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GENERAL DESCRIPTION OF THE THESIS 
 
Research motivation 

The development of the modern world economy and globalisation 
tendency has encouraged the appearance of a new class of problems 
in the field of complex systems and process optimisation. These 
problems are characterised by multiple and stochastic performance 
measures and constraints, and a large number of discrete and 
continuous (mixed) decision variables, which significantly 
complicates the problem solution process. Therefore, there is a 
growing need for new optimisation methods and algorithms, which 
would be capable of solving the outlined problems. 

The combination of stochastic simulation and multi-objective 
optimisation is considered to be one of the most promising research 
directions related to optimisation of complex systems and processes. 
A significant contribution to the development of this research 
direction is made by Syberfeldt, Merkuryev, Amodeo, Prins, 
Sánchez, Lee, Chew, Teng and Chen [4, 31, 35, 50]. Nevertheless, 
there are still many research problems to be solved. 

First, there is no full agreement on which simulation-based 
optimisation methods and algorithms should be used to efficiently 
investigate a search space and its regions at a low number of 
optimisation iterations. In addition, this problem is complicated by 
the need to improve the approximation accuracy of a Pareto-optimal 
front, when analytical estimates of objective functions are not 
available. Second, an experimental research on the best combination 
of a global and local search approaches for generating Pareto-optimal 
solutions is required. Finally, there exists a class of application 
problems referred to cyclic planning of complex systems, for which 
powerful optimisation methods should be developed. In the thesis, 
the research for these problems is predominant. 
 
The goal and the tasks of the thesis 

The thesis is aimed at developing methods, algorithms and a 
prototype of a software environment to solve multi-objective 
stochastic simulation-based optimisation problems with constraints 
and mixed decision variables, as well as to apply them to multi-
echelon cyclic planning. To achieve this aim, the following tasks are 
specified: 
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1) To analyse existent approaches and methods of multi-objective 
stochastic simulation optimisation in order to formulate the 
requirements for solving the proposed problem. 

2) To develop methods and algorithms, which allow simultaneously 
providing approximation accuracy and diversity of a Pareto-
optimal front while minimising the number of simulation 
optimisation iterations by integrating evolutionary computation 
and response surface methodology.  

3) To develop main blocks and mechanisms of the genetic algorithm 
and response surface-based linear search algorithm by combining 
the advantages of the global and local search approaches. 

4) To create a prototype of the software environment that allows 
analysing input data, developing simulation models and 
optimising their parameters. 

5) To apply developed methods and algorithms in solving supply 
chain cyclic planning problems. 

 
The object and the subject of the research 

The object of the research is multi-objective stochastic 
simulation-based optimisation with constraints and mixed decision 
variables.  

The subject of the research is the development of methods and 
algorithms for searching Pareto-optimal solutions with application to 
multi-echelon cyclic planning. 

 
Research methods 

The research is based on using discrete-event simulation, multi-
objective optimisation, morphological analysis, statistical analysis, 
evolutionary computation, response surface methodology (RSM) and 
supply chain cyclic planning methods. 

 
Scientific novelty 

The scientific novelty of the thesis is as follows: 
1) Morphological analysis of well-known hybrid multi-objective 

evolutionary algorithms enabled defining the best combination of 
their parameters in accordance with the requirements for the 
proposed problem solving. 

2) Two-phase search method is based on the combination of the 
global and local search approaches, which are aimed at providing 
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the diversity of Pareto-optimal solutions and increase their 
approximation accuracy, respectively.  

3) Main blocks and mechanisms of a multi-objective simulation-
based genetic algorithm are developed including a mechanism for 
encoding diploid chromosomes, uniform population initialisation 
mechanism, a penalty-based constraints’ handling technique, a 
dominance-based termination criterion and heuristic rule for 
decreasing the number of simulation replications. 

4) The developed prototype of the software environment enables 
optimising parameters of the cyclic schedules for supply chain 
planning. 

 
Practical value 

The proposed prototype of the software environment supports the 
main stages of simulation-based optimisation including a supply 
chain description in MS Excel format, an automatic generation of the 
corresponding simulation models, as well as optimisation of 
simulation model parameters by using the methods and algorithms 
developed in the doctoral thesis. The implementation of these stages 
minimises the time and efforts required for creating simulation 
models and performing optimisation experiments. 

The developed methods and algorithms are applied to Huntsman 
business case in order to define the optimal lengths of process cycles 
and stock point order-up-to levels during the maturity phase of the 
product life cycle. They can be also used for solving cyclic planning 
problems in different complex systems. In comparison with other 
optimisation tools the search for Pareto-optimal solutions requires 
less simulation optimisation iterations due to sequential using of 
global and local search approaches. 
 
Approbation of the obtained results 

The results of the thesis have been presented at 11 international 
scientific conferences: 
1) International Conference “24th European Conference on 

Operational Research” (EURO 2010), Lisbon, Portugal, July 
11-14, 2010. 

2) RTU 50th International Scientific Conference, Section 
“ Information Technology and Management Science”, Riga, 
Latvia, October 14-16, 2009. 
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3) International Conference “13th IFAC Symposium on 
Information Control Problems in Manufacturing” 
(INCOM’2009), Moscow, Russia, June 3-5, 2009. 

4) International Conference “European Modelling and Simulation 
Symposium” (EMSS’2008), Campora San Giovanni, Amantea 
(CS), Italy, September 17-19, 2008. 

5) RTU 49th International Scientific Conference, Section 
“ Information Technology and Management Science”, Riga, 
Latvia, October 13-15, 2008. 

6) International conference “20th International EURO Mini 
Conference „Continuous Optimization and Knowledge-Based 
Technologies” (EurOpt’2008), Neringa, Lithuania, May 20-23, 
2008. 

7) International Conference “10th International Conference on 
Computer Modelling and Simulation” 
(EUROSIM/UKsim’2008), Cambridge, Great Britain, April 1-
3, 2008. 

8) International Conference “6th EUROSIM Congress on 
Modelling and Simulation” (EUROSIM’2007), Ljubljana, 
Slovenia, September 9-13, 2007.  

9) International Conference “European Modelling and Simulation 
Symposium” (EMSS’2006), Barcelona, Spain, October 4-6, 
2006. 

10) International Conference “European Conference of Modelling 
and Simulation” (ECMS’2005), Riga, Latvia, June 1-4, 2005. 

11) RTU 45th International Scientific Conference, Section 
“ Information Technology and Management Science”, Riga, 
Latvia, October 14-16, 2004. 

