COMPUTER SCIENCE
DATORZINATNE

ISSN 1407-7493 2008-7493

INFORMATION TECHNOLOGY AND
MANAGEMENT SCIENCE
INFORMACIJAS TEHNOLOGIJA UN
VADIBAS ZINATNE

CONSTRUCTION METHODS OF THE DECISION TREES FOR GENETIC
PROGRAMMING

Peter Grabusts, Dr.sc.ing, Rezekne Higher Education Institution, 90 Atbrivoshanas alley, Rezekne LV-4600,
Latvia, e-mail: peter@ru.lv.

Keywords: genetic programming, decision tree

1. Introduction

In recent years genetic programming has been successfully applied to solve different
optimization search problems. It can be used as long as the solution can be encoded in a tree
structure. A more efficient way of overcoming the limitations of standard decision tree
induction algorithms can be the usage of genetic programming. In case of integration with
genetic programming and decision tree, each individual of the population in genetic
programming can be a decision tree. The functions to be used in the genetic programming are
the attributes of the decision tree and classes form the terminal set.

Genetic programming can be considered as a decision tree breeder in which a good
decision tree can be generated automatically through evolution.

The aim of the work is to investigate and analyze construction methods of the decision
trees with the help of genetic programming.

2. The significance of genetic programming

Genetic programming (GP) is an automated methodology inspired by biological
evolution to find computer programs that best perform a user-defined task. It is therefore a
particular machine learning technique that uses an evolutionary algorithm to optimize a
population of computer programs according to a fitness function determined by a program's
ability to perform a given computational task [1].

Genetic programming is a methodology for generating computer programs
automatically. Rather than writing programs explicitly, GP applies natural selection and
genetic recombination to evolve programs that solve a given problem. GP is founded on the
premise that computer programs can be represented as tree structures, as shown in Figure 1.

Figure 1. Tree structure example

The functions (f) operate on terminals (T) to produce a result. Functions are operations
that take one or more arguments. They can be arithmetic (+, *, /), mathematical (sin, cos),
Boolean (and, or, not), conditional (if-then-else), looping (for, repeat). Terminals are
operations that take no arguments but return a value (variables or constant values).

The main difference between genetic programming and genetic algorithms is the
representation of the solution. Genetic programming creates computer programs in the
scheme computer languages as the solution. A genetic algorithm creates a string of numbers
that represent the solution. GP consists of the following four steps:

1) Generate an initial population of random compositions of the functions and terminals of
the problem (computer programs).

2) Execute each program in the population and assign it a fitness value according to how
well it solves the problem.

3) Create a new population of computer programs:

e copy the best existing programs;

e create new computer programs by mutation;

e create new computer programs by crossover.

4) The best computer program that appeared in any generation, the best-so-far solution, is
designated as the result of genetic programming [1].

The GP process initially creates a number of computer programs by randomly
combining functions and terminals into complete tree structures. This collection of programs,
or individuals, is called a population. The GP engine evaluates and assigns a fitness value to
each of the individuals in the population. The population is ranked according to fitness. A
new population is generated by selecting individuals from the previous generation to
participate in creative operations. Individuals are selected for inclusion in the creative process
based on their fitness - the higher the fitness, the higher the likelihood of inclusion. Three
basic creative operations are used in GP: reproduction, crossover, and mutation. Reproduction
is simply the copying of an individual from the previous generation into the next generation
without any modification of its structure.

GP substantially differs from other evolutionary algorithms in the implementation of the
operators of crossover and mutation.

Mutation is performed by randomly selecting a node in an individual tree structure, and
removing that node along with any sub-tree that may exist below it. A new sub-tree is then
generated randomly and “grafted in” at the position where the original node was removed. An
example of sub-tree mutation is shown in Figure 2 [3].

Parents Offspring

tation
point

Mutation

/ point

3 — (+)

\
(\ . X) \
| \ /
Randomly \ <\ Y,
Generated Y \ \\ /
Sub-tree \ e N /
\ \ N -
\ | N e |
X 2 -
/
A /
\
N /
N o
~
N -

Figure 2. An example of sub-tree mutation
Crossover involves selecting two individuals from the previous generation and selecting
a node at random in each of them. The selected nodes, along with any sub-trees that exist
below them, are exchanged between the two individuals.
There is no guarantee that GP will find an optimal solution, but a well thought out set of
functions and terminals with a reasonable fitness test will usually produce good results [2].

