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1. Introduction 
 

In recent years genetic programming has been successfully applied to solve different 
optimization search problems. It can be used as long as the solution can be encoded in a tree 

structure. A more efficient way of overcoming the limitations of standard decision tree 

induction algorithms can be the usage of genetic programming. In case of integration with 
genetic programming and decision tree, each individual of the population in genetic 

programming can be a decision tree. The functions to be used in the genetic programming are 

the attributes of the decision tree and classes form the terminal set. 

Genetic programming can be considered as a decision tree breeder in which a good 

decision tree can be generated automatically through evolution. 

The aim of the work is to investigate and analyze construction methods of the decision 

trees with the help of genetic programming. 

 

2. The significance of genetic programming 
 

Genetic programming (GP) is an automated methodology inspired by biological 

evolution to find computer programs that best perform a user-defined task. It is therefore a 

particular machine learning technique that uses an evolutionary algorithm to optimize a 

population of computer programs according to a fitness function determined by a program's 

ability to perform a given computational task [1]. 

Genetic programming is a methodology for generating computer programs 

automatically. Rather than writing programs explicitly, GP applies natural selection and 

genetic recombination to evolve programs that solve a given problem. GP is founded on the 

premise that computer programs can be represented as tree structures, as shown in Figure 1. 

 



 
 

Figure 1. Tree structure example 

 

The functions (f) operate on terminals (T) to produce a result. Functions are operations 

that take one or more arguments. They can be arithmetic (+, *, /), mathematical (sin, cos), 
Boolean (and, or, not), conditional (if-then-else), looping (for, repeat). Terminals are 
operations that take no arguments but return a value (variables or constant values). 

The main difference between genetic programming and genetic algorithms is the 

representation of the solution. Genetic programming creates computer programs in the 

scheme computer languages as the solution. A genetic algorithm creates a string of numbers 

that represent the solution. GP consists of the following four steps: 

1) Generate an initial population of random compositions of the functions and terminals of 

the problem (computer programs). 

2) Execute each program in the population and assign it a fitness value according to how 

well it solves the problem. 

3) Create a new population of computer programs: 

•  copy the best existing programs; 

•  create new computer programs by mutation; 

•  create new computer programs by crossover. 

4) The best computer program that appeared in any generation, the best-so-far solution, is 

designated as the result of genetic programming [1]. 

The GP process initially creates a number of computer programs by randomly 

combining functions and terminals into complete tree structures. This collection of programs, 

or individuals, is called a population. The GP engine evaluates and assigns a fitness value to 

each of the individuals in the population. The population is ranked according to fitness. A 

new population is generated by selecting individuals from the previous generation to 

participate in creative operations. Individuals are selected for inclusion in the creative process 

based on their fitness - the higher the fitness, the higher the likelihood of inclusion. Three 

basic creative operations are used in GP: reproduction, crossover, and mutation. Reproduction 

is simply the copying of an individual from the previous generation into the next generation 

without any modification of its structure. 

GP substantially differs from other evolutionary algorithms in the implementation of the 

operators of crossover and mutation. 

Mutation is performed by randomly selecting a node in an individual tree structure, and 

removing that node along with any sub-tree that may exist below it. A new sub-tree is then 

generated randomly and “grafted in” at the position where the original node was removed. An 

example of sub-tree mutation is shown in Figure 2 [3]. 



 
 

Figure 2. An example of sub-tree mutation 

Crossover involves selecting two individuals from the previous generation and selecting 

a node at random in each of them. The selected nodes, along with any sub-trees that exist 

below them, are exchanged between the two individuals. 

There is no guarantee that GP will find an optimal solution, but a well thought out set of 

functions and terminals with a reasonable fitness test will usually produce good results [2]. 

 

3. Decision trees 
 

Decision trees and decision rules are data mining methodologies applied in many real-

world applications as a powerful solution to classification problems. In general, classification 

is a process of learning a function that maps a data item into one of several predefined classes. 

Every classification based on inductive-learning algorithms is given as input a set of samples 

that consist of vectors of attribute values (also called feature vectors) and a corresponding 

class. The goal of learning is to create a classification model, known as a classifier, which will 

predict, with the values of its available input attributes, the class for some entity (a given 

sample). In other words, classification is the process of assigning a discrete label value (class) 

to an unlabeled record, and a classifier is a model that predicts one attribute-class of a sample-

when the other attributes are given. Different classification methodologies are applied today 

in almost every discipline where the task of classification, because of the large amount of 

data, requires automation of the process.  

A particularly efficient method for producing classifiers from data is to generate a 

decision tree. The decision tree representation is the most widely used logic method. There is 

a large number of decision tree induction algorithms described primarily in the machine-

learning and applied statistics literature. They are supervised learning methods that construct 

decision trees from a set of input-output samples. A typical decision tree learning system 

adopts a top-down strategy that searches for a solution in a part of the search space. It 

guarantees that a simple, but not necessarily the simplest, tree will be found. A decision tree 

consists of nodes where attributes are tested. The outgoing branches of a node correspond to 

all the possible outcomes of the test at the node. 

