COMPUTER SCIENCE
ISSN 1407-7493 DATORZINATNE

2008-34

APPLIED COMPUTER SYSTEMS
LIETISKAS DATORSISTEMAS

TRANSFORMATIONS BETWEEN UML AND FIRST ORDER
LOGIC

Janis Bll’gellS Riga Technical University,
Meza 1/3, Riga, LV 1048, Latvia, Mg. sc. ing,
jbirgelis@e-apollo.lv

UML, program synthesis, first order logic, formalization

1. Introduction

Nowadays UML becomes one of the main software development standards. It provides a lot
of diagrams [1]. Each diagram describes the modelling system in different aspects, but
together they can give full map of the modelling system. However, too large number of
diagrams can increase the time of modelling sufficiently. There have to be a balance between
the number of diagrams and the time designers spend to create models. Moreover only a few
diagrams are necessary in the specific problem area (for example, standard business
application) to get full understanding about the modeling system.

Such approach conforms to the ideology of automatic program synthesis. Automatic
program synthesis usually works in domain specific area because knowledge and rules are
difficult to specify for universal domain area. In this field research has been carried out since
60-ies of the last century and there are a lot of promises. Scientists have been looking for how
to synthesize a code from UML models during recent years.

This article will show how UML models can be translated into the language that is
computable for computer.

2. History

The idea how UML together with automatic program synthesis meet principles of MDA was
presented in publication “Generalization of MDA and Software Synthesis” [2], see figure 1.

92

UML diagams Knowledge
+0OCL base Search
_¢ algorithms
Y Domain specific v

knowledge base
Checker for —bljwer
reusable objects

Reusable Y UML/OCL
objects Parser ot Translator [=—

f | ¢

Source code

Figure 1 Scheme of Automatic Program Synthesizer

Figure 1 shows that UML diagrams at first have to be checked by a checker for reusable
objects. It is the step that allows a prover reach the aim faster. After that specification is made
by translating UML diagrams into the first-order expressions. So the prover can use these
expressions, domain specific knowledge basis and search algorithms to construct a proof. This
proof uses can be viewed as a program [3]. So a translator takes the newly created proof and
translates back to UML. A parser combines UML diagrams with reusable objects and makes a
source code. As a result two things are created: an executable program and actual
specification of the program in UML.

Figure 1 contains several text boxes one of which is gray. It shows the area which this
publication covers using all research data.

3. Translation between UML and First — Order

As it is written in the internet encyclopedia WIKIPEDIA [4], first — order logic is very
suitable for different kind of automated theorem proving tasks. Maybe there are some
restrictions [4][5], but other logics are less developed. For example, deductive tableau that
was developed by Manna and Waldinger [3] in 1992. It works on the first — order logic basis
and provides fully automated solutions. So there is no need for human interaction in the
process of program synthesis.

Taking into account all mentioned facts it has been decided to look for possibilities to
make transformation from UML to first — order expression. At present there are thirteen
different UML diagrams [1]. Each diagram describes the specific area of the modeling
system, but often they overlap each other. And as it was mentioned earlier there is no need for
all diagrams because some of them are used for modeling specific domain area.

With reference to Albert Ziindorf who has developed the rigorous software development
process (the second name: story driven modeling) only some UML diagrams to make full
software project can be used [6]. He has developed the tool Fujaba that can make program's
executable code from UML diagrams, too. Only these diagrams have to be very detailed and
some of them are very specific. For example, the role of story board is like a collaboration
diagram, but it is drawn like an activity diagram, where each activity is described by means of
a state diagram. This diagram can be viewed as a graph with respect to the notation of UML,

93

too. Or we can say that UML is not only a modeling language but also a visual programming
language. This ideology is different from my approach but any way it shows that there is no
need for all thirteen diagrams for common projects included in the arsenal of UML.

But what is a minimal number of UML diagrams that can provide enough complex map of
requirements of the project? Some scientists think that basic diagrams are: class diagrams,
state diagrams and collaboration diagrams. These diagrams are commonly used in different
types of modeling systems [6][7]. It follows thence that a basic situation can be modeled
using these diagrams. Rest diagrams of UML show specific twists and turns that are very
important for programmer but not so important for automatic program synthesizer. Because
automatic program synthesizer can easy compute rest information from given diagrams while
programmer can easy make some false interpretation that depends on his skills and
knowledge.

