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Abstract – In this paper, we describe our team’s data processing 
practice for an event-based camera dataset. In addition to the 
event-based camera data, the Agri-EBV dataset contains data 
from LIDAR, RGB, depth cameras, temperature, moisture, and 
atmospheric pressure sensors. We describe data transfer from a 
platform, automatic and manual validation of data quality, 
conversions to multiple formats, and structuring of the final data. 
Accurate time offset estimation between sensors achieved in the 
dataset uses IMU data generated by purposeful movements of the 
sensor platform. Therefore, we also outline partitioning of the data 
and time alignment calculation during post-processing. 
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I. INTRODUCTION 
When it comes to visual sensing in robotics, conventional 

frame-based cameras have been an industry standard for 
decades [1]. However, as with many significant inventions, it is 
often beneficial to seek inspiration from nature. In recent years, 
a new camera technology inspired by the working principles of 
the retina has emerged, promising significant improvements in 
key computer vision weaknesses [2]. A dynamic vision sensor 
(DVS), also known as an event-based camera, generates single-
pixel light intensity change events instead of full frames. Each 
event contains information about x and y coordinates of the 
pixel, a timestamp, and the light intensity change polarity. The 
asynchronous nature of the DVS allows it to achieve 
microsecond-level latency as an event is sent out almost 
instantly. Furthermore, event cameras have a high dynamic 
range, low power consumption, take up less bandwidth, and 
require less processing power than standard cameras. DVSs 
generate next to no events at a standstill and are less affected by 
motion blur than frame-based cameras [3]. 

Since event cameras are a novel technology, most modern 
algorithms have not yet been adapted for the asynchronous 
nature of the DVS sensors [4]. Event-based cameras are 
expensive or difficult to obtain. Therefore, several datasets have 
been created for researchers to develop and test event-based 
algorithms. Datasets are useful since they provide a 
reproducible environment, so the input data do not change 
between algorithm updates and iterations. Also, researchers do 
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not necessarily have to invest in expensive equipment to test out 
their ideas, allowing them to iterate quickly and effectively and 
reduce the potential cost of research in event-based vision. 

There are multiple event-based and conventional computer 
vision datasets available online. Among the more popular ones, 
along with the general description of the datasets in their 
accompanying papers, researchers mainly concentrate on the 
sensor calibration process [1], [3]–[6], time synchronisation [5], 
[7], and ground truth generation [4], [8]. In contrast, the data 
preparation, processing, and validation processes are not so 
extensively discussed in research papers; the few available 
articles on the topic include [7] and [8]. 

Our team has created a dataset for researchers interested in 
agricultural environment event-based camera data or event-
based data in general [9]. The dataset includes DVS, LIDAR, 
RGB, and depth data recorded during remote-controlled 
wheeled platform movements in various agricultural scenes. 

Creating such a dataset involves several tasks: designing a 
time synchronisation method between sensors, designing and 
building a recording equipment bundle, scheduling various 
locations for recording, and post-processing the obtained data 
to ensure their quality before making them available publicly. 

In this paper, we describe our team’s approach to dealing 
with the last step of dataset creation, i.e., data processing. The 
need for human input for actions like visual validation of the 
data and, specifically in our case, the time offset calculation 
between the sensors hinders a fully automated workflow. 
Therefore, we created a semi-automated solution involving 
both human input and automated software. 

A. Description of the Dataset 
The Agri-EBV-autumn dataset [10] contains data sequences 

acquired in various agricultural environments. Each of the data 
sequences includes 1–4 min of the actual recording of the 
environment with OS-1 LIDAR, DVS240 event-based camera, 
as well as Realsense (RS) RGB and depth cameras. A sample 
frame with data from each of the sensors is shown in Fig. 1. We 
also provide metadata with recording visualisations and 
supplementary data subsets that offer additional data for sensor 
calibration and time alignment. The dataset is intended 
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primarily as a source of DVS event data with supplementary 
visual data from the RGB camera and depth information from 
the LIDAR and the depth camera. Additionally, basic 
information about the environment is recorded, such as 
temperature, humidity and air pressure. IMU data of the 
LIDAR, Realsense, and DVS are used for time alignment 
estimation between the sensors. All the recorded sequences use 
trajectories with loop-closure to allow for evaluation of SLAM 
algorithms. The initial version of the dataset consists of 21 data 
sequences recorded in autumn. The complete dataset will 
include sequences for all four seasons. We also provide all the 
recorded data in rosbag format for the convenience of ROS 
users. 

Fig. 1.  Sample of RGB, DVS, Depth, and LIDAR data. 

II. DATA PROCESSING 

A. Overview 
The general outline of the data processing is illustrated in 

Fig. 2. We tried to automate and batch-process most of the 
operations since there are 21 recordings in the first Autumn 
section of the dataset alone, and we are going to add Winter, 
Spring and Summer sections as well. 

 

 

Fig. 2.  The main data processing steps. 

