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GENERAL DESCRIPTION OF THE THESIS

Research motivation

The development of the modern world economy and globalisation
tendency has encouraged the appearance of a new class efrgrobl
in the field of complex systems and process optimisation. eThes
problems are characterised by multiple and stochastic rpeface
measures and constraints, and a large number of discrete and
continuous (mixed) decision variables, which significantly
complicates the problem solution process. Therefore, thera i
growing need for new optimisation methods and algorithms, which
would be capable of solving the outlined problems.

The combination of stochastic simulation and multi-objective
optimisation is considered to be one of the most promisegarch
directions related to optimisation of complex systems andegsses.

A significant contribution to the development of this redearc

direction is made by Syberfeldt, Merkuryev, Amodeo, Prins,
Sanchez, Lee, Chew, Teng and Chen [4, 31, 35, 50]. Nevegheles
there are still many research problems to be solved.

First, there is no full agreement on which simulation-based
optimisation methods and algorithms should be used to esffiygi
investigate a search space and its regions at a low nuafber
optimisation iterations. In addition, this problem is cowggiéd by
the need to improve the approximation accuracy of a Papgimal
front, when analytical estimates of objective functions are not
available. Second, an experimental research on the babiraion
of a global and local search approaches for generatirmgdPaptimal
solutions is required. Finally, there exists a claésapplication
problems referred to cyclic planning of complex systemswfuch
powerful optimisation methods should be developed. In thgishe
the research for these problems is predominant.

The goal and the tasks of the thesis

The thesis is aimed at developing methods, algorithms and a
prototype of a software environment to solve multi-objective
stochastic simulation-based optimisation problems with tcaings
and mixed decision variables, as well as to apply themmaualti-
echelon cyclic planning. To achieve this aim, the followirgiksaare
specified:

1) To analyse existent approaches and methods of multi-objective
stochastic simulation optimisation in order to formulate the
requirements for solving the proposed problem.

2) To develop methods and algorithms, which allow simultaneously
providing approximation accuracy and diversity of a Pareto-
optimal front while minimising the number of simulation
optimisation iterations by integrating evolutionary compotati
and response surface methodology.

3) To develop main blocks and mechanisms of the geneticidim
and response surface-based linear search algorithm by combining
the advantages of the global and local search approaches.

4) To create a prototype of the software environment that allows
analysing input data, developing simulation models and
optimising their parameters.

5) To apply developed methods and algorithms in solving supply
chain cyclic planning problems.

The object and the subject of the research

The object of the research is multi-objective stochastic
simulation-based optimisation with constraints and mixedsibec
variables.

The subject of the research is the development of methods and
algorithms for searching Pareto-optimal solutions with apipdinao
multi-echelon cyclic planning.

Research methods

The research is based on using discrete-event simulatialti;
objective optimisation, morphological analysis, statdtianalysis,
evolutionary computation, response surface methodology (RSM) and
supply chain cyclic planning methods.

Scientific novelty
The scientific novelty of the thesis is as follows:

1) Morphological analysis of well-known hybrid multi-objective
evolutionary algorithms enabled defining the best comlzinadf
their parameters in accordance with the requirementshier
proposed problem solving.

2) Two-phase search method is based on the combination of the
global and local search approaches, which are aimed atijprgvi



the diversity of Pareto-optimal solutions and incredkeir
approximation accuracy, respectively.
3) Main blocks and mechanisms of a multi-objective simulation-

based genetic algorithm are developed including a mechanism for

encoding diploid chromosomes, uniform population initialisation
mechanism, a penalty-based constraints’ handling techni&ue,
dominance-based termination criterion and heuristic rule for
decreasing the number of simulation replications.

4) The developed prototype of the software environment enables
optimising parameters of the cyclic schedules for supply chain

planning.

Practical value

The proposed prototype of the software environment supports the

main stages of simulation-based optimisation includingupply
chain description in MS Excel format, an automatic geaimraf the
corresponding simulation models, as well as optimisation of

simulation model parameters by using the methods and algorithms

developed in the doctoral thesis. The implementation of thiagges
minimises the time and efforts required for creating st
models and performing optimisation experiments.

The developed methods and algorithms are applied to Huntsman

business case in order to define the optimal lengths oégsarycles
and stock point order-up-to levels during the maturity phasteof
product life cycle. They can be also used for solving cysthaning
problems in different complex systems. In comparison withrothe
optimisation tools the search for Pareto-optimal solutie@tgiires
less simulation optimisation iterations due to sequentiadgusf
global and local search approaches.

Approbation of the obtained results
The results of the thesis have been presentéd atternational
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Structure of the thesis

The doctoral thesis consists of introduction, 5 chapters,
conclusions, bibliography and 4 appendixes. The thesis contans 15
pages, 65 figures and 14 tables. The bibliography contains 205
entries. The thesis is structured as follows:

Introduction motivates the research, formulates the research aim
and tasks, defines the research object and subject, desadsarch
methods used in the thesis, and explains scientific noyekgtical
use and approbation of the thesis.

Chapter 1 “Statement of the multi-objective simulation
optimisation problem” discusses the main aspects of complex
process optimisation including supply chain planning. The chapter
formulates the investigated problem as a multi-objectieehastic
simulation-based optimisation with constraints and mixedsibec
variables. The state-of-the-art in simulation optimisaisanalysed.
Basic approaches to the problem solving are reviewed witeceo
the requirements formulated.

