

USING GENETIC ALGORITHM TO OPTIMIZE WEIGHTS IN DATA MINING TASK

Irina Provorova, Serge Parshutin, Sergejs Provorovs

Keywords: Genetic Algorithm, Genetic Operators Modification, Genetic Operators Control, K-Nearest Neighbour Algorithm,

Data Mining Task

This paper considers an application of genetic algorithm

(GA) to optimize weights in data mining task. Data mining

tasks usually have datasets containing a large number of

records and features that will be processed using, for

example, created classification rules. As a result, by using

classical method to classify a large number of records and

features, a high classification error value will be obtained.

To solve this problem, the genetic algorithm was applied to

find for each feature the weight that would reduce

classification error value.

 As a classical method, the k-nearest neighbour (KNN)

classifier was chosen and the modified genetic algorithm

was applied to optimize the weight. Based on the joint

application of genetic and k-nearest neighbour algorithms,

the GA/KNN hybrid algorithm was developed. As a result,

the developed hybrid algorithm provides a stable

classification error reducing regardless of the number of

records and features, and also of the chosen number of

neighbours. In the GA block the modified crossover and

mutation works in each generation with identical intensity

and cannot provide debasing of the individual.

1. Introduction

This paper addresses genetic algorithm application

aimed to improve the classification result. Most

applications of genetic algorithm (GA) in data mining

tasks optimize some parameters in the classification

process. The process of finding an optimal algorithm

and its control parameters for building a predictive

model is non-trivial because of two reasons. First, the

number of classification algorithms and their control

parameters are very large. Second, it can be quite time

consuming to build a model for datasets containing a

large number of records and features. These two

reasons make it impractical to enumerate through every

algorithm and its possible control parameters for

finding an optimal model.

 The paper presents the application of real parameter

genetic algorithm [9] in finding optimal set of weights

for feature distance in the k-nearest neighbour

algorithm (KNN) that reduces classification error. The

obtained weight set is applied to influence on the

importance of the distance between each feature value

from training set and query instance corresponding

feature value. As a result of the joint application of two

algorithms, the GA/KNN hybrid algorithm was

developed.

2. K-Nearest Neighbour Algorithm

The k-nearest neighbour algorithm (KNN) is a

supervised learning algorithm where the result of new

instance query is classified based on the majority of k-

nearest neighbour category [2].

 The data of the KNN can be any measurement scale

from ordinal, nominal, to quantitative scale. The

purpose of this algorithm is to classify a new object

based on training and testing samples of instances. The

KNN classifier does not create any model - it uses the

minimum distance from the query instance to each

training instance to determine the k-nearest neighbours

that classify the query instance.

3. Genetic Algorithm

A genetic algorithm is based on evolutionary process in

nature and uses similar terminology [1, 8]. The

algorithm evaluates a finite set or “population” of

individuals, based on the process of evolution

(selection, crossover and mutation are applied as

operators of GA). The operators have many

modifications; they are performed in cycles and called

generations. In this paper two types of crossover

(double inversion and restricted) and mutation

(augmentation and restricted) operators are applied.

3.1. Double Inversion Crossover

Double inversion crossover performs in such a way that

in each selected individual couple all parts are

mixed [4]:

 randomly take a pair of two individuals;

 randomly choose the crossover point;

 gene values before crossover point from the first

individual replace gene values after crossover point.

The replaced gene values are placed in the second

individual gene values before the crossover point (the

recombination of gene values in the second individual

will be done analogically).

 Double inversion crossover provides the increased

recombination effect in the offspring due to the

exchange of individuals x and y parts. As a result of the

aforementioned, double inversion crossover provides

higher difference in the obtained offsprings.

3.2. Restricted Crossover

The basic operator for producing new individuals in GA

is crossover. Sometimes the task has a particular point –

the sum of individual values would not change or would

be equal to some value permanently. Usually after

individuals crossing, this sum may be changed and, to

keep the sum of weight values, the crossover operator

has the following modifications [3]:

 randomly take a pair of two individuals;

 randomly choose the crossover point;

 calculate a sum of weight variables from the

individuals that are located before and after crossover

point;

 shift vice verse the respective parts of the pair of

individuals in the rough guide of the crossover point;

 compare a sum of weight values that are located in

the shifted part from the other individual before and

after crossover. In case if these sums are different, the

part which belongs to the individual with the worst

fitness will have some correction (after crossover the

difference value will be subtracted or added to the part

of weakness individual that is located before/after

crossover point).