To make transformation from UML to first - order logic expression basic ideas will be
used that has been developed by scientists of Stockholm University [7]. At first a meta-model
is given that shows the relationship between first - order logic and UML, see Figure 2.

There are two layers in the Figure 2 (Logic and UML). These layers are divided with a
dotted line. In the figure, such UML artifacts as Classes, Attributes and Association can be
translated as Predicate Symbols while other UML artifacts can be translated as Static or Event
rules. The figure shows other important aspect, too. UML diagrams contain two sorts of
information: static and dynamic information. The static information represents class structure,
name of classes, attributes of classes, association between classes. While the dynamic
information represents actions that are included in UML diagrams. For example, methods of
classes, actions of collaboration diagrams and state diagrams.

94

Predicate Symbol FoL Fomula LOGIC

LAYER
Ewent Rule
Arity 1 Arity 2
1 1 1
Static Rule Fre Post
1
T 4
1 1 1
. Typing Constraint Tl Latipal ity
Class PEPY B 4 o | for sttrioutes Constrairt
1 \ 1 1
1 .
154 Agoregation
Azzodation
1.7 1
Transition

o

State %/\
i
UmML

LAYER o

Figure 2 Meta Model Showing the Relationship between First Order Logic and UML [7]

3.1. Example

To show how the static information can be translated from UML diagrams to first - order
logic expressions a synchronization program will be modeled in UML and then translation to
first - order logic will be made.

The synchronization program is the program that allows make the content of a destination
directory equal to the content of a source directory. There are several uses that have to be
taken into account. First, the destination directory can hold the file that is not represented in
the source directory. Such file has to be deleted from the destination directory. Second, there
can be a case when the version of the file in the destination directory is older than the version
of the file in the source directory. Such file has to be overwritten by newer version from the
source directory. Third, there can be a case when the destination directory already has the file
that is represented in the source directory. Such file has not to be copied, because such
operation is time consuming and unnecessary.

From a programmer's point of view such requirements are easy to model using two lists.
List A represents files that are in the source directory, while List B represents files that are in
the destination directory. The program has to search within all elements of List A in List B. If

95

there is no match, then List A and List B will remain as they are. But if the program finds the
match between elements of List A and List B, then other check-up has to be performed. The
program has to check the versions of the files. If the versions of files are equal then both
elements have to be deleted from List A and List B else only the element from List B has to
be deleted. A graphical view of the algorithm is shown in Figure 3.

Initial Fie?_list | Take next Fig{ list
element Fila ffijf [element
[VES]

v

Format file path: Is
File t{i] path Flig1fi+1}
exists [NO]
A
CSearch N [NOT FOUND]
Filg1fi] path In
Flig2 list
Delete
[FOUND] Filgzfjf from
FiiaZ list
A

I5
File 1{i]
equal
Fila 2{i7

[YES] [NO]

Delete
File1{i] from

Flig i list

@)-

Figure 3 Main Idea of Algorithm

Two lists are created as a result of the algorithm. List A will represent files that have to be
copied or overwritten in the destination directory while List B will represent files that have to

be deleted from the destination directory.
Actually Figure 3 shows the algorithm that has to make by the system itself. Three types of
diagrams have to be written by a programmer: class diagram, state diagram and collaboration

diagram.
In Figure 4, File, Directory and System are UML classes. There are two associations

between these classes, too.

96

n
File Directory
o o !
extension; string g;th. stru;ﬁi o cateti
data_modified: datetime a_modified: ime
System
copy _file(string, string) .
delete_filetsting) create_dir(sting)
etiiles{gring)sting® delete_dir(sting)
g g g get_directores(=tring) string*
source: sting

degtination: gring
file_extension:string

compare(sting®, gring*)

Figure 4 Class Diagram

3.2. Translation of the Static Information

Let R be the finite set of closed first - order formulae in a language L. L(R) is the restriction
of L to R, i.e. L(R) is the set {p|p € L, where p contains predicate symbol that is in a formula
in R}.