Chapter 2 “Analysis of methods for multi-objective simtian
optimisation” analyses simulation optimisation methods aimed at
searching for Pareto-optimal solutions with respect topitodlem
requirements specified. Morphological analysis of hybmilti-
objective evolutionary algorithms is then performed to iderthie
best combination of the values of parameters for the prosddring.

Chapter 3 “Framework of the simulation-based hybrid
optimisation method”presents a two-phase search and compromise
programming methods, which comprise the simulation-based hybrid
optimisation method. The two-phase search method includes th
blocks and mechanisms of a multi-objective simulation-basedigenet
algorithm and RSM-based linear search algorithm. To selsicigée
solution from the Pareto-optimal front, the compromise
programming method is used.

Chapter 4 “Multi-objective simulation optimisation forupply
chain cyclic planning” investigates the features of a supply chain
cyclic planning process and presents a formalised prosiatement
including variables, performance measures and constraimés, Tt
develops a prototype of the software environment for sinaulati
based optimisation of supply chain cyclic planning pararseter

Chapter 5 “Approbation of the developed methods and
algorithms” evaluates the effectiveness of the developed methods
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and algorithms based on solving supply chain cyclic planning
problems. For that purpose, both simplified and Huntsman bssines
case studies are accomplished.

Results and conclusions of the thesis

Bibliography

Appendixes
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SUMMARY OF THESIS CHAPTERS

Statement of the multi-objective simulation optimisatioroptem

In Chapter 1, an optimisation problem of complex
systems/processes is formulated as a multi-objectioghastic
simulation-based optimisation problem with constraints afdan
(both continuous and discrete) decision variables. The ctdle-art
in simulation optimisation is analysed with respect todabvantages
and disadvantages of existing methods. The requirementhdor t
problem solving are formulated, and a basic problem-solving
approach is selected for further investigation.

The optimisation of complex systems/processes plays laroita
in the growth and profitability of modern business compariies.
order to perform optimisation of such systems/processeika |
between simulation and optimisation is often indispersdble to
that, simulation optimisation becomes a central part of many
scientific and technological investigations [12, 21].

The main emphasis of the doctoral thesis is placed ocidks of
“complex management processes” that are typical for suppin cha
tactical planning and for solving many similar optimisatioobems
in the separate stages of a supply chain, i.e., procateme
production, distribution and sales. A complex management prizcess
interpreted as abstraction of a dynamic system that atasteadily
changing and unpredictable environment. In general, this kind of
system is characterised by the following six featus@s $8J:

a) a hierarchical network-based structure;

b) a large number of decision variables including both discrede an
continuous ones;

c) an emergent behaviour of the system as a whole;

d) a conflicting behaviour of system elements;

e) multiple performance measures; and

f) a stochastic nature.

The hierarchical network-based structure of a system pmvide
that decisions at a given level depend on the decisions made at
upstream and downstream levels.

A large number of continuous and discrete decision vasdable
results from a system size and the number of links betwestansy
elements, which increases computational complexity of siroulati
optimisation problem.
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The system’s emergent behaviour means that it cannot be
predicted merely on the basis of understanding the behavidbe of
system elements or from understanding interactions betiean tn
opposite, all these elements working together should bestigated
[9, 44].

The conflicting behaviour of system elements can generate
conflicting planning decisions.

The multiple performance measures of a complex system
encourage searching for a set of the best trade-off solutistead of
a global optimal solution.

Finally, the stochastic nature comes from the dependence of
system performance on uncertainty of the behaviour of its
environment. This refers to unpredictable changes in sahfe
system environmental variables over time.

The known optimisation methods that use analytical models like
mixed integer programming, non-linear programming and stochasti
dynamic programming, are not designed to deal with all the above
mentioned features of complex systems. Even if the optimisat
problem can be formulated analytically, there could be a laehno
efficient analytic or heuristic solving method. Moreover,siome
cases mathematical simplifications introduced in analyticodels
could result in suboptimal solutions.

In contrast, the simulation technology does not require a rigid
structure of the analytical model and provides an experitenta
approach to a complex system/process analysis [34, 45, 48];
combined with optimisation it is called the simulation opgiation
approach. Here, the optimisation module runs a stochastiets
event simulation model times in order to map the model input
variablesx into performance measur§s whereN is the number of
simulation replications. At each replicatianthe model is executed
duringT periods (Figure 1).

At each iteration, the optimisation module attempts to improve a
solution. Comparing both current and previous estimatebjettive
function values or performance measures produced by theasiom
model, it guides a search toward a near-optimal directiomh;tlzese
estimates are influenced by stochastic environmental vasiabt#
the model at discrete points of timee [1,T], which requires
estimating the mathematical expectatigfn] of objective functions.
The optimisation model generates new values of decisidablas to

13



approach nearer to optimal solutiwh These actions are performed
until the termination criterion is satisfied.

y

»> Optimisation module

Complex process simulation model

¢ 7! ¢ ¢
T V' M
[ yo@iaz [Hoommes
t=1 = \D
v

Figure 1.Operational scheme of the simulation optimisatinagach

Related variables and parameters of simulation optimisatien
specified in the vector form, i.e.:

a) input vectorx of K input variablesx = (xs,..., X) O X, where the
decision spaceX € R* is defined in a set of positive real
numbers. In the context of optimisation, these variadesalled
decision variables

b) vectorc of B model parameters, i.e., constamts, (Cy,....cg) [ C,
whereC is the space of model parameters;

c) disturbance vectorz' of D environmental variablesz! =
(2%, ..., z5) € Z, whereZ is the space of environmental variables,
t €[1,T] is a period, andT is the length of a simulation
replication measured in periods (hours, days, weeks, etc.);

d) state vectos of R state variabless® = (s, ..., st) € S, whereS
is the space of state variables. These variables chasact
elements of the system and their relations with otherexiesmat
te[L,T];

e) output vectory' of M output variables (i.e., performance
measures)y® = (yf,..,y%) € Y, whereY is the objective space.
Values of output variables are the responses generatedeby t
simulation model at € [1,T].

