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Topicality of the problem 

It is not only Tesla manufacturers who are struggling to perfect self-driving technology. 
Honda manufacturers as well as Waymo owned by Google and Cruise owned by General 
Motors are working on it too. All these companies predicted that they would have full self-
driving cars by 2020. But as yet, none of them has. Creating a full self-driving vehicle is much 
harder than vehicle makers initially thought. There is a wide range of possible risks and 
elements to consider.  

This fact and completed reviews allow concluding that the problem of improving transport 
safety by the artificial intelligence systems is topical and requires scientific contribution for its 
solution.  

The Doctoral Thesis is related to the safe motion of electric transport providing novel 
immune neural network-based algorithms for its control. The Thesis contributes to the safety 
improvement of multiple collaborating unmanned electric vehicles moving and performing own 
tasks in the same area by researching and developing immune neural network technology. The 
developed technology provides the ability for continuous unsupervised self-learning to avoid 
collisions by changing speed and trajectory maximizing the efficiency of task performance in 
real time. 

Goal and tasks 

The goal of the Thesis is to develop an immune neural network-based technology of 
machine learning for unsupervised safe vehicle control.  

The main hypothesis is that an immune neural network can make control decisions to 
prevent vehicle collisions with better performance than a traditional neural network. 

The following tasks were defined: 
- To study the objects of electric transport traffic movement control and their interaction. 
- To study the existing solutions, which are based on the algorithms of artificial neural 

network, for dangerous situation  recognition and prevention of electric transport. 
- To compare centralized, decentralized and distributed system structures, to choose the most 

suitable one for the proposed task, and to develop a novel system structure, which could 
help to make the proposed system cheaper, faster and easier to implement. 

- To develop mathematical models and algorithms that could help to solve different types of 
transport safety and collision prevention tasks, such as object recognition, traffic light 
signal recognition, possible crossing point detection, collision probability evaluation, and 
collision prevention. 

- To develop a novel immune neural network-based algorithm for dangerous situation 
recognition and prevention of unmanned electric vehicle. 

- To develop an electric circuit diagram with an immune memory based on a single board 
computer for unmanned electric vehicle. 

- To make computer simulations and to prove the efficiency of the proposed algorithms. 
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Scientific novelty 

The most significant scientific novelty of the Doctoral Thesis is the immune neural network 
technology inspired by two biological systems – immune system and neural networks and their 
artificial analogs. The developed novel mathematical models and algorithms for this technology 
allows skipping the preliminary supervised training step and adapted for real-time continuous 
unsupervised self-learning of unmanned electric vehicle to recognize the dangerous situation 
and prevent the collision by making control decisions autonomously keeping the structures and 
weights of separate neural networks in the immune memory and retraining them to minimize 
the collision probability and maximizing the performance. 

New mathematical models and algorithms for possible crossing point detection, for 
collision probability evaluation, and for collision probability minimization by the neural 
network are developed in the Thesis for this purpose. 

Additional safety improvement mathematical models and methods for object recognition 
and traffic light signal recognition are developed in the Thesis and integrated in the proposed 
system. 

Practical application 

Algorithms developed in the Thesis can be implemented in intelligent electric vehicle 
control systems to avoid crashes and minimize the risk of collisions. The results of the 
developed algorithms offer solutions to the tasks of data collection from video surveillance 
cameras, sensors, cloud databases and other objects of intelligent transport infrastructure, 
information processing, identification of potentially dangerous situations, risk assessment and 
decision-making on measures to avoid an accident. 

The developed algorithms allow implementing the computer modeling and simulation of 
optimal control system for electric transport to recognize and prevent dangerous situations. The 
proposed algorithms are multifunctional and can be implemented into different types of 
vehicles without mandatory changes and improvement of the infrastructure objects. However, 
the intelligent infrastructure may provide additional inputs to the developed system. 

Approbation 
1. International conference “2020 IEEE 61th International Scientific Conference on Power 

and Electrical Engineering of Riga Technical University (RTUCON)”, report 
“Unsupervised Transport Vehicle Control: Simulation Study and Performance Results”, 
2020, Riga, Latvia. 

2. International conference “2019 IEEE 60th International Scientific Conference on Power 
and Electrical Engineering of Riga Technical University (RTUCON)”, report “Modelling 
and Simulation of Transport Collision Probability Recognition Algorithm for Traffic 
Safety”, 2019, Riga, Latvia. 
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3. International conference “Applications of Intelligent Systems (APPIS 2019)”, report 
“Machine Learning Algorithm of Immune Neuro-Fuzzy Anti-collision Embedded System 
for Autonomous Unmanned Aerial Vehicles’ Team”, 2019, Las Palmas de Gran Canaria, 
Spain. 

4. International conference “20th European Conference on Power Electronics and 
Applications, EPE’18 ECCE Europe”, report “Algorithm for Immune Neural Network in 
Transport Collision Prevention Control System of Unmanned Electrical Vehicle”, 2018, 
Riga, Latvia. 

5. International conference “2018 IEEE 59th International Scientific Conference on Power 
and Electrical Engineering of Riga Technical University (RTUCON)”, report “Algorithm 
of Signal Recognition for Railway Embedded Control Devices”, 2018, Riga, Latvia. 

6. International conference “22nd International Scientific Conference. Transport Means 
2018”, report “Self-Organized Learning Algorithm for Immune Neuro-Fuzzy Anti-
collision System of Autonomous Unmanned Aerial Vehicles’ Team”, 2018, Trakai, 
Lithuania. 

7. International conference “12th International Conference Intelligent Technologies in 
Logistics and Mechatronics Systems”, report “Control Algorithm of Multiple Unmanned 
Electrical Aerial Vehicles for Their Collision Prevention”, 2018, Panevėžys, Lithuania. 

8. International conference “2017 IEEE 58th International Scientific Conference on Power 
and Electrical Engineering of Riga Technical University (RTUCON)”, report 
“Convolutional Neural Network in Turn Recognition Tasks for Electric Transport Safety”, 
2017, Riga, Latvia. 

9. International symposium “25th International Symposium on Dynamics of Vehicles on 
Roads and Tracks (IAVSD 2017)”, report “Convolutional Neural Networks of Active 
Railway Safety System with Braking Dynamics Prediction. Dynamics of Vehicles on 
Roads and Tracks”, 2017, Rockhampton, Queensland, Australia. 

10. International conference “31st European Conference on Modelling and Simulation”, report 
“Modeling and Simulation of Public Transport Safety and Scheduling Algorithm”, 2017, 
Budapest, Hungary. 

11. International conference “Building up Efficient and Sustainable Transport Infrastructure 
(BESTInfra)”, report “Innovative Neuro-fuzzy System of Smart Transport Infrastructure 
for Road Traffic”, 2017, Prague, Czech Republic. 

12. International conference “57th International Scientific Conference on Power and Electrical 
Engineering of Riga Technical University (RTUCON)”, report “Immune Algorithm and 
Intelligent Devices for Schedule Overlap Prevention in Electric Transport”, 2016, Riga, 
Latvia. 

Publications 

1. Beinarovica, A., Gorobetz, M., Ribickis, L. Immune Neuro-Fuzzy Network Based System 
for Collision Free Motion Control of Unmanned Electrical Vehicles. In: 25th European 
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Content of the Doctoral Thesis 

Introduction 

The introduction of the Thesis describes the industrial and scientific research review on the 
topic of the Thesis, as well as assesses the topicality and scientific novelty of the topic, defines 
the goal and tasks of the work, and provides information about the approbation and practical 
application. The works closest to the topic of the Thesis are [19], [23], which offer methods of 
artificial intelligence – neural network strengthened by immune memory. In difference to [19], 
the main idea of the Doctoral Thesis is that input data are stored in the immune memory together 
with weights that were used previously for solving this situation, which helps to reduce 
calculation time that is very important for real time systems. In turn, the method presented in 
[23] was not based on a quality function to evaluate the solutions. 

1. Problem formulation of electric transport safety control task 

Chapter 1 of the Doctoral Thesis is devoted to comparing centralized, decentralized, and 
distributed system models and developing the novel system structure, which could help to make 
the proposed system cheaper, faster, and easier to implement. 

 

Fig. 1.1. Scheme of the distributed system structure with reduсed number of components. 

The results of comparison show that the distributed system is more preferable than the 
centralized or decentralized. Distributed models are easier to implement, they have less 
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components, they are cheaper for infrastructure owner, and they are not connected to the 
specific area; they have also decreased time for reaction and decreased risk at system failure. 
That is why the distributed system structure was used in this research. 

A scheme of the distributed system structure is shown in Fig. 1.1, where SAT – satellite; 
UEV – unmanned electric vehicle; UEVn – other unmanned electric vehicle; LC – level 
crossings; RS – road signs; TL – traffic lights; GNSSR – GNSS receiver; RFM – radio 
frequency module; DS – distance sensor; CAM – videocamera; MDS – movement direction 
sensor; VS – speed sensor; MORA – moving object recognition algorithm; SORA – static object 
recognition algorithm; RRA – road recognition algorithm; FL – fuzzy logic; IM – immune 
memory; AA – affinity algorithm; ANN – traditional neural network; NN – neural network as 
a part of the INN; INN – immune neural network; TF – target function; DM – decision making 
module; DIS – driver informing system; DCS – driver control system; BS – electric vehicle 
braking system; ED – electric vehicle’s electric drive; STS – electric vehicle’s steering system; 
MECH – mechanical part; IO – infrastructure object; CO – control object; SEN – sensor; MIC 
– microcontroller; ORM – object recognition module; INFM – immune neuro-fuzzy module; 
DR – electric vehicle’s driver. 

 
Fig. 1.2. Immune neural network system structure of UEV. 

Different parts of the proposed system are used for different tasks. ORM object recognition 
module, based on convolutional neural network (CNN), is used for the moving and static object 
recognition tasks as well as for road recognition task. INFM immune neuro fuzzy module, based 
on the novel immune neural network (INN), is used for unsupervised collision probability 
evaluation and minimization task. Artificial neural network (ANN) is used for evaluating and 
minimizing collision probability, along with fuzzy logic. In this research, ANN is included to 
compare its results with those of the proposed novel INN. The objective is to draw conclusions 
on whether the novel network is better or worse than the traditional one. 
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Three subsystem structures were developed and described in the Doctoral Thesis: 
subsystem structure for object recognition, based on traditional CNN; subsystem structure for 
electric vehicle collision probability evaluation and minimization, based on traditional ANN; 
novel INN based technology of machine learning for unsupervised safe vehicle control (Fig. 
1.2.). Description of the traditional neural networks is provided in the Doctoral Thesis. 

The novel INN-based technology can be used in distributed systems. It obtains data, makes 
calculations, and provides necessary solutions how to avoid collision in the context of one 
particular UEV. It does not provide solutions for other participants. 

Input data (X). Data: vUEV – speed of the own electric vehicle; vUEVn – speed of other electric 
vehicles; 𝜏𝜏UEVn – horizontal movement direction of the other electric vehicle relative to one's 
own direction; 𝜑𝜑UEVn – vertical movement direction of the other electric vehicle relative to one's 
own direction; dUEVn – distance till the possible crossing point with the other electric vehicle. 
Number of parameters in the input data (X) depends on the situation – the number of other 
UEVs in the control area of own UEV. There is one input parameter for own UEV: speed. There 
are 4 input parameters for other UEVs: speed, horizontal movement direction in relation to the 
own UEV, vertical movement direction in relation to the own UEV, and distance till possible 
crossing point. Data is received from the UEV embedded electronic device and is sent to the 
input layer of the immune neural network INN. 

Input layer. Input layer receives input data (X). Each UEV considers only those UEVs 
which are in his control area in order to minimize number of necessary calculations. Input data 
(X) is ordered for a more accurate recognition of the situation. The goal is to order multiple 
UEVs in relation to the own UEV to better understand their position and relative movement. 
Three parameters are used for ordering the UEVs: the horizontal movement direction 𝜏𝜏𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 , 
the vertical movement direction 𝜑𝜑𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 , and the distance till the crossing point 𝑑𝑑𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈. Ordering 
of other UEVs is done according to the slope 𝜏𝜏𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 to these objects, starting from 0°, clockwise. 
If multiple UEVs have the same value of 𝜏𝜏𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈, then ordering of these UEVs is done according 
to the slope 𝜑𝜑𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈  to these objects, starting from 0°, clockwise. If multiple UEVs have the same 
value of 𝜑𝜑𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 , then ordering of these UEVs is done according to the distance to the crossing 
point with these UEV 𝑑𝑑𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 . This method helps to describe the situation accurately. Input data 
(X) are sent from the input layer to the affinity algorithm AA and hidden layer. 

