
1

RIGA TECHNICAL UNIVERSITY

Faculty of Computer Science and Information Technology

Institute of Applied Computer Science

Vladimirs NIKULSINS
Computer Systems doctoral programme student

APPROACH TO TRANSFORMATION OF SOFTWARE DEVELOPMENT

LIFE CYCLE MODEL IN THE CONTEXT OF MODEL-DRIVEN

ARCHITECTURE

Doctoral thesis summary

Scientific adviser

Dr. sc. ing., professor

O.NIKIFOROVA

Riga 2011

2

 UDK 004.2(043.2)

 Ni 805 a

Nikulsins V. Approach to Transformation of

Software Development Life Cycle Model in the

Context of Model-Driven Architecture

Doctoral thesis summary. -R.:RTU, 2011.-25 pp.

Printed in accordance with the decision of the

Institute of Applied Computer Systems on May 23,

2011, the minutes No 71.

This work has been partly supported by the European

Social Fund within the National Programme “Support

for the carrying out doctoral study programmes and

post-doctoral researches” project “Support for the

development of doctoral studies at Riga Technical

University”.

 ISBN

3

DOCTORAL THESIS

SUBMITTED FOR THE DOCTORAL DEGREE

OF COMPUTER SYSTEMS

AT RIGA TECHNICAL UNIVERSITY

The assertion of the thesis submitted for the doctoral degree of computer systems will

take place at an open session on November 7, 2011 in Room 202, Meza 1/3, at Riga

Technical University, Faculty of Computer Science and Information Technology,

Riga, Latvia.

OFFICIAL OPPONENTS:

Professor, Dr.habil.sc.ing. Janis Grundspenkis

Riga Technical University

Professor, Dr.habil.sc.comp. Audris Kalnins

Latvian University

Professor, Dr.sc.comp. Victor Taratoukhine

The National Research University Higher School of Economics (Russia)

University Alliance Program Director, CIS, Nordics and Baltics at SAP

CONFIRMATION

I confirm that I have developed this thesis submitted for the doctoral degree at Riga

Technical University. This thesis has not been submitted for the doctoral degree in any other

university.

Vladimirs Nikulsins ___________________ (Signature)

Date: 13.6.2011

The doctoral thesis has been written in Latvian, and includes Introduction, 5 Parts,

Conclusion, 3 Appendices, Bibliography, 47 figures and illustrations, 7 tables, in total 147

pages. Bibliography includes 151 information sources.

4

GENERAL CHARACTERISTICS OF THE RESEARCH

Research motivation

The world as we know it is dynamic by nature. Based on the philosophical statements by Alfred

North Whitehead, our world can be described/ as a union of interconnected small and large systems,

which are constantly changing. From the point of view of the process philosophy, the world around

us is not static, it is constantly evolving [PAL 2006].

Software development is also dynamic by nature. It is based on the process oriented approach,

called software development process. Software development process reviews aspects related to

software development, including management discipline and process enhancement. Software

development process is one of the software engineering disciplines. It is a relatively new field, and

scientists are still discussing whether software engineering conforms to classical engineering or not

[Vliet 2006].

Software development methodologies define the application of software engineering principles

that can be described as coordinated actor driven activities set with the ultimate goal to create

software development products [LAN 2004]. Modern software development methodologies are

structured, disciplined and iterative by their nature [KRU 2000]. The methodologies structure and

formalize software development in a way that allows it to be quantitatively assessed in terms of

required resources, planned software functionality, and required time [MSF 2003]. Modern software

development methodologies can be divided into heavyweight and agile. Heavyweight

methodologies are based on planning, detailed documentation and design. Agile methodologies are

generally goal-oriented, where the key factors are the efficiency of interaction between the software

development team members (instead of following strict process guidelines) and the working code

(instead of documentation) [KHA 2004].

Instead of various attempts to generalize and formalize software development process, modern

heavyweight and agile software development methodologies support a so called traditional

viewpoint to software development, when the code is the essential deliverable of the software

development. The main problems of traditional software development are the following [KLE

2003]:

 The productivity problem (developers often consider the code is to be productive, (whereas

writing models and documentation are not)

 The portability problem (a frequent update or change of technology)

 The interoperability problem (the complexity of communication between systems)

 The maintenance and documentation problem (documentation has no influence on the code

and vice versa)

A promising approach to resolve the above problems is the Model Driven Architecture (MDA), a

framework for software development defined by the Object Management Group (OMG) in 2001

[SIE 2001]. In contrast to the traditional software development, MDA as a main result considers

system model developed, instead of software code [KLE 2003]. The models are being transformed

into the working code through the various automated and semi-automated transformations. The

system model is independent from the implementation, which allows its deployment into different

platforms. MDA is introduced new software development era in software development process. It

can be assumed that currently software development industry remains in a transition period, with

the old methodologies unable to overcome the complexity of software systems, and the new

methodologies not being mature enough to be applied. This actualizes the need for the algorithm

development, which could enhance the existing mature software development methodologies with

the artefacts and principles from some new methodology. In other words, there is a need for the

transformation approach from the traditional software development into the model driven software

development.

5

Relevance of the thesis

The evolution of the software development process stabilized conventional software

development practices [PEI 2010]. Introducing new technologies into the current process is often

quite complicated and labour-consuming c. It is impeded by both formal and objective factors, and

also by the conservatism and internal resistance to changes [SER 2005]. Methodologies, that

support traditional code-oriented development, are subject to enhancement. They should be flexibly

moved to the MDA oriented process by changing current software development process. The

implementation of a new MDA based process conforms to the goals of software improvement,

including the enhancement of both quality and productivity, as well as the decreased development

time [STE 1999].

Changes in software development to use MDA process reflect also architectural changes. From

the financial viewpoint it is advantageous to use business models, e.g., UML (Unified Modelling

Language), that forms a part of MDA [STA 2006]. They either are not changed, either evolving

independently from the changes in technological platforms [ERI 2004]. In software engineering, it

is not only possible to define system behaviour with the help of models, but also to define the

software development process itself. Models can formally define actions (current or required states

of the system), however the changes in the process can not be expressed with the help of models.

For example, CMMI or ISO 9000 define the required states of the system [STE 1999], [CMM].

Namely, the methodologies define how these changes should happen [SWE 2004].

As every “revolutionary” approach, MDA is still on its way to perfection, currently being in the

beginning of its evolution [GUT 2007]. 10 years have passed since MDA was declared as an

alternative to the code-oriented development. MDA tools and methods are evolving, and there is

still a need for new tools, standards and best practices [FAV 2010]. It is applicable to both the

analysis of the real life MDA projects and to theoretical ground [HUS 2011].

Problem definition

MDA defines the standards and principles for the model transformations, but at the same time it

does not prescribe a development methodology and its related activities. MDA technologies are not

explicitly related to the identifiable activities within the software development processes, as these

technologies are developed to be generally applicable in combination with development processes

that may be already anchored in organisations [GAV 2004]. OMG consortium gives no guidelines

for MDA usage in terms of the processes such as activities and phases, roles and responsibilities

that are involved in the software development and are used for formal representation of the software

development process. Therefore, the research subject of this thesis is the organization of the

software development process and the approach for transition from one process organization to

another, keeping the artefacts and their content per se unaffected.

Taking into account the trend or Latvian software development companies to use mainly code-

oriented development [NIK 2006a], [NIK 2006b], the task of defining the transition methodology to

adopt MDA within the software engineering context in Latvia is especially important. Additionally,

it is valuable to define the framework and apply this approach in practice for one of the Latvian

software development companies.

Related works

 There is no complete and unified methodology at the moment, that would guide the transition

from the traditional software development process into the model driven. There are various specific

or general researches that to some extent cover some parts of model driven process. There also exist

some specific process researches, e.g., MASTER project (Model-driven Architecture

inSTrumentation, Enhancement and Refinement) deliverable called Process Model to Engineer and

Manage the MDA Approach, MODA-TEL project [ESI 2003], [BEL 2002], [STE 2003]. However,

the application of these researches is not universal – it is not possible to determine how specific

activities of some software development company are related to MDA activities.

6

The basis of MDA is the object-oriented approach and the component-based development.

Therefore, theoretically, it can be unified with various software development processes [CHI 2007].