A well-known tree-growing algorithm for generating decision trees based on univariate 

splits is Quinlan's ID3 with an extended version called C4.5. Greedy search methods, which 

involve growing and pruning decision tree structures, are typically employed in these 

algorithms to explore the exponential space of possible models. 



The most important part of the C4.5 algorithm is the process of generating an initial 

decision tree from the set of training samples. As a result, the algorithm generates a classifier 

in the form of a decision tree; a structure with two types of nodes: a leaf, indicating a class, or 
a decision node that specifies some test to be carried out on a single-attribute value, with one 
branch and a sub-tree for each possible outcome of the test. 

A decision tree can be used to classify a new sample by starting at the root of the tree 

and moving through it until a leaf is encountered. At each nonleaf decision node, the features 

outcome for the test at the node is determined and attention shifts to the root of the selected 

sub-tree. For example, if the classification model of the problem is given with the decision 

tree in Figure 3a), and the sample for classification in figure 3b), then the algorithm will 

create the path through the nodes A, C, and F (leaf node) until it makes the final classification 

decision: CLASS2 [4, 5]. If data samples are represented graphically in an N-dimensional 

space, where N is the number of attributes, then a logical classifier (decision trees or decision 

rules) divides the space into regions. 

 

 
 

Figure 3. Classification of a new sample based on the decision tree model 

 

Each region is labelled with a corresponding class. An unseen testing sample is then 

classified by determining the region into which the given point falls. Decision trees are 

constructed by successive refinement, splitting existing regions into smaller ones that contain 

highly concentrated points of one class. The number of training cases needed to construct a 

good classifier is proportional to the number of regions. More complex classifications require 

more regions that are described with more rules and a tree with higher complexity. All that 

will require an additional number of training samples to obtain a successful classification. 

A typical example of decision tree construction for well-known Fisher’s IRIS data set is 

shown in Figure 4 [6, 7]. 



 
 

Figure 4. Decision tree for IRIS data set 

 

One well-known limitation of selective induction algorithms is its inadequate 

description of hypotheses by task-supplied primitive features. To overcome this limitation, 

constructive inductive algorithms transform the original feature space into a more adequate 

space by creating new features and augmenting the primitive features with the new ones. 

Originally decision trees were proposed for classification in domains with symbolic-

valued features. This kind of decision trees may be called univariate or axisparallel, because 
the tests on each non-leaf node of the tree are equivalent to axis-parallel hyperplanes in the 

feature space. Another class of decision trees tests a linear combination of the features at each 

internal node. This kind is called multivariate linear or oblique decision tree, because these 
tests are equivalent to hyperplanes at an oblique orientation to the axes of the feature space. 

One method, first introduced in [8], is based on the combination of primitive features 

and the augmentation of the feature space before tree generation. For example, as a result of 

combination of the primitive features x1 and x2 one can see a new feature as a new dimension 

in the feature space. Because the space of possible new features is exponential, the method 

uses a special kind of feature combination. 

As a result, an oblique decision tree is obtained that is equivalent to a non-linear 

decision tree in the original x-space after a re-transformation of the features. Non-linear 

decision tree algorithms produce more accurate trees than their axis-parallel or oblique 

counterparts [8, 9]. 

 

4. Decision tree representation for GP 
 

A decision tree representation would be able to correctly handle both numerical and 

categorical values. Numerical variables and values should only be compared to numerical 

values or variables and only be used in numerical functions. Similarly, categorical variables 

and values should only be compared to categorical variables or values. This is a problem for 

the standard GP operators (crossover, mutation and initialization) which assume that the 

output of any node can be used as the input of any other node. This is called the closure 

property of GP which ensures that only syntactically valid trees are created. 

A solution to the closure property problem of GP is to use strongly typed genetic 

programming. Strongly typed GP uses special initialization, mutation and crossover operators. 

These special operators make sure that each generated tree is syntactically correct even if tree 

nodes of different data types are used. Because of these special operators, an extensive 



function set consisting of arithmetic (+,−,×, /), comparison (≤,>) and logical operators (and, 
or, if ) can be used.  

Another strongly typed GP representation was introduced in 1999 [5]. This linear 

classification GP algorithm uses a representation for oblique decision trees. An example of a 
tree can be seen in Figure 5 [5]. 

 
 

Figure 5. Example decision tree and its representation in the GP 

 

The leftmost children of function nodes (in this case CheckCondition2Vars and 
CheckCondition3Vars) are weights and variables for a linear combination. The rightmost 
children are other function nodes or target classes (in this case A or B). Function node 

CheckCondition2Vars is evaluated as: if 2.5x10 − 3.0x4 ≤ 2.1 then evaluate the 
CheckCondition3Vars node in a similar way; otherwise the final classification is A and the 
evaluation of the decision tree on this particular case is finished. 

