Scientific Journal of Riga Technical University
Computer Science. Information Technology and Management Science

2011
Volume 49

Use of the Deferred Approach in Scientific
Applications

Pavel Osipov*, Arkady Borisov?, *?Riga Technical University

Abstract — In this paper, the implementation of security system
that has strict requirements on the time of evaluation of each
transaction made by the user is examined on the example of
building a system for user behaviour modelling using Markov
models. Evaluation of the effectiveness of both the classical
approach to the implementation of a server that calculates metric
of the user model and with the use of lightweight threads, as well
as of a new ideology - Deferred-based event model is performed.

A number of tests of various configurations are conducted,
showing the preferred server for the Deferred-based type of
system as well as an approach to implementing this type of
request service.

Keywords — Deferred, Python, server, highload, response time

I. INTRODUCTION

Nowadays, there are many different algorithms that require
large hardware resources for their operations. This is due both
to an increase in complexity of the algorithms and the volume
and structure of the data being processed. The usual practice in
such cases is to increase the number and capacity used for data
processing machines, in particular, the transition to a cluster or
cloud. But not always this kind of approach is economically
justified and there is a question of performing such tasks on
the available hardware, but using different optimization
techniques.

In [1] the implementation and evaluation of the algorithm
design and analysis of user behaviour model of the electronic
system to detect its abnormal activity is described. It is shown
that the proposed algorithm can be used in systems operating
with sensitive data. However, the established test system
implemented in the programming language PHP showed a
very low rate of model treatment. This is due to poor
optimization of the PHP language with regard to performing
complex mathematical calculations.

To implement the final system, the Python programming
language was selected as a well-established and highly-loaded
language in the creation of systems and implementation of a
variety of scientific problems [2].

When using the Python language in this area, there is a
requirement for the effective organization of the server
processing the request to review and update models as the
server itself is also created in Python. In the second part of this
paper a technique to select the best server and the results of its
application are presented.

There are very strict requirements for speed of processing
each transaction: the upper threshold of processing time for
100 models is selected to be 500 milliseconds. There is also a

139

requirement to use typical server hardware, without having to
purchase expensive hardware. Depending on the processing
power of the equipment rate of shortchanging the same model
can vary. At present, an algorithm for computing the metrics
and model updates is implemented in Python, it uses about 50
milliseconds of CPU time on a computer Intel Core i3 560 +
4Gb RAM DDRS3 running on Ubuntu operating system.
However, in addition it is necessary to consider the time spent
on initializing Python interpreter, as well as temporary costs
required to load the model from the database, to receive
parameters and issue the result. Finally, the time may reach
more than 200 milliseconds on a script that cannot consistently
handle 90 models for 500 ms.

Therefore, the need for optimization of the treatment
process arises, through the use of parallel computing, the use
of all possible cores, pooling database connections, using
effective models of long-term storage, as well as efficient
allocation of resources to handle a large number of
simultaneous requests.

Due to the above-mentioned limitations, it was decided to
use the experience and some software tools used to create
electronic systems aimed at heavy loads.

Il. TARGET SYSTEM STRUCTURE

The developed module is part of a big information system
security module, which imposes certain restrictions on the
possible architectural solutions for its implementation.

The target system is a set of distributed services, and
security is one of its modules. In turn, the system modelling
user behaviour and the evaluation of each action on the basis
of this model is a module of a common security system.

The general logic of the workflow lies in the fact that at any
given time many users perform a variety of activities -
transactions, each of which, before being processed by the
system must be approved by the security module. During
processing, each transaction security module in particular
examines how different a query is from the typical behaviour
for this user. For this purpose, transaction metric is calculated
[1]. To calculate it, the user must have a personal behaviour
model. When entering the system for the first time, a user is
assigned a typical model of the corresponding type of user
class. In the course of work, personal model is varied
according to some rules, thus adjusting to the changing
behaviour of the individual.

A more detailed block-schema of this process is shown in
Fig. 1.

Scientific Journal of Riga Technical University
Computer Science. Information Technology and Management Science

2011
Volume 49

A. Python Servers Implementation Approaches

Almost all of the servers implemented in Python, use one of
two classical approaches to the implementation logic that are
described below.

