
Scientific Journal of Riga Technical University
Computer Science. Information Technology and Management Science

2011

__ Volume 49

139

Use of the Deferred Approach in Scientific

Applications

Pavel Osipov
1
, Arkady Borisov

2
,

1-2
Riga Technical University

Abstract – In this paper, the implementation of security system

that has strict requirements on the time of evaluation of each

transaction made by the user is examined on the example of

building a system for user behaviour modelling using Markov

models. Evaluation of the effectiveness of both the classical

approach to the implementation of a server that calculates metric

of the user model and with the use of lightweight threads, as well

as of a new ideology - Deferred-based event model is performed.

A number of tests of various configurations are conducted,

showing the preferred server for the Deferred-based type of

system as well as an approach to implementing this type of

request service.

Keywords – Deferred, Python, server, highload, response time

I. INTRODUCTION

Nowadays, there are many different algorithms that require

large hardware resources for their operations. This is due both

to an increase in complexity of the algorithms and the volume

and structure of the data being processed. The usual practice in

such cases is to increase the number and capacity used for data

processing machines, in particular, the transition to a cluster or

cloud. But not always this kind of approach is economically

justified and there is a question of performing such tasks on

the available hardware, but using different optimization

techniques.

In [1] the implementation and evaluation of the algorithm

design and analysis of user behaviour model of the electronic

system to detect its abnormal activity is described. It is shown

that the proposed algorithm can be used in systems operating

with sensitive data. However, the established test system

implemented in the programming language PHP showed a

very low rate of model treatment. This is due to poor

optimization of the PHP language with regard to performing

complex mathematical calculations.

To implement the final system, the Python programming

language was selected as a well-established and highly-loaded

language in the creation of systems and implementation of a

variety of scientific problems [2].

When using the Python language in this area, there is a

requirement for the effective organization of the server

processing the request to review and update models as the

server itself is also created in Python. In the second part of this

paper a technique to select the best server and the results of its

application are presented.

There are very strict requirements for speed of processing

each transaction: the upper threshold of processing time for

100 models is selected to be 500 milliseconds. There is also a

requirement to use typical server hardware, without having to

purchase expensive hardware. Depending on the processing

power of the equipment rate of shortchanging the same model

can vary. At present, an algorithm for computing the metrics

and model updates is implemented in Python, it uses about 50

milliseconds of CPU time on a computer Intel Core i3 560 +

4Gb RAM DDR3 running on Ubuntu operating system.

However, in addition it is necessary to consider the time spent

on initializing Python interpreter, as well as temporary costs

required to load the model from the database, to receive

parameters and issue the result. Finally, the time may reach

more than 200 milliseconds on a script that cannot consistently

handle 90 models for 500 ms.

Therefore, the need for optimization of the treatment

process arises, through the use of parallel computing, the use

of all possible cores, pooling database connections, using

effective models of long-term storage, as well as efficient

allocation of resources to handle a large number of

simultaneous requests.

Due to the above-mentioned limitations, it was decided to

use the experience and some software tools used to create

electronic systems aimed at heavy loads.

II. TARGET SYSTEM STRUCTURE

The developed module is part of a big information system

security module, which imposes certain restrictions on the

possible architectural solutions for its implementation.

The target system is a set of distributed services, and

security is one of its modules. In turn, the system modelling

user behaviour and the evaluation of each action on the basis

of this model is a module of a common security system.

The general logic of the workflow lies in the fact that at any

given time many users perform a variety of activities -

transactions, each of which, before being processed by the

system must be approved by the security module. During

processing, each transaction security module in particular

examines how different a query is from the typical behaviour

for this user. For this purpose, transaction metric is calculated

[1]. To calculate it, the user must have a personal behaviour

model. When entering the system for the first time, a user is

assigned a typical model of the corresponding type of user

class. In the course of work, personal model is varied

according to some rules, thus adjusting to the changing

behaviour of the individual.

A more detailed block-schema of this process is shown in

Fig. 1.

