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This paper considers an application of genetic algorithm 

(GA) to optimize weights in data mining task. Data mining 

tasks usually have datasets containing a large number of 

records and features that will be processed using, for 

example, created classification rules. As a result, by using 

classical method to classify a large number of records and 

features, a high classification error value will be obtained. 

To solve this problem, the genetic algorithm was applied to 

find for each feature the weight that would reduce 

classification error value. 

 As a classical method, the k-nearest neighbour (KNN) 

classifier was chosen and the modified genetic algorithm 

was applied to optimize the weight. Based on the joint 

application of genetic and k-nearest neighbour algorithms, 

the GA/KNN hybrid algorithm was developed. As a result, 

the developed hybrid algorithm provides a stable 

classification error reducing regardless of the number of 

records and features, and also of the chosen number of 

neighbours. In the GA block the modified crossover and 

mutation works in each generation with identical intensity 

and cannot provide debasing of the individual.  

 

 

1. Introduction 

 

This paper addresses genetic algorithm application 

aimed to improve the classification result. Most 

applications of genetic algorithm (GA) in data mining 

tasks optimize some parameters in the classification 

process. The process of finding an optimal algorithm 

and its control parameters for building a predictive 

model is non-trivial because of two reasons. First, the 

number of classification algorithms and their control 

parameters are very large. Second, it can be quite time 

consuming to build a model for datasets containing a 

large number of records and features. These two 

reasons make it impractical to enumerate through every 

algorithm and its possible control parameters for 

finding an optimal model. 

 The paper presents the application of real parameter 

genetic algorithm [9] in finding optimal set of weights 

for feature distance in the k-nearest neighbour 

algorithm (KNN) that reduces classification error. The 

obtained weight set is applied to influence on the 

importance of the distance between each feature value 

from training set and query instance corresponding 

feature value. As a result of the joint application of two 

algorithms, the GA/KNN hybrid algorithm was 

developed.  

 

 

2. K-Nearest Neighbour Algorithm 

 

The k-nearest neighbour algorithm (KNN) is a 

supervised learning algorithm where the result of new 

instance query is classified based on the majority of k-

nearest neighbour category [2].  

 The data of the KNN can be any measurement scale 

from ordinal, nominal, to quantitative scale. The 

purpose of this algorithm is to classify a new object 

based on training and testing samples of instances. The 

KNN classifier does not create any model - it uses the 

minimum distance from the query instance to each 

training instance to determine the k-nearest neighbours 

that classify the query instance. 

 

 

3. Genetic Algorithm 
 

A genetic algorithm is based on evolutionary process in 

nature and uses similar terminology [1, 8]. The 

algorithm evaluates a finite set or “population” of 

individuals, based on the process of evolution 

(selection, crossover and mutation are applied as 

operators of GA). The operators have many 

modifications; they are performed in cycles and called 

generations. In this paper two types of crossover 

(double inversion and restricted) and mutation 

(augmentation and restricted) operators are applied. 

 

3.1. Double Inversion Crossover 

 
Double inversion crossover performs in such a way that 

in each selected individual couple all parts are 

mixed [4]: 

 randomly take a pair of two individuals; 

 randomly choose the crossover point; 

 gene values before crossover point from the first 

individual replace gene values after crossover point. 

The replaced gene values are placed in the second 

individual gene values before the crossover point (the 

recombination of gene values in the second individual 

will be done analogically). 



 Double inversion crossover provides the increased 

recombination effect in the offspring due to the 

exchange of individuals x and y parts. As a result of the 

aforementioned, double inversion crossover provides 

higher difference in the obtained offsprings. 

  

3.2. Restricted Crossover 

 
The basic operator for producing new individuals in GA 

is crossover. Sometimes the task has a particular point – 

the sum of individual values would not change or would 

be equal to some value permanently. Usually after 

individuals crossing, this sum may be changed and, to 

keep the sum of weight values, the crossover operator 

has the following modifications [3]: 

 randomly take a pair of two individuals; 

 randomly choose the crossover point; 

 calculate a sum of weight variables from the 

individuals that are located before and after crossover 

point; 

 shift vice verse the respective parts of the pair of 

individuals in the rough guide of the crossover point; 

 compare a sum of weight values that are located in 

the shifted part  from the other individual before and 

after crossover. In case if these sums are different, the 

part which belongs to the individual with the worst 

fitness will have some correction (after crossover the 

difference value will be subtracted or added to the part 

of weakness individual that is located before/after 

crossover point). 