Affinity algorithm (AA). AA checks all the similar situations stored in the IM and calculates 
discrepancies ℰ. Situation with a smallest discrepancy ℰ is chosen and its number α is sent to 
all μ neurons of the INN. If there is no similar situation stored in IM, then situation number α = 
0 is sent to the μ neurons. 

Immune memory (IM). Database that contains input data about previous situations that were 
solved. Each situation has its number α. All the data in IM is stored in clusters for easier and 
faster match finding processes. For example, if 3 vehicles are participating in the possible 
collision situation, there is no need to find a similar situation in the group of situations with 2 
participants. The method of clustering is used for data storage in IM and faster AA work. 

Hidden layer. Hidden layer consists of specialized μ neurons. Input data of each μ neuron 
of the hidden layer are: input data (X); situation number α received from the affinity algorithm 
AA; signal β that indicates the need to recalculate the weights of μ neurons and is received from 
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the training algorithm TA. In the μ neuron, number of situation α is stored together with set of 
weights 𝑊𝑊μ which were used while solving the exact problem, i.e. processing the similar input 
data. After number of the situation α is received, weights 𝑊𝑊μ are chosen and training can be 
started. If there is no similar situation and α = 0, then 𝑊𝑊μ = 0. 

Output layer. Output layer consists of specialized μ neurons. Input data of each μ neuron of 
the output layer are: output data of the μ neurons of the hidden layer; situation number α 

received from the AA; signal β that indicates the need to recalculate the weights of μ neurons 
and is received from the TA. In the μ neuron, number of situation α is stored together with the 
set of weights 𝑊𝑊μ that were used while solving the exact problem, similar as in the μ neuron of 
the hidden layer. After number of the situation α is received, weights 𝑊𝑊μ are chosen and training 
can be started. If there is no similar situation and α = 0, then 𝑊𝑊μ = 0. Output data of the output 
layer: necessary horizontal movement direction change of the own UEV – ∆𝜏𝜏UEV; necessary 
vertical movement direction change of the own UEV – ∆𝜑𝜑UEV; necessary speed change of the 
own UEV – ∆vUEV. 

Target function (TF). Input data of TF: necessary horizontal movement direction change of 
the own UEV – ∆𝜏𝜏UEV; necessary vertical movement direction change of the own UEV – 
∆𝜑𝜑UEV; necessary speed change of the own UEV – ∆vUEV; input data obtained directly from 
UEV embedded electronic device (𝑣𝑣𝑈𝑈𝑈𝑈𝑈𝑈  – actual speed of the UEV; 𝜒𝜒𝑈𝑈𝑈𝑈𝑈𝑈  – latitude of the UEV 
actual position; 𝜓𝜓𝑈𝑈𝑈𝑈𝑈𝑈  – longitude of the UEV actual position; 𝜂𝜂𝑈𝑈𝑈𝑈𝑈𝑈  – altitude of the UEV actual 
position; 𝜃𝜃𝑈𝑈𝑈𝑈𝑈𝑈  – actual horizontal movement direction of the UEV; 𝜔𝜔𝑈𝑈𝑈𝑈𝑈𝑈  – actual vertical 
movement direction of the UEV). In current research, the location of the crossing points is a 
variable value, which makes the solution more complicated, as the found solution <
 ∆𝑣𝑣𝑈𝑈𝑈𝑈𝑈𝑈 ,  ∆𝜏𝜏𝑈𝑈𝑈𝑈𝑈𝑈 ,∆𝜑𝜑𝑈𝑈𝑈𝑈𝑈𝑈 > has an influence on the distance to the crossing point. Thus, the 
evaluation of the TF requires the additional inputs < 𝑣𝑣𝑈𝑈𝑈𝑈𝑈𝑈 , 𝜒𝜒𝑈𝑈𝑈𝑈𝑈𝑈 ,𝜓𝜓𝑈𝑈𝑈𝑈𝑈𝑈 ,𝜂𝜂𝑈𝑈𝑈𝑈𝑈𝑈 ,𝜃𝜃𝑈𝑈𝑈𝑈𝑈𝑈 ,𝜔𝜔𝑈𝑈𝑈𝑈𝑈𝑈 > 
obtained directly from the UEV to re-calculate the crossing point, the distance and time to it. 
TF calculates the collision probability Pmax. Output data of TF: collision probability Pmax; 
necessary horizontal movement direction change ∆𝜏𝜏UEV; necessary vertical movement direction 
change ∆𝜑𝜑UEV; necessary speed change ∆vUEV. 

Decision module (DM). Input data of DM: collision probability Pmax, received from the TF; 
necessary horizontal movement direction change ∆𝜏𝜏UEV, received from the TF; necessary 
vertical movement direction change ∆𝜑𝜑UEV, received from the TF; necessary speed change 
∆vUEV, received from the TF. DM evaluates the found solution. If collision probability Pmax is 
greater than acceptable (safe) collision probability Psafe, then the number of training iterations t 
is checked. If the number of training iterations  t is less than maximal possible number of 
iterations 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, it means the solution is not found yet and training must be repeated. DM sends 
signal to the training algorithm (TA). If the number of training iterations 𝑡𝑡 is bigger or equal to 
maximal possible number of iterations 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, it means that the situation cannot be solved in the 
defined time, so speed reduction is done. DM sends signal to the UEV embedded electronic 
device to stop the UEV, 𝑣𝑣𝑈𝑈𝑈𝑈𝑈𝑈 = 0. If collision probability Pmax is less or equal to acceptable 
(safe) collision probability Psafe, then the found solution <  ∆𝑣𝑣𝑈𝑈𝑈𝑈𝑈𝑈 ,  ∆𝜏𝜏𝑈𝑈𝑈𝑈𝑈𝑈 ,∆𝜑𝜑𝑈𝑈𝑈𝑈𝑈𝑈 > is sent to 
the UEV embedded electronic device and the match error 𝜀𝜀𝑎𝑎 between the current situation and 
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situation chosen from the IM in the beginning of training is calculated. If the match error 𝜀𝜀𝑎𝑎 is 
bigger than the maximal possible match error 𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙 , responsible for creation of a new record in 
the IM or replacing the existing, then IM saves the situation as a new record and each μ neuron 
of the hidden and output layers saves the set of weights 𝑊𝑊μ that was used for solving this 
situation together with a number of this situation 𝛼𝛼. If the match error 𝜀𝜀𝑎𝑎 is less or equal to the 
maximal possible match error 𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙 , then the record of the situation 𝛼𝛼 is updated in the IM and 
values of weights 𝑊𝑊μ of μ neurons of the hidden and output layers are updated according to the 
last used. 

Training algorithm (TA). Input data of the TA: collision probability Pmax, received from the 
TF; necessary horizontal movement direction change ∆𝜏𝜏 UEV, received from the TF; necessary 
vertical movement direction change ∆𝜑𝜑 UEV, received from the TF; necessary speed change 
∆vUEV, received from the TF; signal to repeat training, received from the DM. Training 
algorithm is used instead of traditional backpropagation algorithm. Backpropagation is 
typically used in supervised learning where the network is trained using labeled data, but the 
proposed novel INN is based on unsupervised learning. TA stores the last value of the Pmax, 
which was received while solving this situation, and compares this value to the new one. TA 
sends signal 𝛽𝛽 to all 𝜇𝜇 neurons, which means that training must be repeated. Signal 𝛽𝛽 differs 
according to the result of the Pmax comparison. If it is the first training iteration, TA does not 
have information about previous Pmax, so TA sends signal 𝛽𝛽1 to all 𝜇𝜇 neurons of the hidden and 
output layer. Signal 𝛽𝛽1 means that the found solution does not solve the situation and training 
must continue. The same happens if the result of the found solution is better or equal to previous 
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚2 ≤ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚1. TA sends signal 𝛽𝛽1 to all 𝜇𝜇 neurons of the hidden and output layers, which 
means that the found solution is not worse than previous one and training must continue. If the 
result of the found solution is worse than previous 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚2 > 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚1, then TA sends signal 𝛽𝛽2 to 
all 𝜇𝜇 neurons of the hidden and output layers. Signal 𝛽𝛽2 means that the found solution does not 
solve the situation and the result of last iteration is worse than the result of the previous one. 
The values of the weights must be returned to the previous before training continues.  

Training of μ neurons. When receiving 𝛽𝛽1, new values of weights 𝑊𝑊μj are randomly chosen 
from the range (𝑊𝑊μj − 𝑧𝑧 ≤ 𝑊𝑊μj+1 ≤ 𝑊𝑊μj + 𝑧𝑧), where z is a predefined range parameter (may 
be adjustable). When receiving 𝛽𝛽2, new values of weights 𝑊𝑊μj rollback to the previous values 
𝑊𝑊μj−1 and then are randomly chosen from the range (𝑊𝑊μj−1 − 𝑧𝑧 ≤ 𝑊𝑊μj ≤ 𝑊𝑊μj−1 + 𝑧𝑧), where z 
is a predefined range parameter (may be adjustable). 

2. Developed mathematical models 

Mathematical models were developed and are presented in Chapter 2 of the Thesis. 
Mathematical sets of system objects. Electrialc transport control system is defined by the 