Scientific Journal of Riga Technical University
Computer Science. Information Technology and Management Science

2011

__ Volume 49

140

A. Python Servers Implementation Approaches

Almost all of the servers implemented in Python, use one of

two classical approaches to the implementation logic that are

described below.

Creating a system process to handle each request

The so-called "Heavy servers", when requested, create a

system process that handles the request independently of the

server itself. This allows the server to effectively handle many

simultaneous requests. However, the establishment of a

systemic process is fairly resource-expensive operation and

often the system has a limit on the number of processes

simultaneously available for the application. Their number is

seldom greater than 100, even on powerful modern servers.

The user have a

personal model?

Requested

model presented in

cache?

No Get model of

common type

for current user

Yes

Load model

from database

to application

cache

No

Load model

from

application

cache

Yes

Request for metric

calculation

Computation of

metric for the

model

Return derived

metric and

close

connection

Update the

model in the

cache

Update the

model from

cache to

database

Fig. 1. Module functioning algorithm

Alternatively, to save time for the initialization process, the

server can use a previously created pool; it increases efficiency,

but does not eliminate the problem of limiting the number of

available processes.

Using system threads instead of system processes to

handle each request

On the so-called "Light-servers", depending on the

implementation of threads in the operating system, the amount

of resources needed to create a thread can be nearly the same

as the necessary resources to create a system process or

significantly less (depending on task specifics). But there the

limit is higher and, at maintaining large numbers of

simultaneous connections (thousands and above), this model

may prove to be unworkable for the following reasons:

consumption of the address space on the stack for each thread,

a large load on the scheduler and the restriction on the number

of threads in the system.

As can be seen, the second approach allows one to

simultaneously handle the number of connections within the

given requirements. However, there are some drawbacks:

• As the load increases, the requirements may change;

• Physically, the server needs a lot of resources to support

threads, but the main load is on the modules working with

models and the total load has to be taken into account.

In view of these shortcomings, there is a requirement for a

more optimal way to use server resources to handle a large

number of simultaneous requests.

B. Deferred Approach

In recent years, an approach called Deferred has become

increasingly popular [3]. Its essence lies in the fact that when a

request arrives, its processing module is called and it is

assigned an event handler - "processing completed" and then

the server forgets about the request received and does not

spend resources on the treatment of this request. After some

time, the request is processed, the server receives an event,

"processing complete" and the result, which it sends as a

response.

The Deferred concept differs markedly from the typical

methods and also from the software implementation. In the

server code, the function that uses data from remote services is

called to handle the requested task. Since the Deferred

ideology itself does not imply wasting time while waiting for

an answer, this function immediately returns the result, despite

the fact that it had not been received yet. This is achieved by

returning a special object such as deferred, to which functions

called handlers are added upon the return (usually, there are

handlers of received results and handlers of errors) and then

almost all the resources spent on the handling of the request

are released. The next step comes only at the time of receiving

the result of the requested operation.

Fig. 2 shows the basic organization of processing of the

incoming requests, using the Deferred approach, in the case

when the data received are processed by the server itself. It

can be seen that the there are no advantages over a simple

FIFO queue of requests. Additionally, costs are spent for

resources to maintain the context of each request handler and

more complex logic implementation.

Scientific Journal of Riga Technical University
Computer Science. Information Technology and Management Science

2011

__ Volume 49

141

Fig. 2. Request processing by the server

Fig. 3. Deferred when remote services are used

However, if the requests are handled by third-party services,

the efficiency increases markedly.

As can be seen from Fig. 3, the overall processing time of

three requests theoretically can be much smaller.

III. REASONING FOR SERVER TYPE SELECTION

Based on the requirements available, the use of server based

on the call of system processes is not possible, so the choice

must be made between the use of lightweight threads or the

Deferred approach.

Since there is currently no information that more than one

physical server would be available, i.e., all tasks will be

processed on the same computer, the main advantage of

Deferred cannot be fully realized.

However, to justify the choice of the type of server, both

possible configurations have to be tested.