Creating a system process to handle each request

The so-called "Heavy servers", when requested, create a
system process that handles the request independently of the
server itself. This allows the server to effectively handle many
simultaneous requests. However, the establishment of a
systemic process is fairly resource-expensive operation and
often the system has a limit on the number of processes
simultaneously available for the application. Their number is

seldom greater than 100, even on powerful modern servers.

Request for metric
calculation

No

The user have a
personal model?

Get model of
common type
for current user

Requested
model presented in
cache?

Load model
from database
to application

cache

Load model

from
application <
cache

!

: Return derived
Computation of A
: metric and
metric for the ‘ﬁ
close
model n
connection
Updatcil Update the
model from)
—> model In the
cache to
cache
database

Fig. 1. Module functioning algorithm

Alternatively, to save time for the

server can use a previously created pool; it increases efficiency,

initialization process, the

but does not eliminate the problem of limiting the number of
available processes.

Using system threads instead of system processes to
handle each request

On the so-called "Light-servers”, depending on the
implementation of threads in the operating system, the amount
of resources needed to create a thread can be nearly the same
as the necessary resources to create a System process or
significantly less (depending on task specifics). But there the
limit is higher and, at maintaining large numbers of
simultaneous connections (thousands and above), this model
may prove to be unworkable for the following reasons:
consumption of the address space on the stack for each thread,
a large load on the scheduler and the restriction on the number
of threads in the system.

As can be seen, the second approach allows one to
simultaneously handle the number of connections within the
given requirements. However, there are some drawbacks:

» As the load increases, the requirements may change;
» Physically, the server needs a lot of resources to support
threads, but the main load is on the modules working with
models and the total load has to be taken into account.

In view of these shortcomings, there is a requirement for a
more optimal way to use server resources to handle a large
number of simultaneous requests.

B. Deferred Approach

In recent years, an approach called Deferred has become
increasingly popular [3]. Its essence lies in the fact that when a
request arrives, its processing module is called and it is
assigned an event handler - "processing completed” and then
the server forgets about the request received and does not
spend resources on the treatment of this request. After some
time, the request is processed, the server receives an event,
"processing complete™ and the result, which it sends as a
response.

The Deferred concept differs markedly from the typical
methods and also from the software implementation. In the
server code, the function that uses data from remote services is
called to handle the requested task. Since the Deferred
ideology itself does not imply wasting time while waiting for
an answer, this function immediately returns the result, despite
the fact that it had not been received yet. This is achieved by
returning a special object such as deferred, to which functions
called handlers are added upon the return (usually, there are
handlers of received results and handlers of errors) and then
almost all the resources spent on the handling of the request
are released. The next step comes only at the time of receiving
the result of the requested operation.

Fig. 2 shows the basic organization of processing of the
incoming requests, using the Deferred approach, in the case
when the data received are processed by the server itself. It
can be seen that the there are no advantages over a simple
FIFO queue of requests. Additionally, costs are spent for
resources to maintain the context of each request handler and
more complex logic implementation.

140

Scientific Journal of Riga Technical University

Computer Science. Information Technology and Management Science

2011
Volume 49

Server
Query 1
Query 2
¥ >
Query 3
Y .
Answer 1
Answer 2
Answer 3

Fig. 2. Request processing by the server

Server
Query 1 -
Query 2 -
Query 3
Answer 1
Answer 2
Answer 3

Fig. 3. Deferred when remote services are used

However, if the requests are handled by third-party services,

the efficiency increases markedly.

As can be seen from Fig. 3, the overall processing time of
three requests theoretically can be much smaller.

I1l. REASONING FOR SERVER TYPE SELECTION

Based on the requirements available, the use of server based
on the call of system processes is not possible, so the choice
must be made between the use of lightweight threads or the
Deferred approach.

Since there is currently no information that more than one
physical server would be available, i.e., all tasks will be
processed on the same computer, the main advantage of
Deferred cannot be fully realized.

However, to justify the choice of the type of server, both
possible configurations have to be tested.

