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This paper considers an application of genetic algorithm
(GA) to optimize weights in data mining task. Data mining
tasks usually have datasets containing a large number of
records and features that will be processed using, for
example, created classification rules. As a result, by using
classical method to classify a large number of records and
features, a high classification error value will be obtained.
To solve this problem, the genetic algorithm was applied to
find for each feature the weight that would reduce
classification error value.

As a classical method, the k-nearest neighbour (KNN)
classifier was chosen and the modified genetic algorithm
was applied to optimize the weight. Based on the joint
application of genetic and k-nearest neighbour algorithms,
the GA/KNN hybrid algorithm was developed. As a result,
the developed hybrid algorithm provides a stable
classification error reducing regardless of the number of
records and features, and also of the chosen number of
neighbours. In the GA block the modified crossover and
mutation works in each generation with identical intensity
and cannot provide debasing of the individual.

1. Introduction

This paper addresses genetic algorithm application
aimed to improve the classification result. Most
applications of genetic algorithm (GA) in data mining
tasks optimize some parameters in the classification
process. The process of finding an optimal algorithm
and its control parameters for building a predictive
model is non-trivial because of two reasons. First, the
number of classification algorithms and their control
parameters are very large. Second, it can be quite time
consuming to build a model for datasets containing a
large number of records and features. These two
reasons make it impractical to enumerate through every
algorithm and its possible control parameters for
finding an optimal model.

The paper presents the application of real parameter
genetic algorithm [9] in finding optimal set of weights
for feature distance in the k-nearest neighbour
algorithm (KNN) that reduces classification error. The
obtained weight set is applied to influence on the
importance of the distance between each feature value
from training set and query instance corresponding
feature value. As a result of the joint application of two

algorithms,
developed.

the GA/KNN hybrid algorithm was

2. K-Nearest Neighbour Algorithm

The k-nearest neighbour algorithm (KNN) is a
supervised learning algorithm where the result of new
instance query is classified based on the majority of k-
nearest neighbour category [2].

The data of the KNN can be any measurement scale
from ordinal, nominal, to quantitative scale. The
purpose of this algorithm is to classify a new object
based on training and testing samples of instances. The
KNN classifier does not create any model - it uses the
minimum distance from the query instance to each
training instance to determine the k-nearest neighbours
that classify the query instance.

3. Genetic Algorithm

A genetic algorithm is based on evolutionary process in
nature and uses similar terminology [1, 8]. The
algorithm evaluates a finite set or “population” of
individuals, based on the process of evolution
(selection, crossover and mutation are applied as
operators of GA). The operators have many
modifications; they are performed in cycles and called
generations. In this paper two types of crossover
(double inversion and restricted) and mutation
(augmentation and restricted) operators are applied.

3.1. Double Inversion Crossover

Double inversion crossover performs in such a way that
in each selected individual couple all parts are
mixed [4]:

e randomly take a pair of two individuals;

e randomly choose the crossover point;

e gene values before crossover point from the first
individual replace gene values after crossover point.
The replaced gene values are placed in the second
individual gene values before the crossover point (the
recombination of gene values in the second individual
will be done analogically).



Double inversion crossover provides the increased
recombination effect in the offspring due to the
exchange of individuals x and y parts. As a result of the
aforementioned, double inversion crossover provides
higher difference in the obtained offsprings.

3.2. Restricted Crossover

The basic operator for producing new individuals in GA
is crossover. Sometimes the task has a particular point —
the sum of individual values would not change or would
be equal to some value permanently. Usually after
individuals crossing, this sum may be changed and, to
keep the sum of weight values, the crossover operator

has the following modifications [3]:

o randomly take a pair of two individuals;

e randomly choose the crossover point;

e calculate a sum of weight variables from the
individuals that are located before and after crossover
point;

o shift vice verse the respective parts of the pair of
individuals in the rough guide of the crossover point;

e compare a sum of weight values that are located in
the shifted part from the other individual before and
after crossover. In case if these sums are different, the
part which belongs to the individual with the worst
fitness will have some correction (after crossover the
difference value will be subtracted or added to the part
of weakness individual that is located before/after
crossover point).

3.3. Augmentation Mutation

Mutation operator has a low rate in comparison with the
crossover rate and may cause a finding or a loss of a
very good solution. To solve this problem, the mutation
operator was modified in such a way to help to generate
only a good solution and to review much more than
only one mutation. The new individual creation process,
applying augmentation mutation, is executed as
follows [4, 5]:

¢ randomly choose an individual,

e randomly choose different augmentation for gene
from the defined domain;

e calculate all possible combinations using selected
individual values and the augmentation A;

e calculate the fitness value for each obtained
individual;

e compare fitness function values and choose the fittest
individual;

o replace the selected individual with the fittest
individual. In case if all obtained individuals are
weaker than the selected individual, the replacement
will never be used. The next mutation occurs in the
obtained individual. This operator will mutate until

the obtained individual fitness does not cause any loss
of fitness.