In 1998 a new representation was introduced - atomic representation that booleanizes all 
attribute values in the terminal set using atoms. Each atom is syntactically a predicate of the 

form (variablei operator constant) where operator is a comparison operator (e.g., ≤ and > for 
continuous attributes, = for nominal or Boolean attributes).  

Since the leaf nodes always return a Boolean value (true or false), the function set 
consists of Boolean functions (e.g., and, or) and possibly a decision making function (if − 
then − else) [10]. An example of a decision tree using the atomic representation can be seen 
in Figure 6. Input variables are booleanized by the use of atoms in the leaf nodes. The internal 

nodes consist of Boolean functions and possibly a decision making function. 

 

 
 

Figure 6. Example decision tree using an atomic representation 

 

To conclude, there are a large number of different possibilities for the representation of 

decision trees. 



5. Conclusions and future work 
 

The main advantage of GP is that it performs a global search for a model, contrary to 

the local greedy search of most traditional machine learning algorithms. ID3 and C4.5, for 

example, evaluate the impact of each possible condition on a decision tree, while most 

evolutionary algorithms evaluate a model as a whole in the fitness function. As a result, 

evolutionary algorithms cope well with attribute interaction.  

To design a decision tree using GP, each individual is defined as a decision tree, which 

represents both the genotype and the phenotype. The design process is still an evaluation 

process containing two phases: 

• select a part of the training examples at random from the whole training set, and design a 

decision tree using C4.5, repeat this for all trees in the initial population; 

• evolve the tree using GP. 

The methodology investigated in the paper will be used in further scientific research that 

will deal with the construction of the decision tree using genetic programming. 
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Grabusts Pēteris. Lēmumu koku konstruēšanas metodes ăenētiskajai programmēšanai 
Mūsdienās ăenētiskās programmēšanas iespējas tiek plaši izmantotas daudzos optimizācijas un klasifikācijas 
uzdevumos. Lai ăenētiskās programmēšanas metodes varētu tikt veiksmīgi pielietotas, ir nepieciešams konstruēt 
attiecīgus lēmumu kokus. Lēmumu koki un likumi uz to pamata ir intelektuālās datu analīzes sastāvdaĜa un 
veiksmīgi tiek pielietoti klasifikācijas problēmu risināšanā. Pastāv vesela virkne dažādu paĦēmienu, kas dod 
iespēju konstruēt lēmumu kokus ăenētiskās programmēšanas iespēju izmantošanai. Literatūras analīze liecina, 
ka optimālākā metode lēmumu koku konstruēšanā sastāv no diviem etapiem. Sākotnēji tiek veidots lēmumu koks, 
izmantojot C4.5 algoritmu, kas turpmāk tiek izvērsts ar ăenētiskās programmēšanas operatoru palīdzību. Šajā 
gadījumā ăenētiskā programmēšana tiek lietota kā globāla meklēšanas stratēăija precīza lēmumu koka 
atrašanā. Rakstā analizētas mūsdienu pieejas lēmumu koku konstruēšanā un izskatītas ăenētiskās 
programmēšanas iespējas, kas tiks izmantotas turpmākajā pētnieciskajā darbībā. 
  



Grabusts Peter. Construction methods of the decision trees for genetic programming 
Nowadays the possibilities of genetic programming are widely used in many optimization and classification 
tasks. In order to successfully apply methods of genetic programming, it is necessary to construct correspondent 
decision trees. Decision trees and decision rules are data mining methodologies applied in many real-world 
applications as a powerful solution to classification problems. There is a succession of different methods that 
enable the construction of decision trees for the use of the possibilities of genetic programming. Literature 
review gives evidence that the most optimal method in the construction of decision trees consists of two phases. 
Initially a decision tree is created by using C4.5 algorithm, it is further developed with the help of the genetic 
programming’ operators. In this case genetic programming is used as a global stochastic search technique for 
finding accurate decision trees. The article analyzes present-day approaches to the construction of decision 
trees and examines the possibilities of genetic programming that will be used in further research. 
 
Грабустс Петерис. Методы построения деревьев решений для генетического программирования 
Возможности генетического программирования в наши дни широко применяются во многих задачах 
оптимизации и классификации. Для успешного применения методов генетического программирования 
требуется создание соответствующего дерева решений. Деревья решений и законы на их основе 
успешно применяются в решении многих проблем классификации. Существует множество способов 
конструирования дерева решений для использования возможностей генетического программирования. 
Анализ литературы свидетельствует, что оптимальный метод конструирования дерева решений 
состоит из двух этапов. Изначально с помощью алгоритма C4.5 строится дерево решений, которое 
затем расширяется с использованием операторов генетического программирования. В этом случае 
генетическое программирование используется как стратегия глобального поиска для нахождения 
точного дерева решений. В статье проанализирован современный подход к методам построения дерева 
решений и рассмотрены возможности генетического программирования для использования в 
дальнейшей исследовательской работе. 