following object classes: 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = {𝐼𝐼𝐼𝐼;  𝑆𝑆𝑆𝑆𝑆𝑆;𝑈𝑈𝑈𝑈𝑈𝑈;𝐷𝐷𝐷𝐷}, where UEVS – unmanned electric 
vehicle system structure; IO – infrastructure objects; SAT – satellite, component to obtain the 
coordinates of the electric vehicle position in real time; UEV – unmanned electric vehicles; 
DR – driver of the electric vehicle. Infrastructure objects: 𝐼𝐼𝐼𝐼 = {𝐿𝐿𝐿𝐿;𝑅𝑅𝑅𝑅;𝑇𝑇𝑇𝑇}, where LC – level 
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crossings; RS – road signs; TL – traffic lights. Set of level crossings: 𝐿𝐿𝐿𝐿 = {𝐿𝐿𝐿𝐿1;𝐿𝐿𝐿𝐿2; … ;𝐿𝐿𝐿𝐿𝑛𝑛}. 
Set of road signs: 𝑅𝑅𝑅𝑅 = {𝑅𝑅𝑅𝑅1;𝑅𝑅𝑅𝑅2; … ;𝑅𝑅𝑅𝑅𝑛𝑛}. Set of traffic lights: 𝑇𝑇𝑇𝑇 = {𝑇𝑇𝑇𝑇1;𝑇𝑇𝑇𝑇2; … ;𝑇𝑇𝑇𝑇𝑛𝑛}. Set 
of satellites: 𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑆𝑆𝑆𝑆𝑆𝑆1; 𝑆𝑆𝑆𝑆𝑆𝑆2; … ; 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛}. Set of unmanned electric vehicles: 𝑈𝑈𝑈𝑈𝑈𝑈 =
{𝑈𝑈𝑈𝑈𝑈𝑈1;𝑈𝑈𝑈𝑈𝑈𝑈2; … ;𝑈𝑈𝑈𝑈𝑈𝑈𝑛𝑛}. Set of drivers of the electric vehicles: 𝐷𝐷𝐷𝐷 = {𝐷𝐷𝐷𝐷1;𝐷𝐷𝐷𝐷2; … ;𝐷𝐷𝐷𝐷𝑛𝑛}. 
UEV consists of: 𝑈𝑈𝑈𝑈𝑈𝑈 = {𝑆𝑆𝑆𝑆𝑆𝑆;𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺;𝑅𝑅𝑅𝑅𝑅𝑅;𝑂𝑂𝑂𝑂𝑂𝑂; 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼;𝐷𝐷𝐷𝐷𝐷𝐷;𝐷𝐷𝐷𝐷𝐷𝐷;𝐶𝐶𝐶𝐶;𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀}, where 
SEN – sensors to obtain the input data; GNSSR – GNSS signal receiver to obtain the 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺; 
RFM – radio frequency module to obtain the 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅; ORM – object recognition module; 
INFN – immune neuro-fuzzy module; DIS – driver informing system; DCS – driver control 
system; CO – electric vehicle control system; MECH – mechanical part of the electric vehicle. 
Set of sensors: 𝑆𝑆𝑆𝑆𝑆𝑆 = {𝐷𝐷𝐷𝐷;𝐶𝐶𝐶𝐶𝐶𝐶;𝑀𝑀𝑀𝑀𝑀𝑀;𝑉𝑉𝑉𝑉}, where DS – distance sensor to obtain the 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷; CAM – videocamera to obtain the 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶 ; MDS – movement direction sensor to 
obtain the 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀; VS – speed sensor to obtain the 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑉𝑉𝑉𝑉. Data obtained by GNSS 
receiver: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  {𝜂𝜂𝑡𝑡𝑡𝑡 ; 𝜒𝜒𝑡𝑡𝑡𝑡;𝜓𝜓𝑡𝑡𝑡𝑡}, where 𝜂𝜂𝑡𝑡𝑡𝑡  – altitude ηη of the electric vehicles position; 
𝜒𝜒𝑡𝑡𝑡𝑡  – latitude χχ of the electric vehicles position; 𝜓𝜓𝑡𝑡𝑡𝑡  – longitude ψψ of the electric vehicles 
position. Data obtained by RFM: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅 = {𝜂𝜂𝑡𝑡𝑡𝑡𝑡𝑡; 𝜒𝜒𝑡𝑡𝑟𝑟𝑟𝑟;𝜓𝜓𝑡𝑡𝑡𝑡𝑡𝑡 ;  𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡;  𝜔𝜔𝑡𝑡𝑡𝑡𝑡𝑡;  𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡}, where 𝜂𝜂𝑡𝑡𝑡𝑡𝑡𝑡 
– altitude ηη of the other electric vehicles position; 𝜒𝜒𝑡𝑡𝑡𝑡𝑡𝑡 – latitude χχ of the other electric 
vehicles position; 𝜓𝜓𝑡𝑡𝑡𝑡𝑡𝑡 – longitude ψψ of the other electric vehicles position; θ𝑡𝑡𝑡𝑡𝑡𝑡 – yaw angle 
of the flight of the other electric vehicle; 𝜔𝜔𝑡𝑡𝑡𝑡𝑡𝑡 – pitch angle of the flight of the other electric 
vehicle; 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡 – other electric vehicles speed. Data obtained by DS: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  {𝑑𝑑𝑡𝑡𝑡𝑡}, where 
𝑑𝑑𝑡𝑡𝑡𝑡  – distance till the object. Data obtained by videocamera: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶 = {𝑅𝑅𝑅𝑅𝑅𝑅;  𝑋𝑋𝑋𝑋}, where 
RGB – red, green, blue pixels code; XY – position of the pixel. Data obtained by MDS: 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀 = {𝜃𝜃𝑡𝑡𝑡𝑡 ;  𝜔𝜔𝑡𝑡𝑡𝑡}, where θ𝑡𝑡𝑡𝑡  – yaw angle of the flight of the electric vehicle; 𝜔𝜔𝑡𝑡𝑡𝑡  – pitch 
angle of the flight of the electric vehicle. Data obtained by VS: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑉𝑉𝑉𝑉 = {𝑣𝑣𝑡𝑡𝑡𝑡}, where 𝑣𝑣𝑡𝑡𝑡𝑡 – 
electric vehicles speed. Object recognition module consists of: 𝑂𝑂𝑂𝑂𝑂𝑂 = {𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀;𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆;𝑅𝑅𝑅𝑅𝑅𝑅}, 
where MORA – moving object recognition algorithm; SORA – static object recognition 
algorithm; RRA – road recognition algorithm. MORA consists of: 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
{𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷;  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶;𝐶𝐶𝐶𝐶𝐶𝐶}, where 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 – data taken by distance sensor; 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶  – data 
taken by video camera; CNN – convolutional neural network. SORA consists of: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
{𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷;  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶;𝐶𝐶𝐶𝐶𝐶𝐶}, where 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 – data taken by distance sensor; 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶  – data 
taken by video camera; CNN – convolutional neural network. RRA consists of: 𝑅𝑅𝑅𝑅𝑅𝑅 =
{𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶;𝐶𝐶𝐶𝐶𝐶𝐶}, where 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶 – data taken by video camera; CNN – convolutional 
neural network. CNN consists of: 𝐶𝐶𝐶𝐶𝐶𝐶 = {𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ;  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶 ;  𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶}, where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  – 
convolutional layer of the convolutional neural network; 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶 – pooling layer of the 
convolutional neural network; 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶 – fully-connected layer of the convolutional neural 
network. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  consists of: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = {𝐾𝐾𝐶𝐶𝐶𝐶𝐶𝐶;𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶;𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶;𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶}, where 𝐾𝐾𝐶𝐶𝐶𝐶𝐶𝐶  – number 
of convolutional neural network filters; 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶 – convolutional neural network filter’s spatial 
extent; 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶  – stride; 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶  – the amount of zero padding. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶 consists of: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶 =
{𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶; 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶}, where 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶 – convolutional neural network filter’s spatial extent; 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶 – stride. 
𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶 consists of: 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶 = {𝐻𝐻𝐻𝐻𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶 ;𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶}, where 𝐻𝐻𝐻𝐻𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶  – hidden layer of the 
convolutional neural network; 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 – number of output classes. Immune neuro-fuzzy network 
consists of the following elements: 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = {𝐹𝐹𝐹𝐹; 𝐼𝐼𝐼𝐼;𝐴𝐴𝐴𝐴;𝑁𝑁𝑁𝑁;𝑇𝑇𝑇𝑇;𝐷𝐷𝐷𝐷}, where FL – fuzzy 
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logic; IM – immune memory; AA – affinity algorithm; NN – neural network; TF – target 
function; DM – decision making algorithm. Control objects consist of: 𝐶𝐶𝐶𝐶 = {𝐵𝐵𝐵𝐵;𝐸𝐸𝐸𝐸; 𝑆𝑆𝑆𝑆𝑆𝑆}, 
where BS – braking system; ED – electric drive; STS – steering system. 

Mathematical model for traffic light red signal recognition task. This mathematical model 
was developed to distinguish the red colour signal from other colour signals. When the red 
colour is detected, it is assumed that the UEV will automatically reduce its speed to 0 km/h. 
This method is essential in ensuring the safety of electric vehicles. A description of the model 
can be found in Chapter 2 of the Doctoral Thesis. 

Mathematical model for object recognition task. The proposed system structure works as 
follows: CAM videocamera receives the data about other objects (LC – level crossings, RS – 
road signs, TL – traffic lights, UEVn – other electric vehicles) by taking pictures. After these 
data are sent to the ORM object recognition module, based on the CNN convolutional neural 
network, where depending on the object type, object is recognized by MORA – moving object 
regognition algorithm, SORA – static object recognition algorithm, or RRA – road recognition 
algorithm. 

Convolutional layer CONVCNN computes the output of neurons n that are connected to local 
regions in the input. Each neuron n computes a dot product between their weights W and a 
small region they are connected to in the input volume. The convolutional layer CONVCNN 
parameters consist of a set of learnable filters FCNN. This layer requires four hyper-parameters: 
KCNN – number of filters; FCNN – filter’s spatial extent; SCNN – the stride; PCNN – the amount of 
zero padding. Functions of the pool layer POOLCNN are: to reduce progressively the spatial size 
of the representation; to reduce the amount of parameters and computation in the network; and 
hence to also control overfitting. This layer requires two hyper-parameters: FCNN – filter’s 
spatial extent; SCNN – the stride. Fully connected layer FCCNN computes the class scores. Each 
neuron n in this layer will be connected to all the numbers in the previous volume as in ordinary 
NN. This layer requires two hyper-parameters: HIDCNN – number of hidden layer neurons; 
CLCNN – number of output classes. 

General structure of the CNN: INPUT [WCNN0 × HCNN0 × DCNN0]  CONVCNN1 [KCNN1,  
FCNN1, PCNN1, SCNN1] = OUTCNN [WCNN11 = (WCNN0 - FCNN + 2PCNN) / SCNN + 1 × HCNN11 = 
(HCNN0 - FCNN + 2PCNN) / SCNN + 1HCNN11 × KCNN1 > DCNN0, KCNN1 / DCNN0 = int ]  
POOLCNN1 [FCNNPCNN1, SCNNPCNN1] = OUTCNN [WCNN12 = WCNN11 / FCNNPCNN1 × HCNN12 = 
HCNN11 / FCNNPCNN1 × KCNN1]…CONVCNNn [KCNNn, FCNNnCCNn, PCNNn, SCNNnCCNNn] = 
OUTCNN [WCNNn1 × HCNNn1 × KCNNn1]  POOLCNNn [FCNNPCNNn, SCNNPCNNn] = OUTCNN 

[WCNNn2 = WCNN2 / FCNNPCNNn × HCNNn2 = HCNN2 / FCNNPCNNn × KCNNn1]  FCCNN[HIDCNN, 
CLCNN] = OUTCNN [1 × CLCNN].  

Mathematical model for possible crossing point detection and collision probability 
evaluation: As input data such parameters of each vehicle are used: LFn – coordinates of the 
left front angle of the vehicle; RFn – coordinates of the right front angle of the vehicle; LRn – 
coordinates of the left rear angle of the vehicle; RRn – coordinates of the right rear angle of the 
vehicle; Vn – speed of the vehicle; Tn – trajectory of the motion of the vehicle; Ln – length of 
the vehicle. 
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The model finds out whether the object is in the control area or not after all the input data 
is selected. We propose that Object 2 is in the control area of Object 1 only if Object 2 is in 
front of Object 1 or on the same level. If Object 2 is in the control area of Object 1, then 
calculations are done, otherwise no calculations are needed. As the coordinates of left and right 
angles of vehicles are known, formulas of the straight lines of the left and right sides are 
calculated and crossing points of these lines are detected. 

The next step is to detect the minimal and maximal distances till the possible crossing point. 
The minimal distance till the crossing point is calculated as follows: For Object 1: Coordinates 
of the crossing point (R1; L2) minus coordinates of the right front angle of Vehicle 1 minus 
half of the length of Vehicle 1: Dist1min = (R1; L2) – (RF1) – (L1/2). For Object 2: 
Coordinates of the crossing point (R1; L2) minus coordinates of the left front angle of Vehicle 
2 minus half of the length of Vehicle 2: Dist2min = (R1; L2) – (LF2) – (L2/2). The maximal 
distance till the crossing point is calculated as follows: For Object 1: Coordinates of the crossing 
point (L1; R2) minus coordinates of the left front angle of Vehicle 1 plus half of the length of 
Vehicle 1: Dist1max = (L1; R2) – (LF1) + (L1/2). For Object 2: Coordinates of the crossing 
point (L1; R2) minus coordinates of the right front angle of Vehicle 2 plus half of the length of 
Vehicle 2: Dist2max = (L1; R2) – (RF2) + (L2/2). 

After distances are calculated, minimal and maximal time till the crossing point is calculated 
for both objects: Timenmin = Distnmin / Vn; Timenmax = Distnmax / Vn. 

The algorithm of the electric vehicle collision risk solving system has been proposed based 
on basic collision risk and vulnerabilities of accidents [64]. The proposed algorithm is available 
in the Doctoral Thesis. 

Mathematical model for the neural network. The mathematical model is represented by the 
following sets: 𝑈𝑈 ⊂ (𝑈𝑈1, … ,𝑈𝑈𝑛𝑛) – a set of transport units as subsets of different types that could 
be different for different transport safety tasks, e.g., 𝑈𝑈1 = (𝑈𝑈11, … ,𝑈𝑈𝑛𝑛11 ) – a subset of railway 
transport units; 𝑈𝑈2 = (𝑈𝑈12, … ,𝑈𝑈𝑛𝑛22 ) – a subset of road vehicles; 𝑈𝑈3 = (𝑈𝑈13, … ,𝑈𝑈𝑛𝑛33 ) – a subset 
of aerial vehicles, etc. 𝑃𝑃 = (𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑐𝑐) is a set of infrastructure objects where the collision 
of vehicles takes place, e.g., for railway transport, it could be level-crossings, switches, etc. For 
this research, the crossing section is assumed as a short straight segment of the route or 
trajectory. 