3. Decision trees

Decision trees and decision rules are data mining methodologies applied in many real-
world applications as a powerful solution to classification problems. In general, classification
is a process of learning a function that maps a data item into one of several predefined classes.
Every classification based on inductive-learning algorithms is given as input a set of samples
that consist of vectors of attribute values (also called feature vectors) and a corresponding
class. The goal of learning is to create a classification model, known as a classifier, which will
predict, with the values of its available input attributes, the class for some entity (a given
sample). In other words, classification is the process of assigning a discrete label value (class)
to an unlabeled record, and a classifier is a model that predicts one attribute-class of a sample-
when the other attributes are given. Different classification methodologies are applied today
in almost every discipline where the task of classification, because of the large amount of
data, requires automation of the process.

A particularly efficient method for producing classifiers from data is to generate a
decision tree. The decision tree representation is the most widely used logic method. There is
a large number of decision tree induction algorithms described primarily in the machine-
learning and applied statistics literature. They are supervised learning methods that construct
decision trees from a set of input-output samples. A typical decision tree learning system
adopts a top-down strategy that searches for a solution in a part of the search space. It
guarantees that a simple, but not necessarily the simplest, tree will be found. A decision tree
consists of nodes where attributes are tested. The outgoing branches of a node correspond to
all the possible outcomes of the test at the node.

A well-known tree-growing algorithm for generating decision trees based on univariate
splits is Quinlan's ID3 with an extended version called C4.5. Greedy search methods, which
involve growing and pruning decision tree structures, are typically employed in these
algorithms to explore the exponential space of possible models.

The most important part of the C4.5 algorithm is the process of generating an initial
decision tree from the set of training samples. As a result, the algorithm generates a classifier
in the form of a decision tree; a structure with two types of nodes: a leaf, indicating a class, or
a decision node that specifies some test to be carried out on a single-attribute value, with one
branch and a sub-tree for each possible outcome of the test.

A decision tree can be used to classify a new sample by starting at the root of the tree
and moving through it until a leaf is encountered. At each nonleaf decision node, the features
outcome for the test at the node is determined and attention shifts to the root of the selected
sub-tree. For example, if the classification model of the problem is given with the decision
tree in Figure 3a), and the sample for classification in figure 3b), then the algorithm will
create the path through the nodes A, C, and F (leaf node) until it makes the final classification
decision: CLASS2 [4, 5]. If data samples are represented graphically in an N-dimensional
space, where N is the number of attributes, then a logical classifier (decision trees or decision
rules) divides the space into regions.

Attribute1>5

(Attribute3= Attribute Value

»NO”) Attribute1 5
TRU Z FALSE Attribute2 [Black
Attribute3 No

CLASS1 CLASS2 CLASS2 CLASS1

b) An example for
a) Decision tree classification

Figure 3. Classification of a new sample based on the decision tree model

Each region is labelled with a corresponding class. An unseen testing sample is then
classified by determining the region into which the given point falls. Decision trees are
constructed by successive refinement, splitting existing regions into smaller ones that contain
highly concentrated points of one class. The number of training cases needed to construct a
good classifier is proportional to the number of regions. More complex classifications require
more regions that are described with more rules and a tree with higher complexity. All that
will require an additional number of training samples to obtain a successful classification.

A typical example of decision tree construction for well-known Fisher’s IRIS data set is
shown in Figure 4 [6, 7].

Node 1
[Entire Group]
N=150
Species=Setosa
Misclassification=66.67%)

Node 2 Node 3

Petal length<=2.45 Petal length>2.45

N=50 N=100
Specles—Setosa Species=Versicolor
Misclassification= 0 % Misclassification=50.00%

Node 4
Petal width<=1.75 Petal w|d(h>1 75
17%

N=54

Misclassification= 2.08% Misclassification=33.33Y

Node 8 Node 9

Petal width<=1.65 Petal width>1.65
N=47 N=1
pecies=versi pecies=Virgi

Figure 4. Decision tree for IRIS data set

Node 6

Petal length<=4.95 Petal Iength>4 95
N=48 N=6
Species=Versicolor Species=Virginica

One well-known limitation of selective induction algorithms is its inadequate
description of hypotheses by task-supplied primitive features. To overcome this limitation,
constructive inductive algorithms transform the original feature space into a more adequate
space by creating new features and augmenting the primitive features with the new ones.

Originally decision trees were proposed for classification in domains with symbolic-
valued features. This kind of decision trees may be called univariate or axisparallel, because
the tests on each non-leaf node of the tree are equivalent to axis-parallel hyperplanes in the
feature space. Another class of decision trees tests a linear combination of the features at each
internal node. This kind is called multivariate linear or oblique decision tree, because these
tests are equivalent to hyperplanes at an oblique orientation to the axes of the feature space.