3.4. Restricted Mutation

To review more than just one mutation, to generate only

good solution and to satisfy some conditions like, the

sum of individual values would not be changed or

would be equal to some value permanently [3].

The new individual creation process applying the
modified mutation has the following steps:

e randomly choose an individual;

erandomly choose some weight values from the
individual. The number of chosen weight values is
generated by random;

e calculate the sum of all chosen weight values from the
individual and then randomly generate the same
number to the chosen weight values. The sum of
generated weighs will not be changed;

e calculate the fitness value for the obtained individual;

e compare the chosen and the obtained individuals
fitness function values;

ereplace the selected individual with the fittest
individual. In case if the obtained individual is fitter
than the chosen one, mutation will be continued. The
next mutation occurs in the obtained individual. This
operator will mutate until the obtained individual
fitness does not cause a loss of fitness.

4. Application of Crossover and Mutation Operators
Control for Obtaining Offspring

To provide control of crossover and mutation operators,
it was decided to keep worse individual fitness value in
the Depository of Weak Individuals Fitness Values
(DWIFV) during all generations and any generation of
the same individuals’ week fitness will be restricted —
the fittest one will replace it (see Figure 1 and
Figure 2). Hence, the domain of possible solutions
becomes progressively smaller and the possibility of
generating the same weak individual is protected. The
search space becomes smaller in each next population
that makes the genetic algorithm convergence much
easier [4, 5, 6].
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Fig. 1. Offspring Generation Control in Crossover



As Figure 1 shows, the comparison of individuals
and offspring fitness values during crossover operator
run is executed as follows:

e compare the chosen individuals fitness values ( Fsl)
and those kept in DWIFV (F);
e compare the obtained offspring fitness ( FSM );

e compare the better individual and offspring fitness
values Fs, and st and worse individual and
offspring  fitness  values accordingly.  After
comparison of each pair the worst individual fitness

value will be kept in the DWIFV during all
generations.
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The mutation operator in this paper consists of
several steps — individual’s mutation will be repeated
until better offspring is found. If better solution is
found, then the individual selected for mutation will be
kept during all generations in the DWIFV. The
controlled mutation operator steps are the following:

e compare the chosen individuals fitness values (Fst)

and kept in DWIFV (F);
e compare the individual (F) and its offspring fitness

function values (Fs”l) and choose the fittest one and

replace the selected individual with the fittest

offspring, and “selected” individual check in the

DWIFV. Repeat mutation while the obtained

offspring does not get weaker.

The control of crossover and mutation operators uses
different approaches in Figure 1 and Figure 2. Each pair
of individuals was crossed only one time, but during
each individual mutation more than one mutation step
was done while the obtained offspring does not get
weaker.

5. GA/KNN Hybrid Algorithm

The GA/KNN hybrid algorithm is based on two
algorithm where each of them has its own specific aim -
the k-nearest neighbour algorithm classify instance
using the distances between them and the genetic
algorithm searches for the “best” weight w set that helps
to reduce the classification error. Namely, the weight
set is applied to increase importance or decrease
importance of the distance between each feature value
from training set and query instance corresponding
feature value. The whole structure of GA/KNN hybrid
algorithm is shown in Figure 3.
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Fig. 3. Structure of GA/KNN Hybrid Algorithm



The GA/KNN hybrid algorithm works with
statistical dataset and generated population values that
will be evaluated together. The KNN requires that
dataset values should be of continuous data type and
normalized. In case if the data type is mixed, the dataset
values will be processed to one data type or other data
types would not be used. The GA initial population is
generated randomly and consists of a number of
individuals that are represented as real parameter values
called by weights. The individual length is equal to the
number of statistical dataset instance feature. Fitness
function is calculated as follows:

_ Total Test — Incorrect

1
Total Test @)

where

Total Test — the number of instances of testing set;

Incorrect — the number of instances that were
incorrectly classified.

The result of GA/KNN hybrid algorithm is the
weight set. As weight generation, two approaches were
used:

e each weight value w is real parameter from [0; 1];

e the sum of all weight values w that is real parameter
from [O; 1] equals to 1.The obtained weight values
will change the effect of distance between each
instance feature value from training set and
corresponding instance feature value that will reduce
classification error of KNN whose efficiency
subjected to the successful k-neighbour number
choice and dataset instance values.