B. Data Acquisition from Sensor Bundle 
The data sequences were recorded using a custom robot 

platform with a sensor bundle mounted on top of it, as shown 
in Fig. 3. External hard drives are used to facilitate the copying  

  

Fig. 3.  Platform with sensor bundle mounted during recording. 
 
process. Therefore, the sensor bundle was only used for data 
acquisition, and all the necessary data processing happened 
afterwards on another computer. To automate the process and 
thus minimise potential human errors, a python script is used 
for copying the data from the sensor bundle to a local computer. 
The software searches for log files generated by the recorder 
program to identify recordings. 

C. Conversion from Binary to Readable Data 
All the data from the sensors are recorded into separate raw 

binary files to eliminate conversion operations for the onboard 
computer. Therefore, the first step in data processing is to 
convert the raw binary data to commonly used individual data 
formats for each recorded sensor (see Table I). This process is 
summarised in the following graph (Fig. 4). 

 

 

Fig. 4.  File formats used during dataset processing. 

A dedicated C++ converter program for each sensor type 
reads a single raw data file generated by the sensor and exports 
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the data to a respective standard file format. This process is 
automated by a python script that systematically launches those 
converters and captures their outputs to determine whether a 
conversion was successful. A log file is generated and updated 
after each step to keep track of the progress in case of the main 
python script failure. 

Our typical recording contains four distinct parts, as shown 
in Fig. 5. These parts are separated during post-processing. 
There are two periods for time alignment – b and d, a sequence 
for LIDAR-RGB extrinsic calibration – a, and the main 
recording that contains data recorded during the platform 
motion in each recording – c. 

For each C++ converter, it is possible to select a start and an 
end time to export only a particular part of the binary file. This 
mechanism is used to partition the recording into corresponding 
sections. 

 

 
Fig. 5. Time dimension structure of each recording. 

 
We first estimate approximate time offsets between the 

sensors by comparing absolute time values of the DVS, 
Realsense and LIDAR. It is necessary because not all the 
sensors use absolute time – for example, the DVS starts its time 
count after the reset command at startup. Then, we manually 
examine the DVS IMU gyroscope data graphs and note the start 
and end times of both platform tilting/lowering procedures. 
After that, the time alignment script uses estimates of time 
offsets to match the corresponding periods from the LIDAR and 
RS IMU gyroscope data. Accurate time offset values are 
obtained by finding a time offset with maximum cross-
correlation value within a predetermined search window. 
LIDAR and RS gyroscope data are re-sampled to match the 
DVS gyroscope sample rate, which is 1 kHz. The time drift 
between these sensors is calculated by comparing the time 
between two controlled platform tilting events, the first one 
before the main recording and the second one shortly after.  

To produce separate data for RGB – LIDAR extrinsic 
calibration, we manually browse RGB frames to visually find 
the start and end frame numbers of this part of the recording. 
The time alignment script correlates these frame numbers to 
their time values according to the LIDAR time conversion 
coefficients found by the time offset calculation. 

The converter script is used again on the raw data when all 
recording periods are marked into a JSON file. This time, the 
converter uses the previously acquired time interval values to 
convert only the distinct four parts. 

                                                           
2 https://www.ffmpeg.org/ 

D. Preview Video Generation 
For users to preview the data sequences quickly, we provide 

a video containing DVS event visualisation frames, RGB 
frames and depth images side by side. Since Realsense frame 
durations are not constant, there are occasional occurrences of 
longer frame times followed by a sequence of shorter frame 
periods. First, the Realsense RGB and depth images 
corresponding to the desired recording fragment start and end 
times are copied. Then, the frames of DVS events are generated 
by drawing all the positive and negative events of the 
corresponding RGB frame duration into a png image. 

TABLE I 
DATA FORMATS USED FOR EACH SENSOR 

Sensor type Converted file 
 

Data stored 
Realsense png RGB and Depth frames 
LIDAR pcd Point cloud data 

DVS aedat Pixel events data 
Sensorboard csv Temperature, humidity, air 

 IMU csv 3-axis acc, gyro 
 
Afterwards, all of the three sensor images are combined into a 
single frame. Finally, frames are encoded into a video using the 
FFmpeg2 tool. 

E. Reference Trajectory Generation 
With each recording section of the Agri-EBV dataset, we 

provide a reference trajectory of the sensor platform estimated 
by the Cartographer SLAM tool [11]. The ROS version of the 
Cartographer is used. Therefore, we first create a rosbag file that 
contains both LIDAR point cloud and IMU data. Then, a script 
systematically launches the Cartographer for each of the 
recordings. The output trajectory points of the Cartographer are 
then captured by a custom ROS node, as there is no provision 
for writing these data directly to a file. The trajectory is 
provided in the regular dataset version as a list of points and 
orientations in a csv file. However, the trajectory is a separate 
rosbag file containing a single topic of the tf2 type in the ROS 
version. Afterwards, a Gnuplot3 diagram tool is used to draw 
the graphs of XY coordinates of each trajectory for visual 
validation. 

F. Validation 
We validate data in multiple steps. An overview of data 

validation is shown in Table II. The first data validation is done 
after raw data files are uploaded to a computer. We check 
recording software log files and convert only those recordings 
showing up as completed in the log. This action is helpful 
because there may be recording attempts that have failed due to 
equipment or environmental issues. The main validation step is 
done after the raw data are converted to the standard formats.  