The results have been published in 13 scientific papers including 
1 book chapter published by Springer, 1 paper in the International 
Journal of Simulation and Process Modelling and 11 papers in 
scientific proceedings of international conferences: 
1) Merkuryeva G., Napalkova L. Two-Phase Simulation 

Optimisation Algorithm with Applications to Multi-Echelon 
Cyclic Planning// International Journal of Simulation and 
Process Modelling (IJSPM). - 2010. - Vol.6. - No.1. - p. 7-18 
http://www.inderscience.com. Compendex, Inspec. 

2) Napalkova L. Hybridisation of evolutionary algorithms for 
solving multi-objective simulation optimisation problems// 
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RTU 50th International Scientific Conference. - Riga: 
Publishing House of RTU, October 14-16, 2009. - p. 9-15 
EBSCO, CSA/ProQuest, VINITI. 

3) Merkuryeva, G., Napalkova, L. Multi-Objective Genetic Local 
Search Algorithm for Supply Chain Simulation Optimisation// 
International Conference on Harbor, Maritime & Multimodal 
Logistics Modelling and Simulation. – Tenerife: Universidad de 
la Laguna, September 23-25, 2009. - p. 190-194 Thomson SCI. 

4) Merkuryeva, G., Napalkova, L., Vecherinska, O. Simulation-
Based Analysis and Optimisation of Planning Policies over the 
Product Life Cycle within the Entire Supply Chain// The 13th 
IFAC Symposium on Information Control Problems in 
Manufacturing. - Oxford: “IFAC Publishers”, June 3-5, 2009. - 
p. 580-585 IFAC-PapersOnLine. 

5) Merkuryeva, G., Napalkova, L. Supply Chain Cyclic Planning 
and Optimisation. Simulation-Based Case Studies in Logistics: 
Education and Applied Research. - London: Springer-Verlag, 
2009. - p. 89-107 SpringerLink. 

6) Merkuryeva, G., Napalkova, L. Two-Phase Simulation 
Optimisation Procedure with Applications to Multi-Echelon 
Cyclic Planning// The 20th European Modelling and Simulation 
Symposium (EMSS’2008). - Genoa: University of Genoa, 
September 17-19, 2008. - p. 51-58 Thomson SCI. 

7) Merkuryeva, G., Napalkova, L. Development of Multi-
Objective Simulation-Based Genetic Algorithm for Supply 
Chain Cyclic Planning and Optimisation// The 20th 
International EURO Mini Conference “Continuous 
Optimisation and Knowledge-Based Technologies” 
(EurOpt’2008). - Vilnius: VGTU Publishing House “Technika”, 
May 20-23, 2008. - p. 444-449.  

8) Napalkova, L., Merkuryeva, G. Theoretical Framework of 
Multi-Objective Simulation-Based Genetic Algorithm for 
Supply Chain Cyclic Planning and Optimisation// The 10th 
International Conference on Computer Modelling and 
Simulation (EUROSIM/UKSim’2008). – Cambridge: IEEE 
Computer Society, April 1-3, 2008. - p. 467-474 Scopus, 
Compendex, CS Digital Library. 

9) Merkuryeva, G., Merkuryev, J., Napalkova, L. Simulation-
Based Environment for Multi-Echelon Cyclic Planning and 
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Optimisation// The 19th European Modelling and Simulation 
Symposium (EMSS’2007). – Genoa: University of Genoa, 
October 4-6, 2007. - p. 318-325 Thomson SCI. 

10) Merkuryeva, G., Napalkova, L. Development of Simulation-
Based Environment for Multi-Echelon Cyclic Planning and 
Optimization// The 6th EUROSIM Congress on Modelling and 
Simulation (EUROSIM’2007). - Ljubljana: 
EUROSIM/SLOSIM, September 9-13, 2007. - p. 1-9.  

11) Napalkova, L., Merkuryeva, G., Piera, M.A. Development of 
Genetic Algorithm for Solving Scheduling Tasks of FMS with 
Coloured Petri Nets. International Mediterranean Modelling 
Multiconference. – Barcelona: LogiSim, October 4-6, 2006. - p. 
135-140 Thomson SCI. 

12) Merkuryeva, G., Napalkova, L. Applications of NeuroFuzzy 
Training Algorithms to Simulation Metamodelling// The 19th 
European Conference of Modelling and Simulation 
(ECMS’2005). – Riga: Publishing House of RTU, June 1-4, 
2005. - p. 745-749 Thomson SCI. 

13) Merkuryeva, G., Napalkova, L. Applications of NeuroFuzzy 
training algorithms to analysis of business processes// RTU 
45th International Scientific Conference. – Riga: Publishing 
House of RTU, October 14-16, 2004. - p. 141-148.  

The obtained results have been used within the following 
research projects: 
1)  “Simulation-based optimisation using computational 

intelligence” (a research grant from the Latvian Council of 
Science). Project leader: Dr.habil.sc.ing., Prof. Y. Merkuryev. 
2009 - 2012. 

2) Specific targeted research project NMP2‐CT‐2006‐032378 
ECLIPS “Extended Collaborative Integrated Life Cycle Supply 
Chain Planning System” of the EU funded Sixth Framework 
Programme. RTU coordinator and leader: Dr.habil.sc.ing., Prof. 
Y. Merkuryev. 2006 – 2009. 

The scientific importance of the methods and algorithms 
developed in the doctoral thesis is approved by the Certificate of 
Significant Academic Contribution issued by MÖBIUS Ltd. in the 
scope of the task “Maturity phase best practice development” within 
the ECLIPS project.  
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Structure of the thesis 
The doctoral thesis consists of introduction, 5 chapters, 

conclusions, bibliography and 4 appendixes. The thesis contains 156 
pages, 65 figures and 14 tables. The bibliography contains 205 
entries. The thesis is structured as follows: 

Introduction motivates the research, formulates the research aim 
and tasks, defines the research object and subject, describes research 
methods used in the thesis, and explains scientific novelty, practical 
use and approbation of the thesis. 

Chapter 1 “Statement of the multi-objective simulation 
optimisation problem” discusses the main aspects of complex 
process optimisation including supply chain planning. The chapter 
formulates the investigated problem as a multi-objective stochastic 
simulation-based optimisation with constraints and mixed decision 
variables. The state-of-the-art in simulation optimisation is analysed. 
Basic approaches to the problem solving are reviewed with respect to 
the requirements formulated. 