6. Experiments

The aim of the experiments is to prove that GA can be
useful to optimize the classification result of KNN
algorithm that cannot provide stable high classification
accuracy. The experiments were made using the
German credit dataset [7]. The number of features is 20
(7 numerical and 13 categorical).

The data is represented as numerical and categorical
types and also as edited with several indicator variables
that are added to make it suitable for algorithms which
cannot cope with categorical variables for algorithms
that need numerical features. Several features that are
ordered categorical (such features as Job - unemployed/
unskilled - non-resident, unskilled — resident, skilled
employee/ official, management/ self-employed/ highly
qualified employee/ officer) have been coded as integer.

Each experiment group consists of 20 runs aimed to
determine the average algorithmic results of weight w
set finding that helps to reduce the classification error.
The estimation of GA/KNN hybrid algorithm
implementation is based on comparison with the KNN

classification result, namely - the classification error.
To solve the described task, two groups of experiments
were performed (see Table 1).

Table 1
The parameters of experiments

Parameter name Experiment Experiment

group 1 group 2
Population size 50 50
Generation No. 100 100
Crossover rate 0.7 0.7
Mutation rate 0.1 0.1
Selection type Tournament Tournament
Crossover type Double Restricted

Inversion
Mutation type Augmentation | Restricted

7. Experimental Results

The results of all experiments produced by the
GA/KNN hybrid algorithm were evaluated together.
The average result values of 20 experiments for each
experimental group are described in Table 2, Table 3
and Table 4 correspondingly. Also, these tables
represent the estimation of classification error (%) of
KNN and GA/KNN hybrid algorithms application using
the same k-neighbour and instance number in the
experiments.

Table 2
60 instance classification error, %
Number GA/KNN, GA/KNN,
KNN
of K group 1 group 2
k=3 18.33 4.19 7.76
k=5 28.33 6.28 8.09
k=7 25.00 6.44 5.93

The obtained results in Table 2 show that the
GA/KNN hybrid can make the classification error
approximately three times less.

Table 3
100 instance classification error, %
Number GA/KNN, GA/KNN,
KNN
of K group 1 group 2
k=3 22.00 11.42 10.91
k=5 24.00 13.56 10.02
k=7 23.00 11.87 13.11
k=10 22.00 11.29 10.76

The number of classified instance in Table 3 has
grown up almost twice in comparison with the instance



number in Table 2, but the reduction in classification
error provided by GA/KNN hybrid algorithm is very
impressive - it can reduce the classification error
approximately twice.

Table 4
150 instance classification error, %
Number GA/KNN, |GA/KNN,
KNN

of K group 1 group 2
k=3 26.67 17.58 18.47
k=5 30.00 19.00 17.78
k=7 28.00 18.73 19.32
k=10 24.67 20.14 19.09
k=12 22.67 18.37 19.96

The experimental results of Table 4 show that
GA/KNN hybrid algorithm keeps the average
classification error reduction about 7.5%. All
experimental results represented in the above tables are
shown graphically in Figure 4.
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Fig.4. KNN and GA/KNN classification errors, %

As the values of classification error show, the result
of GA/KNN application is much more efficient than
that of the simple KNN application (see Figure 4). And
if the influence of choice of the data set instance and
feature number in KNN algorithm on classification
error is high (the larger the data set instance and feature
number, the higher classification error). Also the choice
of k-neighbour number affects the KNN algorithm
result (this parameter does not have proportional
influence; it is based only on successful k-neighbour
choice). Hence, the application of GA/KNN provides a
stable classification error reduction apart from the
number of records and features, and also from
k-neighbour choice.

The results obtained demonstrate that the GA/KNN
hybrid algorithm provides better results in credit dataset
classification task than the simple KNN algorithm. It
may extend because each weight value corrects the
significance of distance between each instance feature
value from training set and corresponding instance
feature value from the testing set. Also it may extend
because the modified crossover and mutation works in
each generation with identical intensity and cannot
provide debasing of the individual (set of weights w).

8. Conclusions

The GA/KNN hybrid algorithm provides much better
classification results than simple KNN algorithm — the
classification error is visibly reduced. The GA/KNN
hybrid algorithm shows different classification
optimization results using different GA (crossover and
mutation types) and KNN (the number of k-neighbours)
parameter set for applied data mining task.