IV. TESTING

As candidates, there are selected three popular Python web
servers:

» Twisted [4]

« Tornado [5]

» Cyclone

Of these, only Twisted directly supports the Deferred
approach. All three use a default thread to process incoming
data.

Testing methodology was as follows: the server run the
modified code to which emulation of processing complex
queries taking 0.005 seconds of CPU time, was added. A large
number of concurrent requests arrived at the server and
statistics of time taken to process them was collected.

The response delay is realized by means of Python:

import time

import random

rnd delay = 0.005
time.sleep(rnd delay)

When testing the Deferred approach, the delay in the code
does not make sense, but an additional service is used -
available on a different port local server Apache, which also
returns the requested data in 0.005 seconds.

Self testing was performed using a console program
ApacheBench [6]. We used the following command:

ab-n 800-c 100 http://localhost:8007/

here:

ab - the team causing the processor test;

-n - Total number of requests;

-C - Number of simultaneous requests;

http://localhost:8007/ - The host name and port for testing.

V.EXPERIMENTS

A. Twisted Server + Processing Without Deferred

Concurrency Level 100 75 50 25
Time taken for tests 4.441 4.434 4421 4.439
Requests per second 180.15 180.4 180.96 180.21
Time per request 555.102 415732 276.309 138.729
Mean time per request 5.551 5.543 5.526 5.549

141

Scientific Journal of Riga Technical University
Computer Science. Information Technology and Management Science

2011
Volume 49

Concurrency Level influence on requests per second count

181
180.8
1806
1804
180.2

180
179.8
179.6

o= Requests per second

Requests per second

Concurrency Level

100 75 50 25

Fig. 4 Twisted, concurrency Level VS requests per second without Deferred

Time taken for tests and mean time per request

" o . . v . —Y
< b2 = & #
= 4

o

-

€3

)

&6 e Time for testy
81

£ st [220 FEQUIEST HiME
=0

__Concurrency Level)
75 50 25

100

Fig. 5 Twisted, time taken for tests VS mean time per request without
Deferred

This configuration processed any number (within the limits
of experiment specifics) of simultaneous requests without
changing the processing time per request (Fig. 4, Fig.5). It
shows that 100 concurrently created threads a modern
operating system processes without significant delay.

B. Twisted Server + Deferred Processing

Time taken for tests and mean time per request

6
v S
2
&
S 4
S
&3
o
<
T 9
T e Thteres Lakeony fon testy
= 1

s Mean tine pey
0 request
Concurrency Level
100 75 50 25

Fig. 6 Twisted, concurrency Level VS requests per second with Deferred

Concurrency Level influence on requests per second count

100
150

100

Requests per second

S0
g [l 15 et sevomil

Concurtency Level

100 75 S0

[
wn

Fig. 7 Twisted, time taken for tests VS mean time per request with Deferred

Concurrency Level 100 75 50 25
Time taken for tests 4.231 3.786 3.186 3.041
Requests per second 189.09 211.28 251.07 263.1
Time per request 528.861 354.972 199.149 95.02
Mean time per request 5.289 4.733 3.983 3.801

When the number of simultaneous requests increases, the
average processing time per request grows as well, but smaller
number of simultaneous requests has shown better results than
those obtained when using threads with corresponding
amounts (Fig. 6, Fig. 7).

C. Tornado Server Without Deferred

Concurrency Level 100 75 50 25
Time taken for tests 4.475 4.498 4.496 45
Requests per second 178.77 177.85 177.93 177.76
Time per request 559.38 421.708 421503 140.635
Mean time per request 5.594 5.623 5.62 5.625

Concurrency Level influence on requests per second count

- Raquests per second

1788
1786
178.4
178.2

178
177.8
177.6
177.4
177.2

100 75 S0 25

Concurrency Leval

Requests per second

Fi

g. 8 Tornado, concurrency Level VS requests per second without Deferred

142

Scientific Journal of Riga Technical University
Computer Science. Information Technology and Management Science

2011
Volume 49
Time taken for tests and mean time per request
=@=Time taken for tests
=e==fdean time per request Concurrency Level 100 75 50 25

s Time taken for tests 4,913 4.905 4.889 4.92

5 T 2 > ? Requests per second 162.85 163.09 163.63 162.6
8 = - 2 Time per request 614.071 459.876 305567 153.75
o
E 3 Mean time per request 6.141 6.132 6.111 6.15
&

2 - - . . .
B This server is based on the Twisted protocol, so similar
o - - . .
£ behaviour is expected. The result, showing that processing
"o each request was a little more time-consuming, as compared to

100 75 50 25 Twisted server, was predictable (Fig. 10, Fig. 11).