The geographical coordinates of all crossing of possible routes or trajectories of transport 
units are defined by these sets: 

 𝜒𝜒𝑏𝑏
𝑝𝑝 = �𝜒𝜒𝑏𝑏

𝑝𝑝1 ,𝜒𝜒𝑏𝑏
𝑝𝑝2 , . . . ,𝜒𝜒𝑏𝑏

𝑝𝑝𝑐𝑐�,𝜓𝜓𝑏𝑏
𝑝𝑝 = �𝜓𝜓𝑏𝑏

𝑝𝑝1 ,𝜓𝜓𝑏𝑏
𝑝𝑝2 , . . . ,𝜓𝜓𝑏𝑏

𝑝𝑝𝑐𝑐�; 
 𝜒𝜒𝑒𝑒
𝑝𝑝 = �𝜒𝜒𝑒𝑒

𝑝𝑝1 ,𝜒𝜒𝑒𝑒
𝑝𝑝2 , . . . ,𝜒𝜒𝑒𝑒

𝑝𝑝𝑐𝑐�,𝜓𝜓𝑒𝑒
𝑝𝑝 = �𝜓𝜓𝑒𝑒

𝑝𝑝1 ,𝜓𝜓𝑒𝑒
𝑝𝑝2 , . . . ,𝜓𝜓𝑒𝑒

𝑝𝑝𝑐𝑐�,  
where 
 𝜒𝜒𝑏𝑏
𝑝𝑝𝑖𝑖 – latitude of the beginning point of the crossing sector;  

𝜓𝜓𝑏𝑏
𝑝𝑝𝑖𝑖  – longitude of the beginning point of the crossing sector (crossing);   

𝜒𝜒𝑒𝑒
𝑝𝑝𝑖𝑖  – latitude of the ending point of crossing sector; 

 𝜓𝜓𝑒𝑒
𝑝𝑝𝑖𝑖 – longitude of the ending point of the crossing sector;  

c – number of crossing points on the trajectory; 
 tp

vest – safe closing time of each trajectory crossing point p∈P2. 
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There is no information on whether the output value is correct or not, that is why there is 
no possibility to use error backpropagation algorithm. 

A random sequential delta law self-training algorithm and target function were developed 
for the neural network training. 

The function of optimization is defined by two criteria: collision possibility P with the aim 
of minimizing; changes of the vehicles’ speed ΣΔvi with the aim of minimizing. 

The first criterion is related to safety. The situation considered to be dangerous if trajectories 
of two transport vehicles have a common crossing point and there exists a probability that 
transport vehicles will arrive at the crossing point of their trajectories at the same time. 

The second criterion is related to the specific characteristics of transport traffic, such as the 
times of departure and arrival. That is why it is necessary to make minimal speed changes of 
such type of vehicles. 

Based on the individual weighted criteria, the target function was developed:  

𝐹𝐹(∆𝑣𝑣) = �
𝑃𝑃 = max (𝑃𝑃𝐼𝐼𝐼𝐼) → 𝑚𝑚𝑚𝑚𝑚𝑚

∑∆𝑣𝑣𝑖𝑖 → 𝑚𝑚𝑚𝑚𝑚𝑚 ,  

where Δv is change of the speed of vehicle; P is maximal collision probability; PIJ is each i-th 
vehicle collision possibility with each j-th vehicle; and Δvi is the change of speed of the i-th 
vehicle. 

Mathematical model for the immune neural network. The immune neuro-fuzzy module 
(INFM) calculates the necessary movement parameters change of the UEV for the collision 
probability minimization by using the immune neural network after the collision probability 
has been recognized. 

Each UEV analyses the situation for itself. UEVs in the control area are detected. These 
UEVs are ordered for a more precise definition of the situation. For ordering following 
parameters are used: the first UEV in the input data (X) always is UEV itself; three parameters 
are used for ordering other UEVs: the horizontal movement direction 𝜏𝜏𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 ; the vertical 
movement direction 𝜑𝜑𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 ; and the distance till the crossing point 𝑑𝑑𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 . 

Ordering of other UEVs is done according to the slope 𝜏𝜏𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈  to these objects, starting from 
0°, clockwise. If multiple UEVs have the same value of 𝜏𝜏𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 , then ordering of these UEVs is 
done according to the slope 𝜑𝜑𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 to these objects, starting from 0°, clockwise. If multiple 
UEVs have the same value of 𝜑𝜑𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈, then ordering of these UEVs is done according to the 
distance to the crossing point with these UEV 𝑑𝑑𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 .  

Training process of the proposed INN depends on the current situation 𝑠𝑠𝑗𝑗 that is solved. 
Current situation is different for each situation participant, because each UEV sets different 
order of UEVs according to the own position. A set of situations stored in the immune memory 
(IM) is represented as follows: S = {s1, s2, … , sm}. 

There are no identical situations stored in the IM because of verification, which defines 
either this is the same situation or it is a new situation. If the situation is the same, data of this 
situation can be updated. If it is a new situation, new record of the situation occurs in the IM. 

Each situation 𝑠𝑠𝑗𝑗 contains input data 𝑋𝑋𝑗𝑗 and the number of participants 𝑛𝑛𝑗𝑗. All the data in 
IM are stored in clusters for easier and faster match finding process. For example, if three 
vehicles are participating in the possible collision situation, there is no need to find a similar 
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situation in the group of situations with two participants. Therefore, method of clustering is 
used for data storage in IM and faster AA work. Situation 𝑠𝑠𝑗𝑗: 𝑠𝑠𝑗𝑗 =< 𝑋𝑋𝑗𝑗 >, S𝑘𝑘 ⊆ 𝑆𝑆, 𝑠𝑠𝑗𝑗 ∈
𝑆𝑆𝑘𝑘 , |𝑠𝑠𝑗𝑗| = |𝑋𝑋|, where 𝑋𝑋𝑗𝑗 is input data; S𝑘𝑘 is a subset of all situations stored in IM and contains 
only those situations where the dimensions of the situation sj data 𝑋𝑋𝑗𝑗 are the same as the 
dimensions of the given situation X. 

The proposed INN can be made of one or multiple layers, depending on the task that is 
solved. The INN, proposed in this research, consists of an input layer, one hidden layer, and an 
output layer. 

The input layer consists of input data X that describes the situation. The situation for n-th 
UEV in general may be described by the set of the following subsets:  

𝑋𝑋 = (𝑣𝑣0, 𝑣𝑣1, 𝜏𝜏1,𝜑𝜑1,𝑑𝑑1 … ,𝑣𝑣𝑛𝑛 , 𝜏𝜏𝑛𝑛 ,𝜑𝜑𝑛𝑛 ,𝑑𝑑𝑛𝑛) = ( 𝑥𝑥0,𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4, … ,𝑥𝑥4𝑛𝑛−3, 𝑥𝑥4𝑛𝑛−2, 𝑥𝑥4𝑛𝑛−1, 𝑥𝑥4𝑛𝑛),  
where n –is the number of other vehicles (n = 0 is own vehicle; n > 0 is all others vehicles); 

𝑣𝑣𝑛𝑛 , 𝑥𝑥4𝑛𝑛−3 is speed of the n-th electric vehicle; and  𝜏𝜏𝑛𝑛 ,  𝑥𝑥4𝑛𝑛−2 is horizontal movement direction 
of the n-th electric vehicle. The direction of movement of another electric vehicle (n > 0) is 
relative to one's own (n = 0) direction, but 𝜏𝜏0 = 0; 𝜑𝜑𝑛𝑛 ,  𝑥𝑥4𝑛𝑛−1– vertical movement direction of 
the n-th electric vehicle. The direction of movement of another electric vehicle (n > 0) is relative 
to one's own (n = 0) direction, but 𝜑𝜑0 = 0; 𝑑𝑑𝑛𝑛 ,  𝑥𝑥4𝑛𝑛 is distance till the possible crossing point 
of own vehicle with another vehicle’s n > 0 trajectory. Thus d0 = 0. 

Discrepancies between input data and data of the situation that is stored in the IM is 
represented as follows: ℰ = {ε1, … , εk}, where 𝜀𝜀𝑗𝑗 = �𝑋𝑋 − X𝑗𝑗� =  ∑ |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖| ,𝑋𝑋𝑗𝑗 ∈ 𝑆𝑆𝑘𝑘 . 

A situation with the smallest discrepancy – closest match – is represented as follows: εα =
min (ε). 

The hidden layer is represented as follows: μ𝐻𝐻𝐻𝐻𝐻𝐻 = {μ1, … ,μ𝑐𝑐}, where μ is specialized μℎ 
neuron. Specialized μℎ neuron of the hidden layer is represented by following subsets: μℎ =
�𝐼𝐼μh ,𝑊𝑊μh ,𝐴𝐴𝐴𝐴μh,𝑂𝑂μh�, where 𝐼𝐼μh is input of the μℎ neuron; 𝑊𝑊μh are weights of the μℎ neuron; 
𝐴𝐴𝐴𝐴μh is activation function of the μℎ neuron; and 𝑂𝑂μh is output of the μℎ neuron. Input data of 
μℎ neuron of the hidden layer is represented by the following subsets: 𝐼𝐼μh = {𝑋𝑋,𝛼𝛼,𝛽𝛽}, where 
𝛼𝛼 is the number of the situation with a smallest discrepancy εα; and 𝛽𝛽 is the signal received 
from training algorithm TA. Each μℎ neuron of the hidden layer stores weights for all situations 
stored in IM. Number of the weights of the hidden layer depends on the amount of participants 
n in the situation plus additional weight 𝑏𝑏𝑖𝑖, which is also related to the situation. Set of weights 
of the μℎ neuron of the hidden layer is represented as follows: 𝑊𝑊μh = {< 𝛼𝛼1,𝑊𝑊1 >, … , <
𝛼𝛼𝑚𝑚 ,𝑊𝑊𝑚𝑚 >}, where 𝑊𝑊𝑖𝑖  =  (𝑤𝑤0𝑖𝑖 ,𝑤𝑤1𝑖𝑖 ,𝑤𝑤2𝑖𝑖 , … ,𝑤𝑤4𝑛𝑛𝑛𝑛 ,𝑏𝑏𝑖𝑖), where i is the index of μℎ neuron. A 
random number z is generated and the weight coefficient is shifted during the training process 
to receive new values of weights 𝑊𝑊𝑖𝑖ℎ: 𝑤𝑤𝑗𝑗𝑗𝑗𝑡𝑡−1 − 𝑧𝑧 ≤ 𝑤𝑤𝑗𝑗𝑗𝑗𝑡𝑡 ≤ 𝑤𝑤𝑗𝑗𝑗𝑗𝑡𝑡−1 + 𝑧𝑧. Activation function of the 
μℎ neuron of the hidden layer is represented as a pure linear function: 𝑂𝑂μh =  𝐴𝐴𝐴𝐴μh(X,𝑊𝑊𝑖𝑖) =

 ∑ 𝑥𝑥𝑗𝑗𝑤𝑤𝑗𝑗𝑗𝑗
𝑛𝑛𝑖𝑖∗4
𝑗𝑗=0 + 𝑏𝑏𝑖𝑖 . 