There a set C of class diagrams is given. agg is a predicate symbol of arity two in L(R.)
while /ex is a predicate symbol of arity one in L(R-).

e [fris a name of a class definition in C, then r is a predicate symbol of arity one in
LR).
Example: File(x), System(x) and Directory(x) - are a class definition showed in first - order
logic.
e Iftis a name of an association in C, then t is a predicate symbol of arity two in
L(Rp). Set R, contains expression in form VxVy(t(x,y) — (r(x) A s(y))), where r and

s are names of class definitions in C.
Example: Vx Vy(Asoc 1(x,y) — (File(x) n Directory(y)))
e If t is a name of an attribute in C, then t is a predicate symbol of arity two in
L(Rp). Set R, contains expression in form VxVy(t(x,y) — (r(x) A lex(y))), where r is

name of class definitions in C and /ex is a reserved word.
Example: vx Vy(Name(x,y) — (File(x) A lex(y)))
Vx Yy (Path(x,y) — (File(x) » lex(v)))
Vx Yy (Source(x,y) — (System(x) A lex(y)))
Of course, a class diagram can be more complex than it is shown in figure 4. In such case
there are more translation rules, they are listed in Table 1.

97

Table 1 Translations for UML constructions

Case of translation General form in Set R C
Aggregation VxVy(t(x,y) — (@(xX) A s(y) A agg(x,y))), where t is name of
aggregation,

r and s are name of classes in C, agg is a reserved word.

ISA Vx (r(x) — s(x)), where r and s are names of classes in C.

Subclass (in case when two subclasses Vx —(p(x) A 1(x)), where p and r are names of classes in C
are disjoint)
Subclass (in case when two subclasses Vx (s(x) — (p(x) v r(x))), where p, r and s are names of classes in C
exhaustive from main)
Cardinality (minimum number of Vy3x A..ATxg, (s(V) > L) A A (X pin > V) A
associations for the domain) ' '

(5 =x) A A=(x) = Xmin, A
=y =x3) A Ay = Xy)AL A
_‘(xminr_l = xminr))

Cardinality (maximum number of /)Yy Vx = Vx Hx A AHx Atlx N
associations for the domain) yvx max,. max,,+1(((lvy) (maxrvy) (maxr+1=y))

((.xl ZX2)V...V()C1 :xmax,,)v(xl :xmax,,+1)v"'v

(xmaxr = xmax,+1)))

Cardinality (minimum number of Vy3x, A..ATx,, ((r(y) = E(x, V) A AL (X, V) A
associations for the range) ' ’

—(x; =) A A= =X A

min

—(x, =x) A A=(X, =X, A

min
AN
_'(xminH = xminx))

Cardinality (maXimum number Of Vyvxl"'vxmax vxmax +1 ((t(xl s y) AN A t(xmax ’y) N t('xmax +1 9y)) -
associations for the range) ’ ’ ’ ’

(5 =x) Vv (X =X)V (X =X V..V

(xmax‘\. = xmaxb‘.ﬂ)))

max +1

3.3. Translation of the Dynamic Information

ER is a set of event rules. An event rule in L has a structure <P(z), C(z)>, where z is a vector
of variables and P(z) describes the precondition of the event rule while C(z) the post
condition. There is given a set of methods M in a UML specifications, where string inv is a
reserved word (inv is a predicate symbol of arity one in L(ER v

Translation of the Method:
If g(v) = <pre(x), post(x)> is a method in M, then the corresponding predicate symbols with
the same arities are in L(ER).

General definition of method in set ER . <inv(g(y) Apre(x),post(x) A—inv(g(y))>}, where k

is a class, inv(g(y)) means that the method g(y) has been invoked.
Example: Definition of methods of class File (figure 4) in first - order logic.

{inv(copy file(x,y) & true, true & —inv(copy file(x,y),
inv(delete_file(x) & File exist(x)=TRUE, true & —inv(delete_file(x),

98

inv(get files(x) & Left(x,2) = "C:", true & —inv(get_files(x)}
Translation of the Collaboration Diagram:

There a collaboration diagram D as a pair <B,M> is given, where B is a set of classes and
M is an ordered set with the structure <a, ue(x),b,i>, where a and b are name of classes, ue(x)
is an event and 1 is the integer. There is a reserved word sent, too.