 

3.3. Augmentation Mutation 

 
Mutation operator has a low rate in comparison with the 

crossover rate and may cause a finding or a loss of a 

very good solution. To solve this problem, the mutation 

operator was modified in such a way to help to generate 

only a good solution and to review much more than 

only one mutation. The new individual creation process, 

applying augmentation mutation, is executed as 

follows [4, 5]: 

 randomly choose an individual; 

 randomly choose different augmentation for gene 

from the defined domain; 

 calculate all possible combinations using selected 

individual values and the augmentation ; 

 calculate the fitness value for each obtained 

individual;  

 compare fitness function values and choose the fittest 

individual; 

 replace the selected individual with the fittest 

individual. In case if all obtained individuals are 

weaker than the selected individual, the replacement 

will never be used. The next mutation occurs in the 

obtained individual. This operator will mutate until 

the obtained individual fitness does not cause any loss 

of fitness. 

 

3.4. Restricted Mutation 

 

To review more than just one mutation, to generate only 

good solution and to satisfy some conditions like, the 

sum of individual values would not be changed or 

would be equal to some value permanently [3]. 

 The new individual creation process applying the 

modified mutation has the following steps: 

 randomly choose an individual; 

 randomly choose some weight values from the 

individual. The number of chosen weight values is 

generated by random; 

 calculate the sum of all chosen weight values from the 

individual and then randomly generate the same 

number to the chosen weight values. The sum of 

generated weighs will not be changed; 

 calculate the fitness value for the obtained individual; 

 compare the chosen and the obtained individuals 

fitness function values; 

 replace the selected individual with the fittest 

individual. In case if the obtained individual is fitter 

than the chosen one, mutation will be continued. The 

next mutation occurs in the obtained individual. This 

operator will mutate until the obtained individual 

fitness does not cause a loss of fitness. 

 

 

4. Application of Crossover and Mutation Operators 

Control for Obtaining Offspring  
 

To provide control of crossover and mutation operators, 

it was decided to keep worse individual fitness value in 

the Depository of Weak Individuals Fitness Values 

(DWIFV) during all generations and any generation of 

the same individuals’ week fitness will be restricted – 

the fittest one will replace it (see Figure 1 and 

Figure 2). Hence, the domain of possible solutions 

becomes progressively smaller and the possibility of 

generating the same weak individual is protected. The 

search space becomes smaller in each next population 

that makes the genetic algorithm convergence much 

easier [4, 5, 6]. 

 

 

Fig. 1. Offspring Generation Control in Crossover 



 As Figure 1 shows, the comparison of individuals 

and offspring fitness values during crossover operator 

run is executed as follows: 

 compare the chosen individuals fitness values ( ts
F ) 

and those kept in DWIFV (F); 

 compare the obtained offspring fitness ( 1ts
F ); 

 compare the better individual and offspring fitness 

values ts
F  and 1ts

F , and worse individual and 

offspring fitness values accordingly. After 

comparison of each pair the worst individual fitness 

value will be kept in the DWIFV during all 

generations.  

 

 

Fig. 2. Offspring Generation Control in Mutation 

 The mutation operator in this paper consists of 

several steps – individual’s mutation will be repeated 

until better offspring is found. If better solution is 

found, then the individual selected for mutation will be 

kept during all generations in the DWIFV. The 

controlled mutation operator steps are the following: 

 

 compare the chosen individuals fitness values ( ts
F ) 

and kept in DWIFV (F); 

 compare the individual (F) and its offspring fitness 

function values ( 1ts
F ) and choose the fittest one and 

replace the selected individual with the fittest 

offspring, and “selected” individual check in the 

DWIFV. Repeat mutation while the obtained 

offspring does not get weaker. 

 The control of crossover and mutation operators uses 

different approaches in Figure 1 and Figure 2. Each pair 

of individuals was crossed only one time, but during 

each individual mutation more than one mutation step 

was done while the obtained offspring does not get 

weaker. 
 

 

5. GA/KNN Hybrid Algorithm 

 

The GA/KNN hybrid algorithm is based on two 

algorithm where each of them has its own specific aim -  

the k-nearest neighbour algorithm classify instance 

using the distances between them and the genetic 

algorithm searches for the “best” weight w set that helps 

to reduce the classification error. Namely, the weight 

set is applied to increase importance or decrease 

importance of the distance between each feature value 

from training set and query instance corresponding 

feature value. The whole structure of GA/KNN hybrid 

algorithm is shown in Figure 3. 

