Zinātniskās darbības atbalsta sistēma
Latviešu English

Publikācija: Adaptive Learning Algorithm for Hybrid Fuzzy System

Publikācijas veids Citas publikācijas konferenču (arī vietējo) ziņojumu izdevumos
Pamatdarbībai piesaistītais finansējums Nav zināms
Aizstāvēšana: ,
Publikācijas valoda English (en)
Nosaukums oriģinālvalodā Adaptive Learning Algorithm for Hybrid Fuzzy System
Pētniecības nozare 2. Inženierzinātnes un tehnoloģijas
Pētniecības apakšnozare 2.2. Elektrotehnika, elektronika, informācijas un komunikāciju tehnoloģijas
Autori Aleksandrs Vališevskis
Atslēgas vārdi adaptive learning algorithms, adaptive network, Adaptive Network Based Fuzzy Inference System, neuro-fuzzy systems, Resilient backpropagation
Anotācija In this paper the possibility of improving convergence time of algorithms intended for tuning parameters of fuzzy system with inference mechanism realized with the help of adaptive network is considered. A new algorithm is proposed, which allows to decrease the number of iterations during learning process and to substantially decrease the number of computational operations that have to be performed during single iteration. Furthermore, analytical data is presented and it’s shown how to reduce the computational load in the case if the proposed algorithm is being used.
Atsauce Vališevskis, A. Adaptive Learning Algorithm for Hybrid Fuzzy System. No: Proceedings of the International Conference "Traditional and Innovations in Sustainable Development of Society", Latvija, Rēzekne, 28. Feb-2. Mar., 2002. Rēzekne: Rēzeknes Augstskola, 2002, 281.-287.lpp.
ID 11126