According to the vision of OMG consortium, MDA is not limited to be used in any software

development process. Though, the transition between processes is not formalized. As one of the

possible solutions to solve this problem OMG suggests to use the support of OMG FastStart

program consultants. Consultants are supposed to analyse every process in the organization and

provide recommendations and the support required to apply MDA [GUT 2004].

Various researches within the problem domain provide specific theoretical and technological

solutions. They have contributed to the formation of the solution described in this thesis. [FEN

2006] proposes its own solution on how to map the SPEM (Software and Systems Process

Engineering Metamodel) and XPDL (XML Process Definition Language), naming their approach

SPEM2XPDL. [COM 2006] suggests enhancing SPEM with OCL [OMG 2006], because it lacks a

formal description of its semantics that makes it difficult to use. Another problem is that using

SPEM is difficult because the OMG proposal is rather generalist and provides no directives on how

to use it. [DEB 2007] is investigating SPEM transformations into BPMN (Business Process

Modelling Notation) by using workflow automation. Some of the authors are investigating the

specifics of model transformations, and their solutions can also be useful for the process model

transformations. [TRA 2004] investigates different approaches to model transformations.

Particularly, the attention is paid to OMG’s Queries/Views/Transformations (QVT) [MOF 2008].

Authors also review the problems of tracing activities and model validity, when changes are made

in both source model and target model. Unification of declarative and imperative transformation

languages on model transformations is proposed by adopting a new approach to the model

transformations [TRA 2004].

[BRE 2001] investigates the integration process of metamodels. Even though this paper

regarding process-centred model engineering was written in 2001, it has become even more of a

problem today due to different implementations of MOF (Meta-Object Facility). [DIA 2010]

investigates insufficient model-driven support in process modelling tools. SPEM 2.0 is not

supported with MDE (Model-driven Engineering) aspects on the metamodel level. One of the

solutions proposed by the authors involves using the custom SPEM metamodel and the

corresponding tool enriched with MDE specifics.

Goal of the thesis

The goal of this thesis is to define an approach, that could allow making a transition from one

software development process into another by using formal principles of transformation, and

demonstrate the suggested approach with an example of such transition.

In order to achieve this goal it is necessary to investigate which MDA artefacts and processes

can enhance corresponding software development processes and artefacts of traditional

development, as well as define the methodology for the transition from traditional software

development to the MDA based development.

Tasks of the thesis

1. Define the traditional software development process and standards.

2. Investigate the essence and concepts of the model driven development.

3. Investigate the possibilities of integrating the traditional software development methodologies

with the introduction of MDA principles.

4. Define a formal approach for the transition from the traditional software development into

MDA oriented.

5. Make testing of suggested software development approach within one of the software

development projects and assess possible opportunities, perspectives and constraints.

6. Draw conclusions about MDA usage possibilities, problems and perspectives in software

development when doing transition from the traditional software development to the model-

driven.

7

Research methods

The analysis of the information sources is based on available problem domain literature, which

includes books, magazines and conference materials. This allows getting the actual status and latest

trends of the problem domain under investigation. Such information can help in generating ideas for

possible mappings of the model driven software development components into traditional software

development. Software development life cycles (and their process model representations) should be

analyzed for investigating information flows and steps in software development process. With the

help of the analysis methods (by merging MDA specific activities with traditional software

development) it is possible to define the guidelines for transition from any software development

process.

This thesis describes the modelling methods of the software development process (analysis,

modelling and assessment of results). For model transformations the author used imperative

approach, which defines state changes (transformations are described in QVT Relations language).

Viability assessment of the suggested approach and the architectural solution proposed is practically

verified in real project.

As a base of research author of this thesis took part in several scientific and information system

development projects, that were organized based on different software development life cycle

models. Author of this thesis also took part in multiple international industry projects (starting from

early inception phases till to transition and support) in Accenture where he works as SAP

consultant. Also he participated as performer or general performer in the following research and

methodological study projects:

1. Research project of Latvian Ministry of Education and Science Nr. 09.1269 “Methods and

Models Based on Distributed Artificial Intelligence and Web Technologies for Development of

Intelligent Applied Software and Computer System Architecture” (2009-currently);

2. Research project of Riga Technical University Nr. FLPP-2009/10 „Development of Conceptual

Model for Transition from Traditional Software Development into MDA-oriented” (2009);

3. Participation in ESF funded project „Development of Study Module on Model Driven Software

Development Technology within the Study Programme “Computer Systems””(Contract Nr.

2007/0080/VPD1/ESF/PIAA/06/APK/3.2.3.2./0008/0007) (2006-2008);

4. Participation in ESF funded project 3232/15 „Modernization of RTU Study Programme

“Computer Systems” with the Aim to Decrease Professional Competitiveness” (2006-2008);

5. Research project of Riga Technical University ZP - 2005/02 „Application of Two-Hemisphere

Approach for Development of Agile Software Engineering Knowledge Architecture” (2005-2006);

Scientific novelty of the thesis

This thesis introduces the following innovations:

1. Mapping of model-driven software development artefacts into the traditional software

development process.

2. Solution architecture and set of transformations for the process model enhancement using QVT

Relations language.

3. Demonstration example and approbation within one of the Latvian software development

companies.

Practical significance of the thesis
The practical significance of the suggested approach is proved with companies PF example. It

confirms the possibility to use this approach in other software development companies that have a

different software development life cycle.

Research publications and presentations at the scientific conferences

The results of the research are obtained and published from 2003 till 2011, when the author of

this thesis was studying at Riga Technical University Computer Systems programs, with the aim to

complete the bachelor, master and doctoral degrees. The publications include 10 research

8

publications in the internationally edited conference proceedings. Additionally, there are two thesis

publications in the proceedings of the International Scientific Conferences in Riga Technical

University. The artefacts created and described during the writing of the thesis are published in five

learning materials and used in several courses by the Institute of Applied Computer Systems of

Riga Technical University. The results of the application of the suggested approach are published in

the report on the scientific project [NIK 2009e]. A list of publications is attached in the end of this

summary.

The main results of the research were presented by the author at 7 international conferences:

1. Nikulsins V. Transformations of Software Process Models to Adopt Model-Driven Architecture.

ENASE 2010: 2nd International Workshop on Model-Driven Architecture and Modeling Theory-

Driven Development MDA&MTDD. July 22-24, 2010, Athens, Greece

2. Nikulsins V., Nikiforova O. Tool Integration to support SPEM Model Transformations in

Eclipse. The 50th RTU International Scientific Conference. October 12-16, 2009, Riga, Latvia

3. Nikulsins V., Nikiforova O. Transformations of SPEM models using query/view/transformation

language to support adoption of model-driven software development lifecycle, ADBIS-2009. Model

– Driven Architecture: Foundations, Practices and Implications (MDA) workshop. Riga Technical

University, September 7-10, 2009, Riga, Latvia

4. Nikulsins V., Nikiforova O. Adapting Software Development Process towards the Model Driven

Architecture. The Third International Conference on Software Engineering Advances, ICSEA 2008,

October 26-31, Sliema, Malta

5. Nikulshins V., Nikiforova O., Sukovskis U. Mapping of MDA Models into the Software

Development Process, The 8th Biennial International Baltic Conference on Databases and

Information Systems, Baltic DB&IS, July 2-5, 2008, Tallinn, Estonia

6. Nikulshins V., Nikiforova O., Sukovskis U. „Analysis of Activities Covered by Software

Engineering Discipline”, The 7th Biennial International Baltic Conference on Databases and

Information Systems, Baltic DB&IS, July 3-6, 2006, Vilnius, Lithuania

7. Nikulshin V., Nikiforova O. “Software Development Teams Organization”, The 46th Scientific

Conference of Riga Technical University, Computer Science, Applied Computer Systems, October

13-14, 2005, Riga, Latvia

Structure of the thesis

The structure of this paper is organized as follows. The introduction describes the relevance and

novelty of the research, the goals and tasks, and the scientific and practical significance of the

thesis.

Chapter 1 systematizes and describes the knowledge about the software development process, its

definitions, standards and the modern technologies used in the software development.

Chapter 2 clarifies aspects of the modernization of the software development process in relation

to the application of MDA in that. The general MDA principles and concepts are defined there.

Chapter 3 describes author’s efforts in integrating the software development process and MDA

artefacts.

The theoretical material described in the first three chapters, together with the results of the

research allows author to suggest a hypothesis about a possible solution and a transition approach

from the traditional software development organization into the model drives software development

organization, which is described in chapter 4.