Output layer is represented as follows: μ𝑂𝑂𝑂𝑂𝑂𝑂 = {μ1, … ,μd}, where μ is specialized μ𝑝𝑝 
neuron. Number of specialized μ𝑝𝑝 neurons of the output layer depends on the number of 
unknowns in the solved task. There are three unknowns in the task proposed in this research 
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(∆𝑣𝑣𝑈𝑈𝑈𝑈𝑈𝑈 ,∆𝜏𝜏𝑈𝑈𝑈𝑈𝑈𝑈 ,∆𝜑𝜑𝑈𝑈𝑈𝑈𝑈𝑈), so the formula of the output layer for the collision prevention task of 
the Thesis is represented as μ𝑂𝑂𝑂𝑂𝑂𝑂 = {μ1, μ2,μ3}. Specialized μ𝑝𝑝 neuron of the output layer is 
represented the by following subsets: μ𝑝𝑝 = �𝐼𝐼μp,𝑊𝑊μp,𝐴𝐴𝐴𝐴μp,𝑂𝑂μp�, where 𝐼𝐼μp – input of the μ𝑝𝑝 
neuron; 𝑊𝑊μp – weights of the μ𝑝𝑝 neuron; 𝐴𝐴𝐴𝐴μp – activation function of the μ𝑝𝑝 neuron; 𝑂𝑂μp – 
output of the μ𝑝𝑝 neuron. Number of the inputs of the output layer depends on the number of μℎ 
neurons in the hidden layer. Input data of the μ𝑝𝑝 neuron is represented by the following subsets: 
𝐼𝐼μp = {𝑂𝑂μh,𝛼𝛼,𝛽𝛽}, where 𝑂𝑂μh – output data of the μℎ neurons of the hidden layer; 𝛼𝛼 – number 
of the situation with the smallest discrepancy εα; 𝛽𝛽 – the signal received from training algorithm 
TA. Number of the weights of the output layer depends on the number of μℎ neurons of the 
hidden layer plus additional weight 𝑏𝑏𝑖𝑖, which is also related to the situation. The set of weights 
of the μ𝑝𝑝 neuron of the output layer is represented as follows: 𝑊𝑊μp = {< 𝛼𝛼1,𝑊𝑊1 >, … , <
𝛼𝛼𝑚𝑚 ,𝑊𝑊𝑚𝑚 >}, where 𝑊𝑊𝑖𝑖  =  (𝑤𝑤0𝑖𝑖 ,𝑤𝑤1𝑖𝑖 ,𝑤𝑤2𝑖𝑖 , … ,𝑤𝑤4𝑛𝑛𝑛𝑛 ,𝑏𝑏𝑖𝑖). Type of the activation function of μ𝑝𝑝 
neuron of the output layer depends on the solved task. Different types of functions can be used 
according to the desired result: 𝑂𝑂μp =  𝐴𝐴𝐴𝐴μp�𝑂𝑂μh,𝑊𝑊𝑖𝑖� = 𝑓𝑓(𝑟𝑟), where 𝑟𝑟 =  ∑ 𝑦𝑦𝑗𝑗𝑤𝑤𝑗𝑗𝑗𝑗ℎ

𝑗𝑗=0 + 𝑏𝑏𝑖𝑖 , 
where n – the change limit of speed Δ𝑣𝑣i in horizontal movement direction Δ𝜏𝜏i or vertical 
movement direction Δ𝜑𝜑i. Logarithmic sigmoid function is used as activation function of μ𝑝𝑝 

neuron of the output layer in this research: 𝑂𝑂μp =  𝐴𝐴𝐴𝐴μp�𝑂𝑂μh,𝑊𝑊𝑖𝑖� = log( 1
1+𝑒𝑒−𝑟𝑟

) . This type of 

function is used because it is possible to set limits for speed and direction changes. It is 
important because different types of vehicles have different parameters and limits of speed and 
trajectory change. However, limits of the speed and distance changes are checked by the 
proposed target function also. Outputs of the μ𝑝𝑝 neurons also depend on the solved task. For 
example, rail transport cannot change direction in any moment of time. Only the speed change 
can be done. As a result, there will be only one μ𝑝𝑝 neuron and only one input 𝑂𝑂μp. Three outputs 
of the output layer are proposed in this research: 𝑂𝑂μp1 =  ∆𝑣𝑣𝑈𝑈𝑈𝑈𝑈𝑈 ; 𝑂𝑂μp2 =  ∆𝜏𝜏𝑈𝑈𝑈𝑈𝑈𝑈 ; 𝑂𝑂μp3 =
 ∆𝜑𝜑𝑈𝑈𝑈𝑈𝑈𝑈 , where ∆𝑣𝑣𝑈𝑈𝑈𝑈𝑈𝑈  – necessary speed change of the own UEV; ∆𝜏𝜏𝑈𝑈𝑈𝑈𝑈𝑈  – necessary horizontal 
movement direction change of the own UEV; and ∆𝜑𝜑𝑈𝑈𝑈𝑈𝑈𝑈  – necessary vertical movement 
direction change of the own UEV. 

Target function was proposed to define the interest of the UEV: 𝑇𝑇𝑇𝑇 =
𝑤𝑤(𝑥𝑥, 𝑎𝑎1, 𝑎𝑎2, … ,𝑎𝑎𝑛𝑛) → 𝑜𝑜𝑜𝑜𝑜𝑜, where TF – target function – the objective of UEV; x – state of the 
environment; and ai – action of the i-th UEV. The ultimate goal of the target function is to 
minimize the collision probability of UEV by minimal changes of the speed and direction in 
the given state of environment. The target function evaluates the state of the environment and 
then assesses how the actions of the UEV will impact the situation. 

The information of each UEV depends on the state of environment:  
𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖(𝑥𝑥), where 𝑦𝑦𝑖𝑖  is information of the i-th UEV. 

The decision rule of the i-th UEV results in an action of i-th electric vehicle and depends on 
information 𝑎𝑎𝑖𝑖 = 𝜌𝜌𝑖𝑖(𝑦𝑦𝑖𝑖), where ρi is the decision rule of the i-th UEV. 

Interaction between the i-th and j-th UEV: 𝑞𝑞𝑖𝑖𝑖𝑖 =  ∂w/ ∂ai ∂aj. 
A set of decision rules is optimal if E(w( x,(ρ1(y1), …, ρn(yn) ) )  max for a given 

probability distribution on x. 
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For anti-collision test, the set of possible points of potential collisions is defined:  
𝑃𝑃 = (𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑐𝑐). 

The location LUEV of UEV is represented by three subsets <χcUEVS ,ψc
UEVS , ηcUEVS >, whicht 

are latitutde χ, longitude ψ, and altitude η: 𝜒𝜒𝑐𝑐𝑈𝑈𝑈𝑈𝑈𝑈 = �𝜒𝜒𝑐𝑐
𝑈𝑈𝑈𝑈𝑈𝑈1 , 𝜒𝜒𝑐𝑐

𝑈𝑈𝑈𝑈𝑈𝑈2 , . . . ,𝜒𝜒𝑐𝑐
𝑈𝑈𝑈𝑈𝑈𝑈𝑛𝑛�; 𝜓𝜓𝑐𝑐𝑈𝑈𝑈𝑈𝑈𝑈 =

�𝜓𝜓𝑐𝑐
𝑈𝑈𝑈𝑈𝑈𝑈1 ,𝜓𝜓𝑐𝑐

𝑈𝑈𝑈𝑈𝑈𝑈2 , . . . ,𝜓𝜓𝑐𝑐
𝑈𝑈𝑈𝑈𝑈𝑈𝑛𝑛�; ηcUEV = �ηc

UEV1 ,ηc
UEV2 , . . . , ηc

UEVn�, where χcUEV – latitude of the 
current electric vehicle point; ψc

UEV – longitude of the current electric vehicle point; and ηcUEV  
– altitude of the current electric vehicle point. 

Horizontal movement direction of the other electric vehicle is used as an input data. The 
horizontal movement direction 𝜃𝜃𝑈𝑈𝑈𝑈𝑈𝑈  of UEVs is represented as follows: θ𝑈𝑈𝑈𝑈𝑈𝑈 =
{θ𝑈𝑈𝑈𝑈𝑈𝑈1 ,θ𝑈𝑈𝑈𝑈𝑈𝑈2, . . . ,θ𝑈𝑈𝑈𝑈𝑈𝑈𝑛𝑛}. 

Vertical movement direction of the other electric vehicle is used as an input data. The 
vertical movement direction 𝜔𝜔𝑈𝑈𝑈𝑈𝑈𝑈  of UEVs is represented as follows: 𝜔𝜔𝑈𝑈𝑈𝑈𝑈𝑈 =
{𝜔𝜔𝑈𝑈𝑈𝑈𝑈𝑈1 ,𝜔𝜔𝑈𝑈𝑈𝑈𝑈𝑈2 , . . . ,𝜔𝜔𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈}. 

The safety criterion is the following: 𝐷𝐷 = �UEViUEVj�= ��χc
j -χc

i �2
+�ψc

j -ψc
i �2

+�ηc
j -ηc

i �2
>

𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , where 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the safety distance limit for each pair of  < UEVi, UEVj > ,   i =
1. . n,   j = 1. . n,   i ≠ j . 

Permissible changes of direction depend on the UEV specifications and other 
circumstances. Restrictions for the own horizontal movement direction change were also 
defined: τ1

UEVi  < τUEVi < τ2
UEVi . Restrictions for the own movement direction (in vertical 

plane) change were also defined: φ1
UEVi  < φUEVi < φ2

UEVi . Restrictions for the speed change 

were also defined: v1
UEVi  < vUEVi < v2

UEVi . 
 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚(𝜒𝜒𝑐𝑐𝑈𝑈𝑈𝑈𝑈𝑈 ,𝜓𝜓𝑐𝑐𝑈𝑈𝑈𝑈𝑈𝑈 , 𝜂𝜂𝑐𝑐𝑈𝑈𝑈𝑈𝑈𝑈 ,∆𝜏𝜏,∆𝜑𝜑,∆𝑣𝑣) = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑃𝑃𝐼𝐼𝐼𝐼� → 𝑚𝑚𝑚𝑚𝑚𝑚

∆𝜏𝜏𝛴𝛴(∆𝜏𝜏) = �∆𝜏𝜏𝑖𝑖 → 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

𝑖𝑖=1

∆𝜑𝜑𝛴𝛴(∆𝜑𝜑) = �∆𝜑𝜑𝑖𝑖 → 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

𝑖𝑖=1

∆𝑣𝑣𝛴𝛴(∆𝑣𝑣) = �∆𝑣𝑣𝑖𝑖 → 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

𝑖𝑖=1

𝐷𝐷 = �UEViUEVj�>S
𝛥𝛥𝛥𝛥1 < 𝛥𝛥𝛥𝛥𝑖𝑖 < 𝛥𝛥𝛥𝛥2
𝛥𝛥𝛥𝛥1 < 𝛥𝛥𝛥𝛥𝑖𝑖 < 𝛥𝛥𝛥𝛥2
𝛥𝛥𝛥𝛥1  < 𝛥𝛥𝛥𝛥𝑖𝑖 <  𝛥𝛥𝛥𝛥2

𝑖𝑖 = 1. . 𝑛𝑛, 𝑗𝑗 = 1. . 𝑛𝑛, 𝑖𝑖 ≠ 𝑗𝑗 

 (2.1) 

The general target function with anti-collision criteria is provided in Formula (2.1), where: 
Pmax – maximal collision probability from the set of probabilities of collision for all pairs of 
UEVs; ∆τ = (∆τ1, … ,∆τn) – set direction changes in horizontal plane of all UEVs; ∆φ =
(∆φ1, … ,∆φn) – set direction changes in vertical plane of all UEVs; ∆v = (∆v1, … ,∆vn) – set 
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of speed changes of all UEVs; PIJ = (P(<UEV1, UEV2>),…,P(<UEVi, UEVj>),…,P(<UEVn-1, 
UEVn>)) – set of probabilities of collision for all pairs of UEVs <UEVi, UEVj>, i≠j, i,j = 1..n. 

Each i-th UEV is looking for its own direction and/or speed change solution <
Δτi,Δφi,Δvi > according to the task. The target function for a single UEV can be expressed as 
shown in Formula 2.2, where  Pmax represents the highest probability of collision between the 
own UEV0 and all other UEVs within the control area; ∆τ0 is direction change in horizontal 
plane of the own UEV0; ∆φ0 is direction change in vertical plane of the own UEV0; ∆v0 is 
speed change of the own UEV0; P0j = (P(<UEV0, UEV1>),…,P(<UEV0, UEVj>),…, P(<UEV0, 
UEVn>)) is a set of probabilities of collision between the own UEV0 and all other UEVs within 
the control area, j = 1..n. 

⎩
⎪
⎨

⎪
⎧𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚(𝜒𝜒𝑐𝑐𝑈𝑈𝑈𝑈𝑈𝑈 ,𝜓𝜓𝑐𝑐𝑈𝑈𝑈𝑈𝑈𝑈 , 𝜂𝜂𝑐𝑐𝑈𝑈𝑈𝑈𝑈𝑈 ,∆𝜏𝜏0,∆𝜑𝜑0,∆𝑣𝑣) = max (𝑃𝑃0𝑗𝑗) → 𝑚𝑚𝑚𝑚𝑚𝑚

∆𝜏𝜏0 → 𝑚𝑚𝑚𝑚𝑚𝑚,∆𝜑𝜑0 → 𝑚𝑚𝑚𝑚𝑚𝑚,∆𝑣𝑣0 → 𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷 = �UEV0UEVj�>S

𝛥𝛥𝛥𝛥1 < 𝛥𝛥𝛥𝛥0 < 𝛥𝛥𝛥𝛥2,𝛥𝛥𝛥𝛥1 < 𝛥𝛥𝛥𝛥0 < 𝛥𝛥𝛥𝛥2,𝛥𝛥𝛥𝛥1  < 𝛥𝛥𝛥𝛥0 <  𝛥𝛥𝛥𝛥2
𝑗𝑗 = 1. . 𝑛𝑛

 (2.2) 

Function of the decision-making module 𝐹𝐹𝐷𝐷𝐷𝐷 is represented as follows: 𝐹𝐹𝐷𝐷𝐷𝐷 =
𝑇𝑇𝑇𝑇(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 ,∆𝑣𝑣𝑈𝑈𝑈𝑈𝑈𝑈 ,∆𝜏𝜏𝑈𝑈𝑈𝑈𝑈𝑈 ,∆𝜑𝜑𝑈𝑈𝑈𝑈𝑈𝑈) → 𝑚𝑚𝑚𝑚𝑚𝑚. 