If <a, ue(x)x, b, > € M, then the corresponding predicate symbols and constants with the
same arities are in L(Rp).
The general form of translation rules is:
o {1Vx(inv(x) — sent(x))} eRp

o If<yq, uei(x), yp, i>,<zl,uej(x),22,j>eM, and x i<j, then
ny(sent(uej (x))—sent(uej(x)))eRp

‘File :Directory

1. get_directories{source)

2. get_files(source)file1 list® 3. get_directories{destination)
4. get_files{destination):file2_list*
6. delete file(file2_list™)
Tocopy_file(file1_list™, destination)

System

5 comparelfile1_list™, file2_list*)
Figure S Collaboration Diagram

Example: Set of methods in the collaboration diagram:
<directory, get directories(source), system, 1>
<file, get_files(source), system, 2)
<directory, get directories(destination, system, 1>

Rules for Objects in the Collaboration diagram:
Vx(inv(get directories(source)) — sent(get directories(source))
Vx(inv(get files(source)) — sent(get_files(source))

Translation of a State Diagram:
There a set S of state diagrams is given <N,A,G>y,
where N is a set of nodes,
A is a set of directed arcs and
G is a set of quadruples <a, ue(x,y), guard(x,y), p(X,y)>,
where a is an arc,
ue(x,y) is a UML event,
where x is an object of class k and
y is a vector of objects and values,
guard(x,y) is an open first order formula,

99

p(x,y) is a set of formulas,
where each formula has one of the following forms:
insert(a(x,y;)), delete(a(x,yi)), invoke(umlev(z)).

If <<t;, t>, ue(x,y), guard(x,y), p(x,y)> € G, then the predicate symbols and constants in t;,
t;, ue(x,y), guard(x,y) and p(x,y) with the same arities are in L(ERg) and L(Rs). There is a
reserved word state, t0o.

The general form for a rules for object in a state:

Rs = {Vx(state(x,tj) — —(state(x,t;))|t;,tieNAI%j}U{VX Tt(state(x,t)} U{VX (state(x,t)) —
k(x))|tieN}, where t; is a state in a class k.

The general form for arcs:

If <, t;) ue(x,y), guard(x,y),p(x,y)> is an arc in G, then:

<inv(ue(x,y)Astate(x,tj) Aguard(x,y), state(x,tj) A-inv(g(ly) A {A axy) |
insert(a(x,y)ep(c,y)} A { A —a(xy) | delete(a(x,y)ep(c,y))} A {A inv(umlev(z) |
invoke(umlev(z) ep(c,y)))}>k

In business applications it seems that a very small proportion of classes perhaps 5% at most
are complex enough to warrant creation of a state diagram [1]. However, state diagrams are
much more common in real time systems [8].

The structure of classes is too simple in the given example, that’s way in which a state
diagram is not represented.

4. Conclusions

Ideas that are presented in this work are very important for the future research in the area of
automatic synthesis. Choosing UML as the main tool for modeling tasks [6] there have to be a
possibility to make transformation from UML to the language that is computable for
computer. The first — order logic has been chosen as the most suitable language for such task
because it is supported by lots of tools [3][7][9]. Using ideas about transformations between
UML and first order logic and ideas about story driven modeling it is possible to describe how
automatic program synthesizer will work with modeling program’s specification [2], figure 1.

Unfortunately at the moment there is no possibility to make transformation for all UML
diagrams into first — order logic, but the article shows the minimal number of UML diagrams
that can be translated and can be used for modeling almost all standard business applications.
In fact, other drawback is that the article doesn’t show ways how constraints of OCL can be
translated into UML, too. There is some previous work in this area [10], but there is still a lot
of work to be done.

The next step in the future research will be to build an algorithm in Prolog. Prolog is a
programming language that is very close to first — order expressions and there are a lot of
algorithms already made in the area of artificial intelligence. Moreover, the work in the area
of transformations shall be continued as well.

This work has been partly supported by the European Social Fund within the National
Programme “Support for the carrying out doctoral study program’s and post-doctoral
researches” project “Support for the development of doctoral studies at Riga Technical
University”.