Chapter 5 describes the practical approbation and the tool developed to support the suggested

approach with several examples.

In the last chapter the general achievements of the thesis are summarized and the conclusions

are made.

9

1. METHODOLOGIES AND STANDARDIZATION OF SOFTWARE

DEVELOPMENT PROCESS

The first chapter describes a history of software engineering and its advances since the

declaration of the software engineering as an engineering discipline at NATO conference in 1968

[NAU 1969], [VLI 2008]. A short vocabulary with some of the most essential definitions of the

terms used in this thesis, is also provided. This chapter describes the most eminent software

development methodologies and standards.

1.1. Terms and definitions

The elaboration of software engineering has some effect on its terms and definitions. Some of

the terms become ambiguous. For example, the definitions of the the terms “software development

process” and “methodology” are usually mixed. Some of the terms translated to Latvian and can be

found from [CAU]. In this thesis they are supplemented or improved (in Latvian).

Software engineering is the application of systematic, disciplined and quantifiable approaches to

scientific and technological knowledge, methods and experience usage within functionally effective

software development, application and transition process. Also the branch of science about software

development [CAU], [SCA 2001], [SWE 2004], [IEE 1990].

Software development process (sometimes Software process) – the process of translating the

user’s needs into a software product. The process involves translating the user’s needs into software

requirements, transforming the software requirements into specific design, implementing the design

in the code, testing the code, and sometimes, installing and checking out the software for

operational use. These activities may overlap or be performed iteratively [IEE 1990].

Software life cycle – the period of time of software existence from its early development till the

moment when the software loses its value. The essential software life cycle phases are analysis,

design, implementation, maintenance and, possibly, also enhancement [CAU]. Sometimes it is

assumed that the cycle terminates with the system deployment [IEE 1990]. One of the most widely

used industry standard is [IEE 2008].

Software development life cycle (SDLC), sometimes is also called Systems development life cycle

– in general synonym to software development process, is the structure intended for the

development of software products. In contrast to the software life cycle, this term is more specific

and is typical to software development, and not Software development life cycle as such.

1.2. Organization of software development process

Fundamental science such as physics and mathematics, as well as social science and economics

have stabilized traditions and formal basics to define the corresponding mechanical systems,

mathematical expressions or chemical reactions. Though, software engineering is a relatively new

and therefore heterogeneous engineering field, where standard specifications and regulations for

software development are not yet established. This is the area where boundary definition between

the sufficient degree of formalization and the simplicity of problem solving and readability is not

yet complete. Research on this area usually requires to take into account not only technological, but

also social, economic and information technology related aspects [NIK 2006c]. This problem is

vital when trying to formalize software development process.

 As software development is an organizational process, it is possible to depict it with the help of

a model, thus gaining required formalization level. The base elements in such model are phases,

activities, artefacts and roles, which are linked together. One software development life cycle can

contain several software development models, that define tasks and activities within the software

development process.

The choice of the software development process is related to multiple factors, such as a scale of

the project, a software development team and its organization, client’s requirements, etc. [COC

1999]. The standards of software development process and body of knowledge allow formal criteria

to be defined for both software systems and their development.

10

1.3. Software development standards

There is a common assumption in software engineering that methodical approaches to software

development provide less defects and inaccuracies, and help develop software faster and more

qualitatively. Software engineering standards in software development life cycle are considering

software development aspects and its standardization in software development activities

organization, classification and grouping, as well as their own life cycle organization [SWE 2004].

Chapter 1.3 reviews several software engineering related organizations and their standards.

Software engineering standards can be used for software development life cycle formalization

since they give general and structured information about different artefact groups. The standards

provide a basis for grouping software development artefacts, their classification, showing required

details or abstraction from details etc. Standards are independent from software development

methodologies and provide a general view into the process organization, thus ensuring an

abstraction level required for software development process modelling.

1.4. Software development life cycle models

Software development life cycles define a strategy for software development. Waterfall [ROY

1970], spiral [JAY 2007], [TSU 2011], incremental [THA 2005], [SCA 2001], [TSU 2011] and V-

model [THA 2005], [VLI 2008] are examples of the most typical software development life cycle

models. They are described in the chapter 1.4 of this thesis.

1.5. Software development methodologies

According to software engineering and project management disciplines, software development

methodology is a recommended set of systematized practices, that can be supported with training

materials, formal education programs or tools [ESS 2009]. The chapter 1.5 of this thesis provides an

overview of two heavyweight methodologies:

1. Microsoft Solutions Framework (MSF) [MIC 2003];

2. Rational Unified Process (RUP) [RAT 1998].

The extreme programming (XP) [WAK 2001] is reviewed by the author of this thesis as an

example of the agile software development methodology.

Both heavyweight and agile software development methodologies allow to achieve the same

goal – create a software product, based on the formal approach and best practices, minimizing costs

and controlling the software development process. Heavyweight methodologies explicitly define

software development artefacts and activities. In the last years certain principles of agile

methodologies have been incorporated into heavyweight methodologies. When developing the

process model, it is possible to choose a process abstraction level that would allow to avoid the

differences between methodologies. Agile software development can also be formalized with the

help of the process models, as the agile development defines similar phases, processes, activities

and artefacts, although in a more informal manner.

Software development process models have both declarative (defining how the software

development should happen) and descriptive (describing how the software development happens

right now) nature. Therefore, when upgrading software development or changing the process, it is

possible to use process models, that can formally and declaratively describe such change.

2. MODERNIZATION OF SOFTWARE DEVELOPMENT PROCESS WITHIN THE

CONTEXT OF MODEL DRIVEN ARCHITECTURE

The future trends of software development are globalization, scaling and integration of different

systems [BOT 2010]. An essential role in this process is assigned to the modelling of systems logic

and business process modelling, which currently can be done with various modelling languages like

UML or BPMN.

One of the solutions is Model Driven Architecture (MDA), a framework for software

development defined by the OMG consortium in 2001. MDA conceptually changes software

development priorities from the code oriented approach (when the code is the main artefact) to the

modelling approach (when model is the main artefact) [OSI 2010]. Thus, the design becomes as

11

part of solution and is expressed with the help of the model. Every change in design phase will

affect models, which can be then transformed into execution code. In contrast to traditional code

oriented development (where the executable code appears in the end of the project), an MDA based

approach allows getting the model (which is the code) in the early beginning of the project. This

avoids the consumption of both excess resources and the implementation of inappropriate business

logic.

MDA allows reviewing of different complicated systems from different abstraction levels both

on business model level (independently from technology) and on platform specific level (taking into

account specifics of technology), where the latter one is produced from business model [OMG],

[NIK 2008c]. MDA defines how the business model or platform independent model can be

transformed into the platform specific model.

Similarly, it is also possible to model own development process and link activities, roles,

artefacts, and describe their interaction as interrelated network, namely, with the help of process

models [SCA 2001]. Process models can be used for the introduction of new software development

process or employee training purposes.

2.1. MDA basic concepts

MDA is the architecture based on UML language and other software engineering industry

standards for model and design visualisation, storing and interchange. MDA supports creation of

high abstraction models, that are independent from execution platform and are stored in specialized

standardized repositories.

MDA includes the following technologies: Unified Modeling Language (UML), Meta-Object

Facilities (MOF), XML Metadata Interchange (XMI) and Common Warehouse Metamodel –

(CWM) [OMG].

Model transformations is a unified system process used for converting one model into another,

preserving defined equivalency relation between these models. The essence of MDA is a process of

modelling and the model transformations. A model can be expressed as UML diagram, OCL

specification or text set. MDA separates different model types, that can be abstract (specify

functionality of system) and concrete, i.e., linked to a specific platform, technology and

implementation. MDA types of models are [OMG], [FAV 2010], [PIL 2005]:

 CIM model (Computation Independent Model)

 PIM model (Platform Independent Model)

 PSM model (Platform Specific Model)

 Code Model, sometimes also called ISM model (Implementation Specific Model) [BRO 2005a].

 MDA assumes that it is possible to perform transformations from CIM to PIM, from PIM to

PSM and from PSM to the code model, as well as transformations at the same abstraction level.

High abstraction level models can have corresponding models at lower levels. For example, one

PIM can correspond to several PSM, which defines system models for different platforms.

Transformations between the models happen with the help of marking: the elements of the source

model are marked and linked to the elements in the target model.