Chapter 2 “Analysis of methods for multi-objective simulation 
optimisation” analyses simulation optimisation methods aimed at 
searching for Pareto-optimal solutions with respect to the problem 
requirements specified. Morphological analysis of hybrid multi-
objective evolutionary algorithms is then performed to identify the 
best combination of the values of parameters for the problem solving. 

Chapter 3 “Framework of the simulation-based hybrid 
optimisation method” presents a two-phase search and compromise 
programming methods, which comprise the simulation-based hybrid 
optimisation method. The two-phase search method includes the 
blocks and mechanisms of a multi-objective simulation-based genetic 
algorithm and RSM-based linear search algorithm. To select a single 
solution from the Pareto-optimal front, the compromise 
programming method is used. 

Chapter 4 “Multi-objective simulation optimisation for supply 
chain cyclic planning” investigates the features of a supply chain 
cyclic planning process and presents a formalised problem statement 
including variables, performance measures and constraints. Then, it 
develops a prototype of the software environment for simulation-
based optimisation of supply chain cyclic planning parameters. 

Chapter 5 “Approbation of the developed methods and 
algorithms” evaluates the effectiveness of the developed methods 
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and algorithms based on solving supply chain cyclic planning 
problems. For that purpose, both simplified and Huntsman business 
case studies are accomplished. 

Results and conclusions of the thesis  
Bibliography 
Appendixes 
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SUMMARY OF THESIS CHAPTERS 
 
Statement of the multi-objective simulation optimisation problem 

In Chapter 1, an optimisation problem of complex 
systems/processes is formulated as a multi-objective stochastic 
simulation-based optimisation problem with constraints and mixed 
(both continuous and discrete) decision variables. The state-of-the-art 
in simulation optimisation is analysed with respect to the advantages 
and disadvantages of existing methods. The requirements for the 
problem solving are formulated, and a basic problem-solving 
approach is selected for further investigation. 

The optimisation of complex systems/processes plays a vital role 
in the growth and profitability of modern business companies. In 
order to perform optimisation of such systems/processes, a link 
between simulation and optimisation is often indispensable. Due to 
that, simulation optimisation becomes a central part of many 
scientific and technological investigations [12, 21].   

The main emphasis of the doctoral thesis is placed on the class of 
“complex management processes” that are typical for supply chain 
tactical planning and for solving many similar optimisation problems 
in the separate stages of a supply chain, i.e., procurement, 
production, distribution and sales. A complex management process is 
interpreted as abstraction of a dynamic system that adapts to steadily 
changing and unpredictable environment. In general, this kind of 
system is characterised by the following six features [57, 58]: 
a) a hierarchical network-based structure;  
b) a large number of decision variables including both discrete and 

continuous ones;  
c) an emergent behaviour of the system as a whole;  
d) a conflicting behaviour of system elements;  
e) multiple performance measures; and 
f) a stochastic nature.   

The hierarchical network-based structure of a system provides 
that decisions at a given level depend on the decisions made at 
upstream and downstream levels.  

A large number of continuous and discrete decision variables 
results from a system size and the number of links between system 
elements, which increases computational complexity of simulation 
optimisation problem.  
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The system’s emergent behaviour means that it cannot be 
predicted merely on the basis of understanding the behaviour of the 
system elements or from understanding interactions between them. In 
opposite, all these elements working together should be investigated 
[9, 44]. 

The conflicting behaviour of system elements can generate 
conflicting planning decisions.  

The multiple performance measures of a complex system 
encourage searching for a set of the best trade-off solutions instead of 
a global optimal solution.  

Finally, the stochastic nature comes from the dependence of 
system performance on uncertainty of the behaviour of its 
environment. This refers to unpredictable changes in values of 
system environmental variables over time. 

The known optimisation methods that use analytical models like 
mixed integer programming, non-linear programming and stochastic 
dynamic programming, are not designed to deal with all the above-
mentioned features of complex systems. Even if the optimisation 
problem can be formulated analytically, there could be a lack of an 
efficient analytic or heuristic solving method. Moreover, in some 
cases mathematical simplifications introduced in analytical models 
could result in suboptimal solutions. 

In contrast, the simulation technology does not require a rigid 
structure of the analytical model and provides an experimental 
approach to a complex system/process analysis [34, 45, 48]; 
combined with optimisation it is called the simulation optimisation 
approach. Here, the optimisation module runs a stochastic discrete-
event simulation model N times in order to map the model input 
variables x into performance measures ��, where N is the number of 
simulation replications. At each replication i, the model is executed 
during T periods (Figure 1). 

At each iteration τ, the optimisation module attempts to improve a 
solution. Comparing both current and previous estimates of objective 
function values or performance measures produced by the simulation 
model, it guides a search toward a near-optimal direction; and these 
estimates are influenced by stochastic environmental variables zt of 
the model at discrete points of time � ∈ [1, 	], which requires 
estimating the mathematical expectation �[∙] of objective functions. 
The optimisation model generates new values of decision variables to 
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approach nearer to optimal solution x*. These actions are performed 
until the termination criterion is satisfied. 

 
Figure 1.Operational scheme of the simulation optimisation approach 

 
Related variables and parameters of simulation optimisation are 

specified in the vector form, i.e.: 
a) input vector x of K input variables, x = (x1,..., xK) ∈ X, where the 

decision space 
 ⊆ ℝ� is defined in a set of positive real 
numbers. In the context of optimisation, these variables are called 
decision variables; 

b) vector c of B model parameters, i.e., constants, c = (c1,...,cB) ∈ C, 
where C is the space of model parameters; 

c) disturbance vector zt of D environmental variables, �� =
(���, … , ��� ) ∈ �, where Z is the space of environmental variables, 
� ∈ [1, 	] is a period, and T is the length of a simulation 
replication measured in periods (hours, days, weeks, etc.); 

d) state vector st of R state variables, �� = (���, … , ��� ) ∈ �, where S 
is the space of state variables. These variables characterise 
elements of the system and their relations with other elements at 
� ∈ [1, 	]; 

e) output vector yt of M output variables (i.e., performance 
measures), �� = (���, … , � � ) ∈ !, where Y is the objective space. 
Values of output variables are the responses generated by the 
simulation model at � ∈ [1, 	]. 
The optimisation methods that are able to produce solutions by 

using simulation models instead of analytical expressions are called 
simulation optimisation methods [7]. Summarising the reviews of 
Andradottir [5], Azadivar [7], Merkuryev and Visipkov [35], Fu [21], 
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and Ólafsson and Kim [43], the shortcomings of the major 
optimisation techniques used in the area of simulation optimisation 
are defined as follows: 
• Response surface methodology (RSM) provides statistical 

significance of solutions and reproducibility of regression 
metamodels, while having a slow convergence to a global 
solution. 