The optimisation methods that are able to produce solutions by
using simulation models instead of analytical expressimascalled
simulation optimisation methods [7]. Summarising the resief
Andradottir [5], Azadivar [7], Merkuryev and Visipkov [35], [Rd],
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and Olafsson and Kim [43], the shortcomings of the major

optimisation techniques used in the area of simulation cgdiion

are defined as follows:

 Response surface methodology (RSovides statistical
significance of solutions and reproducibility of regression
metamodels, while having a slow convergence to a global
solution.

« Stochastic approximation (SAdnd sample path optimisation
(SPO) methodeequire a large number of simulation optimisation
iterations.

« Ranking and selection (R@ye only applicable to optimisation
problems with a relatively small decision space.

e Heuristics (Hs) provide a good performance with a high
probability on the average, while not guaranteeing thabbagl
optimal solution will be found.

This analysis reveals that simulation optimisation methwse
been mainly applied to single-objective optimisation problems
[1, 6, 13, 27], whereas multi-objective problems havenbeften
solved by aggregating multiple performance measures intogéesi
one [3, 46]. In addition, a number of single-objective and multi
objective simulation optimisation methods are developed faifgpe
applications, e.g., manufacturing high-technology components for
aircraft- and gas turbine engines [50], the kanban siZ8hdnd the
inventory management [3]. Thus, there is a need for a metinich
on the one hand can cope with the above-discussed features of
complex systems by using simulation models, but on the bdred
is general enough to be applicable to a diversity of thesersgst

Here, the optimisation problem is formulated mathemiilies a
multi-objective stochastic simulation-based optimisatiawobfem
with constraints and mixed decision variables:

opteex ¥ = £X) = [, y'p(@)dz = Elwy"], (1)
whereyt = ¢(x, ¢, z%, s?),

gx) = E[y(y")] =0, @

h(x) = EMm(y"] =0,

wheref : X—Y’ is a vector of objective functions, which links values

of a decision vectox O X with corresponding expected
values of an output vect§rd Y’, whereY’ is an approximate
objective space;

subject to X: {

15



E[-] denotes the mathematical expectation;

g is a probability density function of a random vector of
environmental variables;

@ represents a mapping that results from a simulation
algorithm;

g, h define vectors of inequality and equality constraints;

w, Y, N present vectors of stochastic sample response
functions.

Based on the state-of-the-art of simulation optimisation taed
problem statement (1)-(2), the following requirements to the
optimisation method are specified:

R1. minimise an Euclidean distanckebetween the truF* and
approximatePF* Pareto-optimal fronts:
min d(PF*, PF"); (3)
R2. maximise a diversitys! of the Pareto-optimal solutions

x! € PF* to have a wide range of variety:
max\; |6, (4)
where |PF*| is the number of solutions in the Pareto-optimal

front PF*; i is an index of a solution;
R3. minimise the numbep® of non-dominated solutions that are
lost during the transition from iteratiarto iterationr+1.:
min Y1, p7; 5)
R4. minimise computational costs defined as a total numbef
simulation optimisation iterations;
R5. generate discontinuous Pareto-optimal fronts;
R6. use both continuous and discrete decision variables;

R6.1. use global search methods for exploring the large space
of discrete and continuous decision variables;

R6.2. use local search methods for exploring small regions
around continuous decision variables to approach
Pareto-optimal solutions as close as possible;

R7. include the uncertainty of system environmental variabléisen
search process.
The general problem solving process is composed of twosstage
1) the search stagaimed at generating the approximate Pareto-
optimal frontPF*;
2) the selection stagaimed at choosing a single solutixhfor the
implementation in practice.

16

Depending on how these stages are combined, three basic
approaches can be indicated, such as selection beforeh,searc
selection during search and selection after searchysiaaf these
approaches determines selection after search as the ratestapte
one for solving the problem formulated in the thesis. The ddgan
of this approach is that it is compatible with single-objectivethods
that should be executed several times with differeningstin order
to obtain the approximate Pareto-optimal front, and withtimul
objective optimisation methods that require only a singéeation.

Analysis of methods for multi-objective simulation opigation

Chapter 2 analyses multi-objective evolutionary algorithms
(MOEASs) and compares them with the other simulatiainupation
methods and algorithms, such as RSM, SA, SPO, RS anthEls, a
hybrid combination of the properties of the known simulation
optimisation methods and algorithms is determined in ordsatisfy
the requirementR1+ R7.

The analysis reveals that RSM-based, SA and SPO metheds a
used to optimise only continuous decision variables, whehese
methods and also heuristics cannot generate discontinretoP
optimal fronts.

In contrast, the MOEAs [14, 20, 25, 29, 47, 55, 56] are abl
evolve a set of non-dominated solutions instead of aesiogé and
to explore a large search space with continuous and disizreigon
variables. However, their essential disadvantage ighks are often
unable to simultaneously provide a high approximation accuraty an
diversity of the Pareto-optimal front at a small numbesiofulation
optimisation iterations.

The comparison of the simulation optimisation methods and
algorithms shown in Table 1 demonstrates that none of thesfiesti
all the requirementR1 + R7. This table also indicates that the most
rational way of solving the problem (1)-(2) is to composeaethod
based on determining the best combination of MOEAs with other
methods and algorithms.