 Model transformations are based on the metamodelling principles [EVA 2003]. Metamodelling

is one of the MDA base techniques. MDA is based on the platform models, expressed with UML,

OCL, which are saved in Meta-object Facility (MOF) repository [MOF 2008]. Metamodel (or

model of the model) is a model of modelling language, that defines syntax and semantics for the

modelling language and provides collaboration between the modelling process and transformation

tools. MOF is OMG consortium standard, which is used for specification of metamodels, their

development and management. It defines a language, that defines the modelling construction set,

used for definition or usage of collaborated metamodels set. MOF is also an international standard

[ISO 2005]. MOF is expressed in UML and is UML 2.x extension [FAV 2010]

2.2. Usage of MDA artefacts in software development phases

From the process point of view MDA is not offering any development methodology, motivating

this as a possibility to use MDA in any software development process. This is both an advantage

and a shortcoming: the architecture with its properties is defined, but no usage guidelines are

12

provided. The transition process from the so called traditional code-oriented process into the model-

driven is also missing [MEL 2004].

In general, a model driven approach is used in various stages of software development life cycle

– in structuring requirements, business analysis, process modelling, system design, service

definition, system integration, solution design, source code generation, automatic transformations

etc. In all these cases MDA unifies related activities, resulting in a model driven development

software development life cycle. Thus, it is possible to separate a high level business process

descriptive model from the ones which are defining system architecture and deployment platform,

so that later when developing different applications it could be reused again.

Since MDA does not prescribe software development process, in order to apply MDA to

traditional software development process it is necessary to analyse the aspects related to the process

integration [CHI 2007]. It is possible to investigate and generalize various researches [GAV 2004],

[MAN 2006], [BEL 2002], [ESI 2002], [ESI 2003], [VOG 2006]. [MEL 2004] reviews MDA from

activities and their collaboration point of view. These activities are reviewed by analysing a simple

hypothetical system with one source model and one target implementation model. Later, this

hypothetical system definition is extended, reviewing iterative development of MDA and model

implementation on various platforms [MEL 2004].

By analysing multiple literature sources, the author of this thesis defined MDA activities with

their inputs and outputs (these are defined in chapter 2.2). The information in the tables provides a

basis for the integration of MDA activities into activities of the traditional software development

process (which are described in chapters 3.1 and 3.2 of this thesis).

2.3. MDA maturity levels

In order to make a successful transition to the model-driven development within a selected

organization, it is mandatory to assess to which extent its current software development process

corresponds to the model driven development, and the roles of models and modelling activities. It is

possible to assess maturity levels for the model driven software development within the

organization [RIO 2006] based on Forrester classification [FOR 2009]. In this thesis this

information is described in chapter 2.3.

In real life, following MDA principles into the development process is not a trivial task, since

various problems are possible. When creating a fully-fledged MDA software development life

cycle, both OMG consortium recommendations (including standards, guidelines, life cycle stages

etc.) and general aspects of model driven process (provide model repository, corresponding

modelling environment etc.) must be taken into account. However, a successful compliance with

these two conditions will not obligatory guarantee that MDA adoption into traditional software

development process organization will work out in real life. Various MDA artefacts and their

integration with the traditional software development process must be checked for conformance,

how the developed artefacts are linked, and what their interface points are.

3. INTEGRATION OF MDA ARTEFACTS INTO SOFTWARE DEVELOPMENT

METHODOLOGIES

Traditionally, software development life cycle can be divided into six phases: requirements,

analysis, design, coding, testing and maintenance. The problems can happen if, for example, the

existing platform has to be replaced with the different one, or when the final result is different from

the requirements. Model driven architecture is based on model development and their

transformations. Each software development phase can be mapped to some model [NIK 2008a].

The author of this thesis pays attention to heavyweight methodologies and its most significant

representatives – RUP and MDA. Both methodologies can include MDA by depicting them

together, so that it can be possible to identify which phase corresponds to which MDA model [NIK

2008b], [NIK 2009c]. Searching for the interconnections in activities helps in the development of

the integrated approach. Since it is possible in MDA to identify interconnections with traditional

software development, the identified shared activities can be grouped by MDA principles.

13

3.1. MDA implementation in RUP process organization

RUP is not providing official guidelines on how to integrate MDA into their software

development process with the following justification: RUP represents current best practices in

software engineering and does not include approaches that are not widely used and accepted. MDA

is a young and still future oriented approach, therefore the complete MDA and RUP integration

process is yet to be defined. The RUP fundamental, an architecture-centric and iterative

development process, is highly consistent with MDA concepts. Various researches exist on MDA

integration with RUP, that use different methods [ESI 2002], [ESI 2003], [BRO 2005b]. By

unifying multiple project experiences, the recommendations for MDA aspect adoption are provided

in chapter 3.1of this thesis. It is still possible to perform some phase mappings from RUP to MDA

(as shown on Figure 1) [NIK 2008c], even though there are no official recommendations. More

information about MDA principles integration into RUP software development process organization

can be found from chapter 3.1 of this thesis.

PIM

CIM

PSM

Code

Inception Elaboration Construction TransitionDisciplines

Business modeling

Requirements

Analysis & Design

Implementation

Test
Deployment

& Change Mgmt
Configuration

Project Management

Environment

Phases

Iterations

Initial Elab #1 Elab #2
Const

#1

Const

#1

Const

#N

Tran

#1

Tran

#2

Figure 1. MDA and RUP phase mappings

3.2. MDA implementation in MSF process organization

Officially, MSF is not supporting MDA. Also, in comparison to RUP, there is no research

available on how to unify both processes. However, with the help of the analysis of both

technologies, it is possible to define general mapping rules for MSF process model (as in Figure 2)

[NIK 2008c].

.

CIM

PIM

PSM

Code

DisciplinesK
n

o
w

le
d

g
e

Time

Iterations

Envision

Plan

Build Stabilize

Deploy

Figure 2. MDA and MSF phase mappings

More information about MDA principles integration into MSF software development process

organization can be found from chapter 3.2 of this thesis.

14

3.3. Integration of MDA activities into RUP and MSF processes

MDA principles can also be applied to both methodologies (namely, RUP and MSF). Chapter

3.3 of this thesis contains descriptions on how models and its transformations correspond to their

phases. Also, the MSF and RUP methodology processes corresponding to the MDA processes are

described. These processes also show which artefacts are being replaced or enriched with the

model-driven specifics.

3.4. SPEM concept

Software and Systems Process Engineering Metamodel (SPEM) is OMG consortium

specification, that represents software development processes and related process groups. OMG

standards that are related to the usage of MDA are defined at metamodel level. In a similar way,

OMG defines SPEM metamodel. SPEM 2.0 is defined as a metamodel, as well as UML 2 profile

(that, in its turn, is defined as MOF meta-metamodel instance).

SPEM 2.0 can define any software and system development process and its components. SPEM

is limited with the minimal element amount, that is required for software development process

representation. It does not include the usage of specific elements for specific domains or disciplines

(e.g., program management). The goal of SPEM is to adapt different development methods,

processes, formalization levels, life cycle models and workflows. The general topic of interest in

SPEM is software development projects. SPEM 2.0 is not a general process modelling language and

is not offering own modelling concepts.

SPEM allows defining the software development process using roles, activities, tasks, artefacts

and work products. Additionally, SPEM provides a generally accepted syntax and structure for

various tools. Therefore, by using MDA transformation possibilities (e.g., MOF and QVT), SPEM

models can be changed and transformed into other process languages, for example, BPMN.

3.5. Conceptual Solution for software development process transition

The author of this thesis suggest performing MDA implementation into traditional software

development with the help of formal models and transformation approaches. The following research

paper by the author can be used as a basis for this approach: analysis of software development

process in context of SWEBOK [NIK 2006b], software development structure analysis, taking into

account software engineering standards (ISO, CMMI) in the context of software development teams

are described in [NIK 2006c], and some results about the usage of RUP and MSF can be found in

the author’s master thesis [NIK 2008a], [NIK 2008b], [NIK 2008c]. The diagram of the

hypothetical solution proposed is shown in Figure 3.

SPEM metamodel

M3

M2

M1

M0

MOF

Target model

(SPEM notation)
Source model

(SPEM notation)

Transformation

rules

Source (RUP,

MSF, XP,

SCRUM or other)

MDA based software

development source

process

MDA

artefacts

Figure 3. Hypothetical solution mapped to MDA four-layer architecture

SPEM is OMG standardized and formal software development process modelling notation,

though it is not intended for software development process modification or transition from one

15

software development process into another. The author of this thesis believes that the elements of

SPEM can also be used in the solution which will help with the transition of such processes.