Thus, we can evaluate the result of training the INN without a teacher with the help of the 
proposed target function and make a decision about accepting the solution or continue the 
training. 

3. Developed algorithms for dangerous situation recognition 
and prevention of electric vehicles  

Developed algorithms for different tasks of the research are provided in the Chapter 3 of 
the Doctoral Thesis: algorithm for recognition of red signal light; algorithm for CNN for object 
recognition for dangerous situation recognition and prevention of electric transport; algorithm 
for collision probability evaluation of electric transport; algorithm for neural network for 
collision probability evaluation and minimization; algorithm for novel INN for unsupervised 
collision probability evaluation and minimization for dangerous situation recognition and 
prevention of electric vehicles. 

Algorithm for recognition of the red traffic light signal for dangerous situation recognition 
and prevention of electric transport. This algorithm was developed to distinguish the red traffic 
light signal from the signals of other colors.The proposed algorithm can be found in Chapter 3 
of the Doctoral Thesis. 

Algorithm for convolutional neural network for object recognition for dangerous situation 
recognition and prevention of electric transport.  CNN is a traditional neural network that is 
used in this research for object recognition tasks. It is an essential component in ensuring the 
safety of electric vehicles. A detailed description of the algorithm can be found in Chapter 3 of 
the Doctoral Thesis. 

Algorithm for collision probability evaluation of electric transport. STEP 1: Data obtaining. 
Vehicle receives the information about own parameters: speed and coordinates of the center 
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point by using GNSS and other vehicles speed and coordinates of the four angles of the vehicle 
by using RF. STEP 2: The necessity of future calculations is detected after the information has 
been received. STEP 2.1: Calculations of the front and rear angle coordinates of the vehicle are 
done: 𝑅𝑅𝑅𝑅 = (χ𝑈𝑈𝑈𝑈𝑈𝑈 + 𝑤𝑤𝑈𝑈𝑈𝑈𝑈𝑈

2
;  ψ𝑈𝑈𝑈𝑈𝑈𝑈 + ℎ𝑈𝑈𝑈𝑈𝑈𝑈

2
); LF = (χ𝑈𝑈𝑈𝑈𝑈𝑈 −

𝑤𝑤𝑈𝑈𝑈𝑈𝑈𝑈
2

;  ψ𝑈𝑈𝑈𝑈𝑈𝑈 + ℎ𝑈𝑈𝑈𝑈𝑈𝑈
2

); 𝑅𝑅𝑅𝑅 =

(χ𝑈𝑈𝑈𝑈𝑈𝑈 + 𝑤𝑤𝑈𝑈𝑈𝑈𝑈𝑈
2

;  ψ𝑈𝑈𝑈𝑈𝑈𝑈 −
ℎ𝑈𝑈𝑈𝑈𝑈𝑈
2

); 𝐿𝐿𝐿𝐿 = (χ𝑈𝑈𝑈𝑈𝑈𝑈 −
𝑤𝑤𝑈𝑈𝑈𝑈𝑈𝑈
2

;  ψ𝑈𝑈𝑈𝑈𝑈𝑈 −
ℎ𝑈𝑈𝑈𝑈𝑈𝑈
2

), where RF – coordinates of 

the right front angle of the vehicle; LF – coordinates of the left front angle of the vehicle; RR – 
coordinates of the right rear angle of the vehicle; LR – coordinates of the left rear angle of the 
vehicle; χ𝑈𝑈𝑈𝑈𝑈𝑈  – latitude of the center point of the vehicle; ψ𝑈𝑈𝑈𝑈𝑈𝑈  – longitude of the central point 
of the vehicle; 𝑤𝑤𝑈𝑈𝑈𝑈𝑈𝑈  – width of the vehicle; ℎ𝑈𝑈𝑈𝑈𝑈𝑈  – length of the vehicle. STEP 2.2: Movement 
direction calculation. Front and rear angles are compared for this purpose. STEP 2.3: Detecting 
objects in the control area – in front of the vehicle or on the same level. For this purpose, 
coordinates of the vehicle’s angles are compared, similar as it was done in STEP 2.2. If the 
object is not in the control area, then no further calculations are needed, otherwise STEP 3 is 
performed. STEP 3: Calculation of coordinates of the crossing point: 𝑦𝑦𝑅𝑅1 = 𝑘𝑘1 ∗ 𝑥𝑥𝑅𝑅1 + 𝑏𝑏𝑅𝑅1; 
𝑦𝑦𝐿𝐿1 = 𝑘𝑘1 ∗ 𝑥𝑥𝐿𝐿1 + 𝑏𝑏𝐿𝐿1; 𝑦𝑦𝑅𝑅2 = 𝑘𝑘2 ∗ 𝑥𝑥𝑅𝑅2 + 𝑏𝑏𝑅𝑅2; 𝑦𝑦𝐿𝐿2 = 𝑘𝑘2 ∗ 𝑥𝑥𝐿𝐿2 + 𝑏𝑏𝐿𝐿2; 𝑦𝑦𝑦𝑦𝑦𝑦1𝑅𝑅2 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝑅𝑅1, 𝑦𝑦𝑅𝑅2); 𝑦𝑦𝑦𝑦𝑦𝑦1𝐿𝐿2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝑅𝑅1, 𝑦𝑦𝐿𝐿2); 𝑦𝑦𝑦𝑦𝑦𝑦1𝑅𝑅2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐿𝐿1, 𝑦𝑦𝑅𝑅2); 𝑦𝑦𝑦𝑦𝑦𝑦1𝐿𝐿2 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝐿𝐿1, 𝑦𝑦𝐿𝐿2), where 𝑦𝑦𝑅𝑅1 – line of the right side of UEV1; 𝑦𝑦𝐿𝐿1 – line of the left side of 
UEV1; 𝑦𝑦𝑅𝑅2 – line of the right side of UEV2; 𝑦𝑦𝐿𝐿2 – line of the left side of UEV2; 𝑘𝑘1, 𝑘𝑘2 – angle 
coeficients; 𝑦𝑦𝑦𝑦𝑦𝑦1𝑅𝑅2 – coordinates of the right rear angle of the crossing area; 𝑦𝑦𝑦𝑦𝑦𝑦1𝐿𝐿2 – 
coordinates of the left rear angle of the crossing area. Only χ𝑈𝑈𝑈𝑈𝑈𝑈  coordinates are considered for 
calculating the crossing point, because according to the algorithm, own ψ𝑈𝑈𝑈𝑈𝑈𝑈  coordinate of 
each vehicle is equal to zero and only χ𝑈𝑈𝑈𝑈𝑈𝑈  coordinate can be changed. STEP 4: Calculation of 
distance till the crossing point is done: 𝑑𝑑𝑑𝑑𝑑𝑑1𝑅𝑅2 = �(𝑦𝑦𝑦𝑦𝑅𝑅1𝑅𝑅2 − 𝑦𝑦𝑦𝑦𝑦𝑦1)2; 𝑑𝑑𝑑𝑑𝑑𝑑1𝑅𝑅2 =

�(𝑦𝑦𝑦𝑦𝐿𝐿1𝑅𝑅2 − 𝑦𝑦𝑦𝑦𝑦𝑦1)2; 𝑑𝑑𝑑𝑑𝑑𝑑1𝐿𝐿2 = �(𝑦𝑦𝑦𝑦𝑅𝑅1𝐿𝐿2 − 𝑦𝑦𝑦𝑦𝑦𝑦1)2; 𝑑𝑑𝑑𝑑𝑑𝑑1𝐿𝐿2 = �(𝑦𝑦𝑦𝑦𝐿𝐿1𝐿𝐿2 − 𝑦𝑦𝑦𝑦𝑦𝑦1)2. 
STEP 4.1: Calculation of the minimal distance till the crossing point: 𝑑𝑑1𝑚𝑚𝑚𝑚𝑚𝑚 =
(𝑑𝑑𝑑𝑑𝑑𝑑1𝐿𝐿2,𝑑𝑑𝑑𝑑𝑑𝑑1𝐿𝐿2). To detect the minimal distance, it is necessary to calculate the distance for 
the vehicle’s left and right sides. The smallest value will be the minimal distance. STEP 4.2: 
Calculation of the maximal distance till the crossing point:  
𝑑𝑑1𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑑𝑑𝑑𝑑𝑑𝑑1𝑅𝑅2,𝑑𝑑𝑑𝑑𝑑𝑑1𝑅𝑅2). To detect the maximal distance, it is necessary to calculate the 
distance for the vehicle’s left and right sides. The biggest value will be the maximal distance. 
STEP 5. Calculation of the time till the crossing point. STEP 5.1: Calculation of the minimal 
time till the crossing point: 𝑡𝑡𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑑𝑑1𝑚𝑚𝑚𝑚𝑚𝑚 / Vn, where Vn is speed of the vehicle. STEP 5.2: 
Calculation of the maximal time till the crossing point: 𝑡𝑡𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚  = 𝑑𝑑1𝑚𝑚𝑚𝑚𝑚𝑚  / Vn. STEP 6: Evaluation 
of collision probability is done: If 𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚, then 𝑃𝑃1 =
𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚−𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚−𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚; 𝑃𝑃2 = 𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚−𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚−𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚; P = 𝑃𝑃1 ∗ 𝑃𝑃2. If 𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚, 

then 𝑃𝑃1 = 𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚−𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚−𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚; 𝑃𝑃2 = 𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚−𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚−𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚; 𝑃𝑃 = 𝑃𝑃1 ∗ 𝑃𝑃2. If 𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚 or 𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚 

< 𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚 , then P = 0. If 𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚 <= 𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚 >= 𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚, then 𝑃𝑃 = 𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚  −𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚−𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚 . 
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If 𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚 <= 𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚 >= 𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚, then 𝑃𝑃 = 𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚−𝑡𝑡1𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚−𝑡𝑡2𝑚𝑚𝑚𝑚𝑚𝑚. Depending on the task, it is possible 

to transform the collision probability value into fuzzy values. However, in the provided novel 
INN algorithm, fuzzy logic was not taken into consideration. 

Algorithm for neural network for collision probability evaluation and minimization for 
dangerous situation recognition and prevention of electric transport: Initialization: Index of 
training group element e = 1; chosen for the correction n sn = 1; chosen for the correction weight 
sw = 1; retraining = false. STEP 1: Take element e = {dtr

e, vtr
e, dtr

e, vtr
e} from the training set. 

STEP 2: x = (e1, e2, …, en). STEP 3: Read the xmin and xmax parametres, which limit the n network 
output. STEP 4: Calculate output n adder values:  
∑ = (∑ xi ∗ wij) + bj , j = 1. . n������2n

i=1j . Generate output layer n output value by positively and 

negatively saturated linear activation function: ∆vtr = �
xmin ,   ∑ ≤ xminj  

∑ ,j   xmin < ∑ < xmaxj

xmax ,   ∑ ≥ xmaxj

. STEP 5: Save 

the previous valuation, if it exists Ptr0, ΣΔvtr0. STEP 6: Evaluate the solution that was found 
using the target function [Ptr, ΣΔvtr] = TF(Δvtr). STEP 7: If Ptr > Psafe or ΣΔvtr > ΣΔvtrlim, then 
proceed to STEP 8. STEP 8: If the last element of the training set is not reached, e ≠ emax, then 
e = e + 1 and go to STEP 1, else if there is no need to retrain the network, then FINISH, else 
e = 1 and go to STEP 1. STEP 9: Weight correction occurs sequentially: If (sn ≠1 and sw ≠ 1) 
or (Ptr0< Ptr  and ΣΔvtr0 < ΣΔvtr), that means if the element is not first and the result is worse 
than it was before, then weight correction is done, wsw, sn = wsw, sn – k, where k is a random 
number, k =  random (xmin, xmax)/10 000. If sw > 2n, then sn = sn + 1, else sw = sw + 1. If 
sn > n, then sn = 1, sw = 1. STEP 10: If weight correction was done, then neural network must 
be retrained. Retrain = true. STEP 11: Go to STEP 3. 

