Zinātniskās darbības atbalsta sistēma
Latviešu English

Publikācija: A Comparative Analysis of Short Time Series Processing Methods

Publikācijas veids Publikācija RTU zinātniskajā žurnālā
Pamatdarbībai piesaistītais finansējums Nav zināms
Aizstāvēšana: ,
Publikācijas valoda English (en)
Nosaukums oriģinālvalodā A Comparative Analysis of Short Time Series Processing Methods
Pētniecības nozare 1. Dabaszinātnes
Pētniecības apakšnozare 1.2. Datorzinātne un informātika
Autori Arnis Kiršners
Arkādijs Borisovs
Atslēgas vārdi short time series, forecasting, exponential smoothing, exponential smoothing with the development trend, moving average method
Anotācija This article analyzes the traditional time series processing methods that are used to perform the task of short time series analysis in demand forecasting. The main aim of this paper is to scrutinize the ability of these methods to be used when analyzing short time series. The analyzed methods include exponential smoothing, exponential smoothing with the development trend and moving average method. The paper gives the description of the structure and main operating principles. The experimental studies are conducted using real demand data. The obtained results are analyzed; and the recommendations are given about the use of these methods for short time series analysis.
DOI: 10.2478/v10313-012-0009-4
Atsauce Kiršners, A., Borisovs, A. A Comparative Analysis of Short Time Series Processing Methods. Information Technology and Management Science. Nr.15, 2012, 65.-69.lpp. ISSN 2255-9086. e-ISSN 2255-9094. Pieejams: doi:10.2478/v10313-012-0009-4
Pilnais teksts Pilnais teksts
ID 15246