Taking into account that the main artefacts of SPEM are models, an assumption is that the model

driven development principles can be used also in this context. The author proposes a hypothesis

that it is possible to define an approach for software development process transition which could

solve the process adoption problem by integrating two solutions, namely SPEM and MDA.

In the MDA context a source model represents a problem domain, and target model represents

software components (CIM to PIM or PIM to PSM). With the help of transformation one model can

be transformed into another.

When choosing the software development life cycle model as a source model (which conforms

to some specific traditional software development process), it can be assumed that some other

software development process also exists, and the latter describes the software development from

the model driven paradigm point of view. It is assumed as a target model. In addition, SPEM allows

to represent any software development process with the help of the model [SPE 2008], therefore

both source and target model can be expressed in SPEM notation, since both models correspond to

SPEM metamodel.

Every software development process can be specified in terms of both static (activities, artefacts,

roles) and dynamic (cycles, phases, iterations) aspects. By comparing two development processes it

is possible to find some process conformance, shared elements and define general process groups

[NIK 2006a], that provide logical association for them. Logical association of elements within the

context of MDA is the basis for transformation definitions. By reviewing process aspects as

transformation attributes it is possible to define the preconditions for executing transformations, i.e.

define the transformation rules for SPEM models. In order to define such rules it is necessary to get

formalized aspects of the traditional software development process, that can be typical for all

software development processes and the elements of which can be clearly linked to MDA based

software development process elements.

To solve this kind of task both theoretical knowledge about the software development process

specifics and technological support for SPEM model formal representation and transformation

implementation between the models are required.

The suggested approach allows to define any traditional software development process in the

source model (e.g., RUP, MSF, SCRUM), which corresponds to the chosen organization with its

specifics. With the help of MDA transformations it is possible to obtain the model driven software

development process or the target model, thus defining the adoption process from one software

development process into another and formally supporting this transition process. This approach

completely matches MDA four-layer architecture, since the real software development process is

being formalized in SPEM model, which conforms to SPEM metamodel, and the latter is

represented with MOF meta-metamodel.

4. APPROACH TO TRANSFORMATION OF SOFTWARE DEVELOPMENT

PROCESS

Existing MDA solutions for working with models also allow using these solutions in some

different context by replacing business models with software development life cycle models. Based

on MDA framework, the first step is the development (or adoption of the existing one) of SPEM

metamodel (Figure 4). SPEM is UML profile, that is defined with the help of MOF. SPEM can

represent any software development process [SPE 2008]. When practically implementing this

concept, SPEM is intentionally limited with the most essential concepts of software development

life cycle in order to make models as simple as possible and decrease the number of

transformations. If needed, it is possible to add extra elements and define additional transformations

since it does not affect the general solution concept, but only extends that with additional artefacts.

16

Step 1.1. Create/adapt SPEM metamodel

Step 4.1. Create source process

model in SPEM

transformation SPEMtoSPEM(clientprocess:SPEM, mdd:SPEM)

{

 top relation DemoProg2ModelProg

 {

 checkonly domain clientprocess p:Activity{

name = ”Provide a demo of program solution”;

nameAlternative = “Demonstrate program prototype”

owningPhase = "Inception";

 };

 enforce domain mdd s: Activity {

 name = “Provide an executable model of program solution”

 };

 }

Step 3. Define QVT transformations

Step 4.2. Execute QVT transformation,

thus getting target model in SPEM

notation

Step 1.2. Integrate metamodel to *.ecore

format and validate it

<<role definition>>

Analyst

<<performs>>

Provide a demo of

program solution

<<role definition>>

Programmer

<<performs>>

Define coding

guidelines

Elicit client

requirements
<<perfo

rm
s>

>

Step 2.1. Create base building blocks for traditional software

development process (source process)

[Inception phase]

<<perfo
rm

s>
>

Step 2.2. Create base building blocks for

MDA software development process (source

process)

Step 1. Create a metamodel of software development process

<<role definition>>

Analyst

<<performs>>

Provide a demo of

program solution

Elicit client

requirements

[Inception phase]

Step 2. Create base building blocks for source and target processes

<<role definition>>

Analyst

<<performs>>

Provide a demo of

program solution

[Inception phase]

<<role definition>>

Analyst

<<performs>>

Provide an executable

model of program

solution

[Inception phase]

Step 4. Obtain output process model

Work

Product

Work

Product Kind

Process

Role

Process

Performer

Activity

Work

Definition

Iteration Phase Lifecycle

Process

Discipline

Process

Component

Step

Model

Element

Guidance
Guidance

Kind

0..1

0..*

1

0..*
0..*

0..*

0..1
0..*

0..*
1

0..*

1

1..*

0..*

Figure 4. General schema of algorithm

The author of this thesis suggests using open source platform Eclipse and Eclipse Modeling

Framework (EMF) data modelling and integration framework [EMF], [NIK 2010c] as the solution

17

architecture for this MDA based approach. EMF conforms to one of the MOF evolution branches –

Essential MOF (EMOF). Within EMF architecture Eclipse models are stored in ECore format. In

addition to ECore metamodelling language, EMF also supports code generation framework, which

can generate Java code from ECore models.

Class names of ECore metamodel are close to UML terminology, the basis of ECore is some

UML subset, constrained with its specific application within EMF.

4.2. Step one. Create a metamodel of software development process

The output of the first step is the complete SPEM metamodel, which is described with ECore

metamodel. The use of this metamodel ensures generating SPEM models for formalization of

software development life cycle.

4.3. Step two. Create base building blocks

During the second step there is a need to create base building blocks for both source and target

processes. Within the context of this thesis, a process base block is some part of software

development process, which groups some activity set within the transformation context. By

decomposing software development life cycle, it is possible to acquire a set of process base blocks.

And vice versa – a process can be interpreted as interconnected set of process base blocks [NIK

2010b], [NIK 2011]. Input process is the source process, which conforms to a specific

organization’s process (traditional software development process). Output process is the target

process, which is the goal of transformation and which conforms to MDA based process.

Software development processes are unique within every software development organization.

The same process elements can be named differently. However, they own the same standard

activities which can be acquired from predefined process building blocks [NIK 2006a]. A similar

approach is implemented in various tools - Eclipse EPF (Eclipse Process Framework), IBM

Rational Method Composer, Enterprise Architect, MagicDraw UML (SPEM Package) and

Objecteering SPEM Modeler [EPF], [MAG], [OBJ], [NIK 2010c].

The output of the second step is both source and target processes unified set of base building

blocks, which describes both traditional software development process and MDA based process.

4.4. Step three. Define QVT transformations

The third step is about defining the transformations. One of the QVT family languages is used

for the definition of transformations – QVT Relations. QVT Relations is OMG standard declarative

language, which is intended for model-to-model transformations. MDA for QVT Relations defines

both textual and graphical syntax [MOF 2008], [RED 2006].

The source of information for the definition of transformations is the knowledge on how the

source elements from the process model can be mapped into the target model elements [NIK

2009a]. As described in step 2, the transformations are defined for the base building block set. Both

processes are analysed with a goal to identify the impact of the model-driven development to the

traditional software development process.

4.5. Step four. Obtain output process model

The fourth step is basically a practical application of the suggested approach. By using the

software development process base building blocks the SPEM model that conforms to the

traditional software development process in the chosen organization is created. This SPEM model

must conform to ECore metamodel. By executing QVT Relations transformations, the source model

is transformed into the target model. The target model, that conforms to the model-driven process,

is the main deliverable of the fourth step.

5. PRACTICAL APPLICATION OF SUGGESTED APPROACH

The approach described in chapter 4 of this thesis is practically applied in PF software

development company, reaching the goal of transforming this organizations’ software development

process into the model-driven [NIK 2010b]. The author’s approach was applied to the process

model for the existing software development process in the company, resulting in the target process

18

model, enriched with the model driven software development artefacts [NIK 2009e]. A fragment of

the source and the target models is shown on Figure 5.

5. att. Demonstration of a of source and corresponding target process model fragments

The author of this thesis has created the prototype of the process modelling tool, that allows to

automate the proposed approach (as shown on Figure 6). This prototype is based on Eclipse GMF

(Graphical Modeling Framework) technology, which is aimed at model-driven development of

graphics editors. Transformations are defined with other Eclipse plug-in mediniQVT.