 

 

Fig. 3. Structure of GA/KNN Hybrid Algorithm  

 



 The GA/KNN hybrid algorithm works with 

statistical dataset and generated population values that 

will be evaluated together. The KNN requires that 

dataset values should be of continuous data type and 

normalized. In case if the data type is mixed, the dataset 

values will be processed to one data type or other data 

types would not be used. The GA initial population is 

generated randomly and consists of a number of 

individuals that are represented as real parameter values 

called by weights. The individual length is equal to the 

number of statistical dataset instance feature. Fitness 

function is calculated as follows: 

 

 
TestTotal

IncorrectTestTotal
F


 , (1) 

  where 

   Total Test  – the number of instances of testing set; 

   Incorrect  – the number of instances that were 

incorrectly classified. 

 

 The result of GA/KNN hybrid algorithm is the 

weight set. As weight generation, two approaches were 

used: 

  each weight value w is real parameter from [0; 1]; 

 the sum of all weight values w that is real parameter 

from [0; 1] equals to 1.The obtained weight values 

will change the effect of distance between each 

instance feature value from training set and 

corresponding instance feature value that will reduce 

classification error of KNN whose efficiency 

subjected to the successful k-neighbour number 

choice and dataset instance values. 

 

 

6. Experiments 

 

The aim of the experiments is to prove that GA can be 

useful to optimize the classification result of KNN 

algorithm that cannot provide stable high classification 

accuracy. The experiments were made using the 

German credit dataset [7]. The number of features is 20 

(7 numerical and 13 categorical).  

 The data is represented as numerical and categorical 

types and also as edited with several indicator variables 

that are added to make it suitable for algorithms which 

cannot cope with categorical variables for algorithms 

that need numerical features. Several features that are 

ordered categorical (such features as Job - unemployed/ 

unskilled - non-resident, unskilled – resident, skilled 

employee/ official, management/ self-employed/ highly 

qualified employee/ officer) have been coded as integer. 

 Each experiment group consists of 20 runs aimed to 

determine the average algorithmic results of weight w 

set finding that helps to reduce the classification error. 

The estimation of GA/KNN hybrid algorithm 

implementation is based on comparison with the KNN 

classification result, namely - the classification error. 

To solve the described task, two groups of experiments 

were performed (see Table 1). 

Table 1 

The parameters of experiments 

Parameter name Experiment 

group 1 

Experiment 

group 2 

Population size 50 50 

Generation No. 100 100 

Crossover rate 0.7 0.7 

Mutation rate 0.1 0.1 

Selection type Tournament Tournament 

Crossover type Double  

Inversion 

Restricted 

Mutation type Augmentation Restricted 

 

 
7. Experimental Results 

 

The results of all experiments produced by the 

GA/KNN hybrid algorithm were evaluated together. 

The average result values of 20 experiments for each 

experimental group are described in Table 2, Table 3 

and Table 4 correspondingly. Also, these tables 

represent the estimation of classification error (%) of 

KNN and GA/KNN hybrid algorithms application using 

the same k-neighbour and instance number in the 

experiments.  

Table 2 

60 instance classification error, % 

Number 

of K 
KNN 

GA/KNN, 

group 1 

GA/KNN, 

group 2 

k=3 18.33 4.19 7.76 

k=5 28.33 6.28 8.09 

k=7 25.00 6.44 5.93 

 

 The obtained results in Table 2 show that the 

GA/KNN hybrid can make the classification error 

approximately three times less. 

Table 3 

100 instance classification error, % 

Number 

of K 
KNN 

GA/KNN, 

group 1 

GA/KNN, 

group 2 

k=3 22.00 11.42 10.91 

k=5 24.00 13.56 10.02 

k=7 23.00 11.87 13.11 

k=10 22.00 11.29 10.76 

 

 The number of classified instance in Table 3 has 

grown up almost twice in comparison with the instance 



number in Table 2, but the reduction in classification 

error provided by GA/KNN hybrid algorithm is very 

impressive - it can reduce the classification error 

approximately twice. 

Table 4 

 150 instance classification error, % 

Number 

of K 
KNN 

GA/KNN, 

group 1 

GA/KNN, 

group 2 

k=3 26.67 17.58 18.47 

k=5 30.00 19.00 17.78 

k=7 28.00 18.73 19.32 

k=10 24.67 20.14 19.09 

k=12 22.67 18.37 19.96 

 

 The experimental results of Table 4 show that 

GA/KNN hybrid algorithm keeps the average 

classification error reduction about 7.5%. All 

experimental results represented in the above tables are 

shown graphically in Figure 4.  
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Fig.4. KNN and GA/KNN classification errors, % 

 As the values of classification error show, the result 

of GA/KNN application is much more efficient than 

that of the simple KNN application (see Figure 4). And 

if the influence of choice of the data set instance and 

feature number in KNN algorithm on classification 

error is high (the larger the data set instance and feature 

number, the higher classification error). Also the choice 

of k-neighbour number affects the KNN algorithm 

result (this parameter does not have proportional 

influence; it is based only on successful k-neighbour 

choice). Hence, the application of GA/KNN provides a 

stable classification error reduction apart from the 

number of records and features, and also from 

k-neighbour choice. 

