the standard formats.

3 http://www.gnuplot.info/

Applied Computer Systems
___2021/26

176

TABLE II
LIST OF ITEMS VALIDATED DURING DATASET PROCESSING

The IMU-based time alignment approach implies that the

sensor platform is tilted and lowered before and after the main
recording. Therefore, these moments have to be located visually
in the IMU gyroscope data of the DVS sensor. The data graph
at these moments has a distinct shape, so it is relatively easy to
do by hand. The recording is processed further only if the
platform tilting parts can be found in the IMU data so that time
alignment can be calculated.

We provide data for postponed LIDAR to RGB extrinsic
calibration that contains a sphere held in discrete positions,
using the methodology from [12]. Therefore, we also check if
the whole sphere is visible in the captured RGB frames. RGB
frames are also used to visually find the start and the end of the
main recording part.

Individual data converters provide information that is used to
assess data quality. In particular, we consider the ratio of the
number of positive and negative DVS events and the number of
lost IMU samples. For example, some recordings may have
missing data samples due to connection bandwidth limitations.
Converter software compares the actual number of IMU
samples with an estimate based on a known IMU sample rate
and recording length. We provide this ratio of lost IMU samples
in the metadata file of the dataset because it may also indicate
possible missing data from other sensors.

After the preview videos are generated, we visually validate
the content of RGB frames and frames generated by
accumulating DVS events. In RGB images, we check if the
desired scene and scenario are presented as intended and
whether the images are sharp and clear. In DVS images, we
check for excessive noise and sharp edges, as blurred edges may
indicate issues with focal length adjustment of the DVS sensor.

The quality of LIDAR data is validated directly by
visualisation of point cloud data and assessing trajectories
obtained with the SLAM tool. We check if trajectories are
closed and have a distinctive shape in the XY plane.

G. Conversion to Rosbag Format
The team also decided to publish the data in the rosbag file

format as it provides a unified representation of all the different
data types obtained from our sensor platform. All the data from
various sensors written in the rosbag files can be simultaneously
played back in the ROS environment and processed with built-

in tools like Rviz or C++ and Python code API. We use two-
step conversion: first, we convert each source file or a set of
files to its ROS representation. This way, we obtain rosbag files
that contain data from a single sensor, e.g., a different file for
DVS events and DVS IMU, etc. Then, in the second step, we
can combine the desired data of any of the sensors into a single
merged file. We chose to publish four rosbag files of each
recording. If needed, rosbag files can be combined further using
rosbag API or ready-to-use ROS codebase from open-source
packages.

H. Structure for Publishing
To create the final data structure for publishing (see Fig. 6),

we use a python script that copies and renames the necessary
data, compresses the data and generates a unique metadata file
for each data sequence. The metadata contains information
about the sensors used, data structure description, data about the
time synchronisation and known issues. We publish three
archives for each of the recordings: the main recording data,
data for postponed calibration, and the main recording data in
the rosbag format.

Fig. 6. Publish ready file structure tree of the main data archive.

Validation description Data Processing step Criticality

Completeness of the recording recording log file upload critical
Time alignment calculation IMU data of DVS LIDAR and RS conversion critical
Quality of DVS and RGB calibration calibration output file upload
Quality of data for LIDAR – RS calibration RGB frames conversion
Trajectory loop closure RGB frames conversion critical
The ratio of lost IMU samples DVS and RS IMU files conversion
Balance of polarity of DVS events DVS convertor log file conversion
Quality of DVS and RGB data preview video partitioning
Quality of LIDAR data trajectories of SLAM tool trajectory generation

Applied Computer Systems
___2021/26

177

For internal purposes, we used recording names consisting of
a date followed by a time, for example, “2020-09-25_11-21-
18”. It is a simple approach to generate a unique identifier for
each of the recordings and a quick way to evaluate the time and
place of the data recording session. For the end-user, this
naming scheme would not make any sense. Therefore, when
generating the final data structure, all the occurrences of the
internal names are renamed to a recording number followed by
the name of the recorded environment, e.g., “01_forest”.

For hosting the dataset, IEEE DataPort was selected. It is a
widely recognised unified open-access platform with a great
variety of datasets. It offers good collaboration opportunities
and allows updating datasets and getting feedback from other
users.

III. CONCLUSION
In this paper, we have described procedures involved in

processing data for the Agri-EBV dataset. Due to the
requirements to achieve accurate time alignment of the sensors
used, a necessity for postponed calibration data and conversion
to the rosbag format, the whole procedure demands multiple
stages of data conversion, formatting and validation.

The procedure we described could include more automation
to reduce the human time required during dataset processing.
We believe that finding loop closure and calibration balls in
RGB frames could be done by automated computer vision
software. Still, the development of such a system was not
feasible for our number of recordings. Also, the IMU-based
time alignment method could be improved to automatically find
the time offset and drift values without the need for dedicated
platform movement procedures.

ACKNOWLEDEMENTS
The authors would like to acknowledge the rest of the Agri-

EBV dataset team for their contribution to the data processing:
Dr.sc.ing, researcher Andrejs Zujevs and PhD student,
researcher Mihails Pudzs for their significant contribution to
developing the data processing software and methodology. The
authors express their gratitude to Dr.sc.ing Vitalijs Osadcuks,
PhD student Aldis Pecka and PhD student Janis Galins from
Latvia University of Life Sciences and Technologies for
providing the robotic platform, performing most of the data
recordings, and giving valuable feedback about the data
recoding process.