This prototype can be used as a source for fully functional plug-in development which can

support software development process transformations.

<<output>>

activityToWorkProduct

<<performs>>

roleToActivity

Figure 6. RUP activity group „define system” base block (prototype developed by the author of this thesis)

19

THE MAIN RESULTS OF THE RESEARCH AND CONCLUSIONS

Software engineering process is in its transitional period, where the traditional or code-oriented

software development is unable to deal with increasing software development complexity. There is

a gradual trend in moving to the model-driven software development process organization. Thus, a

problem of methodological approaches that can define guidelines for the transformation between

the traditional and the model-driven software development process becomes actual.

As a result of this research an approach for the transformation of the traditional software

development process organization into the model-driven was proposed. The basis of this approach

lies in process modelling methods and model formalization principles defined in MDA framework,

linked with a set of existing tools, that support the model-driven approach. In order to verify the

usability of this approach, its approbation was executed at one of Latvian software development

companies. The existing software development process was analysed, and the process model was

created. In order to support the transition to the model driven software development process, the

transformations defined by the author were applied. To achieve the goal, the following tasks were

completed:

 the traditional software development principles, standards and SWEBOK framework are

described [SWE 2004];

 the principles of model-driven development are outlined, i.e. the definition of the model,

model transformations, metamodelling; MDA software development concepts are

investigated in relation to software development;

 the possibilities of integration of the traditional software development process with model-

driven artefacts are examined;

 a new approach for the transition between traditional software development into MDA

oriented is proposed; it is based on formal principles of process modeling, model

transformation rules and existing technical solutions which support model-driven

architecture;

 proposed approach was used in information technology company to enhance its software

development process by introducing process model enriched with MDA artefacts;

 conclusions about MDA application, problems and future use in software development are

drawn, in addition to aspects of transition from traditional software development process

into MDA process.

The main result of this doctoral thesis is a developed software development process transformation

approach which offers replacement of the code-oriented software development with the model-

driven software development artefacts. The proposed approach is based on the formal process

modelling principles, theory of transformation rules and is using existing tools, that support process

modelling and model transformations. Within the proposed solution, the tool prototype is created.

The most significant results of the doctoral research are the following:

1. The information about software development history, terminology, software development

methodologies and most significant standards and frameworks are systematized and

described.

2. The possibility of application of process model and model transformations within the

software development process in process handling and control is demonstrated.

3. Model-driven software development terminology and model-driven artefact mapping into

the software development life cycle phases and activities are defined.

4. The transformation rules for software development process transformation enriched with

model-driven development artefacts are defined.

20

5. The algorithm for the traditional software development process transition into the model-

driven is defined in a way that it can be also modified so that any software development

process could be transformed to any other (for example, MSF to RUP).

6. Based on the software development process analysis within selected information

technology company, the list of recommendations on how to enrich the software

development process in that company with the model-driven software development

artefacts, was delivered.

Tests using the applied examples allow to draw the following conclusions:

 Software engineering discipline is still one of the engineering fields that is difficult to

formalize. It is especially related to the software development process, where the role of

human factor is essential. One of the software development process formalization

approaches in this process analysis and handling is the usage of modelling capabilities.

 Process model transformations are especially actual for heavyweight methodology and

large scale software development processes, in comparison to the trivial software

development project implementation which are used in agile software development.

 There are various notations for software development process modelling. For example,

some specifics of software development can be described with SPEM notation. However,

SPEM notation contains no built-in mechanisms for model transformations when thinking

about the transition from one software development organization into another. The author

of thesis identified how the SPEM models can be used in such transition task

implementation.

 MDA offers some options on how to avoid dependency on platform specifics, and enhance

the abstraction level in software development. The number of available tools that support

MDA can confuse end-users, especially taking into account weak tool integration and the

imperfect mechanisms for artefacts interchange.

 One of the basic elements proposed by the author is the usage of SPEM base building

blocks, since they can define different levels of abstraction, thus describing software

development process activities and workflows. Base building blocks can be the foundation

for knowledge formalization, e.g. when searching for artefacts that are different by name,

but same by the content.

 Analysing the progress of the software development process in relation to model-driven

architecture, it is clear that there are not enough high quality tools for end-to-end MDA

concepts usage in software engineering. The approach proposed by the author of this

thesis is definitely one of the steps forward in the evolution of software development

processes, especially in the model-driven branch of software engineering.

The directions of further research could be as follows:

 complete implementation of the process model tool prototype;

 SPEM notation enrichment with new elements, that are necessary for the process model

transformation tasks

The developed method is recommended by the author to be used in software development

companies in order to refine their development processes. It can also be applied in large information

technology companies, where software development is organized as software factories

(characterized by large number of different projects), and thus the information about typical

software systems organization is needed. An example of such company is Accenture, where the

author of this thesis currently works. In Accenture, the initial software development modelling

process is extensively used in various management tasks. However, there still is a need for the

technology that can provide processing of software development processes and ease their

transformation.

21

BIBLIOGRAPHY

Publications of the author in internationally reviewed scientific papers:

[NIK 2006b] Nikulsins V,. Nikiforova O., Sukovskis U. Analysis of Activities Covered by

Software Engineering Discipline // Databases and Information Systems, Seventh International

Baltic Conference on Databases and Information Systems, Communications, Materials of Doctoral

Consortium, O. Vasilecas, J. Eder, A. Caplinskas (Eds.), pp. 130-138, VGTU Press „Technika”

scientific book No 1290, Vilnius, Lithuania – 2006. – pp. 130–138

[NIK 2006c] Nikulsins, V., Nikiforova, O. Review on Allocation of Roles and Responsibilities

among Software Development Team // The 46th Scientific Conference of Riga Technical

University, Computer Science, Applied Computer Systems, October 13-14, Riga, Latvia, 2005,

published in the 5th Series Computer Science. Applied Computer Systems, – 2006. – Vol. 26 – pp.

54–65

[NIK 2008a] Nikulsins, V., Nikiforova, O., Sukovskis, U. Mapping of MDA Models into the

Software Development Process // Databases and Information Systems, Proceedings of the Eighth

International Baltic Conference Baltic DB&IS 2008, H.-M. Haav and A. Kalja (Eds.), Tallinn

University of Technology Press, Tallinn, Estonia, June 2-5, – 2008. – pp. 217–226

[NIK 2008b] Nikulsins V., Nikiforova O. Adapting Software Development Process towards the

Model Driven Architecture // Proceedings of The Third International Conference on Software

Engineering Advances (ICSEA), International Workshop on Enterprise Information Systems

(ENTISY), 2008, Mannaert H., Dini C., Ohta T., Pellerin R. (Eds.), Sliema, Malta, October 26-31,

2008., Published by IEEE Computer Society, Conference Proceedings Services (CPS) – 2008. – pp.

394–399 (available at IEEE Xplore Digital Library; ACM Digital Library)

[NIK 2008c] Nikiforova O., Sukovskis U., Nikulsins V. Principles of Model Driven Architecture

for the Task of Study Program Development // Joining Forces in Engineering Education Towards

Excellence Proceedings, SEFI Annual Conference, 2008, F.K. Fink (Ed.), CD-ROM of papers –

2008. – paper ID 1162, pp 1–8. (available at SEFI Digital Library)

[NIK 2009a] Nikulsins V., Nikiforova O. Transformations of SPEM Models Using

Query/View/Transformation Language to Support Adoption of Model-driven Software

Development Lifecycle // The 13th East-European Conference on Advances in Databases and

Information Systems (ADBIS), September 2009. Riga, Latvia, JUMI Publishing House Ltd. – 2010.

– pp. 416–423

[NIK 2009c] Nikiforova O., Nikulsins V., Sukovskis U. Integration of MDA Framework into the

Model of Traditional Software Development // In the series “Frontiers in Artificial Intelligence and

Applications", Databases and Information Systems V, Selected Papers from the Eighth International

Baltic Conference Baltic DB&IS 2008, Haav H.-M., Kalja A. (Eds.), IOS Press, - 2009. – Nr. 187.