 The results obtained demonstrate that the GA/KNN 

hybrid algorithm provides better results in credit dataset 

classification task than the simple KNN algorithm. It 

may extend because each weight value corrects the 

significance of distance between each instance feature 

value from training set and corresponding instance 

feature value from the testing set. Also it may extend 

because the modified crossover and mutation works in 

each generation with identical intensity and cannot 

provide debasing of the individual (set of weights w). 

 

 

8. Conclusions 

 

The GA/KNN hybrid algorithm provides much better 

classification results than simple KNN algorithm – the 

classification error is visibly reduced. The GA/KNN 

hybrid algorithm shows different classification 

optimization results using different GA (crossover and 

mutation types) and KNN (the number of k-neighbours) 

parameter set for applied data mining task. 

 The GA/KNN hybrid algorithm shows very good 

and stable classification error optimization results using 

both weights w approaches (each weight value w is real 

parameter from [0; 1] or the sum of all weight values w 

that is real parameter from [0; 1] equals to 1) and the 

corresponding to these approaches crossover and 

mutation operators.  
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Ģenētiskā algoritma pielietojums datu ieguves uzdevumam 

svaru optimizēšanai 

Rakstā izskatīta ģenētiskā algoritma (GA) pielietošana datu ieguves 

uzdevumam svaru optimizēšanas nolūkos. Datu ieguves 

uzdevumiem raksturīgs liels datu ierakstu un atribūtu skaits, kuru 

parasti nepieciešams apstrādāt, veidojot, piemēram, klasifikācijas 

likumus. Tā rezultātā, lielu datu ierakstu un atribūtu skaita dēļ 

klasisko metožu klasifikācija notiek ar lielu kļūdu. Šo problēmu 

risināšanai pielietots ģenētiskais algoritms, kura uzdevums ir atrast 

tādus svarus katram atribūtam, kas nodrošinātu klasifikācijas kļūdas 

samazināšanu.  

 Par klasisko metodi tiek izvēlēts k-tuvāko kaimiņu (KNN) 

klasifikators un svaru optimizēšanai tiek pielietots modificēts 

ģenētiskais algoritms. Balstoties uz ģenētiskā un k-tuvākā kaimiņa 

algoritmu kopējās pielietošanas bāzes, izstrādāts GA/KNN 

algoritma hibrīds. Rezultātā piedāvāts algoritma hibrīds nodrošina 

stabilu klasifikācijas kļūdas samazināšanu neatkarīgi no ierakstu un 

atribūtu skaita, un izvēlētā tuvāko kaimiņu skaita. Ģenētiskā 

algoritma blokā modificēti krustošanas un mutācijas operatori strādā 

ar vienādu intensitāti un nodrošina no indivīdu pasliktināšanas.  
 

Ирина Проворова, Сергей Паршутин, Сергей Проворов. 

Применение генетического алгоритма для оптимизации 

весов в задаче извлечения данных 

В статье рассматривается применение генетического алгоритма 

(ГА) для оптимизации весов в задаче извлечения данных. Для 

задач извлечения данных характерно большое количество 

записей и атрибутов, которые необходимо обработать, 

например, при помощи классификационных правил. В 

результате из-за большого количества записей и атрибутов 

классический метод дает высокую ошибку при классификации. 

Для решения данной проблемы был применен генетический 

алгоритм, задача которого состоит в том, чтобы подобрать 

такие веса для каждого атрибута, которые обеспечили бы 

уменьшение ошибки класификации. 

 В качестве классического метода выбран классификатор 

к-ближайших соседей (KNN), а для оптимизации весов 

применен модифицированный генетический алгоритм. На базе 

совместного применения упомянутых алгоритмов разработан 

гибридный алгоритм GA/KNN. В результате предложенный 

гибридный алгоритм обеспечивает стабильное снижение 

ошибки классификации независимо от количества записей и 

атрибутов, и выбранного числа ближайших соседей. В блоке 

генетического алгоритма модифицированные операторы 

скрещивания и мутации работают с одинаковой 

интенсивностью и обеспечивают защиту против ухудшения 

индивидов. 
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