One method, first introduced in [8], is based on the combination of primitive features
and the augmentation of the feature space before tree generation. For example, as a result of
combination of the primitive features x; and x, one can see a new feature as a new dimension
in the feature space. Because the space of possible new features is exponential, the method
uses a special kind of feature combination.

As a result, an oblique decision tree is obtained that is equivalent to a non-linear
decision tree in the original x-space after a re-transformation of the features. Non-linear
decision tree algorithms produce more accurate trees than their axis-parallel or oblique
counterparts [8, 9].

4. Decision tree representation for GP

A decision tree representation would be able to correctly handle both numerical and
categorical values. Numerical variables and values should only be compared to numerical
values or variables and only be used in numerical functions. Similarly, categorical variables
and values should only be compared to categorical variables or values. This is a problem for
the standard GP operators (crossover, mutation and initialization) which assume that the
output of any node can be used as the input of any other node. This is called the closure
property of GP which ensures that only syntactically valid trees are created.

A solution to the closure property problem of GP is to use strongly typed genetic
programming. Strongly typed GP uses special initialization, mutation and crossover operators.
These special operators make sure that each generated tree is syntactically correct even if tree
nodes of different data types are used. Because of these special operators, an extensive

function set consisting of arithmetic (+,—, X, /), comparison (<,>) and logical operators (and,
or, if) can be used.

Another strongly typed GP representation was introduced in 1999 [5]. This linear
classification GP algorithm uses a representation for oblique decision trees. An example of a
tree can be seen in Figure 5 [5].

CheckCondition2Vars

Figure 5. Example decision tree and its representation in the GP

The leftmost children of function nodes (in this case CheckCondition2Vars and
CheckCondition3Vars) are weights and variables for a linear combination. The rightmost
children are other function nodes or target classes (in this case A or B). Function node
CheckCondition2Vars 1s evaluated as: if 2.5x;0 — 3.0x4 < 2.1 then evaluate the
CheckCondition3Vars node in a similar way; otherwise the final classification is 4 and the
evaluation of the decision tree on this particular case is finished.

In 1998 a new representation was introduced - atomic representation that booleanizes all
attribute values in the terminal set using atoms. Each atom is syntactically a predicate of the
form (variable; operator constant) where operator is a comparison operator (e.g., < and > for
continuous attributes, = for nominal or Boolean attributes).

Since the leaf nodes always return a Boolean value (frue or false), the function set
consists of Boolean functions (e.g., and, or) and possibly a decision making function (if —
then — else) [10]. An example of a decision tree using the atomic representation can be seen
in Figure 6. Input variables are booleanized by the use of atoms in the leaf nodes. The internal
nodes consist of Boolean functions and possibly a decision making function.

ariablex < Value

ariablez < Value

Figure 6. Example decision tree using an atomic representation

To conclude, there are a large number of different possibilities for the representation of
decision trees.

5. Conclusions and future work

The main advantage of GP is that it performs a global search for a model, contrary to
the local greedy search of most traditional machine learning algorithms. ID3 and C4.5, for
example, evaluate the impact of each possible condition on a decision tree, while most
evolutionary algorithms evaluate a model as a whole in the fitness function. As a result,
evolutionary algorithms cope well with attribute interaction.

To design a decision tree using GP, each individual is defined as a decision tree, which
represents both the genotype and the phenotype. The design process is still an evaluation
process containing two phases:

e select a part of the training examples at random from the whole training set, and design a
decision tree using C4.5, repeat this for all trees in the initial population;
e evolve the tree using GP.

The methodology investigated in the paper will be used in further scientific research that

will deal with the construction of the decision tree using genetic programming.

References

1. Koza J.R. Genetic Programming: On the Programming of Computers by Means of Natural
Selection // Cambridge: MIT Press, 1992.

2. Karr C., Freeman L.M. Industrial Applications of Genetic Algorithms // International
Series on Computational Intelligence: CRC Press, 1999.

3. A Field Guide to Genetic Programming. URL: http://www.gp-field-guide.org.uk/ - Visit
date September 2008.

4. Kantardzic M. Data Mining: Concepts, Models, Methods, and Algorithms // John Wiley &
Sons, 2003.

5. Bot M.C., Langdon W.B. Application of Genetic Programming to Induction of Linear
Classification Trees // Proceedings of the 3" European Conference on GP, 2000.

6. UCI repository of machine learning databases.
URL: http://archive.ics.uci.edu/ml/datasets/Iris - Visit date September 2008.

7. Software For Predictive Modeling and Forecasting. URL: http://www.dtreg.com/ - Visit
date September 2008.

8. Ittner A., Schlosser M. Non-linear Decision Trees — NDT // Proceedings of 13
International Conference on Machine Learning — IML96, 1996.