Novel algorithm for immune neural network for unsupervised collision probability 
evaluation and minimization for dangerous situation recognition and prevention of electric 
vehicle. STEP 1: Receive input data DAT from n UEVs located in the area of visibility. These 
data are locations <χcUEV ,ψc

UEV , ηcUEV>, speed 𝑣𝑣UEV ,  horizontal movement direction θUEV , and 
vertical movement direction  ωUEV of UEV: DAT = (χcUEV ,ψc

UEV , ηcUEV , θUEV ,ωUEV ,𝑣𝑣UEV), 
where χcUEV  – latitude of the UEV actual position; ψc

UEV – longitude of the UEV actual position; 
 ηcUEV – altitude of the UEV actual position; θUEV  – actual horizontal movement direction of 
the UEV; ωUEV – actual vertical movement direction of the UEV; 𝑣𝑣UEV  – actual speed of the 
UEV. STEP 2: The proposed INN requires data about other vehicles’ location in relation to the 
own UEV location. DAT data needs to be proceeded before it will enter the input layer of the 
proposed INN. STEP 2.1: Input data DAT contains coordinates of other vehicles’ position 
<χcUEV ,ψc

UEV , ηcUEV >, own position is known as well. Distances to the possible crossing points 
with other vehicles 𝑑𝑑𝑈𝑈𝑈𝑈𝑈𝑈  are calculated. Algorithm for evaluation of collision probability of 
electric transport is proposed above. Only minimal distance 𝑑𝑑𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 is calculated in this step. 
STEP 2.2: The step is to organize the UEVs for a more precise definition of the situation. The 
first UEV is always UEV itself. The other UEVs are ordered according to their horizontal 
movement direction 𝜏𝜏𝑛𝑛𝑈𝑈𝑈𝑈𝑈𝑈  in relation to the own UEV, starting from 0 degrees and proceeding 
clockwise. If multiple UEVs have the same value of 𝜏𝜏𝑛𝑛𝑈𝑈𝑈𝑈𝑈𝑈 , they are then ordered according to 



25 

their vertical movement direction 𝜑𝜑𝑛𝑛𝑈𝑈𝑈𝑈𝑈𝑈  in relation to the own UEV, starting from 0 degrees and 
proceeding clockwise. If multiple UEVs have the same value of 𝜑𝜑𝑛𝑛𝑈𝑈𝑈𝑈𝑈𝑈 , they are then ordered 
according to the distance to the crossing point with the own UEV, 𝑑𝑑𝑛𝑛𝑈𝑈𝑈𝑈𝑈𝑈 . Horizontal movement 
directions of other UEVs 𝜏𝜏𝑛𝑛 in relation to the own UEV direction are calculated as follows: 
𝜏𝜏𝑛𝑛 = tan−1((tan𝜃𝜃𝑛𝑛𝑈𝑈𝑈𝑈𝑈𝑈 − tan 𝜏𝜏1)/(1 + tan 𝜏𝜏1 tan𝜃𝜃𝑛𝑛𝑈𝑈𝑈𝑈𝑈𝑈)), where 𝜏𝜏1 – direction of the own 
UEV in horizontal plane; 𝜃𝜃𝑛𝑛𝑈𝑈𝑈𝑈𝑈𝑈– direction of other UEV in horizontal plane. Vertical movement 
directions of other UEVs 𝜑𝜑𝑛𝑛 in relation to the own UEV direction are calculated as follows: 
𝜑𝜑𝑛𝑛 = tan−1((η𝑛𝑛UEV −η1)/𝑑𝑑𝑛𝑛), where η1 – altitude of the own UEV; η𝑛𝑛UEV – altitude of other 
UEV; 𝑑𝑑𝑛𝑛 – horizontal distance between own UEV and the n-th UEV. Horizontal distance 
between own UEV and the n-th UEV: 𝑑𝑑𝑛𝑛 = �(∆η2 + ∆𝑑𝑑2), where ∆η – is the difference in 
altitude between the two UEVs; ∆d – is the horizontal distance between the two UEVs. Actions 
provided in STEP 2 transform input data DAT to input data X: 𝑋𝑋 =
(𝑣𝑣0, 𝑣𝑣1, 𝜏𝜏1,𝜑𝜑1,𝑑𝑑1 … ,𝑣𝑣𝑛𝑛 , 𝜏𝜏𝑛𝑛 ,𝜑𝜑𝑛𝑛 ,𝑑𝑑𝑛𝑛) = ( 𝑥𝑥0,𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4, … ,𝑥𝑥4𝑛𝑛−3, 𝑥𝑥4𝑛𝑛−2, 𝑥𝑥4𝑛𝑛−1, 𝑥𝑥4𝑛𝑛), where n 
– number of other vehicles, n = 0 – own vehicle, n > 0 – all others vehicles; 𝑣𝑣𝑛𝑛 ,𝑥𝑥4𝑛𝑛−3 – speed 
of the n-th electric vehicle; 𝜏𝜏𝑛𝑛 ,  𝑥𝑥4𝑛𝑛−2 – horizontal movement direction of the n-th electric 
vehicle. Direction of movement of another electric vehicle (n > 0) is relative to one's own (n = 
0) direction, but 𝜏𝜏0 = 0; 𝜑𝜑𝑛𝑛 ,  𝑥𝑥4𝑛𝑛−1– vertical movement direction of the n-th electrical vehicle. 
Direction of movement of another electric vehicle (n > 0) is relative to one's own (n = 0) 
direction, but 𝜑𝜑0 = 0; 𝑑𝑑𝑛𝑛 ,  𝑥𝑥4𝑛𝑛 – distance till the possible crossing point of own vehicle with 
another vehicle’s n > 0 trajectory. Thus d0 = 0. STEP 3: The calculation of collision probability 
P is intended to determine whether it is necessary to minimize the risk of collision. If no, end 
of the algorithm. If yes, then go to the next step. Algorithm for collision probability evaluation 
task of electric transport is proposed above. STEP 4: After input data X enters the input layer 
of INN, data X is sent to the specialized 𝜇𝜇 neurons and affinity algorithm (AA). The AA (X, S) 
checks all situations S stored in the IM S = {s1, s2, … , sm), calculates the set of discrepancies 

ℰ = (ε1, … , εk), where εj = ∑ ∑ �𝑋𝑋ik−𝑋𝑋ik
j

𝑋𝑋ik
�
2

2
k=1

n
i=0 , and finds the closest match εα, where εα =

min (ε). STEP 5: When the 𝜇𝜇 neuron receives input data X, it activates and increases iteration 
counter 𝑡𝑡 = 𝑡𝑡 + 1. When situation number 𝛼𝛼 is received, set of weights 𝑊𝑊μ are selected from 
the memory of the 𝜇𝜇 neuron. If there is no similar situation in the IM and 𝛼𝛼 = 0, then 𝑊𝑊μ = 0. 
STEP 6: Input data X, situation number α, received from the affinity algorithm AA, and signal 
β, which indicates the need to recalculate the weights of μ neurons, are the input data of each μ 
neuron of the hidden layer μ𝐻𝐻𝐻𝐻𝐻𝐻 . Feed forward input through the NN is done. Formulas are 
provided in Chapter 2. Outputs for own vertical movement direction change 𝑂𝑂μp3 =  ∆𝜑𝜑𝑈𝑈𝑈𝑈𝑈𝑈 , 
own horizontal movement direction change  𝑂𝑂μp2 =  ∆𝜏𝜏𝑈𝑈𝑈𝑈𝑈𝑈  and own speed change 𝑂𝑂μp1 =
 ∆𝑣𝑣𝑈𝑈𝑈𝑈𝑈𝑈   are generated as a result. STEP 7: TF calculates the collision probability Pmax that is 
maximal collision probability from the set of probabilities of collision for all pairs of UEVs PIJ. 
TF uses updated data received directly from the UEV embedded device 𝐷𝐷𝑇𝑇𝑇𝑇. STEP 7.1: The 
TF function defines the directions τUEV and φUEV of each UEV in relation to the own UEV. 
STEP 7.2: Next step is to detect the crossing point (χp,ψp, η𝑝𝑝) in 3D space.  STEP 7.3: If the 
crossing point (χp ,ψp, η𝑝𝑝) is found and is located on the way of motion, then go to STEP 7.4. 
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Else go to STEP 7.6. STEP 7.4: The distance between altitudes of the i-th and own UEV is 
calculated for the (χp ,ψp ,η𝑝𝑝) point Δη = ηpi − ηpown . STEP 7.5: If Δη ≤ Dsafe, then it is 
assumed that a potentially dangerous point exists, and the probability of collision P is 
calculated. Algorithm for electric transport collision probability evaluation task is proposed 
above. STEP 7.6: If the crossing point (χp,ψp, η𝑝𝑝) is not found, then the trajectories are parallel 
and Dsafe should be checked for safe passing. STEP 8: If 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, where 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is maximal 
acceptable (safe) collision probability, then it is checked if the solution is better than the 
previous or worse. If 𝑡𝑡 = 1, then signal β is sent to all 𝜇𝜇 neurons and repeated from STEP 6. If 
1 < 𝑡𝑡 < 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚2 > 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚1, then signal β is sent to all μ neurons. The μ neurons return 
the previous values of 𝑊𝑊μ and repeat from STEP 6. If 1 < 𝑡𝑡 < 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚2 ≤ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚1, then 
signal β is sent to all μ neurons and repeated from STEP 6. If 𝑡𝑡 ≥ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, then the situation cannot 
be solved in the defined time, so the safe solution is necessary. In this research such solution is 
speed reduction ∆𝑣𝑣𝑖𝑖 = 𝑣𝑣 and END algorithm, else go to STEP 9. STEP 9: If 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, then 
the calculated speed ∆𝑣𝑣𝑈𝑈𝑈𝑈𝑈𝑈 , horizontal and vertical movement directions ∆𝜏𝜏𝑈𝑈𝑈𝑈𝑈𝑈  and ∆𝜑𝜑𝑈𝑈𝑈𝑈𝑈𝑈 , 
changes are accepted as the solution and sent to the embedded electronic device for UEV 
control. Match error 𝜀𝜀𝑎𝑎 is compared with a maximal possible match error 𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙  responsible for 
creation of a new record in the immune memory (IM) or replacing the existing. If εα > εlim, 
then each μ neuron saves a new set of weights 𝑊𝑊m+1 that was used for solving this situation 
and IM saves the situation X as 𝑆𝑆𝑚𝑚+1 = 𝑋𝑋 and 𝑚𝑚 = 𝑚𝑚 + 1. Else, if εα ≤ εlim, then each μ 
neuron updates set of weights 𝑊𝑊α and the record α in the IM is updated 𝑠𝑠𝛼𝛼 = 𝑋𝑋. STEP 10: END 
of the algorithm. 

4. Prototype and computer model developed for testing of proposed 
algorithms 

Several computer models and prototypes were developed and described in Chapter 4 of the 
Doctoral Thesis to prove the workability of the developed algorithms: computer model for 
testing the algorithm of traffic light red signal recognition for dangerous situation recognition 
and prevention task; computer model for testing the algorithm of CNN for object recognition 
for dangerous situation recognition and prevention of UEV; computer model for testing the 
algorithm of UEV collision probability evaluation (Fig. 5.1); computer model for testing the 
algorithm of ANN for collision probability evaluation and minimization for dangerous situation 
recognition and prevention of UEV (Fig. 5.2); computer model for testing the novel algorithm 
of INN for unsupervised collision probability evaluation and minimization for dangerous 
situation recognition and prevention of UEV (Fig. 5.3). Object-oriented programming was used 
for developing the computer models. A database was developed additionally for saving the 
results of the computer simulations. 

Electric scheme with an unsupervised immune memory for UEV based on a single board 
computer was also developed and described in Chapter 4 of the Doctoral Thesis. The proposed 
electric circuit was developed for the UEV – quadcopter, but it can be applied for other types 
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of electric vehicles as well because the developed collision prevention device is multifunctional 
and can be used with different types of electric vehicles. 

5. Experimental testing of the proposed algorithms 

Experimental testing of the developed algorithms, based on the computer models, is 
described in Chapter 5 of the Doctoral Thesis. 