IV. TESTING

As candidates, there are selected three popular Python web

servers:

• Twisted [4]

• Tornado [5]

• Cyclone

Of these, only Twisted directly supports the Deferred

approach. All three use a default thread to process incoming

data.

Testing methodology was as follows: the server run the

modified code to which emulation of processing complex

queries taking 0.005 seconds of CPU time, was added. A large

number of concurrent requests arrived at the server and

statistics of time taken to process them was collected.

The response delay is realized by means of Python:

import time
import random
rnd_delay = 0.005

time.sleep(rnd_delay)

When testing the Deferred approach, the delay in the code

does not make sense, but an additional service is used -

available on a different port local server Apache, which also

returns the requested data in 0.005 seconds.

Self testing was performed using a console program

ApacheBench [6]. We used the following command:

ab-n 800-c 100 http://localhost:8007/

here:

ab - the team causing the processor test;

-n - Total number of requests;

-c - Number of simultaneous requests;

http://localhost:8007/ - The host name and port for testing.

V. EXPERIMENTS

A. Twisted Server + Processing Without Deferred

Concurrency Level 100 75 50 25

Time taken for tests 4.441 4.434 4.421 4.439

Requests per second 180.15 180.4 180.96 180.21

Time per request 555.102 415.732 276.309 138.729

Mean time per request 5.551 5.543 5.526 5.549

Scientific Journal of Riga Technical University
Computer Science. Information Technology and Management Science

2011

__ Volume 49

142

Fig. 4 Twisted, concurrency Level VS requests per second without Deferred

Fig. 5 Twisted, time taken for tests VS mean time per request without
Deferred

This configuration processed any number (within the limits

of experiment specifics) of simultaneous requests without

changing the processing time per request (Fig. 4, Fig. 5). It

shows that 100 concurrently created threads a modern

operating system processes without significant delay.

B. Twisted Server + Deferred Processing

Fig. 6 Twisted, concurrency Level VS requests per second with Deferred

Fig. 7 Twisted, time taken for tests VS mean time per request with Deferred

Concurrency Level 100 75 50 25

Time taken for tests 4.231 3.786 3.186 3.041

Requests per second 189.09 211.28 251.07 263.1

Time per request 528.861 354.972 199.149 95.02

Mean time per request 5.289 4.733 3.983 3.801

When the number of simultaneous requests increases, the

average processing time per request grows as well, but smaller

number of simultaneous requests has shown better results than

those obtained when using threads with corresponding

amounts (Fig. 6, Fig. 7).

C. Tornado Server Without Deferred

Concurrency Level 100 75 50 25

Time taken for tests 4.475 4.498 4.496 4.5

Requests per second 178.77 177.85 177.93 177.76

Time per request 559.38 421.708 421.503 140.635

Mean time per request 5.594 5.623 5.62 5.625

Fig. 8 Tornado, concurrency Level VS requests per second without Deferred

Scientific Journal of Riga Technical University
Computer Science. Information Technology and Management Science

2011

__ Volume 49

143

Fig. 9. Tornado, time taken for tests VS mean time per request without

Deferred

The result is similar to Twisted without the use of Deferred,

just a little more time on average is used to process each

request (Fig. 8, Fig. 9). It also shows the efficient use of

systems threads by Twisted server.

D. Cyclone Server Without Deferred

Fig. 10. Cyclone, concurrency Level VS requests per second

without Deferred

Fig. 11. Cyclone, time taken for tests VS mean time per request

without Deferred

Concurrency Level 100 75 50 25

Time taken for tests 4.913 4.905 4.889 4.92

Requests per second 162.85 163.09 163.63 162.6

Time per request 614.071 459.876 305.567 153.75

Mean time per request 6.141 6.132 6.111 6.15

This server is based on the Twisted protocol, so similar

behaviour is expected. The result, showing that processing

each request was a little more time-consuming, as compared to

Twisted server, was predictable (Fig. 10, Fig. 11).