3.3. Augmentation Mutation

Mutation operator has a low rate in comparison with the

crossover rate and may cause a finding or a loss of a

very good solution. To solve this problem, the mutation

operator was modified in such a way to help to generate

only a good solution and to review much more than

only one mutation. The new individual creation process,

applying augmentation mutation, is executed as

follows [4, 5]:

 randomly choose an individual;

 randomly choose different augmentation for gene

from the defined domain;

 calculate all possible combinations using selected

individual values and the augmentation ;

 calculate the fitness value for each obtained

individual;

 compare fitness function values and choose the fittest

individual;

 replace the selected individual with the fittest

individual. In case if all obtained individuals are

weaker than the selected individual, the replacement

will never be used. The next mutation occurs in the

obtained individual. This operator will mutate until

the obtained individual fitness does not cause any loss

of fitness.

3.4. Restricted Mutation

To review more than just one mutation, to generate only

good solution and to satisfy some conditions like, the

sum of individual values would not be changed or

would be equal to some value permanently [3].

 The new individual creation process applying the

modified mutation has the following steps:

 randomly choose an individual;

 randomly choose some weight values from the

individual. The number of chosen weight values is

generated by random;

 calculate the sum of all chosen weight values from the

individual and then randomly generate the same

number to the chosen weight values. The sum of

generated weighs will not be changed;

 calculate the fitness value for the obtained individual;

 compare the chosen and the obtained individuals

fitness function values;

 replace the selected individual with the fittest

individual. In case if the obtained individual is fitter

than the chosen one, mutation will be continued. The

next mutation occurs in the obtained individual. This

operator will mutate until the obtained individual

fitness does not cause a loss of fitness.

4. Application of Crossover and Mutation Operators

Control for Obtaining Offspring

To provide control of crossover and mutation operators,

it was decided to keep worse individual fitness value in

the Depository of Weak Individuals Fitness Values

(DWIFV) during all generations and any generation of

the same individuals’ week fitness will be restricted –

the fittest one will replace it (see Figure 1 and

Figure 2). Hence, the domain of possible solutions

becomes progressively smaller and the possibility of

generating the same weak individual is protected. The

search space becomes smaller in each next population

that makes the genetic algorithm convergence much

easier [4, 5, 6].

Fig. 1. Offspring Generation Control in Crossover

 As Figure 1 shows, the comparison of individuals

and offspring fitness values during crossover operator

run is executed as follows:

 compare the chosen individuals fitness values (ts
F)

and those kept in DWIFV (F);

 compare the obtained offspring fitness (1ts
F);

 compare the better individual and offspring fitness

values ts
F and 1ts

F , and worse individual and

offspring fitness values accordingly. After

comparison of each pair the worst individual fitness

value will be kept in the DWIFV during all

generations.

Fig. 2. Offspring Generation Control in Mutation

 The mutation operator in this paper consists of

several steps – individual’s mutation will be repeated

until better offspring is found. If better solution is

found, then the individual selected for mutation will be

kept during all generations in the DWIFV. The

controlled mutation operator steps are the following:

 compare the chosen individuals fitness values (ts
F)

and kept in DWIFV (F);

 compare the individual (F) and its offspring fitness

function values (1ts
F) and choose the fittest one and

replace the selected individual with the fittest

offspring, and “selected” individual check in the

DWIFV. Repeat mutation while the obtained

offspring does not get weaker.

 The control of crossover and mutation operators uses

different approaches in Figure 1 and Figure 2. Each pair

of individuals was crossed only one time, but during

each individual mutation more than one mutation step

was done while the obtained offspring does not get

weaker.

5. GA/KNN Hybrid Algorithm

The GA/KNN hybrid algorithm is based on two

algorithm where each of them has its own specific aim -

the k-nearest neighbour algorithm classify instance

using the distances between them and the genetic

algorithm searches for the “best” weight w set that helps

to reduce the classification error. Namely, the weight

set is applied to increase importance or decrease

importance of the distance between each feature value

from training set and query instance corresponding

feature value. The whole structure of GA/KNN hybrid

algorithm is shown in Figure 3.