100

References

1. Internet: “http://www.agilemodeling.com/artifacts” //27.09.2007,

2. J. Birgelis, J. Osis “Generalization of MDA and Software Synthesis” //Scientific Proceedings of
Riga Technical University. Computer Science. Applied Computer Systems (22. vol.). Riga: RTU,
2005, p. 217 —228;

3. Z. Manna, R. Waldinger, “Fundamentals of Deductive Program Synthesis” //IEEE Transactions on
Software Engineering, 1992;

4. Internet: “http.//en.wikipedia.org/wiki/First-order logic” //28.09.2007;

5. A. Ayari, D. Basin, “4 Higher — Order Interpretation of Deductive Tableu” //Albert Ludwings
Universitét, Freiburg, 2001;

6. Albert Ziindorf, “Rigorous Object Oriented Sofiware Development” //draft version 0.3, 05.03.2007;
7. Benedict Amon, Love Ekenberg, Paul Johannesson, Marcelo Munguanaze, Upendo Njabili, Rika
Manka Tesha, "From first-order logic to automated word generation for Lyee" //Knowledge-Based
Systems (16. vol.), 2003, p. 413 — 429;

8. Bruce Powel Douglass, “Doing Hard Time: Developing Real — Time Systems with UML, Objects,
Frameworks and Patterns” //Addision-Wesley Longman Publishing Co., 1999

9. Ivan Bratko, “Prolog Programming for Artificial Intelligence” //Addision-Wesley Longman
Publishing Co., 2001

10. Bernhard Beckert, Uwe Kellere, Peter H. Schmitt, "Translating the Object Constraint Language
into First-order Predicate Logic" //Karlsruhe Universitét;

Birgelis J. Transformacijas starp UML un pirmas kartas logiku

Ar katru dienu MDA pamatnostadnes klist aizvien popularakas programmatiras inZenierija. Lai arl viena no
galvenajam idejam, ideja, ka programmatiiru javar automatiski parvérst no projektejuma modeliem lidz izejas
kodam un otradi, vél nav pilniba realizéta, tomer eksisté daudz iestrades, ka to var realizét dajéji. Piem., viena
no popularakajam modelésanas valodam, kas daléji atbalsta $adu ideju ir UML. So valodu plasi lieto
programmatiras projektu izstrade . Ta atbalsta daudz diagrammu, kas lauj aprakstit modelejamas programmas
prasibas no dazadiem skata punktiem. Bet lai apgalvotu, ka UML atbalstitu MDA pamatnostadnes pilniba,
nepieciesams izstradat iespéju veikt transformdciju starp UML diagrammam un izpildes kodu pilniba.
Eksistéjosas transformacijas galvenokart nodrosSina automdtisku programmatiiras struktiiras izveidi, tomér tai
biitu javar izstradatos modelus pilniba transformét izejas koda. Sada transformdcijas attiecinama uz maksliga
intelekta jomu, kur, ka més zinam, jautGjumu vél joprojam ir vairak neka atbilzu. Pirmkart UML diagrammas
biitu javar formalizét, lai dators spétu tas saprast viennozimigi. Péc tam bitu jaizstrada tads algoritms, kas
spétu veikt $ada tipa transformdciju. Saja raksta ietvertas idejas, ka dazas no UML diagrammam, tadas ka
klases diagramma, stavokla diagramma un sadarbibas diagrammas, var tika transformétas pirmas — kartas
izteiksmes. Savukart iegiitas pirmas — kartas logikas izteiksmés varétu tikt pielietotas daZada veida
programmatiras sintezatoros, lai iegiitu pilniba izpildamu kodu.

Birgelis J. Transformations between UML and first order logic

The basic principles of MDA are becoming increasingly popular in sofiware engineering. Although one of the
main concepts stipulating that sofiware must be automatically convertible from project models into an output
code and vice versa is not completely realized yet, there exist many solutions allowing to implement the concept
partially. For example, one of the most popular modeling languages partly embracing such concept is UML.
This language is widely used in elaboration of software projects. It supports many diagrams that allow to
describe the requirements of modeled software from various points of view. But in order to assert that UML fully
complies with the basic principles of MDA, it is necessary to elaborate the possibility to fully transform UML
diagrams into an execution code. The currently existing transformations mainly ensure automatic creation of
software structure, but they need to be able to completely transform the elaborated models into an output code.
Such transformations apply to design of artificial intelligence, where, as we know, there are still more questions
than answers. First, it must be possible to formalize UML diagrams in such a manner as to allow the computer
to understand them unequivocally. Then, an algorithm that would allow to perform such transformation must be
developed. The present article elaborates the idea that many UML diagrams, such as class diagrams, state
diagrams and interaction diagrams can be transformed into first-order logic expressions. The obtained first-

101

order logic expressions, in their turn, could be implemented in various software synthesizers in order to obtain a
fully executable code.