E. PHP — Performance of Server that Emulates a Remote Service

Concurrency Level 100 75 50 25

Time taken for tests 4.231 3.786 3.186 3.041

Requests per second 189.09 211.28 251.07 263.1

Time per request 528.861 354.972 199.149 95.02

Mean time per request 5.289 4.733 3.983 3.801

Fig. 12. Apache, concurrency Level VS requests per second

Fig. 13. Apache, time taken for tests VS mean time per request

To assess the impact of speed of processing each request,

when emulating a remote server by means of PHP, a

corresponding set of experiments was conducted.

However, there server coped with the requests very

confidently and when the number of simultaneous requests

Scientific Journal of Riga Technical University
Computer Science. Information Technology and Management Science

2011

__ Volume 49

144

increased to 100, the average processing time of each request

remained virtually unchanged (Fig. 12, Fig. 13).

VI. CONCLUSIONS

Experimental testing showed that using one physical server

implementing the processing of incoming requests as well as

direct operations on the model of user behaviour, the

complexity of the Deferred approach may exceed the benefits

derived from it. However, the result is still better when

Deferred is used. Furthermore, with an increase in the number

of simultaneously processed models in the future this

approach will provide the best average time of processing each

transaction.

REFERENCES

[1] P. A. Osipov and A. N. Borisov; Abnormal action detection based on

Markov models; Automatic Control and Computer Sciences; Volume 41

/ 2007 - Volume 45 / 2011; ISSN 0146-4116 (Print) 1558-108X
(Online); May 05, 2011.

[2] Millman, K. Jarrod; Aivazis, Michael; Python for Scientists and

Engineers. University of California, Berkeley. Computational Science &
Engineering, IEEE. Volume 13 Issue 2. ISSN: 1521-9615.

[3] Event-Driven Programming for Embedded Systems by Miro Samek,

Newnes 2008. ISBN-10: 0750687061; ISBN-13: 978-0750687065.

[4] Abe Fettig; Twisted Network Programming Essentials; 'Reilly Media;
2005; 238p; Print ISBN: 978-0-596-10032-2 | ISBN 10: 0-596-10032-9.

[5] Project web-page: www.tornadoweb.org
[6] ApacheBench; Copyright 1996 Adam Twiss, Zeus Technology Ltd.

Pavel Osipov is a Doctoral student at the Institute of Information Technology,

Riga Technical University. He received his mg.sc.ing. degree from Transport
and Telecommunications Institute, Riga. His research interests include web

data mining, geo-location services application, machine learning and
knowledge extraction. Additionally Python programming language usage for

scientific tasks becomes more and more interesting theme to research,

including servers, graphs, data proceeding and other tasks.
E-mail: pavels.osipovs@rtu.lv

Arkady Borisov has a Doctoral degree in Technical Sciences in the field of

Control in Technical Systems and the Dr.habil.sc.comp. degree.

He is a Professor of Computer Science at the Faculty of Computer Science
and Information Technology, Riga Technical University (Latvia). His research

interests include fuzzy sets, fuzzy logic and computational intelligence. He
has 210 publications in the field.

He has supervised a number of national research grants and participated in the

European research project ECLIPS.
E-mail: arkadijs.borisovs@cs.rtu.lv

Pāvels Osipovs, Arkādijs Borisovs. Deferred pieejas izmantošana zinātniskos lietojumos

Šajā rakstā ir apskatīti mūsdienīgi serveru realizācijas varianti, kuri apkalpo zinātniskos vai praktiskos uzdevumus ar stingriem ierobežojumiem, kuri attiecas uz
katras transakcijas minimālo apkalpošanas laiku un lielām slodzēm. Rakstā ir izskatīts labākā servera izvēles jautājums, ar kura palīdzību varētu realizēt lietotāja

uzvedības metrikas izskaitļošanas uzdevumu. Shematiski tika apskatīta mērķtiecīgas sistēmas kopējā struktūra no realizācijas viedokļa, izmantojot sistēmu ar
klients–serviss pieeju. Pats uzdevums un tā realizācijai izmantotie algoritmi ir izskatīti iepriekšējā darbā, savukārt darbā izmantota realizācija, pielietojot