 
 
 
 
 
 

3 http://www.gnuplot.info/ 
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TABLE II 
LIST OF ITEMS VALIDATED DURING DATASET PROCESSING 

   
The IMU-based time alignment approach implies that the 

sensor platform is tilted and lowered before and after the main 
recording. Therefore, these moments have to be located visually 
in the IMU gyroscope data of the DVS sensor. The data graph 
at these moments has a distinct shape, so it is relatively easy to 
do by hand. The recording is processed further only if the 
platform tilting parts can be found in the IMU data so that time 
alignment can be calculated.  

We provide data for postponed LIDAR to RGB extrinsic 
calibration that contains a sphere held in discrete positions, 
using the methodology from [12]. Therefore, we also check if 
the whole sphere is visible in the captured RGB frames. RGB 
frames are also used to visually find the start and the end of the 
main recording part. 

Individual data converters provide information that is used to 
assess data quality. In particular, we consider the ratio of the 
number of positive and negative DVS events and the number of 
lost IMU samples. For example, some recordings may have 
missing data samples due to connection bandwidth limitations. 
Converter software compares the actual number of IMU 
samples with an estimate based on a known IMU sample rate 
and recording length. We provide this ratio of lost IMU samples 
in the metadata file of the dataset because it may also indicate 
possible missing data from other sensors.  

After the preview videos are generated, we visually validate 
the content of RGB frames and frames generated by 
accumulating DVS events. In RGB images, we check if the 
desired scene and scenario are presented as intended and 
whether the images are sharp and clear. In DVS images, we 
check for excessive noise and sharp edges, as blurred edges may 
indicate issues with focal length adjustment of the DVS sensor. 

The quality of LIDAR data is validated directly by 
visualisation of point cloud data and assessing trajectories 
obtained with the SLAM tool. We check if trajectories are 
closed and have a distinctive shape in the XY plane. 

G. Conversion to Rosbag Format 
The team also decided to publish the data in the rosbag file 

format as it provides a unified representation of all the different 
data types obtained from our sensor platform. All the data from 
various sensors written in the rosbag files can be simultaneously 
played back in the ROS environment and processed with built-

in tools like Rviz or C++ and Python code API. We use two-
step conversion: first, we convert each source file or a set of 
files to its ROS representation. This way, we obtain rosbag files 
that contain data from a single sensor, e.g., a different file for 
DVS events and DVS IMU, etc. Then, in the second step, we 
can combine the desired data of any of the sensors into a single 
merged file. We chose to publish four rosbag files of each 
recording. If needed, rosbag files can be combined further using 
rosbag API or ready-to-use ROS codebase from open-source 
packages. 

H. Structure for Publishing 
To create the final data structure for publishing (see Fig. 6), 

we use a python script that copies and renames the necessary 
data, compresses the data and generates a unique metadata file 
for each data sequence. The metadata contains information 
about the sensors used, data structure description, data about the 
time synchronisation and known issues. We publish three 
archives for each of the recordings: the main recording data, 
data for postponed calibration, and the main recording data in 
the rosbag format. 

 

 
Fig. 6.  Publish ready file structure tree of the main data archive. 

Validation description Data Processing step Criticality 

Completeness of the recording recording log file upload critical 
Time alignment calculation IMU data of DVS LIDAR and RS conversion critical 
Quality of DVS and RGB calibration calibration output file upload  
Quality of data for LIDAR – RS calibration RGB frames conversion  
Trajectory loop closure RGB frames conversion critical 
The ratio of lost IMU samples DVS and RS IMU files conversion  
Balance of polarity of DVS events DVS convertor log file conversion  
Quality of DVS and RGB data preview video partitioning  
Quality of LIDAR data trajectories of SLAM tool trajectory generation  
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For internal purposes, we used recording names consisting of 
a date followed by a time, for example, “2020-09-25_11-21-
18”. It is a simple approach to generate a unique identifier for 
each of the recordings and a quick way to evaluate the time and 
place of the data recording session. For the end-user, this 
naming scheme would not make any sense. Therefore, when 
generating the final data structure, all the occurrences of the 
internal names are renamed to a recording number followed by 
the name of the recorded environment, e.g., “01_forest”. 

For hosting the dataset, IEEE DataPort was selected. It is a 
widely recognised unified open-access platform with a great 
variety of datasets. It offers good collaboration opportunities 
and allows updating datasets and getting feedback from other 
users. 

III. CONCLUSION 
In this paper, we have described procedures involved in 

processing data for the Agri-EBV dataset. Due to the 
requirements to achieve accurate time alignment of the sensors 
used, a necessity for postponed calibration data and conversion 
to the rosbag format, the whole procedure demands multiple 
stages of data conversion, formatting and validation.  

The procedure we described could include more automation 
to reduce the human time required during dataset processing. 
We believe that finding loop closure and calibration balls in 
RGB frames could be done by automated computer vision 
software. Still, the development of such a system was not 
feasible for our number of recordings. Also, the IMU-based 
time alignment method could be improved to automatically find 
the time offset and drift values without the need for dedicated 
platform movement procedures. 
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