• Stochastic approximation (SA) and sample path optimisation 
(SPO) methods require a large number of simulation optimisation 
iterations. 

• Ranking and selection (RS) are only applicable to optimisation 
problems with a relatively small decision space. 

• Heuristics (Hs) provide a good performance with a high 
probability on the average, while not guaranteeing that a global 
optimal solution will be found. 
This analysis reveals that simulation optimisation methods have 

been mainly applied to single-objective optimisation problems 
[1, 6, 13, 27], whereas multi-objective problems have been often 
solved by aggregating multiple performance measures into a single 
one [3, 46]. In addition, a number of single-objective and multi-
objective simulation optimisation methods are developed for specific 
applications, e.g., manufacturing high-technology components for 
aircraft- and gas turbine engines [50], the kanban sizing [23] and the 
inventory management [3]. Thus, there is a need for a method, which 
on the one hand can cope with the above-discussed features of 
complex systems by using simulation models, but on the other hand 
is general enough to be applicable to a diversity of these systems.  

Here, the optimisation problem is formulated mathematically as a 
multi-objective stochastic simulation-based optimisation problem 
with constraints and mixed decision variables:  

 opt%∈&  �� = ((%) = ) ��℘(�)+�,
�-� = �[.(�,)], (1) 

 where �� = /(%, 0, �1, �1), 

 subject to  
: 9:(%) = �[;(�,)] ≥ 0,
>(%) = �[?(�,)] = 0,@ (2) 

where  f : X→Y’ is a vector of objective functions, which links values 
of a decision vector x ∈ X with corresponding expected 
values of  an output vector �� ∈ Y’, where Y’ is an approximate 
objective space;   
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 �[∙] denotes the mathematical expectation;  
 ℘ is a probability density function of a random vector of 

environmental variables;  
φ represents a mapping that results from a simulation 
algorithm;  
g, h define vectors of inequality and equality constraints;  

 ωωωω, γγγγ, ηηηη present vectors of stochastic sample response 
functions. 

Based on the state-of-the-art of simulation optimisation and the 
problem statement (1)-(2), the following requirements to the 
optimisation method are specified:  
R1.  minimise an Euclidean distance d between the true Aℱ∗ and 

approximate AℱD ∗ Pareto-optimal fronts:  
 min +(Aℱ∗, AℱD ∗); (3) 
R2.  maximise a diversity HI of the Pareto-optimal solutions 

%I ∈ AℱD ∗ to have a wide range of variety: 

 max ∑ HIMAℱD ∗M
I-� , (4) 

where MAℱD ∗M is the number of solutions in the Pareto-optimal 
front AℱD ∗; i is an index of a solution; 

R3.  minimise the number NO of non-dominated solutions that are 
lost during the transition from iteration τ to iteration τ+1: 

 min ∑ NOO∗
O-� ; (5) 

R4.  minimise computational costs defined as a total number τ of 
simulation optimisation iterations; 

R5.  generate discontinuous Pareto-optimal fronts; 
R6.  use both continuous and discrete decision variables; 

R6.1. use global search methods for exploring the large space 
of discrete and continuous decision variables; 

R6.2. use local search methods for exploring small regions 
around continuous decision variables to approach 
Pareto-optimal solutions as close as possible; 

R7.  include the uncertainty of system environmental variables in the 
search process. 

The general problem solving process is composed of two stages: 
1) the search stage aimed at generating the approximate Pareto-

optimal front APD ∗; 
2) the selection stage aimed at choosing a single solution x* for the 

implementation in practice.  
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Depending on how these stages are combined, three basic 
approaches can be indicated, such as selection before search, 
selection during search and selection after search. Analysis of these 
approaches determines selection after search as the most preferable 
one for solving the problem formulated in the thesis. The advantage 
of this approach is that it is compatible with single-objective methods 
that should be executed several times with different settings in order 
to obtain the approximate Pareto-optimal front, and with multi-
objective optimisation methods that require only a single execution. 
 
Analysis of methods for multi-objective simulation optimisation 

Chapter 2 analyses multi-objective evolutionary algorithms 
(MOEAs) and compares them with the other simulation optimisation 
methods and algorithms, such as RSM, SA, SPO, RS and Hs. Then, a 
hybrid combination of the properties of the known simulation 
optimisation methods and algorithms is determined in order to satisfy 
the requirements R1 ÷ R7. 

The analysis reveals that RSM-based, SA and SPO methods are 
used to optimise only continuous decision variables, whereas these 
methods and also heuristics cannot generate discontinuous Pareto-
optimal fronts. 

In contrast, the MOEAs [14, 20, 25, 29, 47, 55, 56] are able to 
evolve a set of non-dominated solutions instead of a single one and 
to explore a large search space with continuous and discrete decision 
variables. However, their essential disadvantage is that they are often 
unable to simultaneously provide a high approximation accuracy and 
diversity of the Pareto-optimal front at a small number of simulation 
optimisation iterations. 

The comparison of the simulation optimisation methods and 
algorithms shown in Table 1 demonstrates that none of them satisfies 
all the requirements R1 ÷ R7. This table also indicates that the most 
rational way of solving the problem (1)-(2) is to compose a method 
based on determining the best combination of MOEAs with other 
methods and algorithms. 

Recently, a number of different hybrid schemes have been 
proposed in the literature [18, 22, 28, 32, 52]. However, most of 
them have been restricted to the benchmark of deterministic multi-
objective optimisation problems that are formulated analytically. The 
hybrid schemes are also implemented in commercial simulation 
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optimisation tools such as SimRunner® and OptQuest® that 
aggregate multiple performance measures into a single one or keep 
them as constraints. Thus, there is currently a lack of hybrid multi-
objective EAs in combination with simulation models, which are 
able to generate Pareto-optimal fronts. In order to fill this gap, the 
technique of morphological analysis [2] is used to investigate 
possible configurations of hybrid algorithms and elicit the final one 
that best satisfies the given requirements (R1 ÷ R7). 