Recently, a number of different hybrid schemes have been
proposed in the literature [18, 22, 28, 32, 52]. However, nodst
them have been restricted to the benchmark of determimmtlti-
objective optimisation problems that are formulated analigticéhe
hybrid schemes are also implemented in commercial siionla
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optimisation tools such as SimRunner® and OptQuest® that
aggregate multiple performance measures into a single okeepr
them as constraints. Thus, there is currently a ladkybfid multi-
objective EAs in combination with simulation models, whimte
able to generate Pareto-optimal fronts. In order tattil gap, the
technique of morphological analysis [2] is used to invesgiga
possible configurations of hybrid algorithms and elicit thalfione
that best satisfies the given requiremeRts£ R7).

Table 1

Comparison of simulation optimisation methaehsl algorithms

Methods and o P

algorithms i) f,‘§ 5 (@ ® &

Requirements =
R1+ R2 - - - - - -
R3 - - - - - +
R4 + - - - + -
R5 - - - - - +
R6 - - - + + +
R7 + + - - - -

As shown in Figure 2, seven parameters of hybrid algorithms are
identified and relevant values are defined for each of these
parameters. The total number of configurations in a morphalbgic
field resulted from these parameters is equdto m; [y, /77y, =
128, wheram is the number of relevant values feth parameteri &

1, 2, ..., 7). Each configuratioh, = (a,“,. ..,a;*) defines a certain
hybrid algorithm, wherea; denotes thej-th value of thei-th
parameter in thi-th morphological configuration [40].

In order to reduce the morphological field to a smallerddet
consistent configurations, hybrid multi-objective evolutionary
algorithms known in literature are examined
[15, 16, 24, 26, 30, 33, 42, 49, 51, 53]. These algorithmsliaided
into subsets corresponding to five morphological configumaAl +
A5. According to the above requiremenR1(+ R7), two-phase
algorithms corresponding to the morphological configuratan=
(212, &2, a1, @51, A1, &71), i-€., the hybrid EA [51] and hybrid elitist
non-dominated sorting genetic algorithm (hybrid NSGA-II)][XBe
selected as the most suitable for simulation optimisaltiene, EA is

18

used at the first phase to obtain an approximate Papéitoa front
and to keep a uniform distribution among the solutions, wheheas
local search algorithm improves an approximation accuradpef
Pareto-optimal front at the second phase. In case ofilaiion
optimisation, such hybrid algorithms can be less computtio
expensive than, for instance, simple multi-objective genlettal
search algorithm (S-MOGLS) [26] and memetic Paretbiaec
evolution strategy (M-PAES) [30], because they apply a lseaich
only after a genetic search is completed. In additibey tdon't
require parallel runs of simulation models and can be yeasil
implemented on a single computer.

Hybrid multi-objective
evolutionary algorithms

|
' R

Cooperation Integrative (a;;) Collaborative (a;;)
strategy (s;)

Cooperation Low-level (az) High-level (az)

level (53)

Search Global (a:;) Global-local (a:1) Global (a:;)

strategy (5:)

Execution Sequential (@) Parallel (a.)

order (s4)

Pareto-optimal front Entire (as;) Partial (as:)
generation ype (s5)

Mixture Heterogenous (as;) Heterogenous (a;;) Homogenous (as;)
npe(ss)

Tipe of decision Discrete or continuous (a-;) Mixed (a-;)

variables (s7)

Figure 2. The links between the parameters of hybrid algasithm

At the same time, it is concluded that the hybrid EA apborid
NSGA-II require modification due to ineffective use of a glodadi
local search in case of operating with mixed decision vasahhd
stochastic output variables, which are typical featofdke outlined
problem. For this reason, the configuratin = (au2, as, a1, as1,
as1, &) that is the nearest to the above configurafigiisee Figure
3) is selected for the development of the hybrid algorithgquired
and differs only by the last parameter. While selecting this
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configuration, it is taken into account that hybrid analegsiech as

hybrid EA and hybrid NSGA-II have additional disadvantages as

follows:

» a fixed number of optimisation iterations, which is defirmesda
termination criterion in the hybrid EA, doesn’t permitnt@asure
the algorithm’s convergence level;

* local search algorithms used in both hybrid algorithms are not
powerful enough to perform a local improvement of Pareto-
optimal solutions in case of simulation optimisation;

« local search algorithms require aggregating multiple objective
functions into a weighted sum, which can cause a seamgiong
directions.

! Phase 1 i Phase 2

\ Approximate Increased approximation

| Fareto-optimal aceuracy of the Pareto-optimal
Jromt Jroni

|

! |

! I

| Lo 1 2

! I\'IUJLI-G'!J] ective ¥ / i Local search i

! evolutionary Q ' algonthm Ls

H algorithm <. | &

H ° ! 7
|
|

' ©
'

Simulation model

Figure 3. General scheme of the algorithm based on
the configuratior®,

Thus, the modification of the selected hybrid analogues and a
removal of the above-mentioned disadvantages can provide a new
framework resulting in new method of solving the problem.

Framework of the simulation-based hybrid optimisation method
Chapter 3 describes the simulation-based hybrid optiors

method developed for solving the problem in accordance with the

approach of selection after search and the configuratignThis

method integrates the two-phase search and compromise

programming methods. In particular, the two-phase search [38]

applies evolutionary computation and response surface nobtigyd

A multi-objective simulation-based genetic algorithmMQSGA) is

used for a global search of Pareto-optimal solutions, whe&SM-
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based linear search algorithm allows local improving of the
solutions. To select a single solution from the Paretavitiront, a
compromise programming method is employed.