Experimental testing of the proposed algorithm of traffic light red signal recognition method 
for dangerous situation recognition and prevention of electric transport. Real time recognition 
experiment was made by using the traffic light prototype. The proposed system is trained to 
distinguish the red signal from the signals of other colors without any mistakes. 

Experimental testing of the proposed algorithm of convolutional neural network for object 
recognition for dangerous situation recognition and prevention of electric transport. Several 
experiments were conducted to demonstrate the efficiency of the proposed algorithm. In the 
first experiment, CNN was trained to recognize objects such as humans, cars, and trees using a 
set of 5 different silhouettes for each object. CNN was able to recognize all three pictures that 
differed from the training set without mistakes. In the second experiment, CNN was trained to 
recognize traffic lights, and in the third experiment, it was trained to recognize road turns. 
Finally, in the fourth experiment, CNN was trained to recognize wagons. The results of 
experiments show that CNN is a suitable method for object recognition tasks. 

Experimental testing of the proposed algorithm of collision probability evaluation of 
electric transport. Each object was calculating all the parameters and collision probability 
according to own location and parameters during these experiments.  

 
Fig. 5.1. Testing of the algorithm of collision probability evaluation of UEVs. 

His own coordinates are (0; 0), and other UEV’s coordinates and crossing point coordinates 
are calculated comparatively to own coordinates. The same speed of two UEVs was used, for 
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the computer simulation. The developed computer model also provides the usage of different 
speeds of the objects. As the results of the computer experiment show, the collision probability 
depends on the distance till the crossing point, available time for the reaction, and the UEV 
speed. 

Experimental testing of the proposed algorithm of neural network for collision probability 
evaluation and minimization for dangerous situation recognition and prevention of electric 
transport. Traditional neural network (ANN) experiment with training was done. ANN was 
trained to make the decision about the speed change to prevent the collision of UEVs. ANN 
input and output n amount is dynamic because the number of UEVs can be changed. The 
following situation was chosen for the experiment: one train; one bus; trajectories of the train 
and bus have a point. In this situation, ANN consists of 4 input and 2 output layers. Each 
element from the set is sent to the ANN input layer during the training process. When changes 
of speed Δv1 and Δv2 for the train and bus are found, these values are evaluated by TF.  

ANN self-training experiment was done too. The experiment was also based on the danger 
level estimation. Coordinates and speed of two objects were entered. The proposed system 
calculates a possible crossing point and collision probability. If the collision probability is 
higher than specified, the system tries to minimize the collision probability by minimal changes 
of the speed. 

Experimental testing of the algorithm for the collision prevention of multiple vehicles was 
done (Fig. 5.2). The main idea of the experiment was to set the same coordinates of the target 
point for three different unmanned aerial vehicles (UAV) and to make sure that the proposed 
algorithm is working correctly and UAVs will not collide. 

 
Fig. 5.2. Testing of the algorithm of NN for collision probability evaluation and minimization 

for dangerous situation recognition and prevention of UEVs. 

As a result, three UAVs reached the target point coordinates without colliding and each of 
them has changed only one target coordinate – height, according to the developed algorithm. 
Experiments show that ANN can be useful in collision probability minimization tasks. 

Experimental testing of the proposed novel algorithm of the immune neural network for 
unsupervised collision probability evaluation and minimization for dangerous situation 
recognition and prevention of electric vehicles. Three different experiments were made to prove 
the efficiency of the proposed algorithm. The real part of city transport system was taken as a 
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model for the first computer experiment. The inputs for INN are motion speed of all UEVs and 
their distance to crossing point, including own UEV. According to this data, each UEV trains 
its own INN to get a speed change satisfying the target function. The decision to accelerate or 
brake is adjustable by specific collision sensitivity index. The first set of weights appropriate to 
target function is taken to memory pool at the beginning of self-training algorithm. The number 
of iterations to find the optimal speed change decision is limited to 200. If there is no result, 
speed is decreased in double. The use of 3 types of transport control were compared: 110 
collisions were detected during simulation without motion control; 19 collisions were detected 
during simulation with ANN; no collisions were detected during simulation with a novel INN. 

 
Fig. 5.3. Testing of the novel algorithm of INN for unsupervised collision probability 

evaluation and minimization for dangerous situation recognition and prevention of UEVs. 

Second experiment was made for the group of 8 UAVs and was 10 minutes long (Fig. 5.3). 
Each UAV had its own size and speed, but these parameters were not changed during the 
simulations. UAVs were able to change the trajectory of motion (XY coordinates) or to change 
their speed for collision prevention. The proposed model simulates the behavior of real vehicles, 
that is why their decisions and output data differ. Data delays and errors were used to reproduce 
the conditions of the real time experiment during these simulations. In this experiment, the use 
of 3 types of transport control were compared. On average, 8 UAVs completed 419 trips, and 
60 collisions were detected during a 10-minute simulation without motion control. The number 
of collisions was reduced to zero during simulations with ANN and the proposed novel INN.  

While the number of trips was almost twice as high during simulations with the proposed 
INN compared to simulations with ANN (Fig. 5.4), the results of computer simulations 
demonstrate that the proposed INN is effective in minimizing the probability of collisions while 
also reducing the necessary computation time and increasing the number of trips. 
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Fig. 5.4. Comparison of the results of experiments based on the average number of UEV 

trips during simulation. 

It is necessary to choose the appropriate INN system parameters because they also influence 
the result. The purpose of the third experiment was to compare simulation results with different 
set of parameters and to understand their influence on the output data. The comparison is 
provided in the Doctoral Thesis. 

Conclusions 
Analyzing the obtained results, it can be concluded that the goal of the Doctoral Thesis has 

been achieved. During the development of the Thesis, the following has been done: 
1. Industrial and scientific research analysis was done. It shows that despite the big number 

of inventions, the developed systems for unsupervised electric vehicle control do not 
fulfil safety tasks completely. That is why the topic of increasing the transport safety 
level by using the artificial intelligence systems is actual and needs to be well studied. 

2. Centralized, decentralized, and distributed control system models were compared. The 
results of comparison show that distributed system is more preferable than centralized 
or decentralized. Distributed models are easier to implement, they have less 
components, they are cheaper for infrastructure owner, and they are not connected to 
the specific area, they have also decreased time for reaction and decreased risk at system 
failure. That is why the distributed system structure was used in this research. 

3. The system structure of the proposed system was developed and described. All the 
functions are performed by the microcontroller or embedded computer, integrated in 
each electric vehicle, where the object recognition process and risk assessment are done, 
as well as opportunity assessment and decision making about necessary movement 
parameters change are done. Such solution helps to minimize data processing time 
because there is no need to transmit the data to the common center and backward. 

4. The system structure was divided into subsystems, for better understanding of particular 
processes: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 AVG
ANN 61 47 53 60 48 12 13 11 12 12 15 5 2 9 5 19 18 14 15 19 23
INN 93 78 103 96 88 46 5 18 30 16 15 13 13 20 8 32 27 34 40 22 40
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a) two subsystems were based on the known methods: artificial neural network 
(ANN) for supervised collision probability estimation and minimization, and 
convolutional neural network (CNN) for the object recognition task; 

b) the third one was developed by the author within the scope of this study: immune 
neural network (INN) based technology of machine learning for unsupervised 
safe vehicle control. 

In this research, traditional neural network is included to compare its results with those 
of the proposed novel INN immune neural network. The objective is to draw 
conclusions on whether the novel network is better or worse than the traditional one. 

5. The developed mathematical models were also divided according to the provided tasks: 
a) models for objects and signals recognition task; 
b) models for collision probability evaluation and location of the possible crossing 

point calculation task; 
c) models for collision probability minimization task. 

6. Several algorithms were developed. 
a) the proposed algorithm for immune neural network for unsupervised collision 

probability evaluation and minimization for dangerous situation recognition and 
prevention of electric transport is a novel algorithm and is foreseen to be used 
for electric vehicle unmanned control; 

b) all the other algorithms are used as helping methods in providing the 
autonomous safety drive of the electric vehicles. 

7. Several computer models and prototypes were developed and described in the Doctoral 
Thesis to prove the workability of the developed algorithms. The proposed computer 
models were used to test the algorithms and to solve the following tasks: 

a) traffic light red signal recognition; 
b) object recognition; 
c) collision probability evaluation and minimization; 
d) unsupervised collision probability evaluation and minimization. 

8. An electrical circuit diagram of the collision prevention device with an unsupervised 
immune memory for unmanned electric vehicle based on a single board computer was 
developed and described. The proposed electrical circuit was developed for the electric 
vehicle – quadcopter, but it can be applied also for other types of electric vehicles 
because the developed collision prevention device is multifunctional and can be used 
with different types of electric vehicles. 

9. A comparison of ANN and INN-based algorithms were done considering the impact on 
traffic safety and necessary time for decision calculation, where INN presents the best 
results, as described further. The results approve the proposed hypothesis – an immune 
neural network can make control decisions to prevent vehicle collisions with better 
performance than a traditional neural network. 

The experiments done during the Doctoral research and the obtained results allow to make 
the following conclusions: 
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1. The proposed algorithm of traffic light red signal recognition method can distinguish 
the red signal from other signals without mistakes after the system has been trained. 

2. CNN is a suitable method for object recognition process for dangerous situation 
recognition and prevention of electric transport. CNN must be trained in advance to 
minimize the necessary calculation time. 

3. The collision probability is based on the distance till the crossing point, available time 
for the reaction, and vehicles’ speed. 

4. ANN method and algorithm are suitable for the collision probability evaluation and 
minimization for dangerous situation recognition and prevention of electric transport. It 
is possible to use a previously trained ANN or to use self-training. 

5. The novel INN based technology of machine learning for unsupervised safe vehicle 
control is also suitable for the collision probability evaluation and minimization for 
dangerous situation recognition and prevention of electric transport. The proposed INN 
does not need to be trained in advance. The collision probability minimization process 
can be started even with an empty immune memory. 

6. The proposed INN can be used for minimizing the collision probability, improving 
unsupervised transport safety, and faster data processing in real time conditions with 
minimal deviation from the task performance. 

7. The proposed INN based algorithm is multifunctional and can be implemented into 
control systems of different types of electric vehicles. Depending on the electric vehicles 
specification, the system can obtain different input parameters, such as speed, location 
(altitude, latitude, longitude) and trajectory of motion, and produce different output data, 
such as speed change or movement direction change. 

8. The proposed INN is better than the traditional ANN for dangerous situation recognition 
and prevention of electric transport because of the minimized number of detected 
collisions, which leads to the safer transportation process. The result of computer 
simulation shows that during the experiment where UEVs were able to change only the 
speed, but not the trajectory of motion, 19 collisions were detected during 30-minutes 
long simulation with ANN and no collisions were detected during simulation with the 
proposed INN. 

9. The proposed INN is better than the traditional ANN in dangerous situation recognition 
and prevention of electric transport because of reduced calculation time, which leads to 
bigger number of safe trips. The results of computer simulations where UEVs were able 
to change their speed and trajectory of motion: 

a) without data transmission delays and errors, the use of INN helps to increase the 
number of trips by 70 % compared to the use of traditional ANN; 

b) with data transmission delays and inapproporiate maximal distance till other 
UEV, to start crash prevention, the use of INN helps to increase the number of 
trips by 92 % compared to the use of traditional ANN and to decrease the number 
of collisions by 25 % compared to the use of traditional ANN; 
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c) with data transmission delays and approporiate maximal distance till other UEV, 
to start crash prevention, the use of INN helps to increase the number of trips by 
100 % compared to the use of traditional ANN; 

d) with data transmission delays and errors, the use of INN helps to increase the 
number of trips by 82 % compared to the use of traditional ANN. 

10. INN system parameters also influence the result. It is impossible to determine 
definitively which parameter values are best because the output data depends on 
unpredictable input parameters such as errors and delays. The INN system parameters 
must be adjustable depending on the situation. 

Future research perspectives: 
1. The theme of cybersecurity and loss of signal or communication was not considered in 

this research. It is considered as a prospect for future scientific research. 
2. It is necessary to develop prediction algorithms for the location and velocity to continue 

the calculation if the data receiving is delayed. 
3. The results of simulations show that the INN reduces the number of iterations and 

calculation time. It is necessary to analyze whether it will be sufficient for using low-
powered systems. 

4. It is necessary to make simulations by using multiple microcontrollers that will imitate 
UEVs and to compare already received results with those ones. 
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