The research has been supported by the Latvian Council of
Science (lzp-2018/1-0482).

REFERENCES
[1] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza,

‘The event-camera dataset and simulator: Event-based data for pose
estimation, visual odometry, and SLAM,” International Journal of
Robotics Research, vol. 36, no. 2, pp. 142–149, Feb. 2017.

 https://doi.org/10.1177/0278364917691115
[2] G. Gallego et al., “Event-based vision: A survey,” arXiv, pp. 1–30, Apr.

2019. https://doi.org/10.1109/tpami.2020.3008413
[3] D. Weikersdorfer, D. B. Adrian, D. Cremers, and J. Conradt, “Event-

based 3D SLAM with a depth-augmented dynamic vision sensor,” in
IEEE International Conference on Robotics and Automation (ICRA),
Hong Kong, China, Sep. 2014, pp. 359–364.

 https://doi.org/10.1109/ICRA.2014.6906882
[4] A. Z. Zhu, D. Thakur, T. Özaslan, B. Pfrommer, V. Kumar, and K.

Daniilidis, “The multivehicle stereo event camera dataset: An event
camera dataset for 3D perception,” IEEE Robotics and Automation
Letters, vol. 3, no. 3, pp. 2032–2039, Jul. 2018.

 https://doi.org/10.1109/LRA.2018.2800793
[5] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The

KITTI dataset,” International Journal of Robotics Research, vol. 32, no.
11, pp. 1231–1237, Aug. 2013.

 https://doi.org/10.1177/0278364913491297
[6] F. Barranco, C. Fermuller, Y. Aloimonos, and T. Delbruck, “A dataset for

visual navigation with neuromorphic methods,” Frontiers in
Neuroscience, vol. 10, pp. 1–9, Feb. 2016.

 https://doi.org/10.3389/fnins.2016.00049
[7] J. Binas, D. Neil, S. C. Liu, and T. Delbruck, “DDD17: End-to-end

DAVIS driving dataset,” arXiv Computer Vision and Pattern Recognition
, pp. 1–9, Nov. 2017.

[8] J. Wulff, D. J. Butler, G. B. Stanley, and M. J. Black, “Lessons and
insights from creating a synthetic optical flow benchmark,” in Computer
Vision – ECCV 2012. Workshops and Demonstrations. ECCV 2012
(Lecture Notes in Computer Science), A. Fusiello, V. Murino,
R. Cucchiara, Eds. Springer, Berlin, Heidelberg, vol. 7584, 2012,
pp. 168–177. https://doi.org/10.1007/978-3-642-33868-7_17

[9] A. Zujevs, M. Pudzs, V. Osadcuks, A. Ardavs, M. Galauskis and
J. Grundspenkis, “An Event-based vision dataset for visual navigation
tasks in agricultural environments,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), Xi'an, China, Oct. 2021,
pp. 13769–13775.

 https://doi.org/10.1109/ICRA48506.2021.9561741
[10] A. Zujevs, M. Pudzs, V. Osadcuks, A. Ardavs, M. Galauskis, and

J. Grundspenkis, “Agri-EBV-autumn dataset,” 2021. [Online]. Available
on: https://ieee-dataport.org/open-access/agri-ebv-autumn. Accessed on:
Aug 20, 2021.

[11] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in
2D LIDAR SLAM,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA), Stockholm, Sweden, June 2016, pp. 1271–1278.
https://doi.org/10.1109/ICRA.2016.7487258

[12] T. Toth, Z. Pusztai, and L. Hajder, “Automatic LiDAR-camera calibration
of extrinsic parameters using a spherical target,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), Paris,
France, 2020, pp. 8580–8586.

 https://doi.org/10.1109/ICRA40945.2020.9197316

Maris Galauskis received a Bachelor degree in Intelligent Robotic Systems
from Riga Technical University in 2020. He is a 2nd year Master student at
Riga Technical University. He is currently a Research Assistant in a project
related to computer vision.
E-mail: Maris.Galauskis@rtu.lv

Arturs Ardavs received a Master degree in Intelligent Robotic Systems from
Riga Technical University Faculty in 2020. He has worked as a Research
Assistant in projects related to computer vision and multi-robot systems.
E-mail: Arturs.Ardavs@rtu.lv

https://doi.org/10.1177/0278364917691115
https://doi.org/10.1109/tpami.2020.3008413
https://doi.org/10.1109/ICRA.2014.6906882
https://doi.org/10.1109/LRA.2018.2800793
https://doi.org/10.1177/0278364913491297
https://doi.org/10.3389/fnins.2016.00049
https://doi.org/10.1007/978-3-642-33868-7_17
https://doi.org/10.1109/ICRA48506.2021.9561741
https://doi.org/10.1109/ICRA.2016.7487258
https://doi.org/10.1109/ICRA40945.2020.9197316
mailto:Maris.Galauskis@rtu.lv
mailto:Arturs.Ardavs@rtu.lv

	A. Description of the Dataset
	A. Overview
	B. Data Acquisition from Sensor Bundle
	C. Conversion from Binary to Readable Data
	D. Preview Video Generation
	E. Reference Trajectory Generation
	F. Validation
	G. Conversion to Rosbag Format
	H. Structure for Publishing