Table 1 
Comparison of simulation optimisation methods and algorithms 
           Methods and  
               algorithms 
 
Requirements 

R
S

M
 

S
A

 

S
P

O
 

R
S

 

H
s 

M
O

E
A

s 

R1 + R2 - - - - - - 
R3 - - - - - + 
R4 + - - - + - 
R5 - - - - - + 
R6 - - - + + + 
R7 + + - - - - 
 
As shown in Figure 2, seven parameters of hybrid algorithms are 

identified and relevant values are defined for each of these 
parameters. The total number of configurations in a morphological 
field resulted from these parameters is equal to M = m1 ⋅ m2 ⋅ ⋅ ⋅ m7 = 
128, where mi is the number of relevant values for i-th parameter (i = 
1, 2, …, 7). Each configuration Ak = (a1j

(k),. .., a7j
(k))  defines a certain 

hybrid algorithm, where aij
(k) denotes the j-th value of the i-th 

parameter in the k-th morphological configuration [40].  
In order to reduce the morphological field to a smaller set of 

consistent configurations, hybrid multi-objective evolutionary 
algorithms known in literature are examined 
[15, 16, 24, 26, 30, 33, 42, 49, 51, 53]. These algorithms are divided 
into subsets corresponding to five morphological configurations A1 ÷ 
A5. According to the above requirements (R1 ÷ R7), two-phase 
algorithms corresponding to the morphological configuration A4 = 
(a12, a32, a41, a51, a61, a71), i.e., the hybrid EA [51] and hybrid elitist 
non-dominated sorting genetic algorithm (hybrid NSGA-II) [15], are 
selected as the most suitable for simulation optimisation. Here, EA is 
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used at the first phase to obtain an approximate Pareto-optimal front 
and to keep a uniform distribution among the solutions, whereas the 
local search algorithm improves an approximation accuracy of the 
Pareto-optimal front at the second phase. In case of simulation 
optimisation, such hybrid algorithms can be less computationally 
expensive than, for instance, simple multi-objective genetic local 
search algorithm (S-MOGLS) [26] and memetic Pareto-archived 
evolution strategy (M-PAES) [30], because they apply a local search 
only after a genetic search is completed. In addition, they don’t 
require parallel runs of simulation models and can be easily 
implemented on a single computer. 

 
Figure 2. The links between the parameters of hybrid algorithms 
 
At the same time, it is concluded that the hybrid EA and hybrid 

NSGA-II require modification due to ineffective use of a global and 
local search in case of operating with mixed decision variables and 
stochastic output variables, which are typical features of the outlined 
problem. For this reason, the configuration A*

4 = (a12, a32, a41, a51, 
a61, a72) that is the nearest to the above configuration A4 (see Figure 
3) is selected for the development of the hybrid algorithm required 
and differs only by the last parameter. While selecting this 
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configuration, it is taken into account that hybrid analogues such as 
hybrid EA and hybrid NSGA-II have additional disadvantages as 
follows:  
• a fixed number of optimisation iterations, which is defined as a 

termination criterion in the hybrid EA, doesn’t permit to measure 
the algorithm’s convergence level; 

• local search algorithms used in both hybrid algorithms are not 
powerful enough to perform a local improvement of Pareto-
optimal solutions in case of simulation optimisation; 

• local search algorithms require aggregating multiple objective 
functions into a weighted sum, which can cause a search in wrong 
directions. 

 
Figure 3. General scheme of the algorithm based on 

the configuration A4 
 

Thus, the modification of the selected hybrid analogues and a 
removal of the above-mentioned disadvantages can provide a new 
framework resulting in new method of solving the problem. 

 
Framework of the simulation-based hybrid optimisation method 

Chapter 3 describes the simulation-based hybrid optimisation 
method developed for solving the problem in accordance with the 
approach of selection after search and the configuration A*

4. This 
method integrates the two-phase search and compromise 
programming methods. In particular, the two-phase search [38] 
applies evolutionary computation and response surface methodology. 
A multi-objective simulation-based genetic algorithm (MOSGA) is 
used for a global search of Pareto-optimal solutions, whereas a RSM-
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based linear search algorithm allows local improving of the 
solutions. To select a single solution from the Pareto-optimal front, a 
compromise programming method is employed. 

A general scheme of the simulation-based hybrid optimisation 
method is shown in Figure 4. The scheme operates starting from the 
MOSGA algorithm that is used to find near-optimal values of 
discrete and continuous decision variables in Phase 1 of the search 
stage. In Phase 2, the RSM-based linear search algorithm improves 
the values of continuous decision variables, and an output of this 
phase is the approximate Pareto-optimal front AℱD ∗. In the selection 
stage a single Pareto-optimal solution %∗ ∈ AℱD ∗ is determined by 
using compromise programming that measures deviations of all 
found solutions from an ideal (utopian) point predefined by a 
decision maker. 

 
Figure 4. General scheme of the simulation-based hybrid 

optimisation method 
 

Being a modified version of NSGA-II [14], the MOSGA 
algorithm [41] contains a mechanism for encoding diploid  
chromosomes consisting of two sets of chromosomes, a heuristic rule 
for reducing a computation time, a mechanism for generating 
uniform populations, ranking-based fitness assignment and 
estimation mechanisms, a diversity preservation mechanism, a 
penalty-based constraint handling technique, a crowded-two 
tournament selection mechanism, uniform crossover and mutation 
operators, an elitist mechanism, as well as a domination-based 
termination criterion. Formally, it can be described as follows. 
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 Let QORSTUV = {XY�, XYZ|\ = 1, ]} be a population that consists 
of N diploid chromosomes. Each diploid chromosome in QORSTUV is 
represented by two binary strings, such as: 
 XY� = _XY�ℓab�XY�ℓabZ … XY��XY�cd ∈ {0,1}ℓa, (6) 

 XYZ = _XYZℓeb�XYZℓebZ … XYZ�XYZcd ∈ {0,1}ℓe, (7) 

where n is the number of a string; ℓ� and ℓZ are lengths of strings; 
XfY� and XfYZ are genes at locus k.  

Binary strings XY� are used in order to encode discrete decision 
variables gI

Y,hIijk measured on a time scale by using a modified 
binary encoding, such as: 

 XY� = l(logZ opq
r,sqtuv

� w), (8) 

where l is an encoding algorithm; i is an index of a solution; t is a 
basic period or the minimal available value of gI

Y,hIijk. 
Binary strings XYZ are intended for continuous decision variables 

gI
Y,jxY�, and they are developed by using classical binary encoding 

procedure.  
The performance of the MOSGA algorithm is controlled by the 

genetic operator y that implements iterative transitions between 
populations according to: 
 QORSTUV��~y(QORSTUV), (9) 
where ~ is an equivalence relation. 