9. Cantu-Paz E., Kamath C. Using Evolutionary Algorithms to Induce Oblique Decision
Trees // Genetic and Evolutionary Computation Conf. (GECCO), 2000.

10. Hemert J.I. Applying Adaptive Evolutionary Algorithms to Hard Problems // Master’s
thesis, Leiden University, 1998.

Grabusts Péteris. Lemumu koku konstrug$anas metodes genétiskajai programmeésanai

Misdienas genétiskas programmésanas iespejas tiek plasi izmantotas daudzos optimizacijas un klasifikacijas
uzdevumos. Lai genétiskas programmesanas metodes varétu tikt veiksmigi pielietotas, ir nepieciesams konstruét
attiecigus lemumu kokus. Lemumu koki un likumi uz to pamata ir intelektualas datu analizes sastavdala un
veiksmigi tiek pielietoti klasifikacijas problemu risinasand. Pastav vesela virkne dazadu panemienu, kas dod
iespeju konstruét lemumu kokus genétiskas programmesanas iespéju izmantoSanai. Literatiiras analize liecina,
ka optimalaka metode lemumu koku konstruésana sastav no diviem etapiem. Sakotnéji tiek veidots lemumu koks,
izmantojot C4.5 algoritmu, kas turpmak tiek izvérsts ar genétiskas programmésanas operatoru palidzibu. Saja
gadijuma genetiska programmesana tiek lietota ka globala meklesanas strategija preciza lemumu koka
atrasand. Raksta analizétas misdienu pieejas lemumu koku konstruéSana un izskatitas genétiskas
programmésanas iespéjas, kas tiks izmantotas turpmakaja pétnieciskaja darbiba.

Grabusts Peter. Construction methods of the decision trees for genetic programming

Nowadays the possibilities of genetic programming are widely used in many optimization and classification
tasks. In order to successfully apply methods of genetic programming, it is necessary to construct correspondent
decision trees. Decision trees and decision rules are data mining methodologies applied in many real-world
applications as a powerful solution to classification problems. There is a succession of different methods that
enable the construction of decision trees for the use of the possibilities of genetic programming. Literature
review gives evidence that the most optimal method in the construction of decision trees consists of two phases.
Initially a decision tree is created by using C4.5 algorithm, it is further developed with the help of the genetic
programming’ operators. In this case genetic programming is used as a global stochastic search technique for
finding accurate decision trees. The article analyzes present-day approaches to the construction of decision
trees and examines the possibilities of genetic programming that will be used in further research.

I'padycrc [erepuc. MeToabl NOCTPOEHMS IePEBLEB PeLIeHU 15l TeHETHYECKOr0 MPOrpaMMHUPOBaHUS
Boszmooicnocmu 2enemuuecko2o npocpamMmuposanus 8 Hauu OHU WUPOKO RPUMEHSIOMCSL 60 MHOUX 3A0a4ax
onmumusayuu u Kraccuguxayuu. /s ycnewnozo npumeHenus Memooo8 2eHemu4ecko2o npocpamMmMupo8aHisl
mpebyemcs co30anue coomeemcmayiowezo oepesa peuteHull. /lepesvbs peuwienuii u 3aKOHbI HA UX OCHOBE
VCHEWHO NPUMEHAIOMCS 8 peuleHuu MHo2ux npoobiem knaccuguxayuu. Cywecmsyem MHONICECMEO CHOC0008
KOHCMPYUpoeanus 0epesa pewenuli 0sl UCHOIb308AHUS B03MONCHOCHEN 2EHEMUYECKO20 NPOSPAMMUPOBAHUS.
Ananuz aumepamypel ceudemenbcmeyem, umo ONMUMAIbHBIL MemoO KOHCMPYUpOBAHus 0epeeéd peueHull
cocmoum u3 08yx smanog. Msnauanvno ¢ nomowwio aneopumma C4.5 cmpoumcsi depeso peuieHutl, Komopoe
3amem pacwupsiemcs: ¢ UCHONb308AHUEM ONEPAMOPO8 2eHeMUUecKo20 NpocpamMmuposanus. B smom cnyuae
2EHeMU4ecKoe NPOSPAMMUPOBAHUE UCNONb3YEMCsl KAk cmpamecusi 2100aibH020 NOUCKA Ol HAXONCOeHUs.
mouno2o depesa peuieHull. B cmamve npoanaiu3uposan cO8pemennblil N00X00 K Memoodam nocmpoeHus oepesa
peulenull. U pacCMOMpPeHbl BO3MONCHOCTU — 2EHEMUYECKO20 NPOSPAMMUPOBAHUs. Ol UCHONIb308ANHUSL 6
odanvheliulell Ucciedo8amenbekol pabome.