A general scheme of the simulation-based hybrid optimisatio
method is shown in Figure 4. The scheme operates gtéintim the
MOSGA algorithm that is used to find near-optimal values of
discrete and continuous decision variables in Phase 1 of &hehse
stage. In Phase 2, the RSM-based linear search algdritproves
the values of continuous decision variables, and an outptttif
phase is the approximate Pareto-optimal ftB#t". In the selection
stage a single Pareto-optimal solutiwhe PF* is determined by
using compromise programming that measures deviations of all
found solutions from an ideal (utopian) point predefined by a
decision maker.

Search stage: Two-phase search method ]

(" Phase 1: Global search

I
I
The Multi-objective x . .
problem | simulztion-based Simulztion
fonmalisad : genetic algorithm muodel
! Foods | i| Compromise

on progress

7 \| programming
"""""""""""""""""""" ' method

P}:ase 2: Local search

Response —
surfcebased | X Simmlation
lmafarr s_ear& modsl
gorithm

Figure 4. General scheme of the simulation-based hybrid
optimisation method

Being a modified version of NSGA-Il [14], the MOSGA
algorithm [41] contains a mechanism for encoding diploid
chromosomes consisting of two sets of chromosomegyristie rule
for reducing a computation time, a mechanism for generating
uniform populations, ranking-based fithess assignment and
estimation mechanisms, a diversity preservation mechansm
penalty-based constraint handling technique, a crowded-two
tournament selection mechanism, uniform crossover and mutation
operators, an elitist mechanism, as well as a dominhtsed
termination criterion. Formally, it can be described as follows
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Let P™™osGa = {q™ g™ |n = 1,N} be a population that consists
of N diploid chromosomes. Each diploid chromosomei#osc4 is
represented by two binary strings, such as:

a™ = (a™,,_1a™, _;...a™a™,) € {0,1}1, (6)
am = (a"?,,_,a",,_,..a"%a",) € {0,1}%, (7)
wheren is the number of a strind; and?£, are lengths of strings;
a andal? are genes at loclks
Binary stringsa™! are used in order to encode discrete decision
variablesx]"**“" measured on a time scale by using a modified
binary encoding, such as:
xjn,discr
am = plog, (). ®)
where¢ is an encoding algorithni;is an index of a solutiort;is a
basic period or the minimal available valued3f'*".
Binary stringsa™? are intended for continuous decision variables

X" and they are developed by using classical binary encoding

L
procedure.

The performance of the MOSGA algorithm is controlled by the
genetic operatorg that implements iterative transitions between
populations according to:

PTMOSGA+1~g(PTMOSGA), 9)
where~ is an equivalence relation.

This operator is composed of four operators, such as the
crowded-two tournament selectiondy), the uniform crossover
(A.), the mutation,,,) and the reproductionA,.) so that:

G=AsoA oAy oAy, (10)

The crowded-two tournament selection operadigrmaps then-
th string into multiple copies of itself according to @eminance
depth and crowding distance. The dominance deptHefines a
dominance degree of a certain solution, where the value “1”
corresponds to non-dominated solutions. The crowding distéhce
estimates the density of solutions surrounding kb solution,
where the values$” indicates the less crowded area.

The values of" andd" are estimated based on the values of the
performance measure§™ that are obtained from simulation
experiments. In order to reduce a computation time, the eiaduatt
solution feasibility is performed after the firstrailation replication
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based onf;(x") <y;, wherey; is a lower bound of thg-the
performance measure. If the solutigf is infeasible, then further
simulation replications are not performed.

After applying the uniform crossoved, and mutationA,,
operators, the new populatigtfMosca*? js replaced with the union
of the best parent®™0s64 and mating poaM ™os64 (reproduction
operatorA,.) in order to avoid the loss of non-dominated solutions
during the search. Dominance depths of chromosomes are updated in
the combined populatioR™o0s6a y M *™™osGA, First N solutions are
gathered for the next populati®imoséa*l and the above-described
operations are repeated.

The MOSGA algorithm is automatically terminated, when a
numberd,, .., of populations with a stagnant non-dominated set is
equal to the predefined valdé, which is defined as:

dTMOSGA = d*’ (11)

Since the MOSGA is a stochastic algorithm, it could preduc
different solutions for different random number seeds. Hsige is
supported by performing several independent optimisation
experiments based on using different random number seeds. Then, a
composite set of best non-dominated solutions is created.

The flowchart of the developed algorithm is shown in Figure 5.

( Start \__{ Define N }—»{ Tasosea =0 };. pramses = (gt .;'in:fﬁ;‘

Figure 5. Flowchart of the MOSGA algorithm
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The RSM-based linear search algorithm applied to simulation
optimisation illustrated in Figure 6 presents an iteeapprocedure
[36] that in each iteratiom includes the following steps:

* a local approximation of a response surface function by a
regression-type metamodel;

« checking the fit of a metamodel,

« alinear search in steepest descent direction.

The algorithm starts from using a linear metamodel in alsma
region of independent factors. The metamodel describes ffi@itse
of input factors as follows:

K
y"=bl'+ T b e +e™ k=1 K (12)
k=1

wherey™ is a response variablg," is a coded input factds; b," and

b are a constant and a regression coefficient of thet iimator k,
respectively; " is a statistical error of a regression model (or
residual); K is the number of input factors. In order to fit the
metamodel, the Plackett-Burman experimental design [3@k&ted

in which response values are received from simulatiper@ments.