This operator is composed of four operators, such as the 
crowded-two tournament selection ({i), the uniform crossover 
({j), the mutation ({|) and the reproduction ({k) so that:  
 y = {i ∘ {j ∘ {| ∘ {k; (10) 

The crowded-two tournament selection operator {i maps the n-
th string into multiple copies of itself according to its dominance 
depth and crowding distance. The dominance depth rn defines a 
dominance degree of a certain solution, where the value “1” 
corresponds to non-dominated solutions. The crowding distance δn 
estimates the density of solutions surrounding the n-th solution, 
where the value “∞” indicates the less crowded area.  

The values of rn and δn are estimated based on the values of the 
performance measures ��Y that are obtained from simulation 
experiments. In order to reduce a computation time, the evaluation of 
solution feasibility is performed after the first simulation replication 
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based on ~�(%Y) < ��, where �� is a lower bound of the j-the 
performance measure. If the solution %Y is infeasible, then further 
simulation replications are not performed.  

After applying the uniform crossover {j and mutation {| 
operators, the new population AORSTUV�� is replaced with the union 
of the best parents QORSTUV and mating pool ℳORSTUV (reproduction 
operator {k) in order to avoid the loss of non-dominated solutions 
during the search. Dominance depths of chromosomes are updated in 
the combined population QORSTUV ∪ ℳORSTUV. First N solutions are 
gathered for the next population QORSTUV��, and the above-described 
operations are repeated.  

The MOSGA algorithm is automatically terminated, when a 
number +ORSTUV of populations with a stagnant non-dominated set is 
equal to the predefined value +∗, which is defined as:  
 +ORSTUV = +∗; (11) 

Since the MOSGA is a stochastic algorithm, it could produce 
different solutions for different random number seeds. This issue is 
supported by performing several independent optimisation 
experiments based on using different random number seeds. Then, a 
composite set of best non-dominated solutions is created. 

The flowchart of the developed algorithm is shown in Figure 5. 

 
Figure 5. Flowchart of the MOSGA algorithm 
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The RSM-based linear search algorithm applied to simulation 
optimisation illustrated in Figure 6 presents an iterative procedure 
[36] that in each iteration m includes the following steps: 
• a local approximation of a response surface function by a 

regression-type metamodel; 
• checking the fit of a metamodel; 
• a linear search in steepest descent direction. 

The algorithm starts from using a linear metamodel in a small 
region of independent factors. The metamodel describes main effects 
of input factors as follows: 

 ∑ ++=
=

K

k

mm
k

m
k

mm bby
1

0 εξ , Kk ,...,1= , (12) 

where ym is a response variable; ξk
m is a coded input factor k; b0

m and 
bk

m are a constant and a regression coefficient of the input factor k, 
respectively; εm is a statistical error of a regression model (or 
residual); K is the number of input factors. In order to fit the 
metamodel, the Plackett-Burman experimental design [39] is created 
in which response values are received from simulation experiments. 

 
Figure 6. Flowchart of the RSM-based linear search algorithm 
 
If the metamodel is adequate, then a local response surface is 

sequentially investigated by using a linear search in the steepest 
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descent direction in order to improve the values of continuous input 
factors. The steepest descent direction is defined by regression 
coefficients b0

m, b2
m,…, bK

m starting from the center point of the 
experimental region. The search direction is chosen as the negative 
of the gradient. The local search is performed for input factors that 
correspond to significant regression coefficients (p-value < 0.05). If 
the metamodel is not adequate or further improvement is impossible, 
then the RSM-based linear search algorithm is terminated. 

In the selection stage, the Pareto-optimal front AℱD ∗ is analysed in 
order to select a single solution that could be most suitable for the 
implementation in practice. For that, the compromise programming 
method [54] is used. It is based on identifying an ideal trade-off 
solution, for which optimal values of objectives are usually given by 
the decision maker. Then, the task is to find a solution that is closest 
to the ideal one. To calculate the degree of closeness, the following 
distance metric Lp is used: 
 ��:  N(��Yxk|, �Yxk|) = (∑ M���Yxk| − ��Yxk|M� �-� )�/�,  (13) 
where ���Yxk| is a normalised value of the jth performance measure in 
the Pareto-optimal front AℱD ∗; ��Yxk| is a normalised ideal value of 
the jth performance measure; N is the distance between the ideal and 
Pareto-optimal solution measured on the objective space; p is a 
power parameter ranging from 1 to ∞.  
 
Multi-objective simulation optimisation for supply chain cyclic 
planning 

In Chapter 4, as a test bed for checking the efficiency of the 
developed methods and algorithms, the multi-echelon cyclic 
planning is investigated, and the corresponding optimisation problem 
is formulated. A prototype of the software environment is developed 
for solving the formulated problem.  

Multi-echelon supply chain planning can be interpreted as a 
complex process, wherein various business entities (i.e., suppliers, 
manufactures, distributors, and retailers) work together in order to 
acquire raw materials, convert these raw materials into specified final 
products, and deliver these final products to end-customers. To plan 
and control this complex process at the product maturity phase, 
cyclic planning policy can be used. It provides the following main 
benefits: the implementation simplicity, the reduction of 
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administrative costs and the decrease of safety stocks between 
echelons [34].  

The basis of cyclic planning policy constitutes the coordination to 
be combined with the synchronisation of sub-processes over the time 
[10, 19]. Here, coordination consists in making trade-off decisions on 
the basis of arranged interactions among system elements [58]. The 
synchronisation enables planning every process in the supply chain 
on a repetitive, “cyclic” basis and fitting the process cycles together, 
while accounting for the lags of lead times between periods of 
process initialisation and completion (see Figure 7).  

 
Figure 7. Synchronisation of planning wheels in multi-echelon 

supply chain [37] 
 

In literature, the parameters of synchronisation policies are 
optimised by using analytical models [8, 10, 11, 17]. At the same 
time, simulation technology provides possibilities for more realistic 
modelling of supply chain operation and extends conditions of 
analytical models to backordering and model-specific constraints 
[34].  

The problem [37] is to determine near-optimal values of cyclic 
planning parameters (i.e., process cycles Cyi and order-up-to levels 
OULi) for each of supply chain stock points � = 1, � such that the 
vector of performance measures represented by total cost TC and fill 
rate FR is optimised with respect to the imposed constraints. 
Consequently, two objective functions are introduced in the problem. 
The first one is to minimise the average total cost �[TC] represented 
by a sum of production, setup and inventory holding costs, i.e.: 
Min �� = �[	�] = �[  (14) 
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∑ ∑ �Q�� ∗ �Q�
�
�-�,�-� + (production costs) 

∑ ∑ (	 ��I∈�) ∗⁄ ���
�
�-�,�-� + (setup costs) 

∑ ∑ �q���q��a
Z|�(I)|-c

,
�-Z ∗ ��I  + (holding costs of the last echelon) 

∑ ∑ �I�|�(I)|�c
,
�-� ∗ ��I  ], (holding costs of other echelons)  

where Hit is on hand inventory at stock point i at the end of period t; 
QPit is a production order made by stock point i in period t; CPj is 
unit production cost in process j; CSj is setup cost in process j; CHi is 
unit inventory holding cost at stock point i; S(i) indicates a set of 
stock points immediately succeeding the stock point i; T is the 
number of periods in the planning horizon; I is the number of stock 
points, J is the number of processes. 