Concurrency Level

Fig. 9. Tornado, time taken for tests VS mean time per request without
Deferred

The result is similar to Twisted without the use of Deferred,
just a little more time on average is used to process each
request (Fig. 8, Fig.9). It also shows the efficient use of
systems threads by Twisted server.

D. Cyclone Server Without Deferred

Concurrency Levelinfluence on requests per second count

—@=Requests per second

1628
163 €
1034

163.2

Requests per second

Concurrency Leval

Fig. 10. Cyclone, concurrency Level VS requests per second
without Deferred

Time taken for tests and mean time per request
=@=Time taken for tests
w=pdeantime per request

6 '\
=
0 i— & = a
w4
2
S3
c
22
Ji]
o
£
’—
0
100 75 50 25

Concurrency Level

Fig. 11. Cyclone, time taken for tests VS mean time per request
without Deferred

143

E. PHP — Performance of Server that Emulates a Remote Service

Concurrency Level 100 75 50 25
Time taken for tests 4231 3.786 3.186 3.041
Requests per second 189.09 211.28 251.07 263.1
Time per request 528.861 354.972 199.149 95.02
Mean time per request 5.289 4.733 3.983 3.801
Time taken for tests and mean ime per request
7 — —e —— a

Time taken for tests

Concutrency Level

Fig. 12. Apache, concurrency Level VS requests per second

Concurrency Level influence on requests per second

count
() c(UEEES par second
1900
1850
E 1800
(=]
8 1750
"
'q-) 1700 _—-.
Q... —
" 1650
-
|
@ 1600
3
g 1550
x 100 15 &0 25
Concurrency Level

Fig. 13. Apache, time taken for tests VS mean time per request

To assess the impact of speed of processing each request,
when emulating a remote server by means of PHP, a
corresponding set of experiments was conducted.

However, there server coped with the requests very
confidently and when the number of simultaneous requests

Scientific Journal of Riga Technical University
Computer Science. Information Technology and Management Science
2011

Volume 49

increased to 100, the average processing t|me Of each request [3] Event-Driven Programming for Embedded Systems by Miro Samek,

; : ; : Newnes 2008. ISBN-10: 0750687061; ISBN-13: 978-0750687065.
remained Vlrtua”y unChangw (Flg' 12, Fig. 13)' [4] Abe Fettig; Twisted Network Programming Essentials; 'Reilly Media;

2005; 238p; Print ISBN: 978-0-596-10032-2 | ISBN 10: 0-596-10032-9.
VI. CONCLUSIONS [5]1 Project web-page: www.tornadoweb.org
[6] ApacheBench; Copyright 1996 Adam Twiss, Zeus Technology Ltd.

Experimental testing showed that using one physical server

implementing the processing of incoming requests as well as pavel Osipov is a Doctoral student at the Institute of Information Technology,
direct operations on the model of user behaviour, the Riga Technical University. He received his mg.sc.ing. degree from Transport

complexity of the Deferred approach may exceed the benefits and Telecommunications Institute, Riga. His research interests include web
data mining, geo-location services application, machine learning and

derived from it. However, the result is still better when ynowledge extraction. Additionally Python programming language usage for
Deferred is used. Furthermore, with an increase in the number scientific tasks becomes more and more interesting theme to research,
of simultaneously processed models in the future this including servers, graphs, data proceeding and other tasks.
. . . . E-mail: pavels.osipovs@rtu.lv

approach will provide the best average time of processing each
transaction. Arkady Borisov has a Doctoral degree in Technical Sciences in the field of
Control in Technical Systems and the Dr.habil.sc.comp. degree.
He is a Professor of Computer Science at the Faculty of Computer Science
and Information Technology, Riga Technical University (Latvia). His research
interests include fuzzy sets, fuzzy logic and computational intelligence. He
[1] P. A Osipov and A. N. Borisov; Abnormal action detection based on has 210 publications in the field. .)