The GA/KNN hybrid algorithm shows very good
and stable classification error optimization results using
both weights w approaches (each weight value w is real
parameter from [0; 1] or the sum of all weight values w
that is real parameter from [0; 1] equals to 1) and the
corresponding to these approaches crossover and
mutation operators.
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Gengetiska algoritma pielietojums datu ieguves uzdevumam
svaru optimizeSanai

Raksta izskatita genétiska algoritma (GA) pielietosana datu ieguves
uzdevumam svaru optimizéSanas nolikos. Datu ieguves
uzdevumiem raksturigs liels datu ierakstu un atributu skaits, kuru
parasti nepiecieSams apstradat, veidojot, pieméram, klasifikacijas
likumus. Ta rezultata, lielu datu ierakstu un atribiitu skaita de]
klasisko metozu klasifikacija notiek ar lielu klidu. So problemu
risina$anai pielietots genétiskais algoritms, kura uzdevums ir atrast
tadus svarus katram atribiitam, kas nodro$inatu klasifikacijas kltudas
samazinasanu.

Par klasisko metodi tiek izvéléts k-tuvako kaiminu (KNN)
klasifikators un svaru optimiz€Sanai tiek pielietots modificets
genétiskais algoritms. Balstoties uz genétiska un k-tuvaka kaimina
algoritmu kopgjas pielietosanas bazes, izstradats GA/KNN
algoritma hibrids. Rezultata piedavats algoritma hibrids nodrosina
stabilu klasifikacijas kladas samazinaSanu neatkarigi no ierakstu un
atribiitu  skaita, un izv€léta tuvako kaiminu skaita. Genétiska
algoritma bloka modificeti krustoSanas un mutacijas operatori strada
ar vienadu intensitati un nodro$ina no individu pasliktinasanas.

Hpuna IlpoBoposa, Cepreii Ilapmytun, Cepreii IlpoBopos.
IIpuMeHeHNe TeHETHYECKOTO AJITOPHTMA TSI ONTHMH3AINH
BECOB B 3a/1a4e H3BJIeYeHHs JaHHBIX

B cratse paccMaTpuBaeTCsl IPIMEHEHNE TEHETHIECKOTO aIropuT™Ma
(F'A) s onTUMHM3AIA BECOB B 3a/1ade M3BJICUYEHUS JaHHBIX. J[is
3a7a4 M3BIEYEHHs [AHHBIX XapaKTepPHO OONBIIOE KOJIMYECTBO
3anuceid M aTpuOyTOB, KOTOpble HeoOXoauMo oOpadorarts,
HalmpuMep, MpPUd M[OMOIIM  KJIacCH(UKAIHMOHHBIX TmpaBwil. B
pe3yabTate M3-3a OOJNIBIIOrO KOJIMYEeCTBa 3amuceil u aTpuOyTOB
KJTACCHYECKHI METOJ JIaeT BBICOKYIO OLIMOKY HPH KJIaCCU(pHKAIHN.
Jnst perreHnst TaHHOI mpoOyieMsl OBIT HMPUMEHEH T'eHEeTHYeCKHit
QITOPHUTM, 3a7ada KOTOPOTO COCTOMT B TOM, 9YTOOBI 1OA00paTh
TakWe Beca Uil KakAOro arpuOyTa, KOTOphIe obecredwmian Obl
YMEHBIICHNE ONIMOKH KITaCH(HKAIIIH.

B kauecTBe KJIaCCMYECKOI0 MeToJa BbIOpaH KiiacCH(pUKATOp
k-Omwkaiimmx  coceneit (KNN), a a1 onrumusanud  BECOB
npuUMeHeH MoJu(UIUPOBAaHHBIN TeHeTH4Yeckui anroput™. Ha 0Oase
COBMECTHOTO MPUMEHEHHs YIMOMSIHYTBIX aJrOPUTMOB pa3paboTaH
rubpuaabii anroputm GA/KNN. B pesynbrate mpeioxeHHbIH
THOPHIHBIH  aNropuT™M o0ecHednBaeT CTAOWIBHOE CHIDKEHHE
OImMOKK KIacCH(UKAIMHA HE3aBHCHMO OT KOJHMYECTBA 3alHCeH M
aTpuOyTOB, M BEIOpaHHOTO 4Mcia OpKalmux cocexeil. B Omoxe
TEHETHUECKOTO  alTOPUTMa  MOAU(DUIIMPOBAHHBIE  ONEPATOPHI
CKpEeIIMBaHMS W  MyTauu  paboTaloT C  OAWHAKOBOM
MHTEHCHBHOCTBIO U OOECIEUMBAIOT 3aIUTY TNPOTHUB YXYIIICHUS
HHJMBUJIOB.
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