– pp. 229–242 (available at Google Books; IOS Press)

[NIK 2010a] Nikulsins V. Transformations of Software Process Models to Adopt Model-Driven

Architecture // International Conference on Evaluation of Novel Approaches to Software

Engineering (ENASE 2010), Proceedings of the 2nd International Workshop on Model Driven

Architecture and Modeling Theory Driven Development (MDA&MTDD 2010), Osis J., Nikiforova

O. (Eds.), Greece, Athens, July 2010, SciTePress, Portugal. – 2010. – pp. 70–79 (available at

Thomson Reuters; Inspec; dblp.uni-trier.de Computer Science bibliography)

[NIK 2010b] Nikulsins V., Nikiforova O., Kornijenko J. SPEM model transformations to adopt

MDA in practice. Databases and Information Systems // Proceedings of the Ninth International

Baltic Conference Baltic DB&IS 2010. Databases and Information Systems, 2010. Barzdins J.,

Kirikova M. (Eds.). 2010. July, Latvia, Riga. Riga: University of Latvia Press, Riga, Latvia, – 2010.

– pp. 295–307

[NIK 2010c] Nikulsins V., Nikiforova O. Tool Integration to Support SPEM Model

Transformations in Eclipse // Scientific Journal of Riga Technical University, Computer Science,

22

Applied Computer Systems. The 50th International Scientific Conference of Riga Technical

University, Riga, Latvia: RTU Publishing, – 2010. – Vol. 43. – pp. 60–67 (available at EBSCO)

[NIK 2011] Nikulsins V., Nikiforova O., Kornijenko J. An Approach for Enacting Software

Development Process: SPEM4MDA // Frontiers in Artificial Intelligence and Applications, Vol.

224, Databases and Information Systems VI – Selected Papers from the 9th International Baltic

Conference, DB&IS 2010. Barzdins J., Kirikova M. (Eds.). Amsterdam: IOS Press, – 2011. Vol.

224. – pp. 55–65 (available at IOS Press; ACM Digital Library)

Research report:

[NIK 2009e] Nikiforova O., Nikulsins V., Kornijenko J. et. al. Implementation of model-driven

software development process in software development company „PF”, under the research project

of Riga Technical University Nr. FLPP-2009/10 „Development of Conceptual Model for Transition

from Traditional Software Development into MDA-oriented”. – 2009.

Other bibliography used in this summary:

[BEL 2002] Belaunde M. Initial identification of issues for further research. Deliverable 2.2.

MODA-TEL. Interactive Objects Software GmbH – 2002. / Internet:

http://www.modatel.org/~Modatel/pub/deliverables/D2.2-final.pdf

[BOT 2010] Botteri P., Cowan D., Deeter B. et. al. Bessemer’s Top 10 Laws of Cloud Computing

and SaaS. Bessemer Venture Partners – 2010. / Internet:

http://www.bvp.com/downloads/saas/BVPs_10_Laws_of_Cloud_SaaS_Winter_2010_Release.pdf

[BRE 2001] Breton E., Bezivin J. Process-Centered Model Engineering. Fifth IEEE International

Enterprise Distributed Object Computing Conference, 2001. – France: IEEE – 2001. / Internet:

http://www.sciences.univ-nantes.fr/lina/atl/www/papers/edoc.pdf

[BRO 2005a] Brown A., Conallen J., Tropeano D. Models, Modeling, and Model Driven

Development // Model-Driven Software Development, Springer, Berlin – 2005. – pp. 1–17.

[BRO 2005b] Brown A., Conallen J. An introduction to model-driven architecture. Part III: How

MDA affects the iterative development process – May 2005. / Internet:

http://www.ibm.com/developerworks/rational/library/may05/brown/index.html

[CAU] Cauna E. Lielā terminu vārdnīca / Internet: www.termini.lv

[CHI 2007] Chitforoush F., Yazdandoost M., Ramsin R. Methodology Support for the Model

Driven Architecture // Department of Computer Engineering, Sharif University of Technology,

Tehran, Iran. 14th Asia-Pacific Software Engineering Conference APSEC 2007. – 2007.

[CMM] Software Engineering Institute. Capability Maturity Model Integration (CMMI) / Internet:

http://www.sei.cmu.edu/cmmi/

[COC 1999] Cockburn A. A Methodology Per Project. / Internet:

http://alistair.cockburn.us/crystal/articles/mpp/methodologyperproject.html

[COM 2006] Combemale B., Cregut, X. Towards a Rigorous Process Modeling With SPEM. –

France: Rennes University – 2006. / Internet:

http://www.combemale.net/research/phd/2006/iceis250406-CCCC-poster401.pdf.

[DEB 2007] Debnath, N., Zorzan, F.A., Montejano et. al. Transformation of BPMN subprocesses

based in SPEM using QVT // Electro/Information Technology, 2007 IEEE International

Conference. – 2007. – pp. 146–151

[DIA 2010] Diaw S., Lbath R., Thai V. et. al. SPEM4MDE: a Metamodel for MDE Software

Processes Modeling and Enactment // Third Workshop on Model-Driven Tool & Process

Integration. MDTPI 2010, Paris, France. – 2010. – pp. 109-121.

[ERI 2004] Eriksson H.-E., Penker M., Lyons B. et. al. UML2 Toolkit. Wiley Publishing,

Indianapolis, Indiana, USA. – 2004. – 511 p.

23

[ESI 2002] Steinhau R. Model Driven Architecture Definition and Methodology. Deliverable 3.1.

MODA-TEL. Interactive Objects Software GmbH – 2002 / Internet:

http://www.modatel.org/public/deliverables/D3.1.htm

[ESI 2003] Process Model to Engineer and Manage the MDA: Model-driven Architecture

inSTrumentation, Enhancement and Refinement Approach. European Software Institute – 2003 /

Internet: http://modeldrivenarchitecture.esi.es/pdf/Deliverable-D32.zip

[ESS 2009] Essvale Corporation Limited. Business Knowledge for IT in Insurance: A Complete

Handbook for IT Professionals. 63 Apollo Building, 1 Newton Place, London E14 3TS. Essvale

Corporation – 2009. – 248 p.

[EVA 2003] Evans A., Sammut P., Willans J.S. (eds.) Metamodelling for MDA // First

International Workshop Proceedings, York, UK – November 2003. / Internet:

http://www.cs.york.ac.uk/metamodel4mda/onlineProceedingsFinal.pdf

[FAV 2010] Favre L. Model Driven Architecture for Reverse Engineering Technologies: Strategic

Directions and System Evolution. 701 E. Chocolate Avenue, Hershey PA 17033, United States of

America: IGI Global publishing – 2010. – 459 p.

[FEN 2006] Feng Y., Mingshu L., Zhigang, W. SPEM2XPDL: Towards SPEM Model Enactment.

Bejing, China: The Chinese Academy of Sciences – 2006 – 6 p.

[FOR 2009] Forrester C., Buteau E. L., Shrum, S. B. CMMI for Services, Version 1.2. Technical

Report, Software Engineering Institute – 2009.

[GAV 2004] Gavras A., Belaunde M., Pires L.F. et. al. Towards an MDA-based development

methodology for distributed applications – 2004. / Internet:

http://eprints.eemcs.utwente.nl/7100/01/paper3-3.pdf

[GUT 2004] Guttman M. Getting Started With OMG’s MDA. Application Development. 2004. /

Internet: http://www.softwaremag.com/L.cfm?doc=2004-09/2004-09mda

[GUT 2007] Guttman, M., Parodi, J. Real-Life MDA. Solving Business Problems With Model

Driven Architecture. Morgan Kaufmann Publishers – 2007.

[HUG 2009] Hug C., Front A., Rieu D. et. al. A method to build information systems engineering

process metamodels. Journal of Systems and Software. Volume 82, Issue 10. – 2009. – pp. 1730-

1742.

[HUS 2011] Hussman H., Meixner G., Zuehlke D. (Eds.). Model-Driven Development of Advanced

User Interfaces. Studies in Computational Intelligence, First Edition. – Berlin, Heidelberg,

Germany: Springer-Verlag – 2011. – 324 p.

[IEE 1990] IEEE Std 610.12-1990. IEEE Standard Glossary of Software Engineering Terminology.