Markov models; Automatic Control and Computer Sciences; Volume 41 He has supervised a nqmber of national research grants and participated in the

/ 2007 - Volume 45 / 2011; ISSN 0146-4116 (Print) 1558-108X European research project ECLIPS.

(Online): May 05, 2011. E-mail: arkadijs.borisovs@cs.rtu.lv
[2] Millman, K. Jarrod; Aivazis, Michael; Python for Scientists and

Engineers. University of California, Berkeley. Computational Science &

Engineering, IEEE. Volume 13 Issue 2. ISSN: 1521-9615.

REFERENCES

Pavels Osipovs, Arkadijs Borisovs. Deferred pieejas izmanto$ana zinatniskos lietojumos

Saja raksta ir apskatiti miisdienigi serveru realizacijas varianti, kuri apkalpo zinatniskos vai praktiskos uzdevumus ar stingriem ierobeZojumiem, kuri attiecas uz
katras transakcijas minimalo apkalpo$anas laiku un lielam slodzém. Raksta ir izskatits labaka servera izvéles jautajums, ar kura palidzibu varétu realizgt lietotaja
uzvedibas metrikas izskaitlo§anas uzdevumu. Shematiski tika apskatita mérktiecigas sistémas kopgja struktiira no realizacijas viedokla, izmantojot sistému ar
klients—serviss pieeju. Pats uzdevums un ta realizacijai izmantotie algoritmi ir izskatiti iepriek$&ja darba, savukart darba izmantota realizacija, pielietojot
programmgSanas valodu PHP, nespé&ja apmierinat visas stingras prasibas attieciba uz katra pieprasijuma apstrades laiku, 1idz ar to radas nepiecieSamiba izmantot
citas pieejas, kuru izpéte arT kluva par pamatu §im rakstam.

Saja darba tika izmantota Python valoda, kura kalpo ka vispiemérotakais un visspecigakais lidzeklis gan praktisko, gan lidziga tipa zinatnisko uzdevumu
risinasanai. Tika izmantota ar klienta servera pieeja, kad serveris (realizéts ar Python valodas palidzibu) konfiguréts pasreiz&jo uzdevumu atrisinasanai. Papildus
izmantotie instrumenti, kuri tika pielietoti modela apstradei un glabasanai, raksta netiek apskatiti, jo dotaja etapa ir nepiecieSams novértét vienas pieejas
prieks$rocibas attieciba pret citu. Ir apskatitas doména Ipasibas un trTs iesp&jamas servera funkciongSanas pieejas no katras transakcijas izmantosanas vidgja laika
minimizéSanas viedokla. Iesp&ja izsaukt sistémas procesus, sistémas pavedienus un jaunu pieeju. Notikumiem bagata reageSana — Deffered. Tika novértéta
iesp€ja izmantot katru iespéjamo pieeju pieskirta uzdevuma robezas. Lai ieglitu servera efektivitates skaitlisko novertéjumu, tika veikta to testéSana, izmantojot
dazadus serveru realizacijas veidus. Tika iegiti serveru uzvedibas rezultati, izmantojot dazadas konfiguracijas pie lielam slodzém. Tika atklats realizacijas
variants, kurs ir vislabak piem@rots doména prasibam un ipatnibam. Ka jau tika prognozéts, Deferred pieeja paradija sevi ka vispiemérotaka pieeja.