Fig. 3. Structure of GA/KNN Hybrid Algorithm

 The GA/KNN hybrid algorithm works with

statistical dataset and generated population values that

will be evaluated together. The KNN requires that

dataset values should be of continuous data type and

normalized. In case if the data type is mixed, the dataset

values will be processed to one data type or other data

types would not be used. The GA initial population is

generated randomly and consists of a number of

individuals that are represented as real parameter values

called by weights. The individual length is equal to the

number of statistical dataset instance feature. Fitness

function is calculated as follows:

TestTotal

IncorrectTestTotal
F

 , (1)

 where

 Total Test – the number of instances of testing set;

 Incorrect – the number of instances that were

incorrectly classified.

 The result of GA/KNN hybrid algorithm is the

weight set. As weight generation, two approaches were

used:

 each weight value w is real parameter from [0; 1];

 the sum of all weight values w that is real parameter

from [0; 1] equals to 1.The obtained weight values

will change the effect of distance between each

instance feature value from training set and

corresponding instance feature value that will reduce

classification error of KNN whose efficiency

subjected to the successful k-neighbour number

choice and dataset instance values.

6. Experiments

The aim of the experiments is to prove that GA can be

useful to optimize the classification result of KNN

algorithm that cannot provide stable high classification

accuracy. The experiments were made using the

German credit dataset [7]. The number of features is 20

(7 numerical and 13 categorical).

 The data is represented as numerical and categorical

types and also as edited with several indicator variables

that are added to make it suitable for algorithms which

cannot cope with categorical variables for algorithms

that need numerical features. Several features that are

ordered categorical (such features as Job - unemployed/

unskilled - non-resident, unskilled – resident, skilled

employee/ official, management/ self-employed/ highly

qualified employee/ officer) have been coded as integer.

 Each experiment group consists of 20 runs aimed to

determine the average algorithmic results of weight w

set finding that helps to reduce the classification error.

The estimation of GA/KNN hybrid algorithm

implementation is based on comparison with the KNN

classification result, namely - the classification error.

To solve the described task, two groups of experiments

were performed (see Table 1).

Table 1

The parameters of experiments

Parameter name Experiment

group 1

Experiment

group 2

Population size 50 50

Generation No. 100 100

Crossover rate 0.7 0.7

Mutation rate 0.1 0.1

Selection type Tournament Tournament

Crossover type Double

Inversion

Restricted

Mutation type Augmentation Restricted

7. Experimental Results

The results of all experiments produced by the

GA/KNN hybrid algorithm were evaluated together.

The average result values of 20 experiments for each

experimental group are described in Table 2, Table 3

and Table 4 correspondingly. Also, these tables

represent the estimation of classification error (%) of

KNN and GA/KNN hybrid algorithms application using

the same k-neighbour and instance number in the

experiments.

Table 2

60 instance classification error, %

Number

of K
KNN

GA/KNN,

group 1

GA/KNN,

group 2

k=3 18.33 4.19 7.76

k=5 28.33 6.28 8.09

k=7 25.00 6.44 5.93

 The obtained results in Table 2 show that the

GA/KNN hybrid can make the classification error

approximately three times less.

Table 3

100 instance classification error, %

Number

of K
KNN

GA/KNN,

group 1

GA/KNN,

group 2

k=3 22.00 11.42 10.91

k=5 24.00 13.56 10.02

k=7 23.00 11.87 13.11

k=10 22.00 11.29 10.76

 The number of classified instance in Table 3 has

grown up almost twice in comparison with the instance

number in Table 2, but the reduction in classification

error provided by GA/KNN hybrid algorithm is very

impressive - it can reduce the classification error

approximately twice.

Table 4

 150 instance classification error, %

Number

of K
KNN

GA/KNN,

group 1

GA/KNN,

group 2

k=3 26.67 17.58 18.47

k=5 30.00 19.00 17.78

k=7 28.00 18.73 19.32

k=10 24.67 20.14 19.09

k=12 22.67 18.37 19.96

 The experimental results of Table 4 show that

GA/KNN hybrid algorithm keeps the average

classification error reduction about 7.5%. All

experimental results represented in the above tables are

shown graphically in Figure 4.

