

Book of Abstracts

Contents

Welcome	2
Organization	3
Acknowledgments and Sponsors	5
General Information	12
Social Programme	17
Scientific Programme	22
Plenary Lectures	45
Oral Communications	77
Flash Communications	101
Poster Communications	155
Author Index	269
Participant Index	279

Synthetic Pathways Toward Designed Purine Derivative for the Photo-Catalysis

Aleksejs Burcevs,^a Gediminas Jonusauskas,^{b,c} Kamilė Tulaitė,^b Justina Jovasaite,^b Saulius Juršėnas,^b Irina Novosjolova,^a Māris Turks^a

^aInstitute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia

^bInstitute of Photonics and Nanotechnology, Faculty of Physics, Vilnius University, Sauletekis Av. 3, Vilnius, LT-10222, Lithuania ^cLaboratoire Ondes et Matière d'Aquitaine, Bordeaux University, Umr Cnrs 5798, 351 Cours de la Libération, 33405 Talence, France

Email: irina.novosjolova@rtu.lv

Fluorescent purine derivatives have a variety of uses in analytics – they can be used as a metal ion and pH sensors.¹ They also can be used for cell imaging² and as photo-catalysts.³

Target purine compound 4 was designed with an aim to be used as a potential molecular system for the photocatalysis. Several synthetic pathways were designed and have been tested to obtain it (**Scheme 1**). For the synthesis

of

4,

6-chloropurine (1) needs to be derivatized at C(6), C(8) and N(9) positions by introducing **A**, **B** and **C** moieties. In the end, target compound 4 was obtained in 9 steps, using the combinations of S_NAr , S_N2 , CuAAC, C-C metal catalyzed coupling, alkylation and Mitsunobu reactions. Further, it is planned to test its fluorescence properties and complexation abilities.

We will discuss approaches toward purine derived photo-catalyst 4 and its application.

Scheme 1: Synthetic route toward target compound 4.

Acknowledgements: The authors thank MEPS co-project LV-LT-TW/2022/9 for financial support. A.B. thanks the European Social fund within project Nr. 8.2.2.0/20/l/008 and Riga Technical University.

References:

- 1. a) Jovaisaite J.; Cīrule D.; Jeminejs A.; Novosjolova I.; Turks M.; Baronas P.; Komskis R.; Tumkevicius S.; Jonusauskas G.; Jursenas S. *Phys. Chem. Chem. Phys.* **2020**, *22*, 26502–26508. b) Sun K. M.; McLaughlin C. K.; Lantero D. R.; Manderville R. A. *J. Am. Chem. Soc.* **2007**, *129*, 1894–1895.
- 2. Šišuļins A.; Bucevičius J.; Tseng Y.; Novosjolova I.; Traskovskis K.; Bizdēna Ē.; Chang H.; Tumkevičius S.; Turks M. *Beilstein J. Org. Chem.* **2019**, *15*, 474–489.