Magea Ocunos, Apkaauii Bopucos. Ucnoab3oBanue Deferred moaxona B HAy4YHBIX NPHIIOKEHHSIX

B crathe paccMOTpeHBI COBpEMEHHBIE BapHAHTHI pPeaaM3allid CepBEepOB, OOCTYKMBAIOIIUX HAaydHble JHOO MpaKTHYECKHE 3aJaudl B paMKaX >KECTKUX
OrpaHHYeHHI HA MUHHUMAJIbHOE BpeMsl 00pabOTKU KaXJ0H TpaH3aKLIUK U IIPU HAJIMYUHU BBICOKHX HAarpy3ok. PaccMoTpena 3aada BeIOOpa HaHTydILIEro cepBepa
JUISL peaTi3alii 3a1a4i BEIYHCIICHHST METPHUKH MTOBEJCHHS TT0Ib30BaTeNsl. CXeMaTHIeCKH paccMOTpeHa 00Iasi CTPYKTypa IEeIeBOH CHCTEMBI C TOUKH 3pEHHMs e
peanusaluy ¢ UCHONIb30BaHUEM KIHEHT-cepBepHoro moaxona. Cama 3aaya M HCIIOIb30BaHHBIC UL €€ pealu3allii aIrOpUTMBI PACCMOTPEHBI B IPEAbIIyIIeH
padore, 0JJHaKO HCIIOJb30BaHHAs B HEW peaim3alys Ha si3bIke nporpammupoBanus PHP He cMorna yoBieTBOpUTD KECTKUM TpeOOBaHUsIM Ha BpeMst 00paboTKu
KaskJ10T0 3arpoca. Bo3HuKIa TOTpeOHOCTh MPUMEHEHH JPYTHX MOIX0/I0B, HCCIIEIOBAHIE KOTOPHIX U ITOCIYKUIIO 6a30i JUIs JaHHOH CTaThH.

B Teky1eil peani3alnn UCHoIb30BaH A3bIk Python, kak HanboIee MOIXOSIIINIA HHCTPYMEHT JUISl PELICHHs KaK NPaKTHYECKUX, TaK M HAyIHBIX 3a/1a4 M0J06HOr0
Tuna. Taxke UCHONB30BaH KINEHT-CEPBEPHBII MOIXO0, KOT/IAa cepBep (Takxke peann3oBaHHbI Ha Python) ckoHGHUrypHpOBaH MMEHHO IS PELIEHHS TEKyIIeH
3a1aud. J[ONOMHUTENbHBIC HHCTPYMEHTHI U1 XpaHEHHsI U 00pabOTKHM MOJENTH B CTaTbe HE PacCMATPHBAIOTCS, TAK KAaK Ha JAHHOM JTalle TpeOyeTcsl OLICHHTD
MPEUMYIIECTBA OJJHOTO U3 MOAXO/0B NEpes] APYrUMHU.

PaccMoTpeHBI 0COOCHHOCTH HPEIMETHOH 00IAaCTH M TPH BO3MOXKHBIX MOAX0Aa K ()YHKIHOHHPOBAHHIO CepBepa C TOYKU 3PEHHS MHHHMH3AIUH CPEIHETO
BpPEMEHH OLICHKH KaXKIOH TPaH3aKIMU: BO3MOXHOCTH BBI30BA CHCTEMHBIX HPOIECCOB, CHCTEMHBIX HHTEH M HOBBIM MOAXOJ: COOBITHUIHOE pearnpoBaHHE —
Deferred. Ilpon3BeneHa OleHKa BO3MOXHOCTEH HCIOJIB30BAHMS KaXOTO ITOAXOAA B paMKax IOCTABICHHOM 3aqaud. JUIsl MOJy4eHHs YHCICHHON OLCHKH
3 }EKTUBHOCTH cepBepoB OBLIO NMPOBEJCHO HX TECTHPOBAHHME C MPHMEHEHHEM Da3IMYHBIX BapHAHTOB HMX pealu3anud. IloixydeHbl JaHHBIE O NOBEACHUH
Pa3snMYHBIX CEPBEpOB IPH HCIONB30BAHHM DA3NIUUYHBIX KOHOHIYpaMil ¥ II0[pa3IH4HON HArpy3kod. BrIsBIeH BapuaHT peanusanud, HauOonee
COOTBETCTBYIOLINI OCOGEHHOCTSIM M TPeOOBaHMAM TEKyIIeH mpeamMerTHoi obiactu. Kak u oxuganocs, Deferred mogxon mokasan cebst HanOosee 110 IX0SIIHM
TIOZIXOJIOM.

144

http://www.tornadoweb.org/
mailto:arkadijs.borisovs@cs.rtu.lv

