Long-Wave Infrared Discrete Multitone Free-Space Transmission Using a 9.15-μm Quantum Cascade Laser
IEEE Photonics Technology Letters 2023
Han Mengyao, Joharifar Mahdieh, Wang Muguang, Fan Yuchuan, Gregory Maisons, Johan Abautret, Sun Yan-Ting, Teissier Roland, Lu Zhang, Vjačeslavs Bobrovs, Yu Xianbin, Schatz Richard, Sergei Popov, Xiaodan Pang, Oskars Ozoliņš

A free-space optical (FSO) transmission system is experimentally demonstrated in the long-wave infrared (LWIR, 9.15 μm) using a directly modulated quantum cascade laser (DM-QCL) and a commercial mercury-cadmium-telluride infrared photovoltaic detector. At room temperature, the DM-QCL is current-modulated by discrete multitone signals pre-processed with bit-/power-loading. Up to 5.1 Gbit/s data rate is achieved with bit error rate performance below the 6.25% overhead hard-decision forward error correction limit of 4.5 × 10 -3 , enabled by a frequency domain equalizer. The stability study of the FSO system is also performed at multiple temperature values. This study can provide a valuable reference for future terrestrial and space communications.


Keywords
Free-space optical communication, long-wave infrared, discrete multitone, quantum cascade laser
DOI
10.1109/LPT.2023.3257843
Hyperlink
https://ieeexplore.ieee.org/document/10073612

Mengyao, H., Mahdieh, J., Muguang, W., Yuchuan, F., Maisons, G., Abautret, J., Yan-Ting, S., Roland, T., Zhang, L., Bobrovs, V., Xianbin, Y., Richard, S., Popov, S., Pang, X., Ozoliņš, O. Long-Wave Infrared Discrete Multitone Free-Space Transmission Using a 9.15-μm Quantum Cascade Laser. IEEE Photonics Technology Letters, 2023, Vol. 35, No. 9, pp.489-492. ISSN 1041-1135. e-ISSN 1941-0174. Available from: doi:10.1109/LPT.2023.3257843

Publication language
English (en)
The Scientific Library of the Riga Technical University.
E-mail: uzzinas@rtu.lv; Phone: +371 28399196