60 instance classification error, %

0.00

5.00

10.00

15.00

20.00

25.00

30.00

3 5 7

Number of k-neighbour

C
la

s
s
if

ic
a
ti

o
n

 e
rr

o
r,

 %

KNN

GA/KNN, group No 1

GA/KNN, group No 2

100 instance classification error, %

6

8

10

12

14

16

18

20

22

24

26

3 5 7 10

Number of k-neighbour

C
la

s
s
if

ic
a
ti

o
n

 e
rr

o
r,

 %

KNN

GA/KNN, group No 1

GA/KNN, group No 2

150 instance classification error, %

17

19

21

23

25

27

29

31

3 5 7 10 12

Number of k-neighbour

C
la

s
s
if

ic
a
ti

o
n

 e
rr

o
r,

 %

KNN

GA/KNN, group No 1

GA/KNN, group No 2

Fig.4. KNN and GA/KNN classification errors, %

 As the values of classification error show, the result

of GA/KNN application is much more efficient than

that of the simple KNN application (see Figure 4). And

if the influence of choice of the data set instance and

feature number in KNN algorithm on classification

error is high (the larger the data set instance and feature

number, the higher classification error). Also the choice

of k-neighbour number affects the KNN algorithm

result (this parameter does not have proportional

influence; it is based only on successful k-neighbour

choice). Hence, the application of GA/KNN provides a

stable classification error reduction apart from the

number of records and features, and also from

k-neighbour choice.

 The results obtained demonstrate that the GA/KNN

hybrid algorithm provides better results in credit dataset

classification task than the simple KNN algorithm. It

may extend because each weight value corrects the

significance of distance between each instance feature

value from training set and corresponding instance

feature value from the testing set. Also it may extend

because the modified crossover and mutation works in

each generation with identical intensity and cannot

provide debasing of the individual (set of weights w).

8. Conclusions

The GA/KNN hybrid algorithm provides much better

classification results than simple KNN algorithm – the

classification error is visibly reduced. The GA/KNN

hybrid algorithm shows different classification

optimization results using different GA (crossover and

mutation types) and KNN (the number of k-neighbours)

parameter set for applied data mining task.

 The GA/KNN hybrid algorithm shows very good

and stable classification error optimization results using

both weights w approaches (each weight value w is real

parameter from [0; 1] or the sum of all weight values w

that is real parameter from [0; 1] equals to 1) and the

corresponding to these approaches crossover and

mutation operators.

References

1. Goldberg D. E. Genetic Algorithms in Search,

Optimization and Machine Learning. - New York:

Addison Wesley, 1989. - 432 pages.

2. Han J., Kamber M. Data Mining: Concepts and

Techniques, 2nd Edition. - Morgan Kaufmann

Publishers, 2006. - 800 pages.

3. Lovtsova I. Weight Optimization for Loan Risk

Estimation with Genetic Algorithm // Computational

Intelligence, Theory and Applications. Proceedings

of International Conference 9th Fuzzy Days in

Dortmund, Germany, Sept. 18-20, 2006. Vol. 38. –

Berlin Heidelberg: Springer, 2006. - P. 215 - 221.

4. Lovtsova I., Aleksejeva L. Direction Control of

Mutation in Genetic Algorithm Used for Function

Optimization // International Journal of Academy of

Humanities and Economics, Lodz, Poland in

cooperation with IEEE Computational Intelligence

Society Poland Chapter, 2006. – P. 577 - 584.

5. Lovtsova I., Aleksejeva L. Search Direction Control

in Optimization Task Using Genetic Algorithm //

International Conference on Operational Research:

Simulation and Optimization in Business and

Industry. Tallinn, Estonia, May 17-20, 2006. –

Kaunas: Technologija, 2006 -P. 114-118.

6. Lovtsova I., Aleksejeva L. Study of Crossover and

Mutation in Real Coded Genetic Algorithm Used for

Constrained Optimization // Eighth International

Conference on Application of Fuzzy Systems and

Soft Computing Proceedings, Helsinki, Finland,

September 1-3, 2008. – b - Quadrat Verlag, 86916

Kaufering, 2008. – P. 149 – 157.

7. Machine Learning Repository, Statlog (German

Credit Data) Data Set URL:

http://archive.ics.uci.edu/ml/datasets/Statlog+%28G

erman+Credit+Data%29. – Visit date

September 2009.

8. Michalewicz Z. Genetic Algorithms + Data

Structures = Evolution Programs, 3rd, rev. and

extended Edition. - Springer, 1996. - 387 pages.

9. Wright A.H. Genetic Algorithms for Real Parameter

Optimization // Foundations of GA. Gregory J.E.

Rowlins, ed., Morgan Kaufmann Publishers, 1991. –

P. 205-218.

Irina Provorova, Ph.D. student, Riga Technical University,

Department of Modelling and Simulation, 1 Kalku Street,

Riga, LV - 1658, Latvia

lovcova@inbox.lv.