The Institute of Electrical and Electronics Engineers – 345 East 47th Street, New York, NY 10017,

USA: IEEE Standards Board. – 1990. – 84 p. / Internet:

http://www.idi.ntnu.no/grupper/su/publ/ese/ieee-se-glossary-610.12-1990.pdf

[IEE 2008] IEEE Std 12207-2008. ISO/IEC 12207. IEEE Systems and software engineering -

Software life cycle processes. The Institute of Electrical and Electronics Engineers. IEEE Standards

Activities Department - 445 Hoes Lane, Piscataway, NJ 08854, USA: IEEE Standards Board. –

2008. – 122 p. / Internet: http://www.math.unipd.it/~tullio/IS-1/2009/Approfondimenti/ISO_12207-

2008.pdf

[ISO 2005] ISO/IEC 19502:2005 International Standard. Information Technology – Meta Object

Facility (MOF). – Switzerland, Geneva. – 2005.

[JAY 2007] Jayaswal B.K., Patton P.C. Design for Trustworthy Software: Tools, Techniques, and

Methodology of Developing Robust Software. First Edition. Prentice Hall, 2007. 840 p.

http://ptgmedia.pearsoncmg.com/images/0131872508/samplechapter/0131872508_ch01.pdf

24

[KHA 2004] Balbo S., Khan A. A Tale of two Methodologies: Heavyweight versus Agile //

Department of Information Systems, The University of Melbourne. AusWeb04. The Tenth

Australian World Wide Web Conference. – 2004 / Internet:

http://ausweb.scu.edu.au/aw04/papers/edited/balbo/

[KLE 2003] Kleppe A., Warmer J., Bast W. MDA Explained: The Model Driven Architecture:

Practice and Promise. Addison Wesley – April 2003. – 167 p.

[KRU 2000] Kruchten P. The Rational Unified Process An Introduction, Second Edition, Addison

Wesley – 2000. – 320 p.

[LAN 2004] Langlois B., Exertier D. MDSoFa: a Model-Driven Software Factory. Thales Research

& Technology France. – October 2004. / Internet: www.softmetaware.com/oopsla2004/langlois.pdf

[MAN 2006] Mansell J., Bediaga A., Vogel R. et. al. Process Framework for the Successful

Adoption of Model Driven Development. A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006,

LNCS 4066. – 2006. – pp. 90–100.

[MEL 2002] Mellor S. J., Balcer J. M. Executable UML: A Foundation for Model-Driven

Architecture. Addison Wesley. – 2002. 416. p.

[MEL 2004] Mellor S.J., Scott K., Uhl A. et. al. MDA Distilled: Principles of Model-Driven

Architecture. Addison Wesley – 2004. - 176 p.

[MIC 2002] Microsoft. Microsoft Solutions Framework: MSF Process Model v. 3.1. White Paper,

Microsoft Corporation – June 2002.

[MIC 2003] 2710B: Analyzing Reuirements and Defining Microsoft .NET Solution Architectures.

Microsoft Official Course. – April 2003.

[MOF 2008] Meta Object Facility (MOF) 2.0 Query/View/Transformation, v1.0, 2008 / Internet:

http://www.omg.org/docs/formal/08-04-03.pdf

[NAU 1969] Naur P., Randell B. (Eds.) Software Engineering. Report on a conference sponsored

by the NATO Science Committee, Garmisch, Germany, 7-11th of October 1968. / Internet:

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.pdf

[OMG 2006] Object Constraint Language Specification, version 2.0. Prepared by OMG: OMG –

2006 / Internet: http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf

[OMG] OMG Model Driven Architecture. / Internet: http://www.omg.org/mda

[OSI 2010] Osis J., Asnina E. Model-Driven Domain Analysis and Software Development:

Architectures and Functions. IGI Publishing. – 2010. – 487 p.

[PAL 2006] Palomäki J., Keto H. A Process-Ontological Model for Software Engineering //

Philisophiocal Foundations on Information Systems Engineering. Tampere University of

Technology/Pori. Department of Information Technology / Internet: http://sunsite.informatik.rwth-

aachen.de/Publications/CEUR-WS/Vol-240/paper3.pdf

[PEI 2010] Peixoto D. C. C., Batista V. A., Resende R. F. et. al. How to Welcome Software Process

Improvement and Avoid Resistance to Change // Federal University of Minas Gerais, Brazil – 2010.

/ Internet: http://homepages.dcc.ufmg.br/~vitor/artigos/icsp2010_paper.pdf

[PIL 2005] Pilone D., Pitman N. UML 2.0 in a Nutshell. First Edition. – Sebastopol, USA. O’Reilly

Media Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. – 2005. – 240 p.

[RAT 1998] Rational Software Corporation. Rational Unified Process. Best Practices for Software

Development Teams // Rational Software White Paper. – 1998. – 21 p.

[RED 2006] Reddy S., Venkatesh R., Ansari Z. A relational approach to model transformation

using QVT Relations // Tata Research Development and Design Centre, Pune, India. – 2006. /

Internet: http://www.iist.unu.edu/~vs/wiki-files/QVT-TRDCC.pdf

25

[RIO 2006] Rios E., Bozheva T., Bediaga A. et. al. MDD Maturity Model: A Roadmap for

Introducing Model-Driven Development // European Conference on Model Driven Architecture –

Foundations and Applications, Rensink A., Warmer J. (Eds.), ECMDA-FA 2006 – Bilbao, Spain:

Springer – 2006. – pp. 78-89.

[ROY 1970] Royce W. Managing the Development of Large Software Systems. IEEE WESCON,

1970. / Internet: http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf

[SCA 2001] Scacchi W. Process Models in Software Engineering. Institute for Software Research,

University of California, Irvine – 2001. – 24 p. / Internet:

http://www.ics.uci.edu/~wscacchi/Papers/SE-Encyc/Process-Models-SE-Encyc.pdf

[SER 2005] Serour M.K., Henderson-Sellers B. Resistance to Adoption of an OO Software

Engineering Process: An Empirical Study // University of Technology, Sydney, Australia. European

and Mediterranean Conference on Information Systems (EMCIS) –2005.

[SIE 2001] Siegel J., OMG Staff Strategy Group. Developing in OMG’s Model-Driven

Architecture. Object Management Group White Paper. – 2001.

[SPE 2008] Software Process Engineering Metamodel Specification (SPEM), Version 2.0, OMG

specification. – 2008. / Internet. – http://www.omg.org/cgi-bin/doc?formal/2008-04-01

[STA 2006] Stahl T., Voelter M. Model-Driven Software Development: Technology, Engineering,

Management. John Wiley & Sons, Ltd., 2006. 428 p.

[STE 1999] Stelzer D., Mellis W. Success Factors of Organizational Change in Software Process

Improvement // Software Process Improvement and Practice, Volume 4, Issue 4. John Wiley &

Sons Ltd –1999. / Internet: http://informationsmanagement.wirtschaft.tu-

ilmenau.de/forschung/documents/successf.pdf

[STE 2003] Steinhau R. Guidelines for the Application of MDA and the Technologies covered by

it. Deliverable 3.2. MODA-TEL. Interactive Objects Software GmbH – 2003. / Internet:

http://www.modatel.org/~Modatel/pub/deliverables/D3.2-final.pdf

[SWE 2004] Abran A., Moore J.W., Bourque P. et. al. (Eds.) Guide to the Software Engineering

Body of Knowledge (SWEBOK), IEEE. – Los Alamitos, California: IEEE Computer Society Press

– 2004. – 302 p.

[THA 2005] Thayer R.H., Christensen M.J. (Eds.) Software Engineering, Volume 1: The

Development Process, Third Edition – 11 River Street, Hoboken, NJ 07030, ASV: John Wiley &

Sons. – 2005. – 540 p.

[TRA 2004] Tratt L. Model transformations and tool integration. – London, UK: Department of

Computer Science, King’s College London, Springer-Verlag – 2004. –12 p.

[TSU 2011] Tsui F., Karam O. Essentials of Software Engineering, Second Edition. Southern

Polytechnic State University, Marietta, Georgia, USA. John and Bartlett Publishers, 40 Tall Pine

Drive, Sudbury, MA 01776. – 2011. – 409 p.

[VLI 2008] Vliet H. Software Engineering: Principles and Practice, Third Edition. The Atrium,

Southern Gate, Chester, West Sussex PO19 8SQ, England – John Wiley & Sons. – 2008. – 713 p.

[VOG 2006] Vogel R., Mantell K. MDA adoption for a SME: evolution, not revolution Phase II. //

The Second European Conference on Model Driven Architecture (ECMDA 2006). Foundations and

Applications. Bilbao, Spain. – 2006. – 13 p.

[WAK 2001] Wake W. C. Extreme Programming Explored. The XP series, Addison-Wesley

Professional – 2001. – 192 p.