St Select 1 = T  progtxle

ar il i
x" e PF* ulf = x5O & prog = e

e cont__mcont

- L T ., "

Perform Lack-of-Fir test

I

B

AET—
- mﬁ-’l”\ k=1_.K

meom _ _mzom _ m
R =xp T4

Termination
criterion of iteration

All x € PF~
are investigated?.

Figure 6. Flowchart of the RSM-based linear search dhgori

If the metamodel is adequate, then a local response sugac
sequentially investigated by using a linear search in the steepe
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descent direction in order to improve the values of continugust i
factors. The steepest descent direction is defined egyession
coefficientsby™, b,",..., bk™ starting from the center point of the
experimental region. The search direction is chosen asetative
of the gradientThe local search is performed for input factors that
correspond to significant regression coefficiemsdglue < 0.05). If
the metamodel is not adequate or further improvement is Bitppes
then the RSM-based linear search algorithm is terminate

In the selection stage, the Pareto-optimal f@eft is analysed in
order to select a single solution that could be mostisdaitar the
implementation in practice. For that, the compromise progragimin
method [54] is used. It is based on identifying an ideadie-off
solution, for which optimal values of objectives are usugiNyen by
the decision maker. Then, the task is to find a solutionishzlbsest
to the ideal one. To calculate the degree of closertesdpliowing
distance metrit.;, is used:

Lp: p(s\,norm’znorm) — (29/1:1|y}10rm _ Zjnorm|p)1/p! (13)

wherep;**"™ is a normalised value of thh performance measure in
the Pareto-optimal frorPF*; z**™™ is a normalised ideal value of

thejth performance measurg;is the distance between the ideal and
Pareto-optimal solution measured on the objective spads; a
power parameter ranging from 1cto

Multi-objective simulation optimisation for supply chain clic
planning

In Chapter 4, as a test bed for checking the efficiencyhef t
developed methods and algorithms, the multi-echelon cyclic
planning is investigated, and the corresponding optimisationgrobl
is formulated. A prototype of the software environment is lbgpesl
for solving the formulated problem.

Multi-echelon supply chain planning can be interpreted as a
complex process, wherein various business entities $uppliers,
manufactures, distributors, and retailers) work together ieraia
acquire raw materials, convert these raw materialssipgaified final
products, and deliver these final products to end-customers.amo pl
and control this complex process at the product maturitysepha
cyclic planning policy can be used. It provides the follmyvimain
benefits: the implementation simplicity, the reduction of
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administrative costs and the decrease of safety stocksedmetw
echelons [34].

The basis of cyclic planning policy constitutes the cootainao
be combined with the synchronisation of sub-processes avéinth
[10, 19]. Here, coordination consists in making trade-off éd@tsson
the basis of arranged interactions among system eleifs@jtsThe
synchronisation enables planning every process in the supply chain
on a repetitive, “cyclic” basis and fitting the procegsles together,
while accounting for the lags of lead times between periods of
process initialisation and completion (see Figure 7).

| Supplier H Manufacturer H Wholesaler H Retailer =
customer
P

s

iy 2 =
g | 2 E H g
W1 W2 W3 W4 W1 W2 W3 W4 Wi W2 W3w4 Wi W2 WiWw4
Time Time Time Time

Figure 7. Synchronisation of planning wheels in multi-echelon
supply chain [37]

In literature, the parameters of synchronisation policGes
optimised by using analytical models [8, 10, 11, 17]. At thmes
time, simulation technology provides possibilities for maalistic
modelling of supply chain operation and extends conditions of
analytical models to backordering and model-specific constrai
[34].

The problem [37] is to determine near-optimal values of cycli
planning parameters (i.e., process cyclgsand order-up-to levels

OUL) for each of supply chain stock points= 1,1 such that the
vector of performance measures represented by total Cosnd fill

rate FR is optimised with respect to the imposed constraints.
Consequently, two objective functions are introduced in thblgm.
The first one is to minimise the average total @j3tC] represented

by a sum of production, setup and inventory holding costs, i.e.:
Miny; = E[TC] = E[ (14)
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T ¥ _1QPy * CP; + (production cost)
Yt (T/Cyiej) *CS;+  (setup cos)
Z{zzzls(mw% * CH; + (holding costs of the last eche)on
Z{:12|S(i)|¢0 H; * CH; ], (holding costs of other echelgns

whereHj; is on hand inventory at stock poinat the end of periot
QP is a production order made by stock paiim periodt; CP, is
unit production cost in procegsC§ is setup cost in procegsCH; is
unit inventory holding cost at stock pointS(i) indicates a set of
stock points immediately succeeding the stock pg@int is the
number of periods in the planning horizdris the number of stock
points,J is the number of processes.

The second objective function is to maximise the average groduc
fill rate E[FR] calculated as the fraction of demand that can be
satisfied directly from the inventory. The product fill r&epressed
as a percentage is calculated as the sum of order igmstitpped to
end-customers during the planning horizon divided by the total end
customers demand and multiplied by 100, i.e.:

Max y, = E[FR] =
= E[100 * X{_1 Xioy Bk=1 QCritc / Ti=1 Xi=1 Xik=1 Deirc) (15)

where Dy;; is actual demand of end-custonteto stock pointi in
periodt; QG is the sum of orders delivered by stock paitd end-
customeik in periodt; K is the number of end-customers.