Irina Provorova received her MSc degree in Information

Technology Engineering from Riga Technical University

in 2003. Currently she is working on her Ph.D. thesis at the

Department of Modelling and Simulation of Riga Technical

University. Her research interests include genetic algorithms,

genetic operators, their modification and hybridization, as

well as their application to solve optimization and data

mining tasks.

Serge Parshutin, Ph.D. student, Riga Technical University,

Department of Modelling and Simulation, 1 Kalku Street,

Riga, LV - 1658, Latvia

serge.parshutin@rtu.lv.

Serge Parshutin received his MSc degree in information

technology from Riga Technical University in 2006. Now he

is a PhD student at the Faculty of Computer Science and

Information Technology and a Lecturer with the Department

of Modeling and Simulation at the Riga Technical

University. His research interests include data mining and

knowledge extraction, intelligent information systems,

evolutionary computing and decision support.

Sergejs Provorovs, Mg.sc.ing., Riga Technical University,

Department of Modelling and Simulation, 1 Kalku Street,

Riga, LV - 1658, Latvia

sprovorovs@inbox.lv.

Sergejs Provorovs received his MSc degree in Electronics

and Telecommunications from Riga Technical University in

2006. Now he is the first year MSc student (Information

Technology Engineering program) at Riga Technical

University. His research interests include evolutionary

computing, performing experiments with various parameters

and another algorithm combination, and investigation of its

working results.

Irīna Provorova, Sergejs Paršutins, Sergejs Provorovs.

Ģenētiskā algoritma pielietojums datu ieguves uzdevumam

svaru optimizēšanai

Rakstā izskatīta ģenētiskā algoritma (GA) pielietošana datu ieguves

uzdevumam svaru optimizēšanas nolūkos. Datu ieguves

uzdevumiem raksturīgs liels datu ierakstu un atribūtu skaits, kuru

parasti nepieciešams apstrādāt, veidojot, piemēram, klasifikācijas

likumus. Tā rezultātā, lielu datu ierakstu un atribūtu skaita dēļ

klasisko metožu klasifikācija notiek ar lielu kļūdu. Šo problēmu

risināšanai pielietots ģenētiskais algoritms, kura uzdevums ir atrast

tādus svarus katram atribūtam, kas nodrošinātu klasifikācijas kļūdas

samazināšanu.

 Par klasisko metodi tiek izvēlēts k-tuvāko kaimiņu (KNN)

klasifikators un svaru optimizēšanai tiek pielietots modificēts

ģenētiskais algoritms. Balstoties uz ģenētiskā un k-tuvākā kaimiņa

algoritmu kopējās pielietošanas bāzes, izstrādāts GA/KNN

algoritma hibrīds. Rezultātā piedāvāts algoritma hibrīds nodrošina

stabilu klasifikācijas kļūdas samazināšanu neatkarīgi no ierakstu un

atribūtu skaita, un izvēlētā tuvāko kaimiņu skaita. Ģenētiskā

algoritma blokā modificēti krustošanas un mutācijas operatori strādā

ar vienādu intensitāti un nodrošina no indivīdu pasliktināšanas.

Ирина Проворова, Сергей Паршутин, Сергей Проворов.

Применение генетического алгоритма для оптимизации

весов в задаче извлечения данных

В статье рассматривается применение генетического алгоритма

(ГА) для оптимизации весов в задаче извлечения данных. Для

задач извлечения данных характерно большое количество

записей и атрибутов, которые необходимо обработать,

например, при помощи классификационных правил. В

результате из-за большого количества записей и атрибутов

классический метод дает высокую ошибку при классификации.

Для решения данной проблемы был применен генетический

алгоритм, задача которого состоит в том, чтобы подобрать

такие веса для каждого атрибута, которые обеспечили бы

уменьшение ошибки класификации.

 В качестве классического метода выбран классификатор

к-ближайших соседей (KNN), а для оптимизации весов

применен модифицированный генетический алгоритм. На базе

совместного применения упомянутых алгоритмов разработан

гибридный алгоритм GA/KNN. В результате предложенный

гибридный алгоритм обеспечивает стабильное снижение

ошибки классификации независимо от количества записей и

атрибутов, и выбранного числа ближайших соседей. В блоке

генетического алгоритма модифицированные операторы

скрещивания и мутации работают с одинаковой

интенсивностью и обеспечивают защиту против ухудшения

индивидов.

http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
mailto:lovcova@inbox.lv
mailto:serge.parshutin@rtu.lv
mailto:sprovorovs@inbox.lv