The second objective function is to maximise the average product 
fill rate �[FR] calculated as the fraction of demand that can be 
satisfied directly from the inventory. The product fill rate expressed 
as a percentage is calculated as the sum of order quantities shipped to 
end-customers during the planning horizon divided by the total end-
customers demand and multiplied by 100, i.e.: 
Max �Z = �[P�] = 
= ��100 ∗ ∑ ∑ ∑ ���If

�
f-�

�
I-�

,
�-� / ∑ ∑ ∑ ��If

�
f-�

�
I-�

,
�-� � (15) 

where Dkit is actual demand of end-customer k to stock point i in 
period t; QCikt is the sum of orders delivered by stock point i to end-
customer k in period t; K is the number of end-customers. 

Feasibility of multi-echelon supply chain cyclic planning 
solutions is evaluated by using the following stochastic and 
deterministic constraints: 
 Cyi = 2pτ    i=1,...,I, (16) 
 Cymin ≤ Cyi ≤ Cymax    i=1,...,I, (17) 
 Hit ≥ CAPi    i=1,...,I, (18) 
 �[FR] ≥ FRmin   i=1,...,I. (19) 

Cyclic planning constraint (16) is introduced to synchronise 
cycles in accordance with the power-of-two policy, wherein process 
cycles are power-of-two multiples 2pτ in relation to a basic planning 
period τ, where p is a nonnegative integer; decision variables 
constraint (17) imposes lower (Cymin) and upper (Cymax) bounds on 
process cycles Cyi; capacity constraint (18) defines that on hand 
stock Hit at the end of period t is not allowed to exceed the storage 
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capacity CAPi of stock point i; fill rate constraint (19) defines that the 
average fill rate must be higher or equal to a pre-defined lower bound 
FRmin. 

The prototype of the software environment (see Figure 8) 
designed for solving the multi-echelon cyclic planning problem 
includes four components [34], such as (i) database component, (ii) 
procedural component, (iii) process component and (iv) optimisation 
component. 

 
Figure 8. The prototype of the software environment for simulation-

based optimisation 
 

Database component is used to store supply chain structure and 
parameters. Based on these data, procedural component calculates 
analytically initial values of cyclic planning parameters. Process 
component (i) automatically generates supply chain simulation 
model from the data obtained from procedural and database 
components; and (ii) runs the model for estimating the values of 
supply chain performance measures. Optimisation component is used 
to find near-optimal values of multi-echelon cyclic planning 
parameters.  

The components are developed by using MS Excel, Microsoft 
Visual Basic for Applications (VBA) and ServiceModel Professional 
7.0 simulation environment. Data exchange between MS Excel and 
ServiceModel is supported by ProModel ActiveX Automation 
capability. 
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Approbation of the developed methods and algorithms 
In Chapter 5, the developed methods and algorithms are applied 

to simulation optimisation of multi-echelon cyclic planning 
parameters.  

In case study 1, three-echelon linear supply chain is analysed as a 
simplified example. The ServiceModel-based simulation model is 
generated automatically using the developed software environment. 
The following assumptions are introduced in the model. The end-
customer demand is normally distributed. Process cycles are 
presented in days according to the power-of-two policy, i.e.: 1, 2, 4, 
8, 16, 32, where 32 is the maximal cycle value that corresponds to 
one full turn of the “planning wheel”. Process lead times are 
considered to be normally distributed. Stock point 1 has infinite on 
hand stock and is not controlled by any policy. Backorders are 
delivered in full. The length of one simulation replication comprises 
192 periods or 4608 hours (192*24), which allows modelling six full 
turns of the “planning wheel”. 

Case study 1 includes five scenarios (1.1-1.5). In Scenario 1.1, 
the approximation accuracy is evaluated based on measuring the 
difference between the true and approximate Pareto-optimal fronts 
and is equal to 98.40%: 

The true Pareto-optimal front AP∗ is obtained by using the 
exhaustive enumeration, whereas the approximate Pareto-optimal 
front AP∗D  is generated by the MOSGA algorithm. As a result, the 
MOSGA found four of five true Pareto-optimal solutions after five 
independent executions of the algorithm (see Figure 9). 

  
Figure 9. The search space (on the left) and the approximate Pareto-

optimal front (on the right) 
 
In scenarios 1.2-1.5, the quality of solutions and the number of 

optimisation iterations required by the two-phase search method are 
compared with those received by SimRunner® and OptQuest® 
optimisation software. This commercial software (Scenario 1.2 and 
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1.3) finds only a single solution instead of the Pareto-optimal front. 
Moreover, SimRunner® and OptQuest® require 790 and 435 
iterations, respectively. However, the developed method generates 
the approximate Pareto-optimal front in only 49 iterations, out of 
which the numbers of iterations of the MOSGA algorithm and the 
RSM-based linear search algorithm are equal to 42 and 7, 
respectively. As a result, four trade-off solutions are found that 
simultaneously provide significant decreasing of total cost and 
increasing of product fill rate (see Table 3). 

Table 3  
Comparison of results for Scenarios 1.2-1.4 

Scenarios Solution No. TC, € FR, % τ 
SimRunner® 1 33,521,268 88.18 790 
OptQuest® 1 33,656,637 87.36 435 
The two-phase 
search method 

1 30,651,322 100.00 49 
2 30,579,657 98.64 
3 30,445,235 97.55 
4 30,307,412 91.73 
5 29,972,845 87.09 
6 29,923,670 79.09 

 
The compromise programming method is applied to define which 

of scenarios provides a solution that is closest to the ideal one. For 
experiments conducted, the average total cost and average fill rate of 
an ideal solution z are taken as TC = €29,000,000 and FR = 
100.00%, respectively. Hence, the distance values are estimated by 
the distance metric (13) as applied to solutions obtained by scenarios 
1.2-1.4. As a result, it is indicated that the third solution (N = 0.332) 
of the two-phase search method is the most closest to the ideal point. 