Feasibility of multi-echelon supply chain cyclic planning
solutions is evaluated by using the following stochastic and
deterministic constraints:

Cy=2r i=1,.), (16)
Cynin< CY: <Cl¥max i=1,...J, (17)
Hi>CAR i=1,..], (18)
E[FR] > FRyin i=1,...). (19)

Cyclic planning constraint (16) is introduced to synchronise
cycles in accordance wittne power-of-two policy wherein process
cycles are power-of-two multipled2in relation to a basic planning
period 7, where p is a nonnegative integer; decision variables
constraint (17) imposes lowe€¥i,) and upper Cymay bounds on
process cycley;; capacity constraint (18) defines that on hand
stockH;; at the end of periotlis not allowed to exceed the storage
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capacityCAR of stock point; fill rate constraint (19) defines that the
average fill rate must be higher or equal to a pre-defiolver bound
F:F%nin-

The prototype of the software environment (see Figure 8)
designed for solving the multi-echelon cyclic planning problem
includes four components [34], such as (i) database compdiient,
procedural component, (iii) process component and (iv) optiimisa
component.

Supply chain Supply chain
structure parameters

=S
y Optimisation
I component

i
i Execute
Near-optimal <

i h the two-phase
solution
scarch method

Simulation
model output
database

,,,,,,,,,,,,,,,,,,, | S
| Process
I component

Procedural
component

decision
variables

Feasible
solution
space

—I Initial v.mlcs/

of decision
variables

Run simulation

model
Perform automatic
generation of

simulation model

Perform analytical
caleulus

Figure 8. The prototype of the software environment for sitiona
based optimisation

Database component is used to store supply chain structure and
parameters. Based on these data, procedural component ealculat
analytically initial values of cyclic planning parameteiProcess
component (i) automatically generates supply chain simulation
model from the data obtained from procedural and database
components; and (ii) runs the model for estimating the vatdes
supply chain performance measures. Optimisation componesgds
to find near-optimal values of multi-echelon cyclic plamg
parameters.

The components are developed by using MS Excel, Microsoft
Visual Basic for Applications (VBA) and ServiceModel Praiesal
7.0 simulation environment. Data exchange between MS Ercel a
ServiceModel is supported by ProModel ActiveX Automation
capability.
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Approbation of the developed methods and algorithms

In Chapter 5, the developed methods and algorithmspgnieed
to simulation optimisation of multi-echelon cyclic planning
parameters.

In case study lthree-echelon linear supply chamanalysed as a
simplified example. The ServiceModel-based simulation masle
generated automatically using the developed software environment.
The following assumptions are introduced in the model. The end
customer demand is normally distributed. Process cycles are
presented in days according to the power-of-two policy, i.€2; 4,

8, 16, 32, where 32 is the maximal cycle value that cornelspto

one full turn of the “planning wheel”. Process lead times a
considered to be normally distributed. Stock point 1 has iafioit
hand stock and is not controlled by any policy. Backorders are
delivered in full. The length of one simulation replication poises

192 periods or 4608 hours (192*24), which allows modelling six full
turns of the “planning wheel”.

Case study 1 includes five scenarios (1.1-1.5). In Scedatio
the approximation accuracy is evaluated based on measinéng
difference between the true and approximate Pareto-optimak fron
and is equal to 98.40%:

The true Pareto-optimal fronPF* is obtained by using the
exhaustive enumeration, whereas the approximate Paretcabptim
front PF* is generated by the MOSGA algorithm. As a result, the
MOSGA found four of five true Pareto-optimal solutionseaftive
independent executions of the algorithm (see Figure 9).
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Figure 9. The search space (on the left) and the approxiasd¢o-
optimal front (on the right)

C o

In scenarios 1.2-1.5, the quality of solutions and the nurober
optimisation iterations required by the two-phase $earethod are
compared with those received by SimRunner® and OptQuest®
optimisation software. This commercial software (Scenar? and
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1.3) finds only a single solution instead of the Paretgyag front.
Moreover, SimRunner® and OptQuest® require 790 and 435
iterations, respectively. However, the developed methederates
the approximate Pareto-optimal front in only 49 iteradioout of
which the numbers of iterations of the MOSGA algorithm ared th
RSM-based linear search algorithm are equal to 42 and 7,
respectively. As a result, four trade-off solutions are fotimat
simultaneously provide significant decreasing of total casd
increasing of product fill rate (see Table 3).

Table 3

Comparison of results for Scenarios 1.2-1.4

Scenarios Solution No|. TC, € FR, %
SimRunner® 1 33,521,268 88.18 790
OptQuest® 1 33,656,637 87.36 485
The two-phase 1 30,651,322, 100.0¢ 49
search method 2 30,579,657 98.64

3 30,445,235 97.55

4 30,307,412 91.73

5 29,972,845 87.09

6 29,923,670 79.09

The compromise programming method is applied to define which
of scenarios provides a solution that is closest to the wiee. For
experiments conducted, the average total cost and avdtagtefof
an ideal solutionz are taken asTC = €29,000,000 andFR =
100.00%, respectively. Hence, the distance values areagstirby
the distance metric (13) as applied to solutions obtainestdyarios
1.2-1.4. As a result, it is indicated that the third sotu{p = 0.332)
of the two-phase search method is the most closest idethlepoint.

Case study 2 is aimed at optimising cyclic planning patermén
five-echelon generic supply chairManufacturing plants of a
chemical company “Huntsman Advanced Materials” denoted
conditionally as DE and CH are located in Germany and Czech
Republic, respectively. Customers come from Spain, Germany and
United Kingdom. Raw materials are first converted to theidiqu
based raisin in the plant CH. Then, they are either delivio direct
customers in Frankfurt and Pamplona or shipped to the plant D
where other components are added in order to make different
chemical products. Finally, the end-products are shipped to
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customers connected with this plant. The layout of suppbinc
simulation model is shown in Figure 10.