Bupreanc 5. Ilpeodpasosanus mexay UML u 1orukm nepsoro paspsjga

C Kasicovim OHeM OCHOBHbIE NPUHYUNBL MOOETbHO OPUEHMUPOBAHHOU PA3PAOOMKY NPOSPAMMHO20 0becneyeHus
npuobpemarom éce OOILULYIO NORYISIPHOCHb 8 NPOSPAMMHOU UHdICEHepuU. B nacmoswuii Momenm 00Ha u3
2NAGHBIX — KOHYenyut, 2nacsiwas, umo HeoOXooumMo o00ecneyums B03MONCHOCHb — AGMOMAMUYECKO20
npeodpaz06aHus NPOSPAMMHO20 0becnedenus U3 NPOeKmHoOU MoOeau 8 UCXOOHDI KOO U Haobopom, ewé He 00
KOHYa peanusosan. Hecmomps na smo, cywecmeyem 001buioe KOIUMECMEO pa3pabomox, NO3GOAIOUUX
YACMUYHO Peanu308ams maxou nooxoo. Hanpumep, oonum uz nauboiee nORYyIsApHbIX S3bIKOE MOOEIUPOBAHUS,
KOMOPWbIll 4ACMUYHO COOMBEMCMEYem Mol KOHYeNnYuu, A61Aemcs YHUQUYUPOBAHHbIN A3bIK MOOEIUPOBAHUS
UML. Omom A3bIK WuUpoOKO RpuMeHsemcs 6 pa3pabomke HPOEKmMO8 NpocpamMMHO20 obecnevenus. OH
no00epIHCUBAEnt MHONCECMEO OUASPAMM, NO360NIOWUX ONUCAMb MPeOOBAHU MOOEIUPYEMO NPOSPAMMbL C
pasnuunblx mouex spenus. OOHaxko 01 moeo, umobvl ymeepocoams, umo UML 6 noanom obveme
noooepoicusaen OCHOBHbE — NONONCEHUS. MOOEIbHO — OPUEHMUPOBAHHOU — APXUMEKMYpPbl, HeoOX00umMo
paspabomams 803MOACHOCMb npeobpasosams Juazpammbl UML 6 ko0 ucnoanenus. Ilpeobpazosanus,
cywecmgyloujue Ha OAHHbIL MOMEHM, 2IA6HbIM 00pa3om 00ecneyusarom asmomMamuieckoe Cco30aHue
CMPYKMypol — NPOSPAMMHO20 — ODecneueHus, OOHAKO OHU OOJJICHbL OblMb CHOCOOHBI HOTHOCBIO
npeodpazoevieamsv papabomarnivie Mooeau 8 Ucxoouvlill koo. I1ododusie npeobpazosanus Kxacaiomes ooiacmu
CO30aHUsL UCKYCCMBEHHO20 UHMENIEKMA, 20e, KAK U38eCMHO, B0MPOCO8 6CE ewé 0Oonbule, YeM OMBemos.
Ilpesicoe 6cezco, neobxooumo popmarusoeams ouazpammvr UML maxum obpazom, umodul Komnviomep Obvlil
CROCObEeH Ux NOHAMb 0OHO3HAYHO. Bcned 3a smum credyem pazpabomamov aneopumm, KOMOPvLL no360uUl Obl
npousgecmu npeoodpasosanue nododoHozo pooa. Ilonyyennvie GbIpadiceHus N0SUKU NEPEO2O paspadd, 8 C80I0
ouepedb, MOJCHO UCHOIB306AMb 8 PA3HOOOPAZHBIX CUHME3AMOPAX NPOZPAMMHO20 0becheyeHus Ol NOY4eHUs.
NOTHOCMbBIO BbINOTHAEMO20 KOOU.

102