Case study 2 is aimed at optimising cyclic planning parameters in 
five-echelon generic supply chain. Manufacturing plants of a 
chemical company “Huntsman Advanced Materials” denoted 
conditionally as DE and CH are located in Germany and Czech 
Republic, respectively. Customers come from Spain, Germany and 
United Kingdom. Raw materials are first converted to the liquid 
based raisin in the plant CH. Then, they are either delivered to direct 
customers in Frankfurt and Pamplona or shipped to the plant DE, 
where other components are added in order to make different 
chemical products. Finally, the end-products are shipped to 
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customers connected with this plant. The layout of supply chain 
simulation model is shown in Figure 10. 

 
Figure 10. Layout of supply chain simulation model 

 
The corresponding ServiceModel-based simulation model is 

described as follows. It is represented by 42 stages decomposed into 
42 stock points and 41 processes. Stock points 20-27 that refer to 
direct customers are not controlled by any policy. Thus, the number 
of stock points with parameters to be optimised is equal to 33, and 
the corresponding number of decision variables is 66. The minimal 
process cycle is equal to 7 days, and the maximal cycle is equal to 56 
days, which corresponds to one full turn of a “planning wheel”. 
Initial stocks at end-customer echelons are equal to order-up-to levels 
plus average demand multiplied by cycle delays. The length of one 
simulation replication is defined by 224 periods or 5376 hours, which 
allows modelling four full turns of the “planning wheel”. 

Scenarios 2.1-2.3 are organised similarly to scenarios 1.2-1.4. In 
particular, the following results are obtained by the two-phase search 
method. In Phase 1 the MOSGA works with 66 decision variables. 
Initial values of order-up-to levels are calculated analytically, and 
values of process cycles are generated randomly. Figure 11 shows 
examples of initial and final populations in a specific execution 
mapped in the objective space. Figure 12 shows the convergence of 
the MOSGA to solutions with lower total cost and higher fill rate. 
The Pareto-optimal front received in generations 19-21 contains 
three solutions with the following expected values of performance 
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measures: (i) TC = €787,431, FR = 100.00%; (ii) TC = €766,669, FR 
= 98.88%; (iii) TC = €752,300, FR = 93.76%. 

 
 a) Initial population b) Final population 

Figure 11. Solutions mapped in the objective space 

 
 a) Total cost b) Fill rate 

Figure 12. The MOSGA performance graphs 
 
In Phase 2 the RSM-based linear search algorithm is used to 

adjust order-up-to levels of three non-dominated solutions received 
with the MOSGA while fixing process cycles. Finally, the average 
total cost TC and average fill rate FR of the second solution are equal 
to €756,178 and 98.88%, respectively. The updated Pareto-optimal 
front is shown in Figure 13. 

 
Figure 13. The approximate Pareto-optimal front  

obtained in Phase 2  
 

In the selection stage, the ideal solution is defined by TC = 
€700,000 and FR = 100.00%. As a result, the second solution from 
the Pareto-optimal front in Figure 13 (N = 0.276) is selected by using 
the compromise programming method. 

1 
2 3 
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RESULTS AND CONCLUSIONS OF THE THESIS 
 

The aim of the doctoral thesis was to develop the method and 
algorithms for solving multi-objective stochastic simulation-based 
optimisation problems with constraints and mixed decision variables, 
and to apply them to multi-echelon supply chain cyclic planning. 

The results and conclusions of the thesis are the following: 
1) Analysis of the state-of-the-art of simulation optimisation and the 

multi-objective optimisation problem statement allowed 
formulating the requirements to the problem solving techniques. 
The main requirements claimed for minimising the Euclidean 
distance between the true and approximate Pareto-optimal fronts; 
maximising the diversity of the Pareto-optimal solutions; 
minimising the number of non-dominated solutions that could be 
lost during the transition from one optimisation iteration to the 
other; minimising the total number of simulation optimisation 
iterations; generating the discontinuous Pareto-optimal fronts; 
using mixed decision variables, and including the uncertainty of 
system environmental variables into the search process. 

2) Analysis of multi-objective evolutionary algorithms showed that 
these algorithms are able to satisfy most of the optimisation 
problem requirements. They, however, cannot simultaneously 
ensure high approximation accuracy and diversity of the Pareto-
optimal front, and require a large number of iterations in order to 
generate this front. 

3) Morphological analysis of hybrid multi-objective evolutionary 
algorithms allowed defining the best combination of their 
parameters in order to satisfy the formulated requirements. At the 
same time, the existing algorithms, such as hybrid EA and hybrid 
NSGA-II corresponding to the revealed best combination 
required modification due to ineffective use of a global and local 
search in case of operating with mixed decision variables and 
optimising stochastic objective functions. 

4) The simulation-based hybrid optimisation method was developed 
that integrates the two-phase search and compromise 
programming methods. The proposed two-phase search method 
allows combining the advantages of global and local search 
approaches, simultaneously increasing an approximation 
accuracy and diversity of the Pareto-optimal front, as well as 
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decreasing the number of simulation optimisation iterations. The 
compromise programming method was applied for selecting a 
single solution from the Pareto-optimal front for its 
implementation in practice. 

5) The developed multi-objective simulation-based genetic 
algorithm includes blocks and mechanisms for encoding diploid 
chromosomes, uniform population initialisation mechanism, the 
penalty-based constraint handling technique, the dominance-
based termination criterion and a heuristic rule for reducing a 
computation time. The combined use of these blocks and 
mechanisms allowed, on the one hand, examining unvisited 
regions and generating solutions that differ from previously 
observed ones, and, on the other hand, exploring more carefully 
the portion of the search space that seems to be more promising. 

6) The created prototype of the software environment unifies and 
integrates modelling, simulation and optimisation of the cyclic 
schedules for multi-echelon supply chain planning. It supports the 
main stages of simulation-based optimisation procedure including 
a supply chain description in MS Excel format, an automatic 
generation of supply chain simulation models, and optimisation 
of simulation model parameters by using the developed methods 
and algorithms. 

7) The developed methods and algorithms were applied for cyclic 
planning in a linear supply chain and a generic supply chain of 
the chemical manufacturing company. The results obtained 
demonstrated high approximation accuracy of the Pareto-optimal 
front that is equal to 98.4 %. In addition, sequential using of 
global and local search approaches in case studies allowed 
significant decreasing of the number of simulation optimisation 
iterations in comparison with commercial software such as 
SimRunner® and OptQuest®. 
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