Figure 10. Layout of supply chain simulation model

The corresponding ServiceModel-based simulation model is
described as follows. It is represented by 42 stagesngwused into
42 stock points and 41 processes. Stock points 20-27 thattoefe
direct customers are not controlled by any policy. Thus, the numbe
of stock points with parameters to be optimised is equa3t and
the corresponding number of decision variables is 66. Thanalin
process cycle is equal to 7 days, and the maximal cyctpidd & 56
days, which corresponds to one full turn of a “planning wheel”.
Initial stocks at end-customer echelons are equal to ofplr-levels
plus average demand multiplied by cycle delays. The lengtnef
simulation replication is defined by 224 periods or 5376 haungch
allows modelling four full turns of the “planning wheel”.

Scenarios 2.1-2.3 are organised similarly to scendrd4.4. In
particular, the following results are obtained by the two-plsasech
method. In Phase 1 the MOSGA works with 66 decision vagable
Initial values of order-up-to levels are calculated analfgicand
values of process cycles are generated randomly. Figureolds sh
examples of initial and final populations in a specific aeti®n
mapped in the objective space. Figure 12 shows the convergence
the MOSGA to solutions with lower total cost and higher rfilte.
The Pareto-optimal front received in generations 19-21 agwnt
three solutions with the following expected values of perfocea
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measures: (ifC=€787,431FR = 100.00%; (i)TC = €766,669 FR
= 08.88%; (iii)TC=€752,300FR = 93.76%.
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Figure 12. The MOSGA performance graphs

In Phase 2 the RSM-based linear search algorithm is used to
adjust order-up-to levels of three non-dominated solutionsvextei
with the MOSGA while fixing process cycles. Finally, theerage
total costTC and average fill ratER of the second solution are equal
to €756,178 and 98.88%, respectively. The updated Pareto-optimal
front is shown in Figure 13.
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Figure 13. The approximate Pareto-optimal front
obtained in Phase 2

In the selection stage, the ideal solution is definedThy=
€700,000 and=R = 100.00%. As a result, the second solution from
the Pareto-optimal front in Figure 13 € 0.276) is selected by using
the compromise programming method.
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RESULTS AND CONCLUSIONS OF THE THESIS

The aim of the doctoral thesis was to develop the method and

algorithms for solving multi-objective stochastic simulatimased
optimisation problems with constraints and mixed decisiorakbes,
and to apply them to multi-echelon supply chain cyclic planning.

The results and conclusions of the thesis are the following:

1) Analysis of the state-of-the-art of simulation optimisatand the

2)

3)

4)

multi-objective  optimisation problem statement allowed
formulating the requirements to the problem solving techniques.
The main requirements claimed for minimising the Euclidean
distance between the true and approximate Pareto-optiomas f
maximising the diversity of the Pareto-optimal solusion
minimising the number of non-dominated solutions that could be
lost during the transition from one optimisation iterationthe
other; minimising the total number of simulation optimisati
iterations; generating the discontinuous Pareto-optifraits;
using mixed decision variables, and including the uncertaihty
system environmental variables into the search process.
Analysis of multi-objective evolutionary algorithms showedtth
these algorithms are able to satisfy most of the opimis
problem requirements. They, however, cannot simultaneously
ensure high approximation accuracy and diversity of thetdrare
optimal front, and require a large number of iterationerder to
generate this front.

Morphological analysis of hybrid multi-objective evolutionary
algorithms allowed defining the best combination of their
parameters in order to satisfy the formulated requireméntsie
same time, the existing algorithms, sucthglsrid EA and hybrid
NSGA-II corresponding to the revealed best combination
required modification due to ineffective use of a global lacdl
search in case of operating with mixed decision variabies a
optimising stochastic objective functions.

The simulation-based hybrid optimisation method was developed
that integrates the two-phase search and compromise
programming methods. The proposed two-phase search method
allows combining the advantages of global and local search
approaches, simultaneously increasing an approximation
accuracy and diversity of the Pareto-optimal front, ad agl
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5)

6)

7)

decreasing the number of simulation optimisation iteratidhe
compromise programming method was applied for selecting a
single solution from the Pareto-optimal front for its
implementation in practice.

The developed multi-objective simulation-based genetic
algorithm includes blocks and mechanisms for encoding diploid
chromosomes, uniform population initialisation mechanism, the
penalty-based constraint handling technique, the dominance-
based termination criterion and a heuristic rule for redya
computation time. The combined use of these blocks and
mechanisms allowed, on the one hand, examining unvisited
regions and generating solutions that differ from previously
observed ones, and, on the other hand, exploring more carefully
the portion of the search space that seems to be more prgmis
The created prototype of the software environment unifies and
integrates modelling, simulation and optimisation of dyelic
schedules for multi-echelon supply chain planning. It stgghe
main stages of simulation-based optimisation procedatading

a supply chain description in MS Excel format, an automatic
generation of supply chain simulation models, and optimisation
of simulation model parameters by using the developed methods
and algorithms.

The developed methods and algorithms were applied for cyclic
planning in a linear supply chain and a generic supply chain of
the chemical manufacturing company. The results obtained
demonstrated high approximation accuracy of the Pareto-dptima
front that is equal to 98.4 %n addition, sequential using of
global and local search approaches in case studies allowed
significant decreasing of the number of simulation optitiiea
iterations in comparison with commercial software sush a
SimRunner® and OptQuest®.
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