programmēšanas valodu PHP, nespēja apmierināt visas stingrās prasības attiecībā uz katra pieprasījuma apstrādes laiku, līdz ar to radās nepieciešamība izmantot

citas pieejas, kuru izpēte arī kļuva par pamatu šim rakstam.
Šajā darbā tika izmantota Python valoda, kura kalpo kā vispiemērotākais un visspēcīgākais līdzeklis gan praktisko, gan līdzīga tipa zinātnisko uzdevumu

risināšanai. Tika izmantota arī klienta servera pieeja, kad serveris (realizēts ar Python valodas palīdzību) konfigurēts pašreizējo uzdevumu atrisināšanai. Papildus
izmantotie instrumenti, kuri tika pielietoti modeļa apstrādei un glabāšanai, rakstā netiek apskatīti, jo dotajā etapā ir nepieciešams novērtēt vienas pieejas

priekšrocības attiecībā pret citu. Ir apskatītas domēna īpašības un trīs iespējamās servera funkcionēšanas pieejas no katras transakcijas izmantošanas vidējā laika

minimizēšanas viedokļa. Iespēja izsaukt sistēmas procesus, sistēmas pavedienus un jaunu pieeju. Notikumiem bagāta reaģēšana – Deffered. Tika novērtēta
iespēja izmantot katru iespējamo pieeju piešķirtā uzdevuma robežās. Lai iegūtu servera efektivitātes skaitlisko novērtējumu, tika veikta to testēšana, izmantojot

dažādus serveru realizācijas veidus. Tika iegūti serveru uzvedības rezultāti, izmantojot dažādas konfigurācijas pie lielām slodzēm. Tika atklāts realizācijas
variants, kurš ir vislabāk piemērots domēna prasībām un īpatnībām. Kā jau tika prognozēts, Deferred pieeja parādīja sevi kā vispiemērotākā pieeja.

Павел Осипов, Аркадий Борисов. Использование Deferred подхода в научных приложениях

В статье рассмотрены современные варианты реализации серверов, обслуживающих научные либо практические задачи в рамках жёстких
ограничений на минимальное время обработки каждой транзакции и при наличии высоких нагрузок. Рассмотрена задача выбора наилучшего сервера

для реализации задачи вычисления метрики поведения пользователя. Схематически рассмотрена общая структура целевой системы с точки зрения её

реализации с использованием клиент-серверного подхода. Сама задача и использованные для её реализации алгоритмы рассмотрены в предыдущей
работе, однако использованная в ней реализация на языке программирования РНР не смогла удовлетворить жёстким требованиям на время обработки

каждого запроса. Возникла потребность применения других подходов, исследование которых и послужило базой для данной статьи.
В текущей реализации использован язык Python, как наиболее подходящий инструмент для решения как практических, так и научных задач подобного

типа. Также использован клиент-серверный подход, когда сервер (также реализованный на Python) сконфигурирован именно для решения текущей

задачи. Дополнительные инструменты для хранения и обработки модели в статье не рассматриваются, так как на данном этапе требуется оценить
преимущества одного из подходов перед другими.

Рассмотрены особенности предметной области и три возможных подхода к функционированию сервера с точки зрения минимизации среднего
времени оценки каждой транзакции: возможность вызова системных процессов, системных нитей и новый подход: событийное реагирование —

Deferred. Произведена оценка возможностей использования каждого подхода в рамках поставленной задачи. Для получения численной оценки

эффективности серверов было проведено их тестирование с применением различных вариантов их реализации. Получены данные о поведении
различных серверов при использовании различных конфигураций и под различной нагрузкой. Выявлен вариант реализации, наиболее

соответствующий особенностям и требованиям текущей предметной области. Как и ожидалось, Deferred подход показал себя наиболее подходящим
подходом.

http://www.tornadoweb.org/
mailto:arkadijs.borisovs@